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ABSTRACT

Over the past few years, the popularity of approximate matching algorithms (a.k.a. fuzzy
hashing) has increased. Especially within the area of bytewise approximate matching, several
algorithms were published, tested, and improved. It has been shown that these algorithms
are powerful, however they are sometimes too precise for real world investigations. That is,
even very small commonalities (e.g., in the header of a file) can cause a match. While this
is a desired property, it may also lead to unwanted results. In this paper, we show that by
using simple pre-processing, we significantly can influence the outcome. Although our test
set is based on text-based file types (cause of an easy processing), this technique can be
used for other, well-documented types as well. Our results show that it can be beneficial to
focus on the content of files only (depending on the use-case). While for this experiment we
utilized text files, Additionally, we present a small, self-created dataset that can be used in
the future for approximate matching algorithms since it is labeled (we know which files are
similar and how).

Keywords: Bytewise Approximate Matching, Pre-processing, Syntactic Similarity, Digital
forensics.

1. INTRODUCTION a haystack. A common procedure for reduc-

ing the amount of data is known file filtering
where files can either be filtered in (suspi-
cious files) or filtered out (irrelevant files).
Traditionally, this is solved using crypto-
graphic hash functions which are very effi-
cient but have the drawback of only identi-
fying exact duplicates. In order to overcome

Nowadays, one of the biggest challenges in
the digital forensic investigation process is
that examiners are overwhelmed with data
— a forensic case can easily consist of several
100 GBs. Finding the few relevant files for
a specific case resembles finding a needle in

age
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this drawback, the community came up with
approximate matching, which allows investi-
gators to calculate the probability of similar-
ity between two or more similar objects, such
as media, stream, and other files. According
to the definition from Breitinger, Guttman,
McCarrin, Roussev, and White (2014), “ap-
proximate matching methods can be placed
in one of three main categories”:

Bytewise matching focuses on the com-
plete underlying byte sequence that
make up and digital object.

Syntactic matching is similar to bytewise
but considers internal structures of the
input, e.g., ignoring the header of a net-
work packet.

Semantic matching operates on the con-
textual level and is therefore close to the
cognitive abilities of humans, e.g., two
images can be identical but have differ-
ent byte structure (PNG vs. JPG).

Current research focuses on either the
bytewise or the semantic level where es-
pecially the former approach comes with
a significant problem. While bytewise ap-
proximate matching shows high reliability
and accuracy for randomly generated inputs
(Breitinger, Stivaktakis, & Roussev, 2014),
there are drawbacks with real world sce-
narios. As discussed by Garfinkel and Mc-
Carrin (2015), many inputs have ‘common
blocks’ which yield to wundesired matches.
Note, these are not false positives since there
is similarity, however these are undesired
matches since they are not wanted from
an investigator perspective. For instance,
“the most common block is the block of all
NULLSs, which is used to initialize blank me-
dia and is also found in many document and
database files.” Thus, the benefits for a prac-
tical investigation environment are rather
low. In other words, existing metadata of
inputs can lead to undesired results.

Page 98

In this paper, we analyze the impact
and effectiveness of the pre-processing of in-
puts where pre-processing separates the con-
tent from its metadata. Our tests focus
on the four common file formats EML (e-
mails), PDF, DOC and HTML. Our ex-
perimental results show that pre-processing
can significantly impact the results of byte-
wise approximate matching. Additionally,
we present a small self-created dataset which
can be used for testing purposes and be
downloaded from http://forensic.korea
.ac.kr/prepocessing testset.

The rest of the paper is organized as fol-
lows: The background and related work is
discussed in Sec. 2. Next, we briefly explain
the problem as well as the concept of our
idea. In Sec. 4 we show our results.

2. BACKGROUND
AND RELATED WORK

The usage of approximate matching with
digital forensics (a.k.a. similarity hashing
or fuzzy hashing) is a rather new domain
and probably started with an idea from
Kornblum (2006) named context-triggered
piecewise hashing. Subsequently, a small
community emerged around that field and
presented new algorithms, finally coming up
with a definition in 2014 — Special Pub-
lication 800-168 from the National Insti-
tute of Standards and Technology (NIST,
Breitinger, Guttman, et al. (2014)).

As outlined in the introduction, the def-
inition divides approximate matching algo-
rithms into three categories: semantic, syn-
tactic and bytewise matching. While there
are several implementations for semantic and
bytewise algorithms, the syntactic area is
rather untouched. Syntactic algorithms op-
erate on byte sequences but have the ability
to consider the internal structure of inputs.
For instance, syntactic approaches may ig-

© 2016 ADFSL
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nore header / footer information or HTML-
tags.

2.1 Bytewise approximate
matching algorithms

Currently, there are three major implemen-
tations for bytewise approximate matching,
which we will briefly discuss:

ssdeep was presented by Kornblum (2006)
and is based on the concept of context-
triggered piecewise hashing (called
fuzzy hash). The idea is to divide an
input into chunks, hash each chunk and
concatenate the chunk-hashes. The pe-
culiarity of ssdeep is that instead of
dividing the input into chunks of an
equal size (as it is done by dcf1dd'), the
implementation utilizes a rolling hash
that slides through the input, byte by
byte, and considers the current context
(7 bytes). If the rolling hash matches a
specific requirement, the end of a chunk
is found.

sdhash was introduced by Roussev (2010).
In contrast to ssdeep, this approach se-
lects statistically improbable features in
an input (sequences of 64 bytes) and
hashes these features using SHA1. The
SHA1 digests are then split into 5 sub-
hashes where each sub-hash sets one
bit in a Bloom filter? (Bloom, 1970).
Each Bloom filter can hold a fixed num-
ber of features. Once this maximum
is reached, a new filter is created and
filled. Thus, the final similarity digest
of a file is a sequence of 1 or more Bloom
filters.

lhttp://forensicswiki.org/wiki/Dcfldd
(last accessed July 25th, 2016).

2Bloom filters are probabilistic data structures
that are commonly used to represent sets. A detailed
presentation of Bloom filters is beyond the scope of
this paper but information can easily be found on-
line, e.g., Farrell, Garfinkel, and White (2008).

© 2016 ADFSL

mrsh-v2 is a combination of both aforemen-
tioned implementations and was pub-
lished by Breitinger and Baier (2013).
Like ssdeep, this approach utilizes a
rolling hash to divide the input into
chunks. After identifying all chunks, it
stores the chunk hashes into Bloom fil-
ters.

Several analyses and comparisons of these
algorithms showed that (a) ssdeep can be
overcome by an active adversary (Baier &
Breitinger, 2011) and (b) sdhash is slightly
slower but more precise than mrsh-v2
(Breitinger, Stivaktakis, & Roussev, 2014).

2.2 Approximate matching for
digital investigations

The usage of approximate hash based match-
ing (AHBM) for digital forensics and “how
AHBM can be applied in digital investiga-
tions” was analyzed by Bjelland, Franke, and
Arnes (2014). 1In their paper the authors
discuss three modes of operation: Search,
Streaming and Clustering.

Search is the traditional approach and
des-cribes the scenario where an investiga-
tor is looking for matches of inputs against
a set / database (the authors call them
leads), e.g., compare file A against the set
/ database. Streaming mode describes the
situation where continuous data is passed
to the system (e.g., in case of an intrusion
detection system). The difference between
Search and Streaming mode is that in the
former case the search space is rather large
while in the latter case the search space
should be small to work efficiently. Cluster-
ing mode can be utilized to organize a set
and cluster similar data. Note, in all cases it
requires N x M comparisons where N is the
input size (e.g., network packets of the intru-
sion detection system) and M is the search
space. This also reveals a current problem

3For clustering mode N = M.
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approximate matching faces — the runtime
efficiency for large sets is impractical.

2.3 E-mail structure and their
similarity

This subsections briefly explains the struc-

ture of e-mails followed by an explanation of

similarities between them.

EML is a file extension for an e-mail mes-
sage saved to a file* and is made up of a
header and a text body text written by a
user.

An e-mail header is made up of differ-
ent fields, e.g., Message-1D, Date, From, To,
Subject, Cc, Mime-Version, Content-Type,
Content-Transfer-Encoding, Bee, X-Header.
X-Headers are additional personalized infor-
mation in the header that can be added. An
example is given in the following:

Message-ID: <23335327.1075851772982.JavaMail

ans@thyme>

Date: Sun, 7 Jan 2001 15:07:00 -0800 (PST)
From: gwdorsey@aol.com

To: jeffrey.a.shankman@enron.com

Subject: Re: fert

Cc: whalley@enron.com

Mime-Version: 1.0

Content-Type: text/plain; charset=us-ascii
Content-Transfer-Encoding: 7bit

Bcc: whalley@enron.com

X-From: GWDORSEY@aol.com

X-To: Jeffrey.A.Shankman@enron.com

X-cc: whalley@enron.com

X-bcc:

e Reply: When the number of matches
where either e-mail is a follow up on an-
other e-mail.

e Similar conversation: When e-mails
with different subjects and content, sent
to and from the same set of e-mail ad-
dresses.

e Different header: When identical e-
mails found in different folders.”

3. PROBLEM AND
CONCEPT
DESCRIPTION

Bytewise approximate matching considers
the complete input and works very precisely
— even small commonalities are usually iden-
tified and lead to a match. While this is

A desired property, it may also lead to un-

wanted results. For instance, almost all files
include metadata such as headers, footers,
file signatures, information of options, struc-
tural information and so on, which is often
common independent of the actual file con-
tent. In other words, metadata can influence
the matching process and lead to unwanted
results. We claim that for investigation pur-
poses it can be beneficial to pre-process in-
puts, i.e., separating the metadata from the
content.

X-Folder: \Jeffrey_Shankman_Nov2001\Notes Foldel'or our testing, we use two independent

rs\All documents
X-Origin: SHANKMAN-J
X-FileName: jshankm.nsf

As indicated by Bjelland et al. (2014),
“the majority of the resulting matches fell
into one of these three manually defined cat-
egories:

4See  RF(C2822 from Resnick (2001)
RFC1521 from Borenstein and Freed (1993).

and
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test sets that are analyzed separately — one
set consisting of DOC, PDF, HTML (more
details see Sec. 4.1) and a second one con-
sisting of EML files (see Sec. 4.2). Both sets
contain metadata and were analyzed using
the existing, well-established bytewise ap-
proximate matching tool sdhash® v3.4 from
Roussev (2010) in regular mode, with a pre-
processing step.

Shttp://roussev.net/sdhash/sdhash.html
(last accessed July 25th, 2016).

© 2016 ADFSL
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During our experiment we first compared
the sets directly using sdhash and second,
we applied a pre-processing to separate the
metadata before running the comparison
with the identical algorithm. We compared
our results based on the parameters:

Precision — TP
recision = PP
TP
ll=————
Reca TP+ FN
TP+TN
Accuracy =

TP+TN+ FP+ FN

Precision x Recall
F'score = 2 %

Precision + Recall

where TP are true positives, TN are true
negatives, FP are false positives and FN are
false negatives. The F-score is the harmonic
mean of precision and recall, so it can be seen
as a weighted average of the precision and re-
call®. According to the tutorial from Rous-
sev’, “when applied to simple file types, such
as text, scores as low as 5 could be signifi-
cant.” Therefore, a score of 5 < score < 100
implies a positive match (TP and FP). The
challenging part is to categorize the matches
into one of the categorizes which is discussed
in the corresponding subsection.

Note, we are not claiming that content
matches are more important than metadata
matches or vice versa. As will be dis-
cussed later, there can be scenarios where
these matches are desired, e.g., identify pho-
tos that were taken with the same camera.
However, we argue that investigators should
be aware of the differences of results (pre-
processing vs. no pre-processing).

We want to point out that if this pre-
processing step can be done based on the
byte level, this defines it as syntactic ap-

Shttps://en.wikipedia.org/wiki/F1_score
(last accessed July 25th, 2016).

"http://roussev.net/sdhash/tutorial/
03-quick.html (last accessed July 25th, 2016).

© 2016 ADFSL

proximate matching®. Although for some of
our tested file types the pre-processing is not
based on the byte level, we will use the terms
bytewise and syntactic approximate match-
ing for the remainder of this paper.

4. EXPERIMENTAL
RESULTS

This section discusses our experimental re-
sults. In Sec. 4.1 we describe our findings
for the DOC, PDF and HTML. The follow-
ing two sections present the results for EML
where Sec. 4.2 describes the content based
matches and Sec. 4.3 the metadata matches.

4.1 Assessment for DOC,
PDF and HTML (content)

The first paragraph will detail our test-set
while the second paragraph will outline our
results.

Test-set description. Our first test set
consists of three file types: DOC, PDF and
HTML and is used to test the impact of pre-
processing among different text file formats.

The procedure was as follows: (1) ran-
domly select content for 15 files (.txt files)
from the Open American National Corpus
(OANC?), (2) manually copy and modify the
content according to Table 1 (column one),
(3) manually copy the modified version again
and modify it (column two) and (4) replicate
the files in all three formats which results
in 45 files total (15 DOC, 15 PDF and 15
HTML).

For instance, 1-1 is the modified version of
file 1; 1-2 is the modified version of file 1-1.

8 As by the definition, syntactic approaches take
file type specific structures into account but also
work on the byte level, e.g., ignore the header of
a TCP packet.

90Open ANC is a massive electronic text
dataset written in American English and avail-
able at http://www.anc.org/data/oanc/download
(last accessed July 25th, 2016)
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Table 1. The modification details of DOC, PDF and HTML test set.

No. First modification details Second modification details

1 1-1  removed table format 1-2  removed partial contents

2 2-1  removed table format 2-2  adjusted font style (size, bold)

3 3-1 changed a two-column layout to 3-2  removed partial contents and ad-
one column justed font style (bold)

4 4-1  changed a two-column layout to 4-2  removed partial contents and ad-
one column justed font style (bold)

5 5-1  removed partial contents and back- 5-2  changed template like item no. 7’s
ground color modification

6 6-1 removed partial contents and back- 6-2  changed template like 9s’
ground color

7 7-1  removed partial contents and 7-2  changed template like 9-1s’
changed template like 58’

8 8-1  changed template like 3s’ 8-2 removed and added partial con-

tents

9 9-1 added table and changed template 9-2  removed partial contents

10 10-1 adjusted font style (italic, under- 10-2 adjusted template like 9-1s’ and
line, bold) and removed partial contents’ order
contents

11 11-1 removed hyperlinks 11-2  adjusted font style (font, color)

12 12-1 adjusted font style (font, color) 12-2 removed hyperlinks

13 13-1 changed template 13-2  changed template

14 14-1 changed template like 13-1s’ 14-2  changed template like 13-2s’

15  15-1 adjusted paragraph setup and 15-2 changed template and removed
added background and watermark partial contents

On the other hand filel.pdf, filel.html files. = Although we only created PDF,

and filel.doc share the same content but
have a different file type. As all files are
available in three types, there are 135 files
(= 3 types x 3 modifications x 15 files) in
total within the test set. We know that this
is a small number, however, it provides a first
outlook on how syntactic approaches can im-
pact the results.

Pre-processing. In this case the pre-
processing is done using Apache Tika!?
which can extract the content of text based

10Tika, Apache Software Foundation, https://
tika.apache.org (last accessed July 25th, 2016).
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HTML, and DOC, Tika supports many other
file types too and is open source.

As a very last step, we replaced identi-
cal consecutive spacing characters (i.e., 2 or
more spaces / newlines) by a single one, e.g.,
two space are replaced by a single one. A
space followed by a newline will remain as
is.

Classification of the results. Since we
manually created these files, we know which
files are similar and should produce matches.
Thus, calculating precision, recall and accu-
racy is straight forward.

© 2016 ADFSL
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Table 2. Results of sdhash with and without
pre-processing.

Original  Pre-processed set
set

TP 71 433
TN 7614 8507
FP 586 0
FN 744 105
Precision 0.10807 1.00000
Recall 0.08712 0.80483
Accuracy 0.85247 0.98839
F- 0.09647 0.89186
score

Test results. The all-against-all compari-
son of the results in 9045 comparisons (self-
comparisons are eliminated). A summary of
the results is given in Table 2. As can be
seen, there is a huge difference for all the
numbers.

The Original files yielded (71 + 586 =)657
matches while 433 matches were found in the
Pre-processed set. The reason for the false
positives in Original set is the common bytes
among the same format files, e.g., word doc-
uments share large low-entropy sequences in
their header. It is notably that all positives
matches (true positives and false positives)
in the O-set are based on matches of the
same file type. This results from a differ-
ent encoding scheme of content text through-
out the analyzed file-formats. Another eye-
catching fact is that there are zero false pos-
itives in the P-set which results in a preci-
sion of 1.00. The number of false negatives
is about 7 times lower for the P-set and thus
also significantly better.

Next, we focus on the distribution of the
similarity score for the matches (true posi-
tives + false positive). The true positives
and false positive for the O-set are depicted
in Fig. 1 and Fig. 2.

© 2016 ADFSL
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Figure 1. Distribution of the similarity score
in TP for O-set (DOC, PDF, HTML).

count (FP)
(%)
=]

0 —_
1 8 15 22 29 36 43 50 57 64 71 78 85 92 99

score

Figure 2. Distribution of the similarity score
in FP for O-set (DOC, PDF, HTML).

While most of the scores for the false pos-
itives are rather low (almost all a 25 or less),
the true positives scores are spread over the
complete width. Thus, introducing a thresh-
old (e.g., t > 25) is only partially effective
— on the one hand it will eliminate the false
positives and on the other it will also increase
the false negatives.

Fig. 3 shows the distribution of the true
positives for the P-set (since there are no
FP, no figure is required). Compared to the
TP from the O-set, the majority of matches
have rather high scores (40 and higher). This
is due to the comparison algorithm from
sdhash which (roughly speaking) correlates
the amount of overlap with the total input
size.
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Figure 3. Distribution of the similarity score

in TP for P-set (DOC, PDF, HTML).

4.2 Assessment for e-mail
(content)

The first paragraph will detail our test-set
while the second paragraph will outline our
results.

Our second set
t11

Test-set description.
consists of EML files from the Enron se
introduced by Klimt and Yang (2004). This
set has a total of 680,579 real world e-mails
from 150 users from the same company!2.
Since a lot of the evaluation is done man-
ually, we first reduced the set to 17,831 e-
mails from five different users. This subset
contains e-mails from all directories such as
incoming, outgoing, deleted, etc. Next, we
randomly selected 30 e-mails that were com-
pared against this subset which results in
534,930 = 17,831 x 30 comparisons.

Pre-processing. Our pre-processing sim-
ply separates the headers and the content
(e-mail body). Note, sdhash requires a min-
imum input size of 512 bytes'®. If the pre-

Uhttps://www.cs.cmu.edu/~./enron (last ac-
cessed July 25th, 2016).

12To the best of our knowledge, this is the only
freely available e-mail dataset and thus we could not
mix the e-mails with e-mails from a different com-
pany.

3http://roussev.net/sdhash/tutorial/
03-quick.html (last accessed July 25th, 2016).
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processing of the EML file caused a smaller
output, we randomly selected a different
EML file.

Classification of the results. In contrast
to the our first set which was manually cre-
ated, the challenging part here is to differen-
tiate between TP, FP, FN and TN (the set
is not labeled). Therefore, the categoriza-
tion process is based on two steps. First, we
adopt the idea from Bjelland et al. (2014)
and second, do a manual comparison. More
precisely, we did the following:

Positives: If a match fell into the categories
‘reply’ and ‘different header’ (compare
last paragraph Sec. 2.3), we rate this as
a true positive. This decision was made
based on the subjects of the e-mails — if
the subject of two e-mails coincide, we
rated this as a TP. We are aware that
in some scenarios this might be incor-
rect (e.g., “RE: monthly report”) but
we believe this is the minority of emails.

If matches were based on ‘similar con-
versation’ (i.e., header information only
caused the match!'?), we rated this as a
false positive. For all remaining ones
we manually analyzed the match and
added it to the corresponding category:
TP or FP.

Negatives: To verify that we do not miss
matches (false negatives), we first an-
alyzed the corpus with ssdeep to see
if this algorithm identifies any addi-
tional matches. In a second step, we
performed a keyword search through-
out the e-mails. That is, we selected
up to 5 keywords from each of our 30
e-mails subset and searched for them in
the 17,831 e-mails. If one keyword was
found, both e-mails were compared in-
tensely (manually) to see if it is a false
negative.

140f course, this is only possible for the O-set.
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Test results. A summary of the results is
given in Table 3. As can be seen, there is a
significant difference for the detection rates
which is due to the false positives.

Table 3. Results of sdhash with and without
pre-processing based on the 30 e-mails.

Original  Pre-processed set
set

TP 193 198
TN 534,425 534,702
FP 277 1
FN 35 31
Precision 0.41064 0.99498
Recall 0.84649 0.86463
Accuracy 0.99942 0.99994
Fscore 0.55301 0.92523

For the O-set, sdhash identifies a total of
(193 + 277 =) 470 matches while for the P-
set there are only 199. While in both cases
the outcome for TP, TN and FN is almost
identical, there is a major difference for the
false positives, which causes dropped preci-
sion rate. The minor difference in the accu-
racy rate originates from the large number
of true negatives in both scenarios. Thus,
in this case the F-score is a more significant
measure of accuracy.

Fig. 4 and Fig. 5 shows the distribution of
the similarity score for the O-set for the true
positives and false positives, respectively.

Similar to our first test, the true positives
are spread over the complete width while
the false positives bunch up in the lower
half (most match scores are < 40). Again,
it is not possible to identify an appropriate
threshold to separate true and false positives
because this will cause additional work for an
investigator in a real world scenario.

Although the true positives for the P-set
range from 5 to 100 (see Fig. 6), the major-
ity of matches obtain high scores. On the
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Figure 4. Distribution of the similarity score
in TP for O-set (EML content).
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Figure 5. Distribution of the similarity score
in FP for O-set (EML content).

other hand, the similarity score for the false
positives was exactly 5.

4.3 Assessment for e-mail
(metadata)

In this test scenario, we focus on the false
positives from the previous section. As dis-
cussed by Bjelland et al. (2014), there are
scenarios where headers share relevant infor-
mation: “similar conversation” (i.e., caused
by the ‘from’, ‘to’ and ‘cc’ fields in the
header). Therefore, we changed our pre-
processing so that now only header informa-
tion is considered.

Test results. Running our test on the sub-
set showed that many e-mail headers only
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Figure 6. Distribution of the similarity score
in TP for P-set (EML content).

Table 4. Results of sdhash Information of
10 input e-mails headers where the header
size is over 512 bytes.

Input #  Header size (bytes) to «cc
1 9,845 297 0
p 1,612 13 0
3 1,150 17 0
4 1,532 8 3
5 7,486 64 1
6 5,170 57 0
7 2,388 28 0
8 1,815 30 0
9 2,231 21 0
10 3,795 32 2

had a short subject and a single recipient
address. Thus, these headers did not fulfill
the 512 byte requirement from sdhash.

Additional tests. We conducted addi-
tional test to wverify our hypothesis of
matches are caused by similar conversation.
We randomly selected 10 e-mails from our
e-mail subset where the header size was at
least 512 bytes. Table 4 provides a brief
summary of the selected e-mails where the
‘to” and ‘cc’ column represent the number of
addresses in ‘to” and ‘cc’ header fields, re-
spectively.
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Next, sdhash was utilized to compare
these 10 e-mails against the subset. The re-
sults are summarized by Table 5. Column 1
shows the e-mail identifier followed by the
sdhash similarity score. Column 3 and 4
show the overlap of e-mail addresses in these
fields. More specifically, let H1, denote the
set of all e-mail addresses in e-mail header 1
and let H2, denote the set of all e-mail ad-
dresses in header 2 where « € {to, cc}. Then,
‘common to’ is |(H 14, N H24,)| and ‘common
cc’is [(H1. N H2.)|. Accordingly, common
rate (%) = |[H1NH2|/|H1| x100. The ‘iden-
tical result count’ is the amount of identical
matches (columns on the left are identical).

For instance, let us focus on the input #2
block. Row 1 indicates that there was a
header with 13 ‘to’ e-mail address matches
and none in the cc field. This corresponds
a common rate of 100% (according to Ta-
ble 4 e-mail 2 contains 13 addresses). sdhash
returned a similarity score of 80. As indi-
cated by the last column, there was only 1
match. Note, for input #2 row 5 there were
5 matches where sdhash output a similarity
score of 6 but ‘common to” was 0. The total
amount of matches for a given input can be
calculated by adding up the last row, e.g.,
for input #1 sdhash returned 15 matches.

The results show that it is possible to run
algorithms on metadata, however there are
several false positives where the actual over-
lap of e-mail addresses is 0 but sdhash out-
puts a match. Recall, this is not necessarily
a false positive from the algorithm itself but
from an investigation perspective — only ir-
relevant header data overlap. On the other
hand, analyzing metadata can provide use-
ful information, e.g., see inputs 4, 7 and 9,
where it clearly identifies e-mails that were
sent to the same user group.
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5. CONCLUSION

While current bytewise approximate match-
ing algorithms work precisely, they may be
too precise for real-world scenarios. We
therefore tested a pre-processing of inputs
which can be seen as a step towards syn-
tactic approximate matching. Our ex-
periments demonstrated that simple pre-
processing steps can significantly impact the
quality of the results. This will be extremely
helpful for formats that represent similar in-
formation but utilize a different char-set or
encoding. On the other hand, as indicated
by the metadata test, it also can be useful
to compare metadata only (e.g., to identify
e-mails that were sent to the same group of
people).

A drawback of this procedure is the file
type dependency. While the traditional al-
gorithms work independent of the type, syn-
tactic approaches require an awareness of the
file type. Furthermore, it is an additional
step that will slow down the overall runtime
efficiency.

Despite this drawback, we suggest consid-
ering the internal structure for common file
types and therefore go towards syntactic ap-
proximate matching. One possibility would
be a two-step procedure: (1) known types
are pre-processed while (2) unknown are pro-
cessed by bytewise approximate matching.
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Table 5. Matched e-mails list with 10 input e-mails and the number of addresses that both
matched and input e-mail have in common.

matched e-mail header matched e-mail header
* ident. * ident.
common re- common re-
similaritypommoncommonrate sult similaritypommoncommonrate sult
score  to cc (%) count score  to cc (%) count
1 8 0 - 0 4 6 33 22 - 38.60 1
7 0 - 0 3 31 22 - 38.60 1
5 1 - 3.70 2 24 0 - 0 1
5 0 - 0 8 20 0 - 0 1
2 80 13 - 100 1 15 0 - 0 4
7 13 - 100 1 14 0 - 0 2
26 12 - 9231 1 12 0 - 0 1
10 0 - 0 1 10 0 - 0 4
6 0 - 0 5 6 0 - 0 3
5 0 - 0 1 5 0 - 0 3
4 0 - 0 1 7 92 28 - 100 1
3 93 17 - 100 1 88 28 - 100 4
86 17 - 100 1 87 28 - 100 1
17 17 - 100 2 85 28 - 100 1
15 1 - 5.88 1 84 28 - 100 12
15 0 - 0 2 73 28 - 100 1
10 0 - 0 2 68 28 - 100 1
10 1 - 5.88 3 8 95 30 - 100 1
9 0 - 0 1 72 30 - 100 2
5 0 - 0 6 8 8 - 26.67 1
4 0 - 0 7 6 6 - 20 1
4 93 8 3 100 1 5 5 - 16.67 1
61 7 3 90.91 2 9 79 21 - 100 1
42 7 3 9091 1 78 21 - 100 1
17 7 3 9091 1 76 21 - 100 2
10 8 3 100 1 67 21 - 100 1
7 7 3 9091 1 64 21 - 100 2
5 97 64 1 100 1 62 21 - 100 1
10 0 0 0 1 9 13 - 61.90 1
8 1 0 1.54 1 10 66 32 1 97.06 1
7 1 0 1.54 1 31 23 0 67.65 1
6 0 0 0 1 25 20 1 61.76 1
5 1 0 1.54 1 21 20 1 61.76 1
4 0 0 0 1 19 20 1 61.76 1
5 22 0 64.71 1
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