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Abstract

Conventional biometric identification systems require

exhaustive 1 : N comparisons in order to identify biometric

probes, i.e. comparison time frequently dominates the over-

all computational workload. Biometric database indexing

represents a challenging task since biometric data is fuzzy

and does not exhibit any natural sorting order.

In this paper we present a preliminary study on the fea-

sibility of applying Bloom filters for the purpose of iris bio-

metric database indexing. It is shown, that by constructing

a binary tree data structure of Bloom filters extracted from

binary iris biometric templates (iris-codes) the search space

can be reduced to O(logN). In experiments, which are

carried out on a database of N = 256 classes, biometric

performance (accuracy) is maintained for different conven-

tional identification systems. Further, perspectives on how

to employ the proposed scheme on large-scale databases

are given.

1. Introduction

Biometrics in particular, technologies of iris recogni-
tion [7, 3] represent a rapidly evolving field of research
and national-sized biometric systems are already deployed,
e.g. the Unique IDentification Authority of India (UIDAI)
[24], which aims at registering all 1.2 billion Indian citi-
zens, is enrolling 1 million subjects on a daily basis. With
about 700 million subjects enrolled (status October, 2014),
against which the daily intake has to be compared to check
for duplicate identities the daily workflow of iris cross-
comparisons results in 7× 1014, or 700 trillion (!). Similar
to performing a duplicate enrolment check, a conventional
biometric identification systems requires exhaustive 1 : N
comparisons in order to perform a single biometric identi-

fication, where N represents the number of subjects regis-
tered with the system. Consequentially, comparison speed
becomes a crucial factor for any large-scale biometric de-
ployments which should provide real-time identification.

Biometric indexing (or filtering) techniques are designed
to reduce the number of candidate identities to be consid-
ered by an (iris) identification system when searching for a
match in a large repository of biometric reference data (tem-
plates) [16]. Due to the fuzziness of biometric data index-
ing biometric databases in order to minimize the response
time of the system, represents a great challenge. Focusing
on iris biometrics, different approaches have been proposed
in past years, e.g. [10] or [15]. However, the vast major-
ity of existing schemes suffer from a significant decrease in
biometric performance, i.e. fast identification comes at the
cost of accuracy. In addition, indexing techniques are fre-
quently based on complex data structures, where the inser-
tion and/or deletion of subjects may result in a re-structuring
of the entire dataset.

Recently, Breitinger et al. [5] introduced a theoretical
concept of a logarithmic divide & conquer approach for
similarity digests database lookup. Focusing on use cases
in the field of digital forensics, e.g. blacklisting of files, the
authors design a scheme for approximate matching that al-
lows a file-against-set comparison with a lookup complex-
ity of O(logN). In this work the aforementioned con-
cept which utilizes a novel Bloom filter-based hierarchical
tree data structure is adapted for the purpose of iris bio-
metric database indexing. Binary search trees based on
Bloom filters are constructed from databases of binary iris
biometric templates (iris-codes). By introducing an ade-
quate comparison procedure the lookup complexity is re-
duced to the magnitude of O(logN). In addition, the pro-
posed search structure which requires storage space in the
magnitude of O(N) enables an insertion of data subjects
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in at most O(logN) steps. On the medium-sized IITDv1
iris database accuracy of open-source re-implementations
of different conventional systems [13, 14] obtaining identi-
fication rates (IRs) and false match rates (FMRs) of approx-
imately 94% and 0.75%, respectively, is maintained within
a challenging open-set evaluation scenario. Furthermore,
we give perspectives on the scalability of the presented ap-
proach w.r.t. large-scale applications.

This paper is organized as follows: fundamentals and
related works are briefly described in Sect. 2. A detailed
description of how to construct a Bloom filter-based hierar-
chical tree data structure is given in Sect. 3. Subsequently,
the workflow of the proposed indexing approach is summa-
rized in Sect. 4. In Sect. 5 experimental evaluations are
presented. Finally, conclusions are drawn in Sect. 6.

2. Background and Related Work

2.1. Bloom Filter-based Approximate Matching

A Bloom filter [2] is represented as a binary array b of
length 2m, where initially all bits are set to zero. In order to
represent a finite set S all elements si ∈ S, i = 1, . . . , n are
’inserted’ into b by applying k independent hash functions
h1, h2, . . . , hk to each si ∈ S and setting resulting indexes
to one, b[Hj(si)] = 1, with j = 1, . . . , k (hash functions
generate hashes in the range [0, ..., 2m − 1]). Each bit of b
can be set to one multiple times, but only the first change
has an effect. In order to perform efficient membership
queries, a given element s′ is hashed using the pre-defined
hash functions and it is checked whether the all values of b
at indexes H1(s′), H2(s′), . . . , Hk(s′) are set to one. If this
is the case s′ can be assumed to be a member of S with a
certain (non-trivial) probability of false positive, if not, s′ is
clearly not a member of S. Bloom filters convince by their
wide field of applications, e.g. database or network applica-
tions [17, 6].

In [5] the concept of Bloom filters is employed in or-
der to construct an binary search tree. Given a set of S of
files the authors suggest to map all files into a single root
Bloom filter, i.e. chunks of files are hashed and according
bits are set to one. While such a Bloom filter may require
Gigabytes of storage it allows a file-against-set comparison
in O(1) steps [4], providing a binary decision (if or if not
a file is in the blacklist). Obviously, such a binary decision
can also be given for a subset of S, enabling the construc-
tion of a binary search tree. That is, the first and second
half files of S are mapped into two separate Bloom filters
representing children nodes of the root Bloom filter. This
procedure is performed recursively and corresponding files
identifiers are appended at leaves. In order to implement ap-
proximate matching, i.e. tolerating a certain variance within
files, the authors suggest to define a threshold t for the num-
ber of chunks (bits in Bloom filters) which have to match
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Figure 1. The concept of generating a set of Bloom filters B from

a binary biometric feature vector consisting of K = 4 blocks of

height h = 3 and width w = 4.

for a given file s′. Based on the concept of Bloom filters the
probability of false positives is reduced at each level yield-
ing a lookup complexity of O(logN) where N represents
the number of files stored in the tree. For further details on
this concept the reader is referred to [5].

2.2. Fast Biometric Identification

With respect to workload reduction within biometric
identification, we coarsely categorize three key approaches:
(1) classification, (2) indexing, and (3) a serial combina-
tion of a computationally efficient and an accurate (but more
complex) algorithm. Let N denote the number of subjects
registered with a biometric system and ω be the workload
for a pair-wise comparison of two templates. Then the over-
all workload W for biometric identification is defined as
W = ωN + δ, where δ summarizes any additional one-
time costs, e.g. sorting of candidates. In case the entire
feature space is divided into c classes (i.e. subsets), W can
be reduced to ωN/c + δ, given that the registered subjects
are equally distributed among all classes. For instance, in
[12, 19] and [18] fingerprint and ear images are assigned to
c = 5 and c = 4 classes, respectively. It is generally con-
cluded that small intra-class variations as well as sufficient
image quality represent essential preliminaries in order to
achieve acceptable pre-selection error rates [12].

Biometric indexing aims at reducing the overall work-
load in terms of O-notation. While an optimal index-
ing scheme would require a workload in O(1), existing
approaches focus on reducing the workload to at least
O(logN), yielding W = ω log(N). In the majority of
cases this is achieved by introducing hierarchical search
structures which tolerate a distinct amount of biometric
variance. Focusing on iris biometric indexing Hao et al.
[10] proposed a fast search algorithm for iris-codes based
on Beacon Guided Search combining a multiple colliding
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segments principle and early termination strategy. The tech-
nique is evaluated using 632 500 iris-codes enrolled in the
United Arab Emirates (UAE) border control system, show-
ing a substantial improvement in search speed with a neg-
ligible loss of accuracy. In [16] two techniques for index-
ing iris-codes as well as iris textures are proposed. On the
CASIAv3 database the search space is reduced to ∼30%
for both schemes, yielding rather unpractical recognition
rates of ∼85%. In [8] Burrows-Wheeler transform is ap-
plied to index iris images, which further reduces the search
space on the same dataset to 8% at comparable accuracy. In
[21] small biometric keys are generated from iris textures
which are used as starting position within a Karnaugh map-
based search structure. Reducing the search space to 3%
on the CASIAv3 database the authors report an accuracy of
∼90%, however, the employed data structure requires sev-
eral Gigabytes of additional storage. Mehrotra et al. [15]
presented an indexing scheme for iris textures using Energy
Histogram of DCT subbands. The authors report a trade-
off between the number of employed subbands and the re-
sulting accuracy. For practical accuracy the search space is
reduced to ∼35% for three medium-sized databases.

Within serial combinations computationally efficient al-
gorithms are used to extract a short-list of LN most likely
candidates, with L ≪ 1. Therefore, W is reduced to
ω̂N + ωLN , where ω̂ is the workload of a pair-wise com-
parison of the computationally efficient algorithm, ω̂ ≪ ω.
In other words, identification is accelerated if ω(1−L) > ω̂
holds. In [9] and [1] L was reduced to ∼10% for iris
and voice, respectively, significantly accelerating biomet-
ric identification. Compared to indexing and classification
a serial combination of algorithms enables a more accurate
operation of the resulting trade-off between computational
effort and accuracy by setting an adequate threshold for L.

3. Bloom Filter-based Tree Data Structure

3.1. Bloom Filter Generation

Generic iris recognition systems [3] extract binary fea-
ture vectors based on a row-wise analysis of normalized iris
textures, i.e. iris-codes typically represent two-dimensional
binary feature vectors (see Fig. 4 (d)-(e)). With respect to
the employed feature extraction algorithms (see Sect. 5) we
divide the two-dimensional binary matrix into K blocks of
equal size where each block consists of w × h bits. From
each bit block we extract a Bloom filter such that the trans-
formed iris-code B consists of K separate Bloom filters,
B = {b1,b2, . . . ,bK}. In order to map one block to a
Bloom filter b the entire sequence of columns of the block is
successively transformed to decimal indexes and bits within
the according Bloom filter are set to one. Instead of us-
ing multiple hash functions, we employ a single mapping
H : {0, 1}h → {0, 1}h, i.e. the image set and the in-
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Figure 2. Construction of the Bloom filter-based binary search tree

by ORing according Bloom filter-based templates.

verse image set of H are of equal size and no collisions
occur. The transform is implemented by mapping each col-
umn ci ∈ {0, 1}h, i = 1, . . . , w, to the index of its decimal
value, which is shown in Fig. 1,

b[H(ci)] = 1, with H(ci) =
h−1∑

a=0

ci[a] · 2
a. (1)

The proposed transform is alignment-free to a certain de-
gree [20], i.e. generated templates do not need to be aligned
at the time of comparison. Equal columns within certain
blocks are mapped to identical indexes within according
Bloom filters, i.e. self-propagating errors caused by an in-
appropriate alignment of iris-codes are eliminated (radial
neighborhoods persist). The rotation-compensating prop-
erty of the proposed system comes at the cost of loca-
tion information of iris-code columns. At block boundaries
miss-alignment of iris-codes will distribute a certain amount
of potentially matching columns among different blocks,
which would be mapped to neighboured Bloom filters [20].
The entire procedure builds upon the scheme proposed in
[20] designed for biometric template protection [22].

3.2. Tree Generation

For the entire dataset consisting of N subjects we gen-
erate sets of Bloom filters B1,B2, . . . ,BN of size K × 2h

bits. Based on these sets of Bloom filters we generate the
binary search tree Ψ of height log2 N+1, comprising logN
levels, a total number of N−1 nodes and N leaves (w.l.o.g.
we assume this tree to be a full binary tree, i.e. N is a power
of 2). Since nodes as well as leaves consist of sets of Bloom
filters of equal size the entire tree requires (2N−1)×K×2h

bits of storage. We interpret Ψ as a level-wise sequence of
sets of Bloom filters, i.e. Ψ[0] represents the root node, Ψ[1]
represents the left child of the root node, and so forth.

In the first step the root node is constructed as the union
of all sets of filters, Ψ[0] = B1 ∨ B2 ∨ · · · ∨ BN . Note
that the union of all sets of filters corresponds to a mapping
of all columns of iris-codes of all subjects to a single set of
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Bloom filters. In the second step both child nodes Ψ[1] and
Ψ[2] are constructed as Ψ[1] = B1 ∨B2 ∨ · · ·∨BN/2 and
Ψ[2] = BN/2+1 ∨BN/2+2 ∨ · · · ∨BN . That is, we define
the i-th node/ leaf as,

Ψ[i] = BN/2l(i+1 mod 2l)∨· · ·∨BN/2l(i+1 mod 2l)+N/2l ,
(2)

where l represents the current level within the tree, l =
0, . . . , logN . In case of uniformly distributed data the frac-
tion of bits expected to be set to one within Bloom filters at

level l is 1 − (1 − 1/2h)wN/2l . For instance, at the level
0 (root) 1 − (1 − 1/2h)wN are expected to be one while at
level 1 (children of root) only 1− (1− 1/2h)wN/2 bits are
expected to be one. Focusing on biometric data we expect
a reduction in w since bits within neighbouring columns of
bits are not mutual independent [7]. An example of such a
Bloom filter-based binary tree is schematically depicted in
Fig. 2.

4. Bloom Filter-based Indexing

4.1. Lookup Strategy

The comparison between two Bloom filter-based tem-
plates B and B′ is implemented as a score level fusion
of all pairwise comparisons of according Bloom filters, bi,
b′

i, i = 1, . . . ,K. Since Bloom filters comprise a vari-
able amount of ones (depending on the number of identi-
cal columns within processed bit blocks) we estimate the
(dis)similarity DS between two Bloom filters b and b′ as,

DS (b,b′) =
|b⊕ b′|

|b|+ |b′|
, (3)

where the XOR operator counts the number of disagree-
ing bits which is normalized by the Hamming weight
of both Bloom filters. The (dis)similarity between
two sets of Bloom filters, B and B′, is defined as
1/K

∑K
i=1 DS (bi,b′

i).
Obviously, the proposed comparator can be applied to

compare a Bloom filter-based template, extracted from a
single iris-code, to nodes or leaves of the Bloom filter-based
binary search tree Ψ, since all nodes and leaves consist of
sets of Bloom filters of equal size. However, as mentioned
in Sect. 2, in case of nodes Ψ[i], i ∈ {0, . . . , N−2}, Bloom
filters represent a union of Bloom filter-based templates ex-
tracted from more than one iris-code, i.e. false positives
may occur. In other words, when comparing a probe tem-
plate B′ to a node of Ψ matching bits may originate from
Bloom filter-based templates extracted from iris-codes of
subjects other than the one searched for. This false posi-
tive rate of matching bit is non-trivial and depends on the
amount of Bloom filter-based templates ORed for a distinct
node. In order to overcome this issue, for each node of Ψ[i],
i = 0, . . . , N − 1 we estimate DS -scores for both child

. . .

. . .

. . .

B1 B2
. . .
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Ψ[1] Ψ[2]
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. . .
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<
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≥
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DS(B2,B′) < t accept

Ψ[0] B
′

Figure 3. Basic operation mode of the proposed lookup strategy for

a positive identification attempt (in addition, all “winning scores”

are stored and are required to constantly increase).

nodes Ψ[i+2l] and Ψ[i+2l+1] and identify the minimum
of the obtained scores, min(DS (Ψ[i+ 2l],B′),DS (Ψ[i+
2l + 1],B′)) as the correct direction. This means, we skip
the root node Ψ[0] and the complexity of a look-up in-
creases to O(2 logN − 1), which is in the same complexity
class as O(logN). Due to potential false positives, DS -
scores are expected to increase at each level, i.e. we fur-
ther require the obtained sequence of scores to constantly
increase. In case a DS -score decreases compared to the
score obtained at the previous node we identify the retrieval
as an impostor attempt. Such a condition will most likely
occur at the very last levels before returning a leaf.

Once a leaf is reached the sequence of obtained DS -
scores may be arbitrarily high, i.e. impostor-retrievals may
reach leaves in case DS -scores obtained down the path of
the binary tree are constantly high. To solve this issue we
analyse iris-codes of applied feature extraction algorithms
within a training stage. Based on a disjoint training set
of iris-codes we extract Bloom filter-based templates and
perform all possible impostor comparisons and store the
best score, i.e. the smallest DS -score, as threshold t. This
threshold is used as a final decision threshold once a leaf is
returned (note that we consider an open-set scenario), i.e.
the DS -score between a Bloom filter-based template of a
leaf and a given probe template B has to be smaller than
t in order to achieve a positive identification. That is, the
equation DS (Ψ[i],B′) < t, i ∈ {N − 1, . . . , 2N − 1},
has to hold. The proposed lookup strategy is schematically
depicted in Fig. 3.

4.2. Insertion and Deletion

The insertion of a Bloom filter-based template into the
proposed binary search tree can be efficiently handled in
O(logN) steps. This is done by OR-ing the according tem-
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(a) Acquisition (b) Detection

(c) Enhanced iris texture

(d) Iris-code Ma et al.

(e) Iris-code 1-D Log-Gabor filter

Figure 4. Iris detection, pre-processing, and applied feature extrac-

tion for image 001-01 of the IITDv1 Iris Database.

plate with all corresponding nodes and inserting the tem-
plate as an additional leaf. In case another level is added,
one leaf becomes a node and the template of this leaf is in-
serted to another leaf.

In contrast, the deletion of a Bloom filter-based template
from the binary search tree is non-trivial. Since bits within
nodes in the path down to the according leaf may also orig-
inate from iris-codes of other subjects, deletion has to be
performed offline. This means, in order to delete a Bloom
filter-based template from the tree, the entire tree has to be
replace by a tree generated from all remaining leaves requir-
ing O(N logN) steps. However, we do not consider this as
a critical issue since in contrast to insertion deletion may
not be required to be performed in real-time.

5. Experiments

5.1. Experimental Setup

Experiments are carried out using the IITD Iris Database
version 1.01 which comprises 2,240 NIR iris images of
320×240 pixels from 224 different subjects. For each sub-
ject the first five iris images were acquired from the left
eye while the remaining five images were acquired from the
right eye, yielding a total number of 448 classes. In order
to perform an open set identification the database is parti-
tioned into a set of genuine and impostor classes, as well
as a training set which is employed to obtain an adequate
threshold t for according feature extraction algorithms. For
genuine classes the first sample is used for enrolment and

1IITD Iris Database version 1.0,
http://www4.comp.polyu.edu.hk/˜csajaykr/IITD/

Database_Iris.htm

Table 1. Datasets employed for evaluation and training.

Set No. Classes No. Samples No. Retrievals

Genuines 256 1,280 1,024

Impostor 160 800 800

Training 32 160 –

the remaining four samples for identification. Table 1 sum-
marizes employed sets according to their size and the result-
ing number of retrievals.

Biometric performance is evaluated in terms of (true-
positive) identification rate (IR) and false match rate (FMR)
[11]. The IR of a biometric system defines the proportion of
identification transactions by subjects enrolled in the system
in which the subject’s correct identifier is the one returned.
The FMR defines the proportion of zero-effort impostor at-
tempt samples falsely declared to match the compared non-
self template. Further, we report the average amount of
comparisons required for genuine and impostor retrievals,
which is commonly referred to as penetration rate (PR).

At pre-processing the iris of a given sample image is
detected, un-wrapped to an enhanced rectangular texture
of 512 × 64 pixel, shown in Fig. 4 (a)-(c) applying the
weighted adaptive Hough algorithm proposed in [23]. In
the feature extraction stage custom implementations2 of two
different iris recognition algorithms are employed where
normalized iris textures are divided into stripes to obtain 10
one-dimensional signals, each one averaged from the pixels
of 5 adjacent rows (the upper 512×50 rows are analysed).
The first feature extraction method follows an implemen-
tation proposed by Ma et al. [13] (DW) based on a dyadic
wavelet transform and the second follows the 1D-LogGabor
feature extraction algorithm of Masek [14] (LG). For fur-
ther details on the employed feature extraction algorithms
the reader is referred to [20]. Both feature extraction tech-
niques generate iris-codes of 512×20 = 10,240 bit. Sample
iris-codes generated by both feature extraction methods are
shown in Fig. 4 (d)-(e).

We compare the proposed technique to a conven-
tional identification system which calculates N Hamming
distance-based comparison scores, applying ±8 circular bit
shifts in each direction for the purpose of feature alignment.
Therefore, we only choose settings where the amount of bit
comparisons at each level is less than 17×10,240. Accord-
ingly, we set h = 10, 11, 12 and w = 8, 16, 32, 64, i.e.
w.r.t. the chosen heights we process the upper and lower
half of a given iris-code separately, in case h > 10 columns
of both halves overlap. Further, we analyse the biomet-
ric performance obtained by using different tree sizes w.r.t.
to the number of leaves in particular, L = 64, 128, 256.
Obviously, the maximum considered number of N = 256

2USIT – University of Salzburg Iris Toolkit v1.0,
http://www.wavelab.at/sources/
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Table 2. Identification rates, penetration rates and false match rates

for the DW algorithm for different parameter settings.

w h L IR PR Gen. FMR PR Imp.

8 10 64 97.656 4×11.937 0.375 4×8.377

8 10 128 97.265 2×13.937 0.375 2×10.352

8 10 256 92.480 1×15.908 0.375 1×12.335

16 10 64 98.046 4×11.921 0.250 4×8.210

16 10 128 97.460 2×13.906 0.250 2×10.340

16 10 256 91.992 1×15.865 0.250 1×12.232

16 11 64 98.046 4×11.945 0.375 4×8.332

16 11 128 97.460 2×13.894 0.375 2×10.352

16 11 256 92.675 1×15.910 0.250 1×12.410

32 10 64 98.046 4×11.921 0.125 4×8.350

32 10 128 94.140 2×13.812 0.250 2×10.205

32 10 256 83.300 1×15.585 0.250 1×12.282

32 11 64 98.046 4×11.929 0.375 4×8.345

32 11 128 96.093 2×13.871 0.500 2×10.300

32 11 256 90.136 1×15.824 0.625 1×12.407

32 12 64 98.046 4×11.960 0.875 4×8.625

32 12 128 97.656 2×13.953 1.000 2×10.572

32 12 256 92.089 1×15.890 1.250 1×12.520

64 10 64 93.359 4×11.812 0.125 4×8.457

64 10 128 83.789 2×13.484 0.250 2×10.447

64 10 256 59.765 1×14.787 0.250 1×12.412

64 11 64 96.093 4×11.882 0.375 4×8.812

64 11 128 90.039 2×13.722 0.250 2×10.580

64 11 256 76.757 1×15.382 0.375 1×12.535

64 12 64 97.265 4×11.921 0.875 4×8.825

64 12 128 93.750 2×13.808 0.375 2×10.587

64 12 256 87.792 1×15.757 0.500 1×12.600

classes could also be stored in 2 or 4 separate search trees
comprising 128 and 64 leaves, respectively, which increases
the PR but reduces the false positive rate within these sub-
trees.

In the training stage all 32 classes comprising 5 iris-
codes are used to perform 32×5×155=24,800 impos-
tor cross-comparisons for all considered settings of the
proposed system as well as the conventional Hamming
distance-based comparator.

5.2. Performance Evaluation

For performing an 1 : N search in corporation with an
adequate decision threshold the original DW and LG sys-
tem achieve a baseline performance of IRs of 94.042% and
93.750% at FMRs of 0.875% and 0.750%, respectively. The
IRs, PRs and FMRs for both feature extractors w.r.t. differ-
ent parameter settings are summarized in Table 2 and Ta-
ble 3, respectively. As can be observed, IRs and FMRs are
maintained (or even improved) for both algorithms in case
of small block widths, i.e. w = 8, 16, 32. Further, IRs in-

Table 3. Identification rates, penetration rates and false match rates

for the LG algorithm for different parameter settings.

w h L IR PR Gen. FMR PR Imp.

8 10 64 97.265 4×11.921 0.125 4×9.347

8 10 128 97.656 2×13.917 0.375 2×11.265

8 10 256 92.382 1×15.878 0.500 1×13.220

16 10 64 98.046 4×11.953 0.750 4×9.370

16 10 128 97.656 2×13.917 0.625 2×11.090

16 10 256 91.796 1×15.890 0.625 1×12.977

16 11 64 98.046 4×11.953 1.125 4×9.337

16 11 128 97.851 2×13.945 1.000 2×11.102

16 11 256 93.457 1×15.902 0.875 1×13.082

32 10 64 98.046 4×11.929 1.000 4×9.305

32 10 128 95.507 2×13.882 1.000 2×11.205

32 10 256 87.792 1×15.769 0.750 1×13.207

32 11 64 98.046 4×11.960 1.500 4×9.462

32 11 128 97.460 2×13.941 0.875 2×11.300

32 11 256 91.406 1×15.910 1.000 1×13.350

32 12 64 98.046 4×11.937 1.750 4×9.525

32 12 128 97.265 2×13.945 1.375 2×11.322

32 12 256 92.675 1×15.902 1.250 1×13.165

64 10 64 96.484 4×11.898 1.000 4×9.552

64 10 128 91.406 2×13.800 0.875 2×11.312

64 10 256 75.488 1×15.507 0.375 1×13.335

64 11 64 95.703 4×11.906 0.750 4×9.742

64 11 128 94.726 2×13.890 0.625 2×11.422

64 11 256 86.914 1×15.773 0.375 1×13.367

64 12 64 97.265 4×11.929 1.250 4×9.795

64 12 128 96.093 2×13.925 1.500 2×11.460

64 12 256 90.332 1×15.861 1.125 1×13.395

crease with the height of processed binary blocks. How-
ever, FMRs increase as well with larger heights in partic-
ular, h = 12. As can be seen, PRs are in the order of
O(logN), e.g. for mapping all classes to a single binary
tree (L = 256) PRs for genuine identifications are reduced
to approximately 15 ≃ O(2 logN). In other words, only
6% of the entire dataset is considered at each genuine iden-
tification attempt. In addition, PRs for impostor identifi-
cations are further reduced, e.g. only 12.5 per identification
attempt for the same setting. In case four sub-trees compris-
ing L = 64 leaves are used instead of a single tree biometric
performance is improved since false positives are reduced,
however, PRs are multiplied by the number of employed
sub-trees. This means the lookup complexity increases to
O(N/L logL).

Fig. 5 depicts the number of bits which are set to one
at different levels of the Bloom filter-based binary search
tree for mapping template of all classes to a single tree
comprising 9 levels. As can be seen, for both feature ex-
traction techniques the maximum capacity of the search
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Figure 5. Amount of bits set to one (in %) for different parameter setting for mapping templates of all classes to a single Bloom filter-based

binary search tree.

tree is reached relatively fast. For large block widths more
columns are mapped to corresponding Bloom filters caus-
ing root nodes to comprise more than 90% of ones. For
smaller block widths, e.g. w = 8, the proposed search tree
is expected to be capable to store significantly more bio-
metric templates. However, small block widths increases
the storage requirements, since one Bloom filter of size 2h

bits has to be stored for each block. For dividing employed
iris-codes into an upper and lower half the number of re-
quired Bloom filters can be estimated as K = 2 × 512/w.
Further, it is important to note that the required storage does
not increase in case N/L > 1 sub-trees are stored instead
of a single binary tree, since the total amount of storage is
N/L×2×512/w×2h×(2L−1) bits. For the used parame-
ters the required storage for both feature extractors is below
8MB, for the settings w = 8 with h = 10, w = 16 with
h = 11, and w = 32 with h = 12. For setting which would
require more amount of storage the amount of bit compar-
isons per node or leaf would exceed that of a conventional
comparison of iris-codes. This means, w.r.t. storage require-
ments the presented scheme is scalable to any desired num-
ber of registered subjects. However, in case the maximum
capacity of Bloom filter-based search tree is reached, i.e.
too many bits are set to one within the first level, compari-
son decision can not be estimated reliably. In other words,
depending on the employed feature extraction, an increas-
ing number of registered subjects will force the construction
of another sub-tree, which increases look-up complexity to
O(N logN), as previously mentioned.

6. Conclusions and Future Work

In this paper we proposed a Bloom filter-based binary
search tree for fast indexing of iris biometric data. It is

shown that the presented technique is capable to reduce the
lookup complexity to O(logN) maintaining the biometric
performance obtained in a conventional 1 : N open set iden-
tification scenario. While the proposed scheme is evaluated
on a medium-sized database comprising N = 256 enrolled
classes, achieving a PR of approximately 6%, it is scalable
with respect to storage requirements. In case larger datasets
are employed these can be mapped to different sub-trees
comprising templates of N = 256 subjects. For instance,
in case of N = 4, 096 a total number of N/L = 16 sub
trees could be used, holding PRs constantly at N/L logL =
6%. Compared to existing iris-biometric indexing schemes
which are applied to comparable datasets, e.g. [16, 15], the
proposed scheme is evaluated in a more challenging open
set scenario maintaining practical IRs. The proposed search
structure is balanced since properties of iris-codes are not
considered during insertion, i.e. there are no significant de-
viations between PRs obtained for different subjects. Fi-
nally, it is important to note that presented concept is eval-
uated for open-source iris recognition algorithms yielding
fully reproducible research.

Future work comprises a more thorough analysis of bio-
metric data in order to set adequate decision thresholds at
all levels of employed search trees. This would enable a re-
jection of impostors at very first levels which would reduce
the lookup complexity in case several sub-trees are used and
would provide a efficient duplicate enrolment check.
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