

Rapid Android Parser for Investigating DEX files (RAPID)

Xiaolu Zhang a, b, Frank Breitinger b, *, 1, Ibrahim Baggili b, 2

a College of Computer Science and Technology, Jilin University, Qianjin Street 2699, Changchun, Jilin, 130012, PR China
b Cyber Forensics Research & Education Group, Tagliatela College of Engineering, ECECS, University of New Haven, 300 Boston Post Rd.,
West Haven, CT, 06516, USA

* Corresponding author.
E-mail addresses: xiaoluzhang1985@gmail.com (X

newhaven.edu (F. Breitinger), IBaggili@newhaven.edu
1 http://www.FBreitinger.de/.
2 http://www.unhcfreg.com/.
3 http://www.appbrain.com/stats/number-of-andro

Dec. 6, 2015).

Introduction

With the wide adoption of the Android operating sys-
tem, the number of Android applications on Google Play,
the official Android Application market, is estimated to be
over 1.5 million, a number which has steadily increased
over the last ten years.3 Complimenting this growth has
been a stark increase in security threats attributed to
Android applications.

An Android application is a single file in the Android
Application Package (APK) format which is a compressed
. Zhang), FBreitinger@
(I. Baggili).

id-apps (last accessed
container (a zip file). Within that container, one may find
(1) AndroidManifest.xml which holds essential data about
the application that the Android systemmust read before it
can run its code (2) at least one Android Virtual Machine
Dalvik EXecutable (DEX) file which is the actual compiled
application (we introduce its layout in Sections (DEX file
layout and Related work)) additional data/resources like
images, libraries, etc.

At the time of writing this paper, there were four com-
mon procedures for analyzing DEX files:

Smali: Themost commonprocedurewas to disassemble
a DEX file into smali code4which is based on Jasmin syntax5

and is usually saved in text format. Next, these text files
(one per class) can be parsed and aid in further analysis.
4 Smali code is a human-readable representation for Dalvik bytecode.
5 http://jasmin.sourceforge.net/guide.html (last accessed Dec. 6, 2015).

mailto:xiaoluzhang1985@gmail.com
mailto:FBreitinger@newhaven.edu
mailto:FBreitinger@newhaven.edu
mailto:IBaggili@newhaven.edu
http://www.FBreitinger.de/
http://www.unhcfreg.com/
http://www.appbrain.com/stats/number-of-android-apps
http://jasmin.sourceforge.net/guide.html

 29
DEX2JAVA: The second possibility was converting DEX
files into JAVA bytecode which results in either a .jar file or
several .class files. This allows utilizing already existing
tools for JAVA bytecode analysis.

Manual analysis: While the first two approaches are
automated, a third method is to employ an interactive tool
(a debugger or disassembler like IDA Pro) and work directly
on the DEX file.

Individual solutions: Some researchers implemented
their own standalone programs for parsing/disassembling
Android applications. This is discussed further in Section
(Related work).

While the aforementioned procedures are currently
common, there are several disadvantages (depending on
the procedure): (i) one has to be familiar with the smali
syntax (ii) The first two procedures employ an intermediate
format which is time consuming and requires more disk
space (iii) the conversion from DEX to JAVA is not reliable
and several applications cannot be converted causing
converters to crash (iv) the offset/location of the data
extracted from the intermediate file(s) is difficult to acquire
from a forensic examiners' perspective since the interme-
diate representation cannot explicitly link where it is ac-
quired from in a DEX file and (v) the ‘manual’ procedure is
only appropriate for a small number of applications as it
requires a practitioner to manually extract and analyze
relevant data.

Given these limitations, this paper presents Rapid
Android Parser for Investigating DEX files (RAPID), an open
source tool for DEX file analysis that is efficient (runtime),
can handle large amounts of data, and is easy-to-use for
forensic practitioners due to its well-documented APIs
(Github plus javadoc).

The performance improvement in our method is gained
by directly working on the DEX files. Furthermore, the
devised RAPID approach does not require additional stor-
age space. Lastly, examiners do not have to be familiar with
any intermediate syntax (e.g., smali). In case an application
requires additional, manual inspection, RAPID provides the
exact offset of the data acquired (e.g., where a string is
stored inside the application).

Additionally, there are two other advantages to RAPID.
Primarily, in our experiments, we obtained errors when
decompiling/converting DEX files with traditional tools
which did not happen with RAPID (see Section
(Reliability)). Second, RAPID can support dynamic analysis
and guide examiners to suspicious offsets6 (see Section
(Use case: finding outsourced functionality)).

The results show that for our sample set of n ¼ 11;711
Android applications, 16 applications could not be decom-
piled/converted with existing tools, while RAPID handled
them correctly. Furthermore, for the remaining 11,695
samples with a total DEX file size of 22.35 GB, RAPID re-
duces the query time from 1368 mine88 min.

The rest of this paper is organized as follows: Section
(DEX file layout) summarizes the DEX file layout
6 We can locate external function calls such as native libraries (*.SO
files) or JAVA executable files (DEX, JAR). This technique can be used to
hide / obfuscate code.
followed by the related work in Section (Related work).
The core of this article is Section (RAPID approach)
which describes the approach, the implementation,
some details about the parsing, the usage including APIs,
a special use case as well as the validation. The sec:
experiment section discusses RAPID's benefits. The last
two sections provide the limitations followed by the
conclusions and future work.

DEX file layout

The DEX file structure is well-documented on the offi-
cial Android Dalvik Executable format page (Google, 2008).
An overview is provided in Fig. 1 where the left side shows
a high-level synopsis similar to the official documentation.7

On the right hand side we present a slightly more detailed
representation of the data section which RAPID utilizes to
parse DEX files.

A DEX file is made up of several sections where Fig. 1
outlines the most important ones (with respect to
application analysis). The starting point is usually the
header which provides pointers to the other major sec-
tions. Focusing on the actual content, string_ids and
string_data contain all the data about strings. ‘String’
here refers to the parts of operations and definitions
which have to be represented by string labels (e.g., value
of string constants, type and class names etc.). The
method_ids section contains indexes leading to data
related to methods, e.g., which class they belong to,
method names, type of parameters etc. The code section
comprises all code instructions divided by code blocks
referring to the methods defined in a DEX file. More
details are presented in Section (Parsing a DEX file)
where parsing is elaborated on.

Related work

The introduction including Section (DEX file layout)
briefly outlined the structure and layout of Android appli-
cations. In this section, we discuss disassemblers followed
by work relevant to APK file analysis.

Commonly, Android applications are investigated by
analyzing the AndroidManifest.xml, the DEX file or both
(Talha et al., 2015). The XML-file processing is straightfor-
ward e convert binary into text and parse it. Since XML-
files are usually small in size, this process is quite easy
and efficient. However, a DEX file is more challenging as it
can be larger in comparison.

To the best of our knowledge, there are currently 12
tools for analyzing DEX files. An overview of these tools is
presented in Table 1 with the name of each tool including a
link to their websites. The third column contains a short
description followed by some literature that utilizes each of
the mentioned tools.

Rows 1e2 show works that decompile the DEX file into
smali code using Baksmali or ApkTool. Smali/Baksmali is a
prominent assembler/disassembler for DEX files that
7 https://source.android.com/devices/tech/dalvik/dex-format.
html#file-layout (last accessed Dec. 6, 2015).

https://source.android.com/devices/tech/dalvik/dex-format.html#file-layout
https://source.android.com/devices/tech/dalvik/dex-format.html#file-layout

Table 1
Works regarding to DEX file analysis.

Tool Description Utilization

Smali
l ApkToola,b Decompiles APK file Wu et al. (2012), Zheng

et al. (2012), Hoffmann
et al. (2013)

2 Baksmalia,c disassembles DEX file
to smali files

Zhou et al. (2012), Lu
et al. (2012)

DEX2JAVA
3 Dex2jara,d converts DEX file to JAR

file
Gibler et al. (2012)

4 Deda,e converts DEX file
to.class files

Yang et al. (2013)

5 Darea,f converts DEX file to
.class files

Elish et al. (2015)

Manual analysis
6 Androguarda,g reverse engineering

APK file
Desnos and Gueguen
(2011)

7 IDA Proh reverse engineering a
wide range of binaries

Drake et al. (2014)

8 JEBi reverse engineering
APK file

Dmitrienko et al. (2014)

Individual solution
9 AIS disassembles DEX file

to smali code
Zheng et al. (2013)

10 Own tool converts DEX file to
JAVA bytecode

Chen et al. (2013)

11 Own parser parses DEX file for APIs
and strings

Arp et al. (2014)

12 Dedexera,j disassembles DEX file
to its own format

Chin et al. (2011), Seo
et al. (2014)

For more details, please visit their own website.
a These tools are open source tools under different licenses, e.g., Apache

2.0, GPLv2, BSD 3-Clause, etc.
b https://ibotpeaches.github.io/Apktool/.
c https://code.google.com/p/smali/.
d http://sourceforge.net/projects/dex2jar/.
e http://siis.cse.psu.edu/ded/.
f http://siis.cse.psu.edu/dare/index.html.
g https://code.google.com/archive/p/androguard/.
h https://www.hex-rays.com/products/ida/.
i https://www.pnfsoftware.com/.
j http://sourceforge.net/projects/dedexer/.

Fig. 1. DEX file layout overview.

 30
outputs smali code. A positive aspect of this technique is
that it fully supports the DEX format and also allows one to
extract annotations, debugging information, and line
numbers. The second open source tool, ApkTool, is a Smali/
Baksmali decompiler/compiler for Android APK files. Apk-
Tool has the ability to debug smali code step by step, and
can build a language pack by translating the .xml strings
inside APK files. While these tools are widely adopted, they
come with a major downside of converting the binary code
into smali code which is time consuming.

Rows 3e5 present the DEX2JAVA applications. Dex2jar,
ded and dare (note, dare is the successor of ded) can
convert the DEX files into JAVA bytecode (.jar, .class) and
thus they convert from binary into binary (Enck et al.,
2011). The benefit of this conversion is that there are
already several existing tools for JAVA bytecode analysis
which may then be utilized, e.g., Soot,8 Jad9 and JD-GUI.10

Note, these tools can be used to process JAR files and
therefore are not listed in Table 1 nor are they discussed.
Notwithstanding, even though DEX2JAVA tools offer speed
efficiency due to intermediate representation, Castillo et al.
(2011) points out that the DEX2JAVA conversion is not
reliable and often fails. For example, Yang et al. (2013)
indicated that 42 out of 1750 samples resulted in a failure
during their work using ded.

Rows 9e11 exemplify tools in the ‘manual’ category.
Androguard allows decompiling and disassembling
Android applications and is helpful when manually
analyzing applications (Desnos, 2013). It is also a toolset for
reverse engineering Android applications with the goal of
malicious application detection, built into Santoku Linux11.
On the other hand, one may use more general tools like IDA
Pro which is a commercial tool for Windows, Linux and
Mac OS X for application analysis. It is a multi-processor
disassembler and debugger that offers many features, and
can provide safe analysis of potentially harmful programs
8 http://sable.github.io/soot/ (last accessed Dec. 6, 2015).
9 http://varaneckas.com/jad/ (last accessed Dec. 6, 2015).

10 https://github.com/java-decompiler/jd-gui (last accessed Dec. 6,
2015).
11 https://santoku-linux.com (last accessed Dec. 6, 2015).
(Hex-Rays, 2005). Incidentally, JEB is another commercial
interactive decompiler that is able to process multiple APK
files to smali or JAVA source consecutively.

Rows 12e15 summarize works having an intermediate
phase that implemented their own disassembler/parser
that may generate a non-standard intermediate format.
While this may be efficient as it is optimized for a specific
purpose, it also means that researchers and practitioners
reinvent the wheel as they have to develop a variety of
parsers to acquire data from Android applications.
RAPID approach

As shown by our literature review, most works are
based on gaining access to the data in APK files, and more
importantly in DEX files. It is therefore critical for future
work to adopt a more efficient, standardized, optimized
and accurate approach for acquiring desired data from DEX
files. Our solution to this problem is RAPID. This in-memory
solution hinges on three major steps:

https://ibotpeaches.github.io/Apktool/
https://code.google.com/p/smali/
http://sourceforge.net/projects/dex2jar/
http://siis.cse.psu.edu/ded/
http://siis.cse.psu.edu/dare/index.html
https://code.google.com/archive/p/androguard/
https://www.hex-rays.com/products/ida/
https://www.pnfsoftware.com/
http://sourceforge.net/projects/dedexer/
http://sable.github.io/soot/
http://varaneckas.com/jad/
https://github.com/java-decompiler/jd-gui
https://santoku-linux.com

Table 2
Summary of the main components and their attributes.

Type Field Description

String object (StringElement.java) Parsing Level 1
int stringId index of the string from

string_ids
long address offset pointing to the

string content in the DEX
file

String stringContent the string itself
long stringLength length of the string
Method object (MethodElement.java) Parsing Level 2
int methodId index of the method from

method_ids
long address offset pointing to the

meta data of the method
(in method_ids)

String className class name as string
where the method
belongs to

String methodName name of the method
name

String[] parameterType type(s) of the

 31
Decompress: APK files equal zip files and thus the first
required step is decompressionwhich reveals the DEX files as
well as the AndroidManifest.xml file. While DEX files serve as
input for RAPID, AndroidManifest.xml is only converted into
human readable text and is currently not required by RAPID.

Load DEX files: After decompressing, the data is pulled
from the DEX files and is loaded into an internal data
structure which consists of four main components: string,
method, codeBlock and instruction. All queries and further
processing are performed on this internal structure which
resides in memory. More details on the internal data
structure as well as the parsing are discussed in Sections
(Implementation and Parsing a DEX file) respectively.

Query: Once the in-memory data structure is prepared,
RAPID allows different query types (based on the compo-
nents). For instance, investigators can look for a specific
‘string’, ‘method-name’, ‘used APIs’ or even ‘find the exact
offset in the code’. A detailed explanation of what data the
queries in RAPID is able to return can be found in Section
(Implementation).
parameter(s) of the
method

String returnValueType type of the return value
boolean hasCodeBlocka true if the method is

implemented in DEX file
CodeBlock codeBlocka pointer of the codeBlock
CodeBlock object (CodeBlock.java) Parsing Level 3
int codeBlockId index number of the code

block to link it to a
method

long startAddress start offset of the code
block in DEX file

long endAddress end offset of the code
block in DEX file

int methodId index of the method the
code block belongs to

ArrayList <Instruction> instructionLista list of pointers to
instructions

Instruction object (Instruction.java) Parsing Level 4
int instructionId index number of

instruction to link it to
the CodeBlock

int codeBlockId index number of the code
block the instruction
belongs to

long address offset of the instruction in
DEX file

boolean hasOperand true if an instruction has
an operand

boolean hasRegister true if an instruction has
register(s)

int length length of instruction in
bytes

int op hex value of the opcode
String opcode general name for same

type of mnemonics
String opcodeSuffix specific mnemonic of

opcode
long operand value of the operand
String operandSuffix explanation of operand

value
int[] registerList list of registers

NULL for parsing level 2 and will be filled in parsing level 3.
a Are special fields which fall into the next parsing level, e.g., hasCo-
Implementation

Our JAVA prototype implementation is open source and
can be downloaded fromhttps://github.com/unhcfreg/RAPID.
RAPID comes in a form of a library (i.e., a JAR file), a sam-
ple.java which demonstrates some use cases with detailed
documentation (generated with javadoc). Note, RAPID was
compiled with JAVA 7 and thus requires JRE 7 or higher.

The implementation consists of four main components
e string, method, codeBlock and instruction e where each
component contains corresponding objects. For instance,
the method component includes a list of method objects
(one per method). The structure of each object, which are
also the searchable fields is outlined in Table 2; a brief
summary is provided in the following paragraphs (parsing
level is described at the end of Section (Parsing a DEX file)):

String objects represent all strings that exist in the
application and delineates the string_data section from the
DEX file. This includes values in string variables, function/
class names and function return values (e.g., void, int).

Method objects contain the data about specific
methods. For instance, a method object knows its name,
the class it belongs to, number and types of parameters and
the return value (e.g., void) and associated executable
code.12

CodeBlock objects link the methods to the actual in-
structions (bytecode). Therefore, a codeBlock has a start
address (offset), end address (offset) and an instruction list
(e.g., string-const v0 “Hello World” etc.).

Instruction objects embody the actual code that is
executed and are necessary for flow analysis. For instance, it
allows one to locatewhere specificmethodswere called from.

Note, method, codeBlock and instruction are linked to
each other (methodId and the ArrayList<Instruction>)
whereas the strings are duplicated and also stored in the
deBlock is an attribute of the method object.

12 Note, some values (e.g., void) are redundant and can be found in
string objects as well as in method objects. We decided for that due to the
performance increase.
corresponding objects, e.g., methodName can be found in a
method object as well as in the string component. This was
implemented for performance reasons.

https://github.com/unhcfreg/RAPID

 32
Parsing a DEX file

Parsing the DEX file is a complex task as it involves
running through the bytecode and selecting relevant data.
This section provides a short overview of the parsing
process.

Although the DEX file format is well described by the
Google (2008) documentation, we decided to include this
overview as digital forensic practitioners and researchers
continue to face issues in malware investigations due to the
lack of the ability of tracing certain data by traversing
contents of a DEX file.

Fig. 2 provides an overview of the complete parsing
procedure and is explained in the subsequent paragraphs.
As stated in Section (DEX file layout), the starting point is
the header which contains pointers to the main sections.

First, the stringObjects are built where RAPID parses
string ids and then reads the data (1þ2). Here, string ids are
pointers to specific strings. Second, RAPID works on the
methodObjects where it starts at the method ids (3) which
allows it to acquire the method name from string data
(4þ5). Note, since string data is already parsed, we can
retrieve this data from our stringObjects.

Next, RAPID reads the ‘string ID for the class name’ from
type idswhich is then used to get the actual class name as a
string (6e8). proto ids contains two IDs e the return value
ID and the pointer for the parameter list of the method.
Hence, RAPID acquires the return type from type ids and
resolves it further into a string (10e12). Furthermore, it
analyzes the type list which contains data about the num-
ber of parameters as well as the all parameter types (13).
The type ids can be matched to names by parsing the cor-
responding sections (14e16).

Having the string and method object in memory, the
final steps focus on creating the codeObjects which is
executed by parsing steps 17e20. Note, instructions are
part of the codeObjects. Star-* is representative of all in-
structions as presented in Table 2,13.

This parsing procedure allows for different parsing
levels (see Table 2). That is, only required sections are
parsed where lower levels always need to be parsed first.
For instance, if the analysis only requires a string search,
RAPID only creates the stringObjects, i.e., parsing level 1. If
the search involves parts from the methodObjects, RAPID
parses levels 1 and 2.
Usage

This section provides step by step instructions on how to
install and run RAPID. It is meant to ease the usage process
for potential practitioners.

Step1: Ensure that JAVA Development Kit (JDK) 1.7 or
higher is installed.
Step2: Download the RAPID JAR library, sample.java as well
as sample APK files and store them in the same directory.
13 The actual parsing for * is complex and explaining it in detail is
beyond the scope of this paper. We plan on publishing a technical report
that outlines the exact procedure.
By default, the code will analyze all APKs that are in the
same directory.
Step3: Compile the sample.java file in the system terminal
by using the following command:
javac -cp RAPIDv0.2.jar sample.java.
Step4: Execute the sample.class file with the command
java -cp .; RAPIDv0.2.jar sample (on Windows)
java -cp .:RAPIDv0.2.jar sample (on *nix).

The output of the sample file presents a general over-
view of the DEX files such as the total number of strings,
methods and APIs used in the application. Additionally, it
prints the first 20 strings in the string component and the
first 20 APIs with their basic data such as class and function
name, address etc. Next, we chose a known JAVA API: jav-
a.lang.System.load(..) to test for its existence. If the result is
(true), all the instructions invoking the API will be printed,
of which the most important data is the address(es) where
the API was invoked in the DEX file. Furthermore, the
methods and the details of the codeBlock, where the in-
structions executed will be listed as well.

In total, RAPID v0.2 currently provides 27 APIs which are
listed Appendix A including a short description for each
one. These 27 APIs can be divided into four categories. The
four ‘setting’-APIs allow for initializing RAPID, e.g., setting
the source directory of the APK samples. The second set of
APIs contain the three ‘main object queries’; functions of
RAPID which return lists of the three main objects of the
internal data structure: String, method and codeBlock (see
Section (Parsing a DEX file)). The third set of APIs allow for
specific queries against the complete data structure. A user
can search for the existence of a string, method or API, or
acquire a list of all classes. Those APIs are summarized in
the ‘search operations’ section.

The last set ‘Workflow analyses functions’ include
functionality to further inspect a given DEX file.

For instance, getMethodInvoker(..) can back trace the
methods invoking a specific function as well as getExter-
nalFilesDirs() can obtain where the external files are
located.

The decision for these APIs was driven by existing
literature; we analyzed what features/functions are
required by existing tools and implemented those. For
example, the malware detection concepts proposed by Wu
et al. (2012) and Peiravian and Zhu (2013) utilize API calls
only as their features, thus RAPID provides a method
getApiList(). A detailed discussion about all of the APIs is
beyond the scope of this article. For more details, readers
may want to explore the documentationwhich comes with
the RAPID library.

Although these 27 APIs allow access to most of the data
stored within the data structure, there might be scenarios
where different outputs are required. In that case one may
have to implement their own logic and use the existing
‘getter-’methods of the different objects.
Use case: finding outsourced functionality

A common problem when analyzing applications is
outsourced code; developers have the option to place code/

Fig. 2. Overview of the parsing procedure.

 33
functionality in files other than the main DEX file. For
instance, placing API calls or other functionality externally
is sometimes used for obfuscation (Apvrille and Nigam,
2014). Thus, for investigative purposes, it is of interest to
know if external files are being loaded.

External files and calls. There are two ways for an
Android application to load code from external files, static
and dynamic. The static method imports libraries or Java
Archive (JAR) files into the program before the APK file is
compiled. On the other hand, the dynamic procedure calls
the external files/functions during runtime. Since static can
be easily identified by checking the application's directory,
we focus on dynamic loading.

In general, applications can load two types of external
files: *.SO files or JAR/DEX files. SO files are native libraries
following the Java Native Interface (JNI) standards which
are developed by the Native Development Kit (NDK) and
are usually written in C or Cþþ.

JAVA provides four different APIs to load content
dynamically. load(..) and loadLibrary(..) from class jav-
a.lang.System can load native libraries while the
constructor of class dalvik.system.DexClassLoader and
dalvik.system.PathClassLoader14 are utilized for loading
classes from DEX or JAR files.

The search process. Determining if an application calls
any code from external files requires searching for the four
14 The difference is that PathClassLoader is unable to load the zipped
DEX file.
APIs in the main DEX file. The procedure is generally
divided into three steps:

Step1: Search if one of the APIs is invoked in a DEX file
which can be performed by analyzing the instruction ob-
jects (in RAPID) or examining if it is part of a function.
Step2: Next, once the API is identified, the parameters are
analyzed to explore whether we can figure out the library
or the path to the library. For instance, if a library is
dynamically loaded, it might be the case that the string
already exists in the DEX file. If the string cannot be found,
then we continue to step 3.
Step3: Obviously our approach does not perform dynamic
analysis, however, this procedure provides the exact
address of the invoke and thus a researcher or practitioner
can use the acquired address and set the ‘break point’
during dynamic analysis.

To simplify this process, RAPID provides two APIs. The
areExternalFilesLoaded() is a boolean function to test
weather one of those four APIs was found. The second
function name getExternalFilesDirs() returns a list of
<key,value> objects where key is the address of an invoke
and value is the actual name of the loaded lib/file. An
example of the output of this function is shown below.

176088—>
176032—>
229790—>/system/lib/libandroid.so
The output shown means that three offsets were found

in the DEX file, where only in the last case the loaded

 34
library and its path was located. In the other two cases the
value of the parameter for the path of the .SO file could not
be obtained. This could be due to various reasons such as a
path parameter for the .SO file being split into different
string variables. However, we note that our method still
returns the address of each API used to call external files.
Validation and reliability of RAPID

This section briefly describes how validation of RAPID
was examined (Section (Validation)) as well as how the
reliability of RAPID was tested (Section (Reliability)).

Both tests were conducted on 11,711 APK files where
1260 were malicious samples from the Android Malware
Genome Project15 (Zhou and Jiang, 2012) and 10,451 free
applications considered as benign samples downloaded
from Google Play. These collected samples cover most of
the categories available in the store, i.e., we cover 24/27 of
the main/application categories and 17/17 of the games
category.16 All samples were downloaded starting at the
end of 2015 and the last update was performed in January,
2016. The popularity of the applications ranged from less
than 1000 downloads to prominent applications with
millions of downloads like Facebook or YouTube. We
decided to use malware and benign samples in our testing
as (i) practitioners are usually tasked with malware anal-
ysis and thus analyzing Android malware is a highly
probable use-case and (ii) we were not sure if malware and
benign samples differed significantly, which could lead to
potential RAPID errors e our goal was to have diverse
Android application coverage in order generalize the val-
idity and reliability of our approach.

Validation
To validate RAPID, we performed cross-comparison to

the data in smali files generated by Baksmali, which
included three tests for the string object, method object
and codeBlock/instruction object. All three yielded the
same results verifying the correctness of our approach. The
first two tests (string and method component) were
implemented by an automatic comparison and was based
on 11,705 samples (6 samples could not be decompiled
using Baksmali (see Section (Reliability))). The third test
was more complex and required manual analysis.

Strings. For this test, we extracted all strings with RAPID
as well as from the smali files and ran a cross-comparison.
All RAPID strings were found in the smali files and vice
versa. Note that the same string may be represented
differently in DEX and smali files, e.g., the symbol ‘'’ is
represented as ‘y'’ (additional backslash) in smali code as it
is a reserved symbol by smali. Our comparison script
considered those situations.

Classes and methods. This test focused on method-
related data which included the elements that can repre-
sent an independent method; method name, class name,
15 http://www.malgenomeproject.org (last accessed Dec. 6, 2015).
16 The categories are listed at https://play.google.com/store/apps and
then click on ‘Categories’which is found close the left upper corner of the
screen.
type of return value and parameter type. For this purpose
our prototype extracted the relevant data from the smali
code using regular expressions and utilized our method
component. A cross comparison showed that both results
coincided.

CodeBlocks and instructions. The last test was rather
complex and therefore conductedmanually. The problem is
that Baksmali includes additional strings/symbols to ease
readability which are not part of the original DEX file. To
achieve this automatically, it would be necessary to also
add these strings which would then correspond to Baks-
mali code. For instance, the decompiler adds .method to
indicate the start of a method. As a result, we could not find
any differences between Baksmali and RAPID within the 20
codeBlocks that were tested manually.

Reliability
For this test, we compared the reliability of RAPID again

to other prominent approaches e Baksmali and Dex2jar
(due to the complexity of the test and the availability of the
tools, testing all the tools is outside the scope of our work).
The test is successful if the smali code or the JAR file are
generated without errors by Baksmali or Dex2jar, respec-
tively. For RAPID, we required that all four parsing levels
were executed.

While RAPID successfully parsed all applications, Baks-
mali as well as Dex2jar failed to process several of them. In
detail, Baksmali failed on six applications (error messages
were printed and no smali files were generated) and
Dex2jar failed on 10 cases to generate a JAR file or the JAR
file was corrupt. Surprisingly, all these applications were
benign.

The reasons of resulting in such failures varied. In order
to be successful, Baksmali and Dex2jar need valid program
logic throughout the DEX file. That means, if they parse
segments containing errors, exceptions will be thrown and
the parser stops (even though the code is never executed).
On the contrary, RAPID, as a direct extraction approach, was
still able to acquire data from the DEX files on those sam-
ples that failed to process.
Experimental results

As discussed in the related work, tools either decompile
or convert the binary code and then work on the smali
code/JAVA bytecode or implement their own parser to
extract the data. Since we cannot compare each individual
parser, we only focus on comparing RAPID with smali code
and JAVA bytecode (which are themost commonly adopted
procedures).

The total runtime T of an approach
A2fRAPID;Baksmali;Dex2jarg for m different queries on a
single application can be calculated as follows:

TA ¼ Tunzip þ TA
prep þm$TA

query (1)

where Tunzip is the time to unzip/decompress the APK file,
Tprep is the preparation time (decomiling or parsing) and
Tquery is the average time per query.

Since Tunzip is independent of the actual approach, we
neglect it and separate the efficiency experiment into two

http://www.malgenomeproject.org
https://play.google.com/store/apps

0

5

10

15

20

0.0 2.5 5.0 7.5 10.0
Size of DEX file samples (MB)

Ti
m

e
(S

)

legend

Baksmali

Dex2jar

parse_level1

parse_level2

parse_level3

parse_level4

Fig. 3. Regression coefficients for decompiling and parsing for 11,695 applications.

Table 3
Regression coefficients for the different Parsing Levels (PL)s for RAPID as
well as the Baksmali and Dex2jar.

Regression coefficients ðs=MBÞ Time (min)

Baksmali 2.43 890.27
Dex2jar 1.91 704.34
PL 1 0.13 44.50
PL 2 0.19 64.07
PL 3 0.20 67.73
PL 4 0.26 88.05

 35
sections. First, we analyze Tprep which compares the
decompiling of the approaches in Section (Decompiling vs
parsing). In the subsequent section, Tquery is analyzed
which is the query-time.

The experiments were conducted on an machine with
Intel (R) Core (TM) I7-4770S 3.1 GHz CPU, 16 GB memory
and Microsoft Windows 7 Professional SP1 64bit.
Decompiling vs parsing

As discussed in Section (Parsing a DEX file), RAPID has
different parsing levels and hence the runtime depends on
the actual data that is queried. For this test, we measured
the runtime for all the four different parsing levels as well
as the smali decompilation time and the JAVA bytecode
conversion time.

We utilized the sample set introduced in Section
(Validation and reliability of RAPID) but excluded the 16
files that couldn't be processed by Dex2jar or Baksmali.
Thus, the upcoming tests were conducted on 11,695
samples.

First, we decompressed all the APK files by running a
self-implemented JAVA program. Next, we ran Baksmali as
well as Dex2jar on the sample set and measured the
execution time using a JAVA API. With respect to RAPID,
four separate tests were conducted e one per parsing level.
Recall, the higher parsing levels include parsing lower
levels and thus the time will increase.

The test results are shown in Fig. 3 and clearly demon-
strate the performance advantage of RAPID compared to its
counterparts. The total runtime and the regression co-
efficients for each test are provided in Table 3. As shown,
the time for Baksmali and Dex2jar are in the same order of
magnitude where Dex2jar is insignificantly faster than
Baksmali.
Querying data

This second test focused on queries. Note, for this test
we only focused on Baksmali and RAPID as parsing the
JAVA byte structure is beyond the scope of this paper.
However, it is assumed that parsing the JAVA binary files
will be similar to parsing the DEX file (both are binary) and
thus similar to RAPID.

As will be shown, the query time very much depends on
the actual use case and can be very slow for decompiled
files. For instance, searching for a single string is less
complex than retrieving the class where a method is called
or analyzing the invokes from/to a specific function.
Therefore, we conducted the test on the previously
decompressed 11,695 DEX files. For testing purposes, we
devised 3 different use cases/scenarios and measured the
time; string search, API search and invoke search.

String search. In the first scenario, we only searched for a
specific string. Real world applications of this is if an
investigator searches for a specific URL or name. In this
scenario we searched for ‘http://’.

For RAPID this meant we only had to construct the
string component which is parsing level 1 and run through

Fig. 4. Times for the smali code searches in seconds.

Fig. 5. Times for the RAPID searches in seconds.

17 Note, this is simplified for a better understanding, the actual opcode
we are searching is invoke-kind.

 36
the linear list. With respect to the smali code, we have to
execute a string search on all the decompiled files.

API search. In the second scenario, we looked for the
usage of the ‘loadLibrary(..)’ API in class java.lang.System.
For smali code this is similar to a plain string search. Note,
although usually more parsing is required (e.g., to analyze
the parameters and return value), in this test we focused on
finding the API only. With respect to RAPID we can utilize
the method component (parsing level 2) to solve this
challenge.

Invoke search. The last scenario was themost complex as
we aimed at finding the methods that invoke a specific
function, i.e., which method/class calls a specific function.
In the case of the smali code search, we looked for the
function (string search) and then analyzed if this was part
of the function and read the class name. RAPID will have to
parse all four levels and then start from the instruction
object by finding the opcode¼¼ invoke17; from there it goes
upwards to the codeBlock where a specific instruction ob-
ject is contained which reveals the methodId.

0.000

0.002

0.004

0.006

0.0 2.5 5.0 7.5 10.0
Size of DEX file samples (MB)

Ti
m

e
(S

)

legend

string_search

API_search

invoke_search

Fig. 7. Linear regression for the RAPID searches.

0

5

10

0.0 2.5 5.0 7.5 10.0
Size of DEX file samples (MB)

Ti
m

e
(S

)
legend

string_search

invoke_search

API_search

Fig. 6. Linear regression for the smali code searches.

 37
Results. The results for the different searches (smali
queries and RAPID queries) are shown in Figs. 4e7. Note,
times are in seconds but the scale is different.

Figs. 4 and 5 show the exact results obtained from
both approaches. Focusing on the smali code searches
shows that they are similar in time and there are only a
few outliers (see Fig. 4). With respect to RAPID, the
behavior is quite different. While API/string search
behave in a stable manner, there are significant differ-
ences for the invoke_search which result from the fact
that some APIs are found (slower; points on upper part of
the graph) and others are not found. More precisely, in
case an API is not found in the application, the algorithm
can immediately stop. On the other hand, if the API is
found, RAPID then needs to find the invoke which re-
quires more time.

Figs. 6 and 7 show the linear regression obtained from
both approaches which could be used to estimate times for
different sample sets.

Analyzing the linear regression in more detail reveals
the regression coefficients as summarized in Table 4. These
coefficients allowed us to upscale the results for larger
sample sizes.

Table 4
Regression coefficients for the different searches.

Regression coefficients ðs=MBÞ Time

Baksmali
string search 1.36 467.66 min
API search 1.37 484.46 min
invoke search 1.41 481.34 min
RAPID
string search 5.138e-04 14.16 s
API search 2.760e-04 7.83 s
invoke search 6.458e-04 13.35 s

 38
Results summary

The previous two sections addressed the processing
steps separately. In order to explore the overall perfor-
mance improvement, this section considers the initial Eq.
(1) where we will setm ¼ 1 queries, neglect the unzip time
Tunzip ¼ 0 and use the average search times from Table 4.
Thus, for the sample set of n ¼ 11;695 which equals
22,889.64 MB, the total time for Baksmali is

TBaksmali ¼ Tunzip þ TA
prep þm$TA

query

¼ 0þ 890:27 minþ 1$477:82 min

z1;368 min

and for RAPID it is

TRAPID ¼ Tunzip þ TA
prep þm$TA

query

¼ 0þ 88:05 minþ 1$0:20 min

z88 min

Note that the p-values18 for all the regression co-
efficients are significantly less than 0.01.
Appendix A. API summary

Table A.5
RAPID APIs including brief descriptions.

Method Description

Settings
setApkDir(String apkDir) Sets the directory containing

the APK/DEX files.
setSingleApk(String apkDir) To analyze a single APK/DEX

file.
setUnzippedFileDir(String

unzippedFileDir)
Sets temp-directory for the
unzipped DEX files.

getApkList() Returns a list of all APK files
found in the set-directory.

Main object queries (per APK/DEX file)
getStringList() Returns a list of string objects

parsed out of the current file.
Limitations

There are four limitations with the current version of
RAPID.

First, as shown in Section (Parsing a DEX file), we
currently do not parse the complete DEX file and ignore
some parts, e.g., sections containing debugging or annota-
tion information (even though they can still be found as
scattered strings in the string component). Although our
literature review revealed that this data is typically not
used, there might be approaches in the future that require
this information.

Second, a user needs to get accustomed to the fact that
RAPID does not provide a ‘class-object’ as a main compo-
nent but focuses on strings, methods and codeBlocks.

Users can only retrieve the class data by accessing the
class name field of the corresponding method objects.

Third, given the fact that there are currently over 1.5
million applications on market, the test sample size with a
little bit over 11,000 files may be considered small.
18 p-value can reject the null hypothesis that the slope of the regression
line is equal to zero if it is less than the significance levels which re-
searchers always choose 0.01/0.05.
Finally, althoughwe had somemalware samples, we did
not experiment with obfuscation and code protection
techniques and how RAPID's results might change. For
example, it may be possible that current techniques may
crash RAPID but pass the validity check of the Android
virtual machine.

Conclusion and future work

The problem we tried to solve is that current APK
analysis approaches mostly convert the DEX file into in-
termediate code (e.g., JAVA code, smali code) which is then
analyzed or used. This procedure has a significant draw-
back when it comes to runtime efficiency as one first has to
convert everything and then analyze it.

For researchers and practitioners that might have
implemented their proprietary DEX parsers for certain
Android application analysis work, this means that future
work will have to reinvent the wheel since that code is
often not being validated and/or shared.

Our idea was to create an easy-to-use library that can be
utilized to analyze DEX files. As a result, we presented a new
library titled RAPID e a Rapid Android Parser for Investi-
gating DEX files e that directly works on DEX files. In other
words, instead of converting the data, we directly extract it.

RAPID is well-documented and comes with multiple
APIs that can be utilized by others. As our library is open
source and freely available, users can extend it. Our
experimental results show the significant performance
improvement one can gain using RAPID. Furthermore, we
offer the possibility for searching for dynamic loading of
libraries which can then support dynamic analysis.

In the future, wewill embark on three major steps. First,
we want to collect feedback from users regarding the APIs
and eventually change or improve the existing set of APIs.
Second, we will analyze our code for possible further im-
provements. Third, we would like to enable RAPID to
perform more complex tasks like data-flow or call graph
analysis. These can be realized by complex queries which
RAPID can handle in a reasonable amount of time.
getMethodList() Returns a list of method
objects parsed out of the
current file.

Table A.5 (continued)

Method Description

getCodeBlockList() Returns a list of codeBlock
objects parsed out of the
current file.

Search operations
doesStringExist(String keyword) Returns true if ‘keyword’ is

found in DEX file.
doesMethodExist(MethodElement

method)
Returns true if a method
exists in DEX file.

doesApiExist(MethodElement api) Returns true if an API call
exists in a DEX file.

getApiList() Returns a list of all utilized
APIs in a DEX file.

getClassList() Returns a list of class names in
DEX file.

getCodeBlockById(int methodId) Returns the codeBlock of a
method according to
methodId.

searchStringContaines(String
keyword)

Search ‘keyword’ and returns
a list of string objects.

searchMethod(MethodElement
method)

Returns a list of
methodElements (e.g, useful
for overloaded methods).

searchInstruction(Instruction[]
targetIns)

Return a list of instructions
objects.

searchInstruction(String opcode, long
operand)

Return a list of instructions
objects with same opcode and
operand.

searchInsWithOpc(String opcode) Return a list of instructions
objects with same opcode.

searchInsWithString(String
stringContent)

Return a list of instructions
objects where a string is
assigned.

searchInsWithString(StringElement
string)

Same than before but search a
string object.

Workflow analyses functions
isMethodInvoked(MethodElement

Method)
If a method is invoked/called
in DEX file.

areExternalFilesloaded() Returns true if any external
files are loaded.

getMethodInvolker(MethodElement
method)

Returns method object list
that invokes a specific
method.

getExternalFilesDirs() Returns the directories where
the external file(s) are
located.

getInsInvokeMethod(MethodElement
method)

Return the instruction objects
(as list) that invokes a
method.

getInsInvokeMethods(MethodElement
[] methods)

Same than before but accepts
an array of methods.

getInsLoadExternalFiles() Returns a list of instructions
that loads external files.

 39
References

Apvrille A, Nigam R. Obfuscation in android malware, and how to fight
back. Virus Bull 2014:1e10.

Arp D, Spreitzenbarth M, Hübner M, Gascon H, Rieck K, Siemens C. Dre-
bin: effective and explainable detection of android malware in your
pocket. In: Proceedings of the Annual Symposium on Network and
Distributed System Security (NDSS); 2014.

Castillo CA. Android malware past, present, and future. White Paper of
McAfee Mobile Security Working Group. 2011. URL: http://www.
mcafee.com/us/resources/white-papers/wp-android-malware-past-
present-future.pdf.

Chen KZ, Johnson NM, D'Silva V, Dai S, MacNamara K, Magrino TR, et al.
Contextual policy enforcement in android applications with permis-
sion event graphs. In: NDSS; 2013.

Chin E, Felt AP, Greenwood K, Wagner D. Analyzing inter-application
communication in android. In: Proceedings of the 9th International
Conference on Mobile Systems, Applications, and Services; 2011.
p. 239e52. ACM.

Desnos A. Androguard-reverse engineering, malware and goodware
analysis of android applications. URL code. google. com/p/androguard
2013.

Desnos A, Gueguen G. Android: from reversing to decompilation. Proc
Black Hat Abu Dhabi 2011:77e101. Github link: https://github.com/
androguard/androguard.

Dmitrienko A, Liebchen C, Rossow C, Sadeghi A-R. On the (in) security of
mobile two-factor authentication. In: Financial Cryptography and
Data Security. Springer; 2014. p. 365e83.

Drake JJ, Lanier Z, Mulliner C, Fora PO, Ridley SA, Wicherski G. Android
hacker's handbook. John Wiley & Sons; 2014.

Elish KO, Shu X, Yao DD, Ryder BG, Jiang X. Profiling user-trigger
dependence for android malware detection. Comput Secur 2015;49:
255e73.

Enck W, Octeau D, McDaniel P, Chaudhuri S. A study of android applica-
tion security. In: USENIX Security Symposium, 2; 2011. p. 2.

Gibler C, Crussell J, Erickson J, Chen H. AndroidLeaks: automatically
detecting potential privacy leaks in android applications on a large
scale. Springer; 2012.

Google. Android dalvik executable format page. Google. 2008. https://
source.android.com/devices/tech/dalvik/dex-format.html.

Hex-Rays. IDA Pro. 2005. http://www.hex-rays.com/products/ida/.
Hoffmann J, Ussath M, Holz T, Spreitzenbarth M. Slicing droids: program

slicing for smali code. In: Proceedings of the 28th Annual ACM
Symposium on Applied Computing; 2013. p. 1844e51. ACM.

Lu L, Li Z, Wu Z, Lee W, Jiang G. Chex: statically vetting android apps for
component hijacking vulnerabilities. In: Proceedings of the 2012 ACM
Conference on Computer and Communications Security; 2012.
p. 229e40. ACM.

Peiravian N, Zhu X. Machine learning for android malware detection
using permission and API calls. In: Proceedings of the 2013 IEEE
25th International Conference on Tools with Artificial Intelligence
ICTAI ’13. Washington, DC, USA: IEEE Computer Society; 2013.
p. 300e5.

Seo S-H, Gupta A, Sallam AM, Bertino E, Yim K. Detecting mobile malware
threats to homeland security through static analysis. J Netw Comput
Appl 2014;38:43e53.

Talha KA, Alper DI, Aydin C. Apk auditor: permission-based android
malware detection system. Digit Investig 2015;13:1e14.

Wu D-J, Mao C-H, Wei T-E, Lee H-M, Wu K-P. Droidmat: android malware
detection through manifest and API calls tracing. In: Information
Security (Asia JCIS), 2012 Seventh Asia Joint Conference. IEEE; 2012.
p. 62e9.

Yang Z, Yang M, Zhang Y, Gu G, Ning P, Wang XS. Appintent: analyzing
sensitive data transmission in android for privacy leakage detection.
In: Proceedings of the 2013 ACM SIGSAC Conference on Computer &
Communications Security; 2013. p. 1043e54. ACM.

Zheng C, Zhu S, Dai S, Gu G, Gong X, Han X, et al. Smartdroid: an auto-
matic system for revealing ui-based trigger conditions in android
applications. In: Proceedings of the Second ACM Workshop on Se-
curity and Privacy in Smartphones and Mobile Devices; 2012.
p. 93e104. ACM.

Zheng M, Sun M, Lui J. Droid analytics: a signature based analytic system
to collect, extract, analyze and associate android malware. In: Trust,
Security and Privacy in Computing and Communications (TrustCom),
2013 12th IEEE International Conference. IEEE; 2013. p. 163e71.

Zhou W, Zhou Y, Jiang X, Ning P. Detecting repackaged smartphone ap-
plications in third-party android marketplaces. In: Proceedings of the
Second ACM Conference on data and Application Security and Privacy
CODASPY ’12. New York, NY, USA: ACM; 2012. p. 317e26.

Zhou Y, Jiang X. Dissecting android malware: characterization and evo-
lution. In: Security and Privacy (SP), 2012 IEEE Symposium. IEEE;
2012. p. 95e109.

http://refhub.elsevier.com/S1742-2876(16)30030-5/sref1
http://refhub.elsevier.com/S1742-2876(16)30030-5/sref1
http://refhub.elsevier.com/S1742-2876(16)30030-5/sref1
http://refhub.elsevier.com/S1742-2876(16)30030-5/sref2
http://refhub.elsevier.com/S1742-2876(16)30030-5/sref2
http://refhub.elsevier.com/S1742-2876(16)30030-5/sref2
http://refhub.elsevier.com/S1742-2876(16)30030-5/sref2
http://www.mcafee.com/us/resources/white-papers/wp-android-malware-past-present-future.pdf
http://www.mcafee.com/us/resources/white-papers/wp-android-malware-past-present-future.pdf
http://www.mcafee.com/us/resources/white-papers/wp-android-malware-past-present-future.pdf
http://refhub.elsevier.com/S1742-2876(16)30030-5/sref4
http://refhub.elsevier.com/S1742-2876(16)30030-5/sref4
http://refhub.elsevier.com/S1742-2876(16)30030-5/sref4
http://refhub.elsevier.com/S1742-2876(16)30030-5/sref5
http://refhub.elsevier.com/S1742-2876(16)30030-5/sref5
http://refhub.elsevier.com/S1742-2876(16)30030-5/sref5
http://refhub.elsevier.com/S1742-2876(16)30030-5/sref5
http://refhub.elsevier.com/S1742-2876(16)30030-5/sref5
http://refhub.elsevier.com/S1742-2876(16)30030-5/sref6
http://refhub.elsevier.com/S1742-2876(16)30030-5/sref6
http://refhub.elsevier.com/S1742-2876(16)30030-5/sref6
https://github.com/androguard/androguard
https://github.com/androguard/androguard
http://refhub.elsevier.com/S1742-2876(16)30030-5/sref8
http://refhub.elsevier.com/S1742-2876(16)30030-5/sref8
http://refhub.elsevier.com/S1742-2876(16)30030-5/sref8
http://refhub.elsevier.com/S1742-2876(16)30030-5/sref8
http://refhub.elsevier.com/S1742-2876(16)30030-5/sref9
http://refhub.elsevier.com/S1742-2876(16)30030-5/sref9
http://refhub.elsevier.com/S1742-2876(16)30030-5/sref9
http://refhub.elsevier.com/S1742-2876(16)30030-5/sref10
http://refhub.elsevier.com/S1742-2876(16)30030-5/sref10
http://refhub.elsevier.com/S1742-2876(16)30030-5/sref10
http://refhub.elsevier.com/S1742-2876(16)30030-5/sref10
http://refhub.elsevier.com/S1742-2876(16)30030-5/sref11
http://refhub.elsevier.com/S1742-2876(16)30030-5/sref11
http://refhub.elsevier.com/S1742-2876(16)30030-5/sref12
http://refhub.elsevier.com/S1742-2876(16)30030-5/sref12
http://refhub.elsevier.com/S1742-2876(16)30030-5/sref12
https://source.android.com/devices/tech/dalvik/dex-format.html
https://source.android.com/devices/tech/dalvik/dex-format.html
http://www.hex-rays.com/products/ida/
http://refhub.elsevier.com/S1742-2876(16)30030-5/sref15
http://refhub.elsevier.com/S1742-2876(16)30030-5/sref15
http://refhub.elsevier.com/S1742-2876(16)30030-5/sref15
http://refhub.elsevier.com/S1742-2876(16)30030-5/sref15
http://refhub.elsevier.com/S1742-2876(16)30030-5/sref16
http://refhub.elsevier.com/S1742-2876(16)30030-5/sref16
http://refhub.elsevier.com/S1742-2876(16)30030-5/sref16
http://refhub.elsevier.com/S1742-2876(16)30030-5/sref16
http://refhub.elsevier.com/S1742-2876(16)30030-5/sref16
http://refhub.elsevier.com/S1742-2876(16)30030-5/sref17
http://refhub.elsevier.com/S1742-2876(16)30030-5/sref17
http://refhub.elsevier.com/S1742-2876(16)30030-5/sref17
http://refhub.elsevier.com/S1742-2876(16)30030-5/sref17
http://refhub.elsevier.com/S1742-2876(16)30030-5/sref17
http://refhub.elsevier.com/S1742-2876(16)30030-5/sref17
http://refhub.elsevier.com/S1742-2876(16)30030-5/sref18
http://refhub.elsevier.com/S1742-2876(16)30030-5/sref18
http://refhub.elsevier.com/S1742-2876(16)30030-5/sref18
http://refhub.elsevier.com/S1742-2876(16)30030-5/sref18
http://refhub.elsevier.com/S1742-2876(16)30030-5/sref19
http://refhub.elsevier.com/S1742-2876(16)30030-5/sref19
http://refhub.elsevier.com/S1742-2876(16)30030-5/sref19
http://refhub.elsevier.com/S1742-2876(16)30030-5/sref20
http://refhub.elsevier.com/S1742-2876(16)30030-5/sref20
http://refhub.elsevier.com/S1742-2876(16)30030-5/sref20
http://refhub.elsevier.com/S1742-2876(16)30030-5/sref20
http://refhub.elsevier.com/S1742-2876(16)30030-5/sref20
http://refhub.elsevier.com/S1742-2876(16)30030-5/sref21
http://refhub.elsevier.com/S1742-2876(16)30030-5/sref21
http://refhub.elsevier.com/S1742-2876(16)30030-5/sref21
http://refhub.elsevier.com/S1742-2876(16)30030-5/sref21
http://refhub.elsevier.com/S1742-2876(16)30030-5/sref21
http://refhub.elsevier.com/S1742-2876(16)30030-5/sref22
http://refhub.elsevier.com/S1742-2876(16)30030-5/sref22
http://refhub.elsevier.com/S1742-2876(16)30030-5/sref22
http://refhub.elsevier.com/S1742-2876(16)30030-5/sref22
http://refhub.elsevier.com/S1742-2876(16)30030-5/sref22
http://refhub.elsevier.com/S1742-2876(16)30030-5/sref22
http://refhub.elsevier.com/S1742-2876(16)30030-5/sref23
http://refhub.elsevier.com/S1742-2876(16)30030-5/sref23
http://refhub.elsevier.com/S1742-2876(16)30030-5/sref23
http://refhub.elsevier.com/S1742-2876(16)30030-5/sref23
http://refhub.elsevier.com/S1742-2876(16)30030-5/sref23
http://refhub.elsevier.com/S1742-2876(16)30030-5/sref24
http://refhub.elsevier.com/S1742-2876(16)30030-5/sref24
http://refhub.elsevier.com/S1742-2876(16)30030-5/sref24
http://refhub.elsevier.com/S1742-2876(16)30030-5/sref24
http://refhub.elsevier.com/S1742-2876(16)30030-5/sref24
http://refhub.elsevier.com/S1742-2876(16)30030-5/sref25
http://refhub.elsevier.com/S1742-2876(16)30030-5/sref25
http://refhub.elsevier.com/S1742-2876(16)30030-5/sref25
http://refhub.elsevier.com/S1742-2876(16)30030-5/sref25

	Rapid Android Parser for Investigating DEX files (RAPID)
	Introduction
	DEX file layout
	Related work
	RAPID approach
	Implementation
	Parsing a DEX file
	Usage
	Use case: finding outsourced functionality
	Validation and reliability of RAPID
	Validation
	Reliability

	Experimental results
	Decompiling vs parsing
	Querying data
	Results summary

	Limitations
	Conclusion and future work
	Appendix A. API summary
	References

