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Abstract: In this study, the application of adaptive Bloom filters to binary iris biometric feature vectors, that is, iris-codes, is
proposed. Bloom filters, which have been established as a powerful tool in various fields of computer science, are applied in
order to transform iris-codes to a rotation-invariant feature representation. Properties of the proposed Bloom filter-based
transform concurrently enable (i) biometric template protection, (ii) compression of biometric data and (iii) acceleration of
biometric identification, whereas at the same time no significant degradation of biometric performance is observed. According
to these fields of application, detailed investigations are presented. Experiments are conducted on the CASIA-v3 iris database
for different feature extraction algorithms. Confirming the soundness of the proposed approach, the application of adaptive
Bloom filters achieves rotation-invariant cancellable templates maintaining biometric performance, a compression of templates
down to 20–40% of original size and a reduction of bit-comparisons to less than 5% leading to a substantial speed-up of the
biometric system in identification mode.
1 Introduction

Iris biometric recognition [1–3] is field-proven as a robust and
reliable biometric technology. The iris’s complex texture and
its apparent stability hold tremendous promise for applying
iris recognition in diverse application scenarios, such as
border control, forensic investigations, as well as
cryptosystems [4, 5]. Daugman’s algorithm [6], forms the
basis of the vast majority of modern iris recognition
systems, which report (true positive) identification rates
above 99% and equal error rates less than 1%: (i) at
enrollment an image of a subject’s eye is acquired; (ii) in
the pre-processing step, the boundaries of the pupil and the
outer iris are detected and the iris (in the approximated
form of a ring) is ‘un-rolled’ to obtain a normalised
rectangular iris texture; (iii) feature extraction is applied in
order to generate a highly discriminative binary feature
vector, that is, iris-code; and (iv) at the time of
authentication pairs of iris-codes are efficiently compared
by calculating the HD between them, where template
alignment is performed within a single dimension, by
applying a circular shift of iris-codes, to compensate for
against head tilts of a certain degree. Technologies of iris
recognition are already deployed on national-sized
databases, for example, the Unique IDentification Authority
of India (UIDAI) [7], which aims at registering all 1.2
billion Indian citizens, is enrolling 1 million subjects on a
daily basis. With about 300 million persons enrolled (status
February 2013), against which the daily intake has to be
compared to check for duplicate identities, the daily
workflow of iris cross-comparisons results in 3 × 1014, or
300 trillion (!). Resistance to false matches and comparison
speed, which is achieved by various existing approaches
[3], are vital for any large-scale biometric deployments.
Nonetheless, the explosive effect and scale of iris
recognition is accompanied by serious consequential issues,
for example, privacy concerns or computational limitations,
which are still to be solved.
From a privacy perspective most concerns against the

common use of biometrics arise from the storage and
misuse of biometric data as well as the permanent tracking
and observation of activities [8]. In addition, it has been
shown that spoofed iris images can be re-constructed from
stored iris-codes [9]. In accordance with the ISO/IEC IS
24745 [10] on biometric information protection,
technologies of biometric template protection [11, 12] in
particular, cancellable biometrics [13] meet the two major
requirements of irreversibility and unlinkability. Cancellable
biometrics which consist of intentional, repeatable
distortions of biometric signals based on transforms that
provide a comparison of biometric templates in the
transformed domain, permanently protect biometric
templates. However, the majority of approaches to
cancellable biometrics report a significant decrease in
biometric performance, which is caused by the fact that
local neighbourhoods of feature elements are often obscured
and the transformed enrollment templates are not ‘seen’ at
the time of authentication, that is, alignment cannot be
performed properly [12].
A binary representation of biometric data offers two major

advantages, compact storage and rapid comparison [14].
Despite these benefits, it has been found that the extracted
iris-codes still suffer from low entropy [15], for example,
approximately 250 mutually independent bits out of 2048 in
[6]. A compression of iris-codes enables an even more
compact storage, for example, in two-dimensional (2D) bar
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codes, smart cards or magnetic stripes [16]. Focusing on
biometric identification, deployments of iris recognition
perform brute force exhaustive searches which are
accelerated in case the amount of required bit comparisons is
significantly reduced, for example, by utilising compressed
templates [17] or an alignment-free representation, which
does not require circular bit-shifting [18].
The contribution of this work is the proposal of a generic

approach to obtain a rotation-invariant representation of
iris-codes based on adaptive Bloom filters. A Bloom filter
[19] is a space-efficient probabilistic data structure
representing a set in order to support membership queries.
In addition to an efficient storage and rapid processing of
queries, Bloom filters convince by their wide field of
applications, for example, database applications [20] or
network applications [21]. In [22], we have already
demonstrated the applicability of Bloom filters in order to
achieve template protection. In the presented work, these
ideas are extended and properties of Bloom filter-based
transforms are utilised to tackle all of the aforementioned
issues regarding (iris) biometrics:

1. Template protection: the successive mapping of parts of a
binary biometric template to Bloom filters represents an
irreversible transform achieving alignment-free protected
biometric templates.
2. Biometric data compression: the proposed Bloom
filter-based transform can be parameterised to obtain a
desired template size, operating a trade-off between
compression and biometric performance.
3. Efficient identification: a compact alignment-free
representation of iris-codes enables a computationally
efficient biometric identification reducing the overall
response time of the system.

According to these benefits, the proposed approach
represents a secure template protection scheme which can
be efficiently applied within an iris identification system.
The remainder of this work is organised as follows: related

work with respect to iris biometric template protection,
template compression and computationally efficient iris
biometric identification is summarised in Section 2.
In Section 3, the proposed approach is described in detail
and applications of adaptive Bloom filters are proposed.
Experimental evaluations are presented and obtained results
are discussed in Section 4. Finally, conclusions are drawn
in Section 5.
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2 Related work

Biometric template protection schemes [12] are commonly
categorised as biometric cryptosystems and cancellable
biometrics. Focusing on biometric cryptosystems the
majority of existing approaches implement cryptographic
primitives, for example, fuzzy commitment scheme [23] or
fuzzy vault scheme [24]. However, suggested approaches
[25–27], have been exposed to be vulnerable to diverse
attacks, for example, based on statistical attacks [28] or via
record multiplicity [29]. Complex key retrieval procedures,
which are required at biometric comparison, prevent from a
computationally efficient identification, representing another
drawback of biometric cryptosystems. Ratha et al.
citeBRatha01a were the first introducing the concept of
cancellable biometrics. In their work, the authors apply
image-based block permutations and surface-folding in
208
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order to obtain revocable biometric templates. In further
work, Ratha et al. [30] proposed different techniques to
generate cancellable iris biometrics based on non-invertible
transforms and biometric salting, which are applied in
image and feature domain. In order to preserve a
computational efficient alignment of resulting iris-codes
based on circular bit-shifting, iris textures and iris-codes are
obscured in a row-wise manner, which means adjacency of
pixels and bits is maintained along x-axis in image and
feature domain, respectively. In [31], block re-mapping and
image wrapping have been applied to normalised iris
textures. For both types of transforms a proper alignment of
resulting iris-codes is infeasible causing a significant
decrease of biometric performance [12]. In [32], several
enrollment templates are processed to obtain a vector of
consistent bits. Revocability is provided by encoding the
iris-code according to a subject-specific random seed. In
case subject-specific transforms are applied in order to
achieve cancelable biometrics, these transforms have to be
considered compromised during inter-class comparisons
[33]. Subject-specific secrets, be it transform parameters,
random numbers, or any kind of passwords are easily
compromised, that is, performance evaluations have to be
performed under the ‘stolen-secret scenario’, where each
impostor is in possession of valid secrets. In [34],
cancellable iris templates are achieved by applying sector
random projection to iris images. Again, recognition
performance is only maintained if subject-specific random
matrices are applied. In [35], non-invertible iris-codes are
computed by thresholding inner products of the feature
vector with randomly generated vectors. The random
vectors are created by using a per-subject secret and a
pseudorandom number generator. Several normalised iris
textures are multiplied with a random kernel in [36] to
create concealled feature vectors. The vast majority of
cancellable iris biometric systems only maintains biometric
performance for settings which leave security doubtable, for
example, a row-wise permutation and shifting of iris texture
stripes in [30] or a permutation of 32 × 32 pixel blocks
within 512 × 64 pixel textures in [31]. Within approaches to
biometric salting, for example, in [32, 35], subject-specific
secrets are incorporated while experiments are performed
under the non-stolen-secret scenario omitting the actual
biometric performance of the system.
Focusing on iris biometric identification different

mechanisms have been proposed in order to reduce the
response time of the system. Biometric data does not have
any natural sorting order, that is, indexing databases
represents a critical issue. In [37], a technique referred to as
Beacon Guided Search is introduced. The algorithm is
applied to a large-scale database of 632 500 iris-codes
enrolled in the United Arab Emirates (UAE), achieving a
substantial improvement in search speed. However,
computational efficiency comes at the cost of biometric
performance, the same holds for other approaches [38, 39].
Based on the fact that entropy is not uniformly distributed
across iris-codes [15], a compressed representation of the
most reliable bits can be utilised to reduce the number of
bit comparisons in a serial combination scenario. In [16],
the generation of a short length iris-code is introduced
which is applied in a two-stage identification [17], that is,
exhaustive 1:n comparisons are performed based on the
compressed template. By applying comparisons of original
iris-codes only within a shortlist of most likely candidates
the number of overall bit comparisons and the resulting
response time is reduced. A pre-selection based on a
IET Biom., 2014, Vol. 3, Iss. 4, pp. 207–218
doi: 10.1049/iet-bmt.2013.0049
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Since no circular bit-shifting is applied in the pre-selection
step, the speed of identification is improved. In [40], an
incremental comparison technique which successively
compares the most reliable bits in iris-codes is applied to
reduce bit comparisons.

3 Combining Bloom filters and iris
recognition

Basically, a Bloom filter b is a bit array of length n, where
initially all bits are set to 0. In order to represent a set S a
Bloom filter traditionally utilises k independent hash
functions h1, h2, …, hk with range [0, n− 1]. For each
element x∈ S, bits at positions hi(x) of Bloom filter b are
set to 1, for 1≤ i≤ k. A bit can be set to 1 multiple times,
but only the first change has an effect. To test if an element
y is in S, it has to be checked whether all position of hi(y)
in b are set to 1. If this is the case, it is assumed that y is in
S with a certain probability of false positive. If not, clearly
y is not a member of S, hence, traditional Bloom filters are
suitable for any application where a distinct probability of
false positive is acceptable [19].
The original concept is adapted in different ways. Given a

Bloom filter b of length n we restrict to inserting exactly l
elements, where l≤ n. In case of uniformly distributed data
the probability that a certain bit is set to 1 during the
insertion of an element is 1/n, that is, the probability that a
bit is still 0 is 1− 1/n. For inserting a total of l elements
1− (1 − 1/n)l bits are expected to be set to 1. For n = l·c
and c [ N, that is, n represents a multiple of
l, limn→∞(1− 1/n)l = 1/el/n. In addition, a trivial transform
h is applied to each element x∈ S instead of multiple hash
functions. Since feature elements are expected to be small
the application of any hash function would not be resistant
to brute force attacks.
In the following subsections, the alignment-free adaptive

Bloom filter-based transform and its properties with respect
to template protection, biometric data compression and
computationally efficient identification are described in detail.
brary.w
iley.com
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3.1 Adaptive Bloom filter-based transform

In the proposed system, adaptive Bloom filters are utilised in
order to achieve an alignment-free representation of
iris-codes. Generic iris recognition systems [2] extract
Fig. 1 Operation mode of the proposed rotation-invariant biometric t
columns. The highlighted codewords change in Bloom filter b2 the elem
40 (decimal representation of 101000) to 1

IET Biom., 2014, Vol. 3, Iss. 4, pp. 207–218
doi: 10.1049/iet-bmt.2013.0049
binary feature vectors based on a row-wise analysis of
normalised iris textures, that is, iris-codes typically
represent 2D binary feature vectors of width W and height
H (see Figs. 3e–f ). In the proposed scheme W ×H
iris-codes are divided into K blocks of equal size, where
each column consists of w≤H bits. In case w <H (e.g. for
the purpose of compression), columns consist of the w
upper most bits, that is, features originating from outer iris
bands, which are expected to contain less discriminative
information, are ignored. Subsequently, the entire sequence
of columns of each block is successively transformed to
according locations within adaptive Bloom filters, that is, a
total number of K separate adaptive Bloom filters of
length n = 2w form the template of size K·2w. The transform
is implemented by mapping each column within the
2D iris-code to the index of its decimal value, which is
shown for two different codewords ( = columns) as part
of Fig. 1, for each column x ∈ {0, 1}w, the mapping is
defined as

b[h(x)] = 1, with h(x) =
∑w−1

j=0

xj · 2j (1)

The very essence of the proposed transform is that it is
alignment-free, that is, generated templates ( = sets of
Bloom filters) do not need to be aligned at the time of
comparison. Equal columns within certain blocks
( = codewords) are mapped to identical indexes within
adaptive Bloom filters, that is, self-propagating errors
caused by an inappropriate alignment of iris-codes are
eliminated (radial neighbourhoods persist). The
rotation-compensating property of the proposed system
comes at the cost of location information of iris-code
columns. At block boundaries miss-alignment of iris-codes
will distribute a certain amount of potentially matching
codewords among different blocks, which would be
mapped to neighboured Bloom filters. In experiments
where ± 8 bit shifts are required to align iris-codes
properly, miss-alignment did not affect biometric
performance. In case larger rotation angles need to be
anticipated, multiple columns of right and
left neighbour-block can be mapped to the adaptive
Bloom filter under construction in order to overcome this
drawback.
emplates applying Bloom filter-based transforms to feature vector
ent at index 39 (decimal representation of 100111) and also index
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Fig. 2 Amount of possible sequences (per block) for different block
sizes and proportions of re-mapped codewords
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3.2 Comparison in transformed domain

Typically, comparisons between binary biometric feature
vectors are implemented by the simple XOR operator
applied to a pair of binary biometric feature vectors. The
sum of all detected disagreements between any
corresponding pairs of bits divided by the amount of
compared bits yields the fractional Hamming distance (HD)
as a measure of dissimilarity between pairs of binary
biometric feature vectors [6]. Let |b| denotes the amount of
bits within a Bloom filter b, which are set to 1. Then the
dissimilarity DS between two Bloom filters bi and bj is
defined as

b[h(x)] = 1, with h(x) =
∑w−1

j=0

xj · 2j (2)

If pairs of adaptive Bloom filters would be compared by
merely estimating HDs between these, mis-matching bits
between adaptive Bloom filters in which fewer bits are set
to 1 would be weighted less and vice versa. Obviously, DS
is computed as efficient as HD while DS does not have to
be computed at numerous shifting positions. In order to
incorporate masking bits obtained at the time of
pre-processing, columns of iris-codes which are mostly
affected by occlusions must not be mapped to adaptive
Bloom filters, that is, a separate storage of bit masks is not
required.

3.3 Template protection

The Bloom filter-based transform conceals the original
positions of codewords, that is, given a Bloom filter b it is
not clear from which column a distinct 1-bit in the
generated protected template originated. In addition, it is
most likely that diverse columns are mapped to a single
index and the occurrence of distinct codewords cannot be
established from the stored template, that is, the proposed
transform achieves irreversible alignment-free templates,
implementing cancellable biometrics. In order to provide
unlinkability between multiple cancellable templates of a
single subject an application specific secret T in form of a
bit vector of length w, T∈ {0, 1}w, is incorporated. Each
codeword is transformed applying this secret vector (of
same length) by XORing both prior to mapping it to a
Bloom filter. It is important to note that this secret is
application-specific (and potentially subject specific) and is
only incorporated as parameter in order to suffice the
property of unlinkability required by the ISO/IEC IS 24745
[10]. Alternatively, different types of hash functions could
be applied in different applications, or a single hash
function could be parameterised based on an application
specific seed (implementing MACs).
High correlation between codewords, especially

neighbouring ones, is expected. Consequently, a significant
amount of codewords are mapped to identical positions in
Bloom filters even for small values of l. Assume |b| bits are
set to 1 within a Bloom filter after inserting l codewords,
that is, |b| different codewords occur in a block of length l.
Hence, the amount of re-mapped bits is 1− |b|/l. For a
potential attacker the reconstruction of the original iris-code
block involves an arranging of |b| codewords to l positions
(K-times for the entire iris-code). For |b|≤ l, the theoretical
amount of possible sequences is recursively defined by the
function f (|b|, l ) where each of the |b| codewords have to
210
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appear at least once within l columns

f (|b|, l) =
1, if |b| = 1

|b|l − ∑|b|−1

i=1

|b|
i

( )
· f (i, l) otherwise

⎧⎨
⎩ (3)

In other words, all sequences where less than |b| codewords
appear are subtracted from the number of all possible
sequences, |b|l. Fig. 2 illustrates the rapid increase of
possible sequences even for small values of |b| (note the
logarithmic scales on both axis). Peaks are located around
3l/4, in case of l = |b| we obtain f (l, l ) = l! and f (1, l ) = 1.
For instance, for l = 4 and |b| = 2 we obtain

f (2, 4) = 24 − 2
1

( )
· f (1, 4) = 16− 2 · 1 = 14 possible

sequences, for l = 4 and |b| = 3 we obtain f (3, 4) = 34 −
3
1

( )
· f (1, 4)− 3

2

( )
· f (2, 4) = 81− 3· 1− 3 · 14 = 36

possible sequences and for l = 4 and |b| = 4 we obtain
f (4, 4) = 4! = 24 possible sequences and so forth. In
experiments, it will be demonstrated that for randomly
generated bit vectors it is infeasible for potential attackers
to cross-match pairs of protected templates extracted from a
single subject.

3.4 Biometric data compression

The original template size is W ×H bits. In the proposed
scheme the template is divided into W/l =K blocks of
length l resulting in a template size of 2w·K = 2w·W/l where
w≤H. If we set l = 2q a compression is achieved if

W/l · 2w , W · H ⇔ 2w−q/H , 1 (4)

applies, which is most likely the case as we will demonstrate
in experiments. For instance, for an iris-code of size 2048
with W = 256 and H = 8, and the setting l = 64 and w = 8 we
obtain 256/64·28 = 1024 < 2048, that is, a compression
down to 50% of the original size is achieved (28− 6/8 = 0.5).
Sizes of transformed templates are operated by setting
parameters l and w. Both, increasing l and decreasing w
reduces the overall size of the resulting template, see (4).
Again the major advantage of the proposed transform is that
compared to existing approaches to biometric template
compression, for example [16], a comparison of compressed
IET Biom., 2014, Vol. 3, Iss. 4, pp. 207–218
doi: 10.1049/iet-bmt.2013.0049
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Fig. 3 Preprocessing and both applied feature extraction algorithms

a Acquisition
b Detection
c Iris texture
d Pre-processed iris texture
e Iris-code 1D Log-Gabor Filter
f Iris-code Ma et al.
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templates does not require an optimal alignment within the
presented scheme. It is important to note that algorithms
may extract binary templates where distinct parts comprise
features which should not be arranged in single columns,
for example, in [41] different parts of iris-codes represent
real and complex values or minima and maxima extracted
from different wavelet subbands.

3.5 Adaptive Bloom filter-based identification

Despite indexing techniques, original iris-codes have been
combined with compressed and rotation-invariant templates
in serial combination scenarios [17, 18]. For both types of
attempts, compressed templates and alignment-free feature
extractors have been found to exhibit unpractical biometric
performance, requiring the application of a more
sophisticated algorithm within a second stage. In contrast,
as will be shown in experiments, the proposed Bloom
filter-based transform generates rotation-invariant
cancellable templates which maintain biometric performance.
If a biometric comparator is required to perform +s bit

shifts in each direction in order to compensate for head
tilts the overall amount of bit comparisons increases to
W·H·(2s + 1). This means for the proposed approach the
number of required bit comparisons is reduced to

100 · 2w−q/(H · (2s+ 1))% (5)
IET Biom., 2014, Vol. 3, Iss. 4, pp. 207–218
doi: 10.1049/iet-bmt.2013.0049
For example, if a comparator performs +6 bit shifts and the
proposed transform retains the template size (no compression)
a reduction of bit comparisons down to 1/(12+ 1) ≃ 7.7% is
obtained, while no second algorithm is required. Again, the
proposed system takes major advantage of its
rotation-compensating property.
4 Experimental evaluations

Performance is estimated in terms of false non-match rate
(FNMR) at a targeted false match rate (FMR), equal error
rate (EER) and (true-positive) identification rate (IR).
In accordance to the ISO/IEC IS 19795-1 [42] the FNMR
of a biometric system defines the proportion of genuine
attempt samples falsely declared not to match the template
of the same characteristic from the same user supplying the
sample. By analogy, the FMR defines the proportion of
zero-effort impostor attempt samples falsely declared to
match the compared non-self-template. As score
distributions overlap EERs are obtained, that is, the system
error rate where FNMR = FMR. The IR is the proportion of
identification transactions by subjects enrolled in the system
in which the subject’s correct identifier is the one returned.
In experiments identification is performed in the closed-set
scenario returning the rank-1 candidate as identified subject
(without applying a decision threshold).
211
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4.1 Experimental setup

Experiments are carried out using the CASIA-v3-Interval iris
database [The Center of Biometrics and Security Research,
http://www.idealtest.org] consisting of good quality NIR
illuminated indoor images with 320 × 280 pixel resolution.
The dataset comprises 2639 iris images of left and right
eyes of 249 subjects resulting in a total number of 395
different classes. At pre-processing the iris of a given
sample image is detected, un-wrapped to an enhanced
rectangular texture of 512 × 64 pixel, shown in Figs. 3a–d
applying the weighted adaptive Hough algorithm proposed
in [43]. The two-stage segmentation algorithm employs a
weighted adaptive Hough transform iteratively refining a
region of interest to find an initial centre point, which is
utilised to polar transform the image and extract polar and
limbic boundary curves one after another from an (ellipso-)
polar representation.
In the feature extraction stage custom implementations

[USIT – University of Salzburg Iris Toolkit v1.0,
http://www.wavelab.at/sources/] of two different iris
recognition algorithms are employed where normalised iris
textures are divided into stripes to obtain ten 1D signals,
each one averaged from the pixels of five adjacent rows
(the upper 512 × 50 rows are analysed). The first feature
extraction method follows an implementation by Masek
[41] in which filters obtained from a Log-Gabor function
are applied. Within this approach the texture is divided into
ten stripes to obtain five 1D signals, each one averaged
from the pixels of five adjacent rows, hence, the upper
512 × 50 pixel of preprocessed iris textures are analysed. A
row-wise convolution with a complex Log-Gabor filter is
performed on the texture pixels. The phase angle of the
resulting complex value for each pixel is discretized into 2
bits. The 2 bits of phase information are used to generate a
binary code, which therefore is again 512 × 20 = 10 240 bit.
This algorithm is somewhat similar to Daugman’s use of
Log-Gabor filters, but it works only on rows as opposed to
the 2D filters used by Daugman. The second feature
extraction algorithm was proposed by Ma et al. [44].
Within this algorithm a dyadic wavelet transform is
performed on 10 signals obtained from the according
texture stripes, and two fixed subbands are selected from
each transform resulting in a total number of 20 subbands.
In each subband, all local minima and maxima above an
adequate threshold are located, and a bit-code alternating
between 0 and 1 at each extreme point is extracted. Using
512 bits per signal, the final code is 512 × 20 = 10 240 bit.
Sample iris-codes generate by both feature extraction
methods are shown in Figs. 3e–f.
A common way to estimate the average entropy (≃ amount

of mutually independent bits) of biometric feature vectors is
to measure the provided ‘degrees-of-freedom’ which are
defined by d = p(1− p)/σ2, where p is the mean HD and σ2

the corresponding variance between comparisons of
different pairs of binary feature vectors. In case, all bits of
Table 1 Original systems: native performance rates (in%) for featu
FMR= 0.01%)

Alignment 1D Log Gabor

1-FNMR EER IR

±8 bits 95.03 1.58 98.
no shift 81.48 8.35 89.
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each binary feature vector of length z would be mutually
independent, comparisons of pairs of different feature
vectors would yield a binomial distribution,

B(z, k) = z
k

( )
pk (1− p)z−k = z

k

( )
0.5z and the

expectation of the HD would be 1/z · E(X ⊕ Y ) =
zp · 1/z = p = 0.5, where X and Y are two independent
random variables in {0, 1}. In reality p decreases to 0.5− e
while HDs remain binomially distributed with a reduction
in z in particular, B(d, 0.5) [45]. The 1D Log-Gabor feature
extractor achieves a total of 592 degrees-of-freedom for a
mean of 0.493 and an according standard deviation of
0.021. The algorithm of Ma et al. yields 1291
degrees-of-freedom for a mean of 0.498 and a standard
deviation of 0.013.
Feature alignment represents an essential task at

comparison. Table 1 summaries the biometric performance
of both feature extractors for ± 8 circular bit shifts and no
bit shifting. Obviously, biometric performance is
significantly improved if templates are aligned properly,
where 8 circular bit shifts in each direction was found to be
an adequate choice. As expected improved identification
rates are obtained in the closed-set evaluation returning
rank-1 candidates without considering any decision
threshold. For both methods practical performance rates are
obtained while the iris-code extracted by the algorithm of
Ma et al. exhibits twice as much degrees-of-freedom
compared to the feature extraction of Masek.
High correlation appears between neighboring columns of

iris-codes, for both algorithms correlations in terms of 1−HD
are plotted in Fig. 4 for more than 10 000 randomly chosen
iris-code columns. As expected, directly neighbouring
columns exhibit high correlation since they originate from
neighbouring pixel blocks in the iris texture which is not
mutually independent. Columns with high correlation are
surrounded by columns exhibiting rather low correlation,
that is, from the estimated degrees-of-freedom an average
iris-code extracted by the algorithm of Ma et al.
corresponds to 1291 Bernoulli trials which means
concatenated sequences of 0 and 1 s exhibit an average
length of ≃8 (10240/1291) bit. By analogy, for the 1D
Log-Gabor feature extractor according sequences exhibit an
average length of ≃ 17 (10240/592) bit (see Figs. 3e–f ).
4.2 Performance evaluation

Focusing on the applied feature extraction algorithms
extracted iris-codes are divided in an upper 512 × 10 bit
half and a lower 512 × 10 bit half as these represent real
and complex values or minima and maxima extracted from
different wavelet subbands, respectively. In case HDs are
estimated based on column-wise codewords, that is, a single
error between two codewords defines a mismatch, FNMRs
slightly increase with the size of codewords while EERs
increase rather fast. 1-FNMRs and EERs for codeword sizes
re extractors with and without shifting (FNMRs are obtained at

Ma et al.

1-FNMR EER IR

01 96.16 1.19 98.11
71 72.17 17.41 78.26
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Fig. 4 Correlation (1-HD) between columns of iris-codes for both feature extraction algorithms

a 1D Log-Gabor
b Ma et al.

Table 3 1-FNMRs (in%) at FMR= 0.01% for different
configurations of the adaptive bloom filter-based transform

Algorithm Word size Block size l, bits

w, bits 25 26 27 28 29

1D 10 96.36 93.45 84.75 60.19 41.48
Log-Gabor 9 95.90 92.07 81.73 60.15 41.22

8 94.78 90.89 79.33 50.89 —
10 97.95 95.08 86.70 75.29 52.68

Ma et al. 9 97.49 93.50 84.04 66.08 27.46
8 96.52 92.17 75.39 31.40 —

Table 4 EERs (in%) for different configurations of the adaptive
bloom filter-based transform

Algorithm Word size Block size l, bits

w, bits 25 26 27 28 29

1D 10 1.49 2.12 3.17 5.04 9.04
Log-Gabor 9 1.67 2.15 3.32 6.10 12.17

8 1.83 2.24 4.74 11.55 —
10 1.14 1.72 2.64 5.08 8.99

Ma et al. 9 1.44 1.95 3.74 7.57 13.90
8 1.47 2.51 4.79 11.97 —
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of w = 8 to w = 10 bits are summarised in Table 2, where
codewords start at the top of the upper and lower half (the
original biometric performance corresponds to a word size
of w = 1).
Tables 3–5 summarise obtained 1-FNMRs, EERs and IRs

for different word sizes w and block sizes l for both feature
extraction algorithms. From the obtained results it is clear
that rotations of ± 8 bits, which significantly affect original
systems, are compensated. The according receiver operation
characteristic (ROC) curves are depicted in Fig. 5.
Biometric performance is maintained or even improved for
small block sizes, which support the previous claim that
initial miss-alignments do not cause a drastic decrease in
biometric performance. Again, performance is improved in
identification mode. Throughout experiments best result
were achieved for the maximum word size of 10 bit, that is,
K = 10240/(32·10) = 32 blocks of l = 32 codewords which
are mapped to 32 Bloom filters of size n = 2w = 210. By
applying the DS metric, which represents an improved
biometric comparator, to pairs of Bloom filters accuracy is
gained. For greater block sizes (e.g. l = 28) biometric
performance decreases. Although an increase of block sizes
provides rotations-invariance for higher degrees of
miss-alignment, it increases the chance that identical
codewords occur within blocks, that is, local information is
lost leading to a greater overlap of intra- and inter-class
score distributions.
Table 5 IRs (in%) for different configurations of the adaptive
bloom filter-based transform

Algorithm Word size Block size l, bits

w, bits 25 26 27 28 29

1D 10 98.01 97.34 95.14 90.53 78.61
Log-Gabor 9 97.89 96.93 93.96 86.44 70.23

8 97.45 95.93 92.12 75.60 —
10 98.87 98.05 96.52 91.35 82.14
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iley O

nline Library for rule
4.3 Cancellable templates

The security of the entire approach relies on the non-invertible
mapping of codewords to a Bloom filter. W.l.o.g. this
transform obscures the original position of the codeword as
well as the number a codeword occurs, hence, for different
configurations certain amounts of codewords are mapped to
an identical position within according adaptive Bloom
filters. Fig. 6 depicts the average percentage of re-mapped
codewords and according standard deviations for both
Table 2 Original systems: performance rates (in%) for both
feature extractor for HD-based comparisons for different word
sizes (FNMRs are obtained at FMR = 0.01%)

Word size 1D Log Gabor Ma et al.

w, bits 1-FNMR EER 1-FNMR EER

10 93.65 2.61 95.44 1.75
9 96.11 2.31 95.70 1.69
8 96.16 1.54 96.93 1.63

Ma et al. 9 98.56 97.54 94.62 85.93 68.08
8 98.05 96.72 92.73 70.74 —
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algorithms and applied configurations, according to Fig. 2
remapping 1− |b|/l ≃ 1− 3/4 = 25% would be optimal in
terms of security. In contrast to uniformly distributed data
for configurations of w = 9 and w = 10 bit more codewords
are re-mapped for smaller block sizes which is caused by
correlation between iris-code columns. For w = 8 bit, the
amount of re-mapped codewords increases with the block
size l, that is, more information is lost compared with larger
213
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Fig. 5 ROC curves for the 1D Log-Gabor feature extractor a–c and the algorithm of Ma et al. d–f for different settings of block sizes and
word sizes

a w = 10
b w = 9
c w = 8
d w = 10
e w = 9
f w = 8
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values of w. As a result, in general, biometric performance
decreases with the word size w (see Tables 3–5), as
opposed to the case where no information about codeword
positions is lost (see Table 2).
For best performing configurations (w.r.t. accuracy),

mapping l = 32 codewords of length w = 10 to a n = 210 (d)
w = 10 (e) w = 9 (f) w = 8 bit adaptive Bloom filters, for the
1D Log-Gabor feature extraction ∼48% of codewords are
re-mapped, 1− |b|/l ≃ 0.48 (see Fig. 6a). By analogy, for
the algorithm of Ma et al. on average ∼32% of codewords
Fig. 6 Proportion of re-mapped codewords, 1− |b|/l, for different bloc

a 1D Log-Gabor
b Ma et al.

214
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are re-mapped (see Fig. 6b). Focusing on the 1D
Log-Gabor feature extractor, according to the previously
estimated amount of possible sequences (see Fig. 2, l = 32)

a potential attacker would have to try ∼2126 different
sequences, |b| = 32·(1− 0.48) = 16.64, for each of the K = 32
blocks. For the algorithm of Ma et al. the average amount
of re-mapped codewords is even lower resulting in ∼2131
different sequences for |b| = 32·(1− 0.32) = 21.76. By
increasing block sizes security is significantly increased, for
example, the feature extractor of Ma et al. a total number
k sizes l and word sizes w for both feature extractors

IET Biom., 2014, Vol. 3, Iss. 4, pp. 207–218
doi: 10.1049/iet-bmt.2013.0049

itions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



www.ietdl.org

 20474946, 2014, 4, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/iet-bm

t.2013.0049 by U
niversitaetsbibl A

ugsburg, W
iley O

nline Library on [16/12/2024]. See the Term
s and C

onditio
of ∼2283 possible sequences have to be tried per block in
order to guess the original iris-code for w = 10 and l = 64,
with |b| = 32·(1− 0.31) = 22.08, while the system still
reveals a practical EER of 1.72%. Obviously, a cancellable
biometric system is operated through a natural trade-off
between security and biometric performance.
Unlinkability, that is, the infeasibility of cross-matching

different protected templates of a single subject, represents
a major issue of biometric template protection, however,
experimental studies on unlinkability are commonly
neglected [46]. According to the ISO/IEC IS 24745 on
biometric information protection, unlinkability can be
implemented by encrypting biometric references employing
different (secret) keys, provided that the secret keys are
managed appropriately to avoid collusion [10]. An
application-specific secret bit vector is XORed with each
iris-code column before applying adaptive Bloom
filter-based transforms. To further enhance security with
respect to unlinkability, this XOR-encryption based on a
secret key could be substituted by an application of
non-linear functions. In order to investigate the
unlinkability of the presented approach we focus on the best
performing configuration in terms of accuracy, that is, l = 32
columns comprising w = 10 bits are successively mapped to
according adaptive Bloom filters of size n = 210.
Subsequently, obtained inter-class distributions are
compared to distributions yielded by comparing adaptive
Bloom filters originating from a single iris-code which are
obscured by different bit vectors. Obtained score
distributions are depicted in Fig. 7 for both algorithms,
where unlinkability studies have been obtained from more
than 10 000 genuine comparison with randomly chosen bit
vectors. The comparison of different cancellable templates
generated from a single iris-code does not allow
cross-matching since resulting dissimilarity scores are
generally higher than that of impostor comparisons within a
single application.
Fig. 8 Resulting template sizes for different block sizes l of the
proposed system compared to the original algorithms
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4.4 Compressed templates

Regarding resulting template sizes, which are depicted in

Fig. 8 for most configurations K·2w <W·H = 20·29 applies,
which means a compression of the original template is
achieved. Again, a trade-off is observed, between template
size and biometric performance. Smallest template sizes
(10% of original size), for the configuration w = 8 and
Fig. 7 Score distributions for inter-class comparisons and according u

a 1D Log-Gabor
b Ma et al.
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l = 28, result in rather un-practical performance rates of
EERs >10%, whereas compressions down to 20 or 40% of
the original size almost maintains accuracy, see Tables 3–5.
Fig. 9 shows examples of resulting codes for both feature
extraction algorithms. As can be seen for the algorithm of
Ma et al. which provides more degrees-of-freedom, more
bits are set to 1. Extracted codes appear suitable to be used
in aforementioned application scenarios.
4.5 Identification speed

In Fig. 10, the number of bit comparison of different
configurations and the resulting IRs are compared to the
original systems (requiring ± 8 bit shifts). A significant
reduction of bit comparisons (at least <25% of original
system) is obtained for all settings of w and l while
biometric performance is maintained for decreasing the bit
comparisons down to ∼5%, which corresponds to a
comparison of 213 bits.
Identification is performed on a 2.30 GHz system. In order

to minimise computational overhead caused by file access
operations, all enrolled iris-codes are loaded a priori. A 1:n
comparison of a single iris-code of 10 240 bits applying
± 8 bit shifts takes on average 607 ms, which is defined as
the baseline ( = 100%) of computational effort. Optimised
C-based programs are able to compare more than one
million iris-codes per second [47] which has been
confirmed by published tests (e.g. NIST IREX-3). However,
nlinkability tests for both feature extractors
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Fig. 9 Sample compressions for the 1D Log-Gabor a–b and the Ma et al. c–d feature vector of sample iris-codes in Figs. 3e–f (256 × 4 and
256 × 8 codes have been rearranged for visualisation)

a w = 8, l = 28

b w = 9, l = 28

c w = 8, l = 28

d w = 9, l = 28

Fig. 10 Amount of required bit comparisons and resulting IRs for different configurations of the adaptive Bloom filter-based transform

a 1D Log-Gabor
b Ma et al.

Table 6 Relative time (in%) compared to the traditional
approach for different configurations of the adaptive bloom
filter-based transform

Word size Block size l, bits

w, bits 25 26 27 28 29

10 23.57 13.07 8.51 5.51 4.03
9 13.09 8.50 5.51 4.01 3.48
8 8.50 5.55 4.03 3.47 —
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this difference is irrelevant since we aim at comparing the two
types of techniques based on the same platform and report
speed-up in percent. Experimental results according to the
average relative time required to identify a single subject
compared to the original algorithms are summarised in
Table 6. As expected, because of remaining inevitable
computational overhead the obtained speed-up does not
precisely relate to according template sizes, still, speed-up is
substantial. For the best configuration with respect to
biometric performance, w = 10 and l = 25, a 4-fold speed-up
is achieved (607·0.2357 = 143.07 ms). Up to a 10-fold
speed-up comparable biometric performance is maintained,
see Fig. 10. Furthermore, it is important to note that, while
the applied database consist only of a few hundred subjects,
in contrast to an indexing approach, the size of the applied
dataset is irrelevant as well, since the proposed approach
aims at achieving linear speed up requiring a 1:n comparison.
or rules of use; O
A
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5 Conclusions

The wide use of (iris) biometrics raises the need for privacy
protection. Technologies of cancellable biometrics are
designed to permanently secure biometric data, preventing
from identity fraud and privacy violation. In addition, while
a binary representation of biometric features enable a rapid
comparison computational limits are reached deploying
national-sized biometric databases in identification mode
and public deployments of iris recognition are still based on
a brute force exhaustive search through a database.
216
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Although the majority of approaches to biometric database
indexing suffer from a significant decrease in biometric
performance, indexing protected biometric templates
represents an even greater challenge.
In this paper, alignment-free cancellable iris biometric

templates based on adaptive Bloom filters are introduced.
The generic adaptive Bloom filter-based transform which is
applied to binary feature vectors of different iris recognition
algorithms enables (i) template protection, (ii) a
compression of biometric data and (iii) computational
efficient biometric identification. Existing approaches to iris
biometric template protection suffer from low biometric
performance or utilise rather insecure alignment-preserving
transforms. In contrast, the proposed rotation-invariant
Bloom filter-based transform provides a high level of
security while recognition accuracy is maintained.
In addition, the presented scheme can be parameterised in
IET Biom., 2014, Vol. 3, Iss. 4, pp. 207–218
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order to highly compress biometric templates (down to 10%
of original size). Furthermore, since bit-shifting is obsolete
at the time of biometric comparison (in transformed
domain) a substantial speed-up of biometric identification is
achieved. Finally, it is important to note that the proposed
approach can be utilised in order to generate a fixed-length
protected template based on a variable-length binary
biometric feature vector which may be the case for other
biometric characteristics, for example, fingerprints. To the
authors’ knowledge the proposed approach represents the
very first template protection scheme which enables
compression and computationally efficient identification.
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8 Appendix

Proof (by induction): for all |b|, l [ N, l ≥ |b| . 1, the
theoretical amount of possible sequences is defined by
f (|b|, l ), where each of the |b| codewords have to appear at
least once within l columns

f (|b|, l) = |b|l −
∑|b|−1

i=1

|b|
i

( )
· f (i, l) (6)

Base case: f(1, l ) = 1, and for |b| = 2, the number of possible
sequences is 2l− 2, that is, all possible sequences minus the
two sequences where only one codeword occurs

f (2, l) = 2l −
∑1
i=1

2
i

( )
· f (i, l) = 2l − 2

1

( )
· f (1, l)

= 2l − 2

Equation (6) is true for the base case, |b| = 2.
Induction step: |b|→ |b| + 1, suppose (6) is true for |b|. For

|b| + 1 the number of all possible sequences is (|b| + 1)l, the
subtracted number of possible i-element subsets are now of
a set containing |b| + 1 elements, and sequences comprising
218
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|b| codewords are subtracted. We obtain

f (|b| + 1, l) = (|b| + 1)l − |b| + 1

|b|

( )

· f (|b|, l)−
∑|b|−1

i=1

|b| + 1

i

( )
· f (i, l)

= (|b| + 1)l − |b| + 1

|b| + 1− |b|

( )

· f (|b|, l)−
∑|b|−1

i=1

|b| + 1

i

( )
· f (i, l)

= (|b| + 1)l − (|b| + 1)

· f (|b|, l)−
∑|b|−1

i=1

|b| + 1

i

( )
· f (i, l)

= (|b| + 1)l −
∑|b|
i=1

|b| + 1

i

( )
· f (i, l)

Conclusion: by the principle of induction, (6) is true for all
|b|, l [ N, l ≥ |b| . 1.
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