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Investigating seized devices within digital forensics gets more and more difficult due to the
increasing amount of data. Hence, a common procedure uses automated file identification
which reduces the amount of data an investigator has to look at by hand. Besides iden-
tifying exact duplicates, which is mostly solved using cryptographic hash functions, it is
also helpful to detect similar data by applying approximate matching.
Let x denote the number of digests in a database, then the lookup for a single similarity
digest has the complexity of O(x). In other words, the digest has to be compared against all
digests in the database. In contrast, cryptographic hash values are stored within binary
trees or hash tables and hence the lookup complexity of a single digest is O(log2(x)) or O(1),
respectively.
In this paper we present and evaluate a concept to extend existing approximate matching
algorithms, which reduces the lookup complexity from O(x) to O(1). Therefore, instead of
using multiple small Bloom filters (which is the common procedure), we demonstrate that
a single, huge Bloom filter has a far better performance. Our evaluation demonstrates that
current approximate matching algorithms are too slow (e.g., over 21 min to compare 4457
digests of a common file corpus against each other) while the improved version solves this
challenge within seconds. Studying the precision and recall rates shows that our approach
works as reliably as the original implementations. We obtain this benefit by accuracy–the
comparison is now a file-against-set comparison and thus it is not possible to see which
file in the database is matched.
ª 2014 The Authors. Published by Elsevier Ltd on behalf of DFRWS. This is an open access
article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
Introduction

Handling hundreds of thousands of files is a major
challenge in today’s digital forensics. In order to cope with
this information overload, investigators often apply hash
functions for automated input identification. A common
processing is known file filtering which is quite simple:
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compute the hashes for all files on a target device and
compare them to a reference database. Depending on the
underlying database, files are either filtered out (e.g., files of
the operating system) or filtered in (e.g., known offensive
content). A very common database for ‘filter out’ data is the
National Software Reference Library (NSRL) (NIST
Information Technology Laboratory, 2013) maintained by
National Institute for Standards and Technologies (NIST).

Besides identifying exact duplicates, which is mostly
solved running cryptographic hash functions, it is also
necessary to cope with similar inputs (e.g., different ver-
sions of files), embedded objects (e.g., a JPG within a Word
document), and fragments (e.g., network packets) which is
commonly solved by approximate matching. The essential
idea is to complement the use of cryptographic hash
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functions to detect data objects with bytewise identical
representation with the capability to find objects with
bytewise similar representations.

However, the lookup complexity of similarity digests
hamper the usage in the field. Let x denote the amount of
digests in a database, then the naive lookup for a single
similarity digest has the complexity of O(x). In contrast,
cryptographic hash values can utilize binary trees or hash
tables and hence the lookup complexity is O(log2(x)) or
O(1), respectively. Assuming a set instead of a single digest,
the lookup complexity of similarity digests has a quadratic
runtime as it is solved by an all-against-all comparison
(brute-force).

Recently, at least one approximate matching algorithm
(ssdeep) was extended and now has a possibility of
indexing (Winter et al., in press). The authors showed an
improvement of a factor of almost 2000 which is ‘practical
speed’. However, analysis showed there are more power-
ful algorithms like sdhash (Roussev, 2011) and mrsh-v2

(Breitinger et al., 2013b) which output a different type of
similarity digest. While ssdeep produces a Base64
encoded fingerprint, both other algorithms output Bloom
filter based hashes. In spite of all of them, the problem
remains.

In this paper we present and evaluate a concept for
approximate matching that allows a file-against-set com-
parisonwith a lookup complexity of O(1) for a single digest.
In contrast to general approximate matching, our approach
can only answer the question “does this set contain a
similar file to file A?” by

� yes, there is a similar file (but it cannot say which one),
or

� no, there is no similar file,

which is sufficient in case of blacklisting. We obtain this
benefit either at the cost of more hashing operations or
requiring a lot of main memory. Our evaluation demon-
strates that the current procedures are too slow (e.g., over
21 min to compare 4457 digests of the t5-corpus3 against
each other) while our improved version solves this chal-
lenge within seconds. Analyzing the precision and recall
rates shows that our approach works as reliably as the
original implementations.

The rest of the paper is organized as follows. Sec. 2 in-
troduces the necessary background and related work. The
problem description and solution overview is explained in
Sec. 3. All details about our concept are presented in Sec. 4.
The experimental results are given in Sec. 5. Sec. 6 con-
cludes the paper.
Background & related work

This section explains the foundations and presents
related literature. First, we briefly present the usage of hash
functions and approximate matching in digital forensics
which is followed by an introduction of Bloom filters. Sec.
3 http://roussev.net/t5/t5.html (last accessed Nov. 29th, 2013).
2.3 starts with an overview of approximate matching and
then introduces three concepts in more detail.

Hash functions and approximate matching in digital forensics

Currently a popular use case is to employ hashing
methods for known file filtering of files which is quite sim-
ple: an investigator computes the hashes for all files on a
target device and compares them to a reference database.
Depending on the underlying database, files are either
filtered out (e.g., files of the operating system) or filtered in
(e.g., known offensive content). Files not found in the
database remain unclassified.

In case of filter out (a.k.a. whitelisting) the database
contains benign files, e.g., operating system files. We claim
that here an investigator is only interested in exact matches
and thus crypto hashes are the only choice. However, in
case of filter in (a.k.a. blacklisting) the database contains
illegal or suspicious inputs, e.g., child abuse or leaked
company secrets, and an investigator is also interested in
similar files. Note, approximate matching may operate on
the byte level or the semantic level (Breitinger et al., 2014).

Bloom filter

Bloom filters (Bloom, 1970) have a wide field of appli-
cations, e.g., database applications (Mullin, 1990) or
network applications (Broder and Mitzenmacher, 2005)
and commonly used to represent elements of a finite set S.
A Bloom filter is an array of m bits initially all set to zero. In
order to ‘insert’ an element s ˛ S into the filter, k inde-
pendent hash functions are needed where each hash
function h outputs a value between 0 and m � 1. Next, s is
hashed by all hash functions h. To insert, the bits at the
positions h0(s), h1(s),.hk�1(s) of the Bloom filter are set to
one.

To answer the question if s
0
is in S, we compute h0(s

0
),

h1(s
0
),.hk�1(s

0
) and analyze if the bits at the corresponding

positions in the Bloom filter are set to one. If this holds, s
0
is

assumed to be in S, however, we may be wrong as the bits
may be set to one by different elements from S. Hence,
Bloom filters suffer from a non-trivial false positive rate.
Otherwise, if at least one bit is set to zero, we know with
certainty that s0;S. It is obvious that the false negative rate
is equal to zero.

In case of uniformly distributed data the probability that
a certain bit is set to one during the insertion of an element
is 1/m, i.e., the probability that a bit is still zero is 1 � 1/m.
After inserting n elements into the Bloom filter, the prob-
ability of a given bit position to be one is 1� (1�1/m)k$n. In
order to have a false positive, all k array positions need to be
set to one. Hence, the probability p for a false positive is

p ¼
h
1� ð1� 1=mÞk$n

ik
z
�
1� e�kn=m

�k
: (1)

Bytewise approximate matching

Approximate matching is a rather new area and prob-
ably had its breakthrough in digital forensics in 2006 with
an algorithm called context triggered piecewise hashing

http://roussev.net/t5/t5.html
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(CTPH) (see Sec. 2.3.1). Since then, a couple of algorithms
were presented. As this work focuses on Bloom filter based
approaches, we discuss those in Sec. 2.3.2. A complete
overview of different algorithms is given by Breitinger et al.
(2013a).

Basically approximate matching consists of two sepa-
rate functions. First, tools run a feature extraction function
that extracts features or attributes from the input that
allow a compressed representation of the original object
(the exact proceeding depends on the implementation it-
self). Second, to compare two similarity digests, a similarity
function is used that normally outputs a score s which is
scaled to 0 � s � 100. Despite its range, this value is not
necessarily an estimate of percentage commonality be-
tween the compared objects but a level of confidence. It is
meant to serve as a means to sort and filter the results.

ssdeep and the F2S2 software
The program ssdeep, also known as context triggered

piecewise hashing (CTPH, Kornblum (2006)) may be the
origin of approximate matching and is based on the spam
detection algorithm from Tridgell (2002–2009). The
implementation is open source and available online.4

The basic idea is very simple: split an input into chunks,
hash each chunk independently and concatenate the chunk
hashes to a final similarity digest. In order to split an input
into chunks, the algorithm identifies trigger points using a
rolling hash (a variation of the Adler-32 function5) which
considers the current context of seven bytes. Each chunk is
then given to the non-cryptographic hash function FNV
(Noll, 1994–2012). Instead of using the complete FNV hash,
CTPH only takes the least significant 6 bits which is equal to
one Base64 character. Thus, two files are similar if they
have common chunks.

F2S2 was presented by Winter et al. (in press) and is an
extension for ssdeep that allows a faster similarity digest
comparison. F2S2 initializes a hash table that allows to
insert n-grams6 of the Base64 similarity digest. Each simi-
larity digest is split into its n-grams and the ID to the cor-
responding file is put into its corresponding hash table
bucket. In order to lookup a similarity digest, the queried
digest is split into its n-grams. Next, the content of all
buckets are correlated in order to receive a set of possible
similar files. The final decision is then made by using the
ssdeep comparison function.

The authors showed an improvement of a factor of
almost 2000 which is ‘practical speed’. For instance, they
decrease the time for verifying 195,186 files against a
database with 8,334,077 entries from 364 h to 13 min.

Bloom filter based approaches
This section presents two further prominent approaches

that outperform ssdeep with respect to precision & recall
(Roussev, 2011; Breitinger et al., 2013b, 2013c). In the
following, we provide a brief sketch of the feature
4 http://ssdeep.sourceforge.net (last accessed Nov. 29th, 2013).
5 http://en.wikipedia.org/wiki/Adler-32 (last accessed Nov. 29th, 2013).
6 n-grams a fragments of a longer sequence, e.g., 2-g of ABCD are AB, BC

and CD.
extraction functions of sdhash and mrsh-v2, respectively;
a detailed description is beyond the scope of this paper.
Details about the similarity function and the similarity di-
gests are given at the end of this section.

sdhash. This algorithm was proposed by Roussev (2010)
and attempts to pick characteristic features for each ob-
ject that are unlikely to appear by chance in other objects,
which is the result from an empirical study. In the baseline
implementation, each feature is hashed with SHA-1
(Gallagher and Director, 1995) and inserted into a Bloom
filter (Bloom, 1970) where a feature is a sequence of 64
bytes. The similarity digest of the data object is a sequence
of 256-byte Bloom filters each representing approximately
10 KiB of the original data, on average.

Subsequently, a block-aligned version was developed
(Roussev, 2012), in which fixed-size blocks (16 KiB by
default) are mapped to each 256-byte filter. Although the
two versions are compatible (the two versions of the di-
gests can be meaningfully compared) we do not consider
the block-aligned version in our study as it requires addi-
tional parameters.

mrsh-v2. Breitinger and Baier (2013) propose a new algo-
rithm that is based on ssdeep and multi-resolution simi-
larity hashing (Roussev et al., 2007). Equal to ssdeep, the
algorithm divides an input into chunks using a rolling hash
where the estimated blocksize is 160 bytes. Each chunk is
then hashed by the 64-bit non-cryptographic hash function
FNV-1a (Noll, 1994–2012) and inserted into a Bloom filter
where a filter can store up to 160 chunks. Once a Bloom
filter reaches its capacity, a new one is created.

Note, in the following we are using the term feature as a
synonym for chunk.

Similarity digest. The similarity digest is very similar in both
cases. To insert a feature-hash into a m ¼ 2048 bit Bloom
filter (default size for both algorithms), the algorithms take
55 bits of the digest, split them into k ¼ 5 sub-hashes of 11
bits and set the corresponding bit. For instance, the sub-
hash 000100011002 ¼ 8C16 ¼ 14010 sets bit 140 in the
Bloom filter. Both implementations have a maximum of
features per Bloom filter. If this limit is reached, a new
Bloom filter is created. Hence, the final similarity digest is a
sequence of Bloom filters which is supposed to be
approximately 1.0% (mrsh-v2) or 1.6 %–2.6% (sdhash) of
the input length (compression ratio). To identify the simi-
larity between two digests, all Bloom filters of fingerprint A
are compared against all Bloom filters of similarity digest B
with respect to the Hamming distance as metric.7

Problem & solution

Currently, the problem is that it is not possible to order/
index Bloom filter digests. Thus, if a database contains x
digests a comparison of a given similarity digest against the
database requires an ‘against-all’ comparison. Extending
7 The original comparison is only sketched in this paper, as we replace
it in our new concept.

http://ssdeep.sourceforge.net
http://en.wikipedia.org/wiki/Adler-32
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this scenario means that comparing y similarity digests
against the same database corresponds to an all-against-all
comparison (bruteforce) which equals a quadratic runtime
complexity: O(xy).

Sec. 3.1 gives an overview of the overall idea. After that,
we briefly repeat the terminology and definition, as it is
really important to have the abbreviations in mind.

Proceeding overview

The basic idea is to insert all features into a single Bloom
filter instead of having multiple filters as the lookup
complexity per filter is O(1). Thus, we overcome the
drawback of existing approaches and avoid the all-against-
all comparison. To speed up the comparison decision we
additionally replace the classical comparison function by a
decision based on a sufficiently large number of common
substrings (later called longest run) as explained in Sec. 4.

More precisely, let SB and SD be two sets of digests.
Traditionally (using cryptographic hash functions) an
investigator possesses a database containing the elements
of SB (e.g., the blacklist). When he receives D (e.g., a seized
device), he hashes all files to SD and compares them against
SB. Note, the database SB can be precomputed and hence its
generation time is irrelevant.

Regarding our concept, there are two alternatives
depending on the underlying hardware:

1. Alternative one is identical to the traditional procedure.
That is, the Bloom filter is filled with the features of SB in
advance, that is we can neglect its generation time. Note,
using more than one Bloom filter will slow down the
process as they always have to be loaded into memory.

2. The second possibility assumes that SB does not fit into
the Bloom filter, but SD does. In that case we turn the
work flowupside down by filling the Bloom filter with SD
and compare SB against it.

The difference between these two procedures is the
overall time. While in traditional procedure (alternative
(1)) only SD needs to be processed, the second possibility
also has to hash SB as a precomputation step. In the
following (1) is denoted by best-case and (2) by worst-case.

The reason why alternative (2) might be necessary is
that it is not possible to load the Bloom filter for SB into
main memory. Hashing all files of a set into a single Bloom
filter requires a large Bloom filter which has to fit into main
memory due to efficiency reasons. Thus, the limiting source
is the physically available RAM.

For instance, let us assume that jSBj ¼ 1500 GiB and
jSDj ¼ 200 GiB. As shown later, an everyday working station
with 8 GiB RAM cannot handle a Bloom filter of SB but of SD.
Therefore, we suggest creating a Bloom filter out of SD and
comparing all files of SB in a second step. It is obvious that
both sets have to be hashed – it is not possible to create the
database in advance.

To optimize (2), one may store a list of hash values of SB
instead of the files. Thus, the files are already hashed and
the overall proceeding is almost as fast as (1). In addition,
the compression is better as we only store a 256-bit (32
byte) hash for each 64-byte chunk.
Another downside of this approach is that we can
only say: yes, there is a similar file but not which file is
matched. In contrast, the traditional procedure allows a
statement: file A of the seized device matches file B in
the database. However, we argue that with respect to
filter in (blacklisting) this is sufficient as an investigator
has to analyze matches anyway. In short, we only want
to know if the investigated file is similar to any file on
our set which is perfectly suited for blacklisting. In the
case a yes or no decision is insufficient, this procedure
can be used as pre-proceeding–if a file is not found in the
Bloom filter it is definitely not a black listed file and can
be ignored.

Terminology & definition

This section repeats the notations from the previous
section which are necessary to understand all improve-
ments and design decisions. Let m; k;n˛K.

feature describes a byte sequence which is hashed and
inserted into the Bloom filter. In case of mrsh-v2 this
equals a chunk of approximately 160 bytes and regarding
sdhash this is a sequence of exactly 64 bytes.

m denotes the Bloom filter size in bits.
k number of sub-hashes where each one sets a bit in the

Bloom filter.
n is the number of features inserted into a Bloom filter.
s denotes the file set size in MiB.

Design decisions and implementation

This section describes the design and code changes of
our approach. Sec. 4.1 shows the correlation between the
input file size and the number of features which are
inserted into the Bloom filter. The relevance of the feature
hash function is discussed in Sec. 4.2. Based on all these
findings, Sec. 4.3 explains the procedure to calculate the
best Bloom filter size. Sec. 4.4 introduces our match deci-
sion approach and the false positive rate which is the final
parameter of our configuration. After that, we describe the
result presentation in Sec. 4.5 and motivate the default
configuration in Sec. 4.6. The final part shows some details
about our reference implementation.

Correlation between elements (n) and file set size

In Eq. (1), n denotes the number of elements that are
inserted into a Bloom filter. Note, the number of elements is
different to the amount of files in the set but equal to the
number of features. Hence, this section analyzes the rela-
tion between n and file set size. Let s denote the file set size
in MiB.

sdhash inserts 192 features into a Bloom filter for every
approximately 10 KiB of the input file. Thus, n is calculated
by n ¼ s$220$192/(10$210) z s$214 where 220 is needed to
change from MiB to bytes.

In case of mrsh-v2, the implementation splits the input
in 160-byte features. Thus, n is calculated by n ¼ s$220/
160zs$213 where 220 converts MiB into bytes.

Since we adapted the feature size of mrsh-v2 in our
prototype to 64 bytes, we set n ¼ s$214 in the following.
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Feature hash function

To insert a feature into a Bloom filter of m bits length, k
bits are set which requires a hash value of the feature hash
function of at least k$log2(m) bits. More formally, having a
feature hash function of b bits, b � k$log2(m) which is
equivalent to m � 2b/k.

The default implementations of sdhash and mrsh-v2

run 160-bit SHA-1 and the 64-bit FNV hash, respectively,
and set k¼ 5. This comes at a maximum Bloom filter size of
2160/5 ¼ 232 bits ¼ 229 bytes is 512 MiB (sdhash) and 264/
5 ¼ 212.8 bits ¼ 891 bytes (mrsh-v2).

Depending on the file set, this is insufficient as wemight
have a Bloom filter of several gigabytes (for instance when
mapping several terabytes into a Bloom filter). As a
consequence, both tools should implement 256-bit ver-
sions of the hashing algorithms. For instance, keeping k¼ 5
and using a 256-bit hash function allows us to handle
Bloom filter sizes of 2256/5 ¼ 251.2 bits z 218 GiB. Alterna-
tively, if we have an upper limit of the Bloom filter size, we
can increase k which reduces the false positive rate (see
Sec. 2.2). For instance, assuming a Bloom filter of
m ¼ 8 GiB ¼ 236 bits, k can be at most 256/36 ¼ 7.11. For the
remainder of this paper, we limit k to 5 � k � 7 where 5 is
the lower limit to minimize the chance for a false positive.
The upper limit is necessary to handle huge amounts data,
e.g., 1 TiB. If 7 is too small, one might change the hash
function to 512-bit or more.
Defining the Bloom filter size

Traditionally when dealing with Bloom filters, one tries
to optimize k for a given n, m, p setting. However, we have
limited 5 � k � 7 and discussed n. Thus, this section
identifies a reasonable Bloom filter size m by transposing
Eq. (1) and substituting n in the last step by s$214 (see Sec.
4.1):

p ¼ �
1� e�kn=m

�k

m ¼ � k$n
ln
�
1� ffiffiffi

pk
p �

¼ � k$s$214

ln
�
1� ffiffiffi

pk
p � :

(2)

Note, in our reference implementation, the Bloom filter
size has to be a power of two, i.e., m ¼ 2c, c ˛ N.
8 http://wp1187348.server-he.de/z_downloads/tool.zip; anonymous for
review.
Match decision and false positives

In contrast to the classical approximate matching
comparison, we are only interested in a binary decision:
the currently processed file or a fragment of it is on the
blacklist or not. Therefore we adapt the classical com-
parison function of Bloom filters as follows: a fragment of
a given file is assumed to be part of the Bloom filter, if a
sufficiently large number of subsequent features is found
in the filter. We discuss in the following our approach to
identify a reasonable interpretation of what ‘sufficiently’
means.
Eq. (1) and Eq. (2) relate the false positive probability p
for a single feature to the different parameters k, n, s, m. In
fact, we are less interested in the false positive rate for a
single feature but more for a fragment of a whole file
(which may consist of hundreds of thousands of features).
Thus, we have to extend Eq. (2) to a false positive proba-
bility of a fragment.

Let pf denote the false positive probability for a frag-
ment. If we require rmin ˛ N consecutive false positive
features to be a false positive fragment, the false positive
probability for a fragment is pf ¼ prmin .

Regarding Eq. (2), we can substitute p by ffiffiffiffiffi
pfrmin

p and
obtain

m ¼ � k$s$214

ln
�
1� ffiffiffiffiffi

pf
k$rmin

p � : (3)

Result presentation

Instead of printing a similarity score between two files,
our algorithm outputs.

file1.ppt: 163 of 2518 (longest run: 111)

which means that file1.ppt consists of 2518 features
in total where 163 match the underlying Bloom filter. The
longest run are 111 features which means that the algo-
rithm identified 111 features in a row (which is larger then
rmin and therefore a match).

Sample setting

In the following we briefly discuss the default values. n
cannot be influenced as it is defined by the set size. In case
of the false positive rate it is obvious that the smaller the
better. Sincewe do not expect more than 1million files on a
device, we set pf ¼ 10�6 k is fixed between 5 and 7 and we
decided for 5 as the smaller k the better the runtime
(feature hash length can be reduced; see Sec. 4.7.1). rmin is
by default 6.

For instance, let us assume s ¼ 200 GiB ¼ 25$213 MiB of
data, a false positive rate per file of pf ¼ 10�6, k ¼ 5 and
r ¼ 6:

m ¼ � k$s$214

ln
�
1� ffiffiffiffiffi

pf
k$r
p � ¼ �5$

�
25$213

�
$214

ln
�
1� 10� 6

30

� ¼ � 125$227

�0:9968

¼ 125:40$227z234 bits

Thus, our procedure requires a Bloom filter size of 2 GiB.
Note, using the default setting, the Bloom filter size in
megabytes mmb can be estimated by mmb z s/100.

Implementation details

To verify our findings, we released a tool called mrsh-

net which is basically a modification of the latest mrsh-
v2 version. It can be downloaded from our website for
tests.8

http://wp1187348.server-he.de/z_downloads/tool.zip
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The implementation is very simple and only has two
options:

- g generates the database and prints it to stdout. Usage:
./mrsh-net -g t5-corpus > dbFile

- i reads DB-FILE dbFile and compares DIR/FILE against it.
Usage: ./mrsh-net -i dbFile t5-corpus

The final step is to compile it by running make mrsh-

net.

Feature hash function
Themain changewas the implementation of the FNV-1a

256 bit function which only consists of an XOR and the
multiplication with the prime 2168 þ 28 þ 0 � 63. As the
runtime efficiency is very important, the implementation
of the multiplication is ‘hardcoded’, i.e., it is not trivial to
change the prime number or extend it to 512 bit.

In order to speed up the implementation, one may
manipulate the FNV implementation in src/fnv.c. The
function mulWithPrime2 is responsible for the multipli-
cation with the 256-bit prime. However, in case of a small
Bloom filter, we do not need the most significant bits and
can remove them. For instance, setting the Bloom filter to
32MiB and k¼ 5, we only need log2(32$220$8)$5¼140 bits.
Thus, we can comment out lines 108–112, which then ig-
nores the bits 160–255.

Settings
To adapt our prototype for a specific use case, the user

can change the following configuration in header/
config.h:

SUBHASHES – amount of sub-hashes, parameter k
(default: 5).

MIN_RUN – minimal longest run, parameter r (default:
6).

BF_SIZE_IN_BYTES – Bloom filter size in bytes
(default: 33$554$432 ¼ 225 ¼ 32 MiB). It has to be a power
of 2.

There are more settings available. However, this is
ongoing research and we therefore do not recommend
changing them at this time.

Experimental results & assessment

This chapter mainly consists of three parts. First, we
analyze the general efficiency of different approaches. The
second part relates mrsh-net with the longest common
substring. The final part compares mrsh-net and mrsh-v2

with each other.
All the presented results are based on the t5-corpus9

(Roussev, 2011), which contains 4457 files with a total
size of 1.78 GiB. The average file is z400 KiB and the file
type distribution is given in Table 2.

For our testing, we used the default configuration of
mrsh-net, with k ¼ 5,rmin ¼ 6 and a Bloom filter size of 32
MiB. The blocksize, i.e., the approximate length of a feature,
is set to 64 bytes.
9 http://roussev.net/t5/.
Efficiency in general

Let SD denote the hashes of files from a device and let SB
denote database set (i.e., the blacklist). Traditionally the
proceeding requires to hash all files in SD and to compare
the hashes against an ‘existing database’ of SB files. Thus,
this section focuses the general properties of the different
approaches with respect to runtime efficiency and database
size (compression).

The results are given in Table 1 whereby the details are
discussed in the upcoming subsections. First, the
compression (row 1) is analyzed in Sec. 5.1.1. Next, Sec. 5.1.2
explains the runtime of the algorithms (rows 2–4). The last
section is an estimation for a large scale scenario to clarify
the impact of non-indexing.

Columns 1 and 2 present the results for the original
implementations of sdhash and mrsh-v2, respectively. In
column 3 we show the results for the worst case which
means that we do not have an underlying database (see Sec.
3.1). The following column also presents the worst case but
we modified mrsh-net based on the defaults in Sec. 4.7.2
(less bits of the FNV hash are considered). For complete-
ness we included the results for F2S2 and SHA-1 in the last
two columns.

Database size
Let SB be the t5-corpus. Then, this section shows the size

of the corresponding database. In case sdhash, mrsh-v2,
F2S2 and SHA-1 the database is trivial as the database is
equal to the hashes.

Regarding mrsh-net there are two possibilities: worst
vs. best case. The worst case describes the scenario where
the database does not fit in RAM and hence a hash-
database as such does not exist. The investigator needs to
have the whole dataset available. In contrast, for the best
case where sufficient RAM is available, the database is
simply the Bloom filter.

To conclude, the size of the databases of sdhash,
mrsh-v2 and mrsh-net (best) are in the same order of
magnitude and therefore only a weak assessment
criterion.

Experimental runtime efficiency
This section focuses on the time of hashing SD and

comparing it against the database of SB (generating the
database is neglected as it can be done in advance). As we
are interested in the runtime only, we use t5-corpus as
both SB and SD. Note, this results in 4457 � 4457
comparisons.10

The times are given in Table 1. Row 2 states that all al-
gorithms perform well in hashing but are still slow
compared to SHA-1. The problem is shown in row 3 where
both Bloom filter approaches need an extremely long time
for the all-against-all comparison. The last row only sums
rows 2 and 3. Note, the ‘worst-columns’ constitute an
exception. Admittedly the comparison takes less then a
second, however there is no underlying database and thus
10 We run the tools by ./tool -c D B which compares both lists also
there are duplicate comparisons, i.e., A against B and B against A.

http://roussev.net/t5/


Table 1
Database size and runtime efficiency of different algorithms.

sdhash mrsh-v2 mrsh-net worst mrsh-net worst mrsh-net best F2S2 SHA-1

Database size 61.18 MiB 27.33 MiB 1.78 GiB 1.78 GiB 32 MiB 3.69 MiB 0.24 MiB
Hashing 178 s 53 s 123 s 77 s 123 s 221 s 24 s
Comparing 1281 s 1259 s <1 sa <1 sa <1 s <1 s <1 s
Total 1459 s 1312 s 246 s 154 s 123 s 221 s 24 s

a The comparison itself need less than a second, however, in worst case B needs to be hashed.

Table 2
Number of files per file type: t5-corpus.

jpg gif doc xls ppt html pdf txt

362 67 533 250 368 1093 1073 711

Table 3
Estimated runtime for a sample use case.

sdhash mrsh-v2 mrsh-net

worst
mrsh-net

best

Database
size

49.79 GiB 22.22 GiB 1500 GiB 16 GiB

Hashing 329 min 98 min 227 min 227 min
Comparing 3.84 years 3.77 years 32.63 h <1 min
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SB has to be processed. Therefore, row 4 contains two times
the hashing time (as D ¼ B).

One should keep in mind that the comparison has
quadratic complexity and thus increases enormously when
the number of files increases. In contrast, our new concept
has a linear runtime as it only needs to hash the files.

Impact on runtime in large scale forensics
Based on the findings from before, this section estimates

the efficiency for a real life scenario. More precisely, we
used the numbers from Table 1 and calculated the up-
coming ones for a larger use case where we pick up the
example from Sec. 4.6 assuming 200 GiB of seized data and
a database of 1500 GiB11.

The results are given in Table 3. The estimated database
size is given in row 1 where in the best case mrsh-net

needs the less space, however, it should be kept in RAM.
Row 2 calculates the approximate hashing time by multi-
plying 200/1.78 (we have to process 200 GiB instead of 1.78
GiB). The last row assesses the comparison time. For
instance, sdhash needed 1281 s for comparing
1.78 � 1.78 ¼ 3.17 GiB of data. As this sample requires to
compare 200 � 1500 ¼ 300,000 GiB of data, we estimate
the overall time by 300,000/3.17$1281 s.

Again, there two possible scenarios with mrsh-net. In
the worst case, we hash the 200 GiB to the Bloom filter and
then process the 1500 GiB. As the comparison ‘costs
nothing’, mrsh-net has to hash 1700 GiB which is (1700/
1.78$123) s ¼ 117471 s (approx 32 h). In the best case we
have a powerful station that can hold the Bloom filter for
1500 GiB data in RAM (approximately 16 GiB of RAM are
needed). Thus, we only need to process the 200 GiB which
takes 227 min.

Precision & recall on base of the longest common substring

The current version of mrsh-net decides between
match and non-match based on the longest run. Hence, this
section focuses on the relation between mrsh-net and the
longest common substring. Due to the complexity, we build
our ground truth on the approximate longest common
substring which is briefly described in the upcoming
11 The current NSRL of NIST contains about 2 TiB of unique data, hence
this a realistic size.
subsection. Based on this assumed ground truth, we eval-
uate mrsh-net in Sec. 5.2.2.

Approximate longest common substring
The basic idea of the approximate longest common

substring metric (aLCS) is not to compare files byte by byte
but rather block by block. To identify the blocks, we utilize
the rolling hash from ssdeep and aim at having a block
size bs z 80 byte. If we set the blocks size smaller than 80,
the runtime efficiency decrease enormously (Note, a block
size of 1 equals the tradition longest common substring).
Instead of comparing blocks bytewise, each one is hashed
and compared using the 64-bit FNV-1a hash Noll (1994–
2012). Besides the hash value, the entropy and length for
each block is stored in the final linear list called aLCS-
digest.12

The output of the aLCS tool is a list which we denote as
ground truth. It contains both file names, the longest
common substring and the entropy for this sequence, e.g.,

file1 j file2 j 993 j 5.56
file2 j file3 j 11945 j 0.5
For instance, the first line says that file1 and file2 have

an aLCS score of 993 bytes with an entropy of 5.56. The
second line shows a special case with a very low entropy
which could be an indicator that both files share mostly
zeros.

Precision & recall rates
To calculate the rates, we perform an all-against-all

comparison but neglect self-comparisons.13 Thus, we use
the following simplified notation:

mrsn(f,BF) compares file f against the Bloom filter BF and
returns the longest run.

aLCS(f,GT) returns the longest aLCS score for f in the
ground truth GT.
12 Note, this is ongoing research and currently in review. In the future
we will publish some more details about the evaluation and show that
this is a valid approximation.
13 Compare a file against itself will result in a perfect match.
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According to this, we define the true positive (TP), false
positive (FP), true negative (TN) and false negative (FN) as
follows:

TP: mrsn(f, BF) � rmin and aLCS(f, GT) � rmin$bs.
FP: mrsn(f, BF) � rmin and aLCS(f, GT) < rmin$bs.
TN: mrsn(f, BF) < rmin and aLCS(f, GT) < rmin$bs.
FN: mrsn(f, BF) < rmin and aLCS(f, GT) � rmin$bs.
where rmin$bs ¼ 6$64 ¼ 384 bytes.

Positives. Our comparison returned 2555 positive matches
with a true positive rate of 99.3% and a false positive of 0.7%.
Reviewing the false positives, all but one of the longest run
lr do not exceed 9 which means that they are very close to
our threshold.

In addition, we studied the distribution of the aLCS
scores daLCS relative to rmin$bs for the false positives where

daLCS ¼
�
100�

�
1� aLCSðf ;GTÞ

384

	

; daLCS˛N:

This shows how close the false positives are to the
threshold of 384. The results are given in Table 4. For
instance, over 60% have an aLCS score above 30% (¼269
bytes). To sum it up, although these are false positive, they
are close to the thresholds.

Next, we consider the relation between the longest run
and the aLCS score. In other words, we expect that the
longest run lr multiplied by the blocksize bs is greater or
equal the aLCS score, i.e., lr$bs� aLCS. According to that, we
adapt the configuration from the beginning of this section
and changed rmin$bs to lr$bs. Thus, the new true positive
setting is:

TP: mrsn(f, BF) � rmin and aLCS(f, GT)�lr$bs.
.
In this case, the detection rates worsen and fall down to

a true positive rate of 92.3% and a false positive rate of 7.7%.
Again, we consider the distribution for the aLCS scores in
Table 5. As we can see, over 75% vary by less or equal then
30% and we rate these results as still acceptable.

Negatives. Obviously the negatives are 4457 � 2555 ¼ 1902
which can be broken down into 77.1% true negatives and
22.9% false negatives. Having a closer look at this very high
false negatives, we observe that most aLCS matches are
based on low entropy sequences. In other words, the high
Table 5
Empirical pdf & cdf for daLCS for the relation between longest run and aLCS
score.

X 10 30 50 70 100

P{daLCS ¼ X} 0.3214 0.2296 0.0714 0.0051 0.0051
P{daLCS � X} 0.3214 0.7551 0.9235 0.9796 1.0000

Table 4
Empirical probability distribution function (pdf) and cumulative distri-
bution function (cdf) for daLCS.

X 10 20 30 50 70

P{daLCS ¼ X} 0.1111 0.2778 0.2222 0.1111 0.0556
P{daLCS � X} 0.1111 0.3889 0.6111 0.8889 0.9444
aLCS scores between some files are based on long runs of
zeros only, i.e., the entropy of the substring is e ¼ 0, or runs
of with a lot of zeros, e.g., the entropy of the substring is
0 < e < 3. Thus, Table 6 shows the impact of considering
aLCS sequences with a higher entropy.

Nevertheless, false negatives are not so much relevant.
For instance, with respect to blacklisting, these files remain
unclassified and an investigator has to analyze them
manually. Hence, false negatives are considered during a
further investigation.
Precision & recall rates compared to mrsh-v2

This section compares the relation between mrsh-v2

and mrsh-net. As both are based on the same procedure,
we expect that both implementations yield similar results.
In other words, comparing a file f against database BF, both
algorithms should either output a match or a non-match.
Thus, we define the following rates:

TP: mrsn(f, BF) � rmin and mrsh(f, BF) � 1.
FP: mrsn(f, BF)�rmin and mrsh(f, BF) ¼ 0.
TN: mrsn(f, BF)<rmin and mrsh(f, BF) ¼ 0.
FN: mrsn(f, BF)<rmin and mrsh(f, BF) � 1.

Positives
Regarding the 2555 positive matches from mrsh-net,

92.1% are true positives and also identified by mrsh-v2.
The false positive rate is therefore at 7.9%. Comparing the
false positives against the aLCS showed that in fact only
3.6% (out of the 7.9%) are really false positive. On the other
side, Table 7 shows the distribution of the longest run for
the false positives. Most of them are close to the longest run
threshold 8.

To conclude, the results are slightly different, however,
the mrsh-net shows a finer granularity as in fact these are
not false positives but true positives.

Negatives
The negatives yield a 61.8% true negative rate and a

38.2% false negative rate. Recall, false negative means that
mrsh-net does not identify a match while mrsh-v2 out-
puts a score greater 0. In other words, mrsh-v2 identifies a
positive.

Thus, we first compared the mrsh-v2 results against
aLCS. In fact, almost 7 0% percent of these matches are
based on files that share less than 384 bytes which have no
Table 6
Distribution of false negative with respect to entropy.

Entropy >0 >1 >2 >3

TN 78.5% 82.3% 86.4% 91.2%
FN 21.5% 17.7% 13.6% 8.8%

Table 7
Empirical pdf & cdf for longest run lr.

X 10 15 20 30 50

P{lr ¼ X} 0.1095 0.0200 0.0200 0.0200 0.0050
P{lr � X} 0.4925 0.7363 0.7960 0.9665 0.9950
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false negatives for mrsh-net (our setting aims at having
more than 384 bytes). Regarding the remaining 30%, most
of the matches are again based on a low entropy, e.g., over
75% have e < 3.

To conclude, the algorithms do not coincide very much
with respect to negatives.

Conclusion

We have presented and evaluated a new approach to
efficiently decide about the similar membership of a file to
a given dataset and hence solve an important issue in the
context of approximate matching. Our approach decreases
the lookup complexity from O(x) to O(1), where x is the
number of files in the reference dataset. We released a
sample implementation for a practical evaluation. For the
well-known t5-corpus as evaluation file data set we were
able to solve the similar membership problem for all files in
the order of seconds (rather thanminutes). The drawback is
that we are only able to decide about membership, but not
about the similarity to a certain file, which is sufficient for
the important use case of blacklisting.
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