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Abstract. Handling forensic investigations gets more and more diffi-
cult as the amount of data one has to analyze is increasing continuously.
A common approach for automated file identification are hash functions.
The proceeding is quite simple: a tool hashes all files of a seized device
and compares them against a database. Depending on the database, this
allows to discard non-relevant (whitelisting) or detect suspicious files
(blacklisting).

One can distinguish three kinds of algorithms: (cryptographic) hash
functions, bytewise approximate matching and semantic approximate
matching (a.k.a perceptual hashing) where the main difference is the
operation level. The latter one operates on the semantic level while both
other approaches consider the byte-level. Hence, investigators have three
different approaches at hand to analyze a device.

First, this paper gives a comprehensive overview of existing approa-
ches for bytewise and semantic approximate matching (for semantic we
focus on images functions). Second, we compare implementations and
summarize the strengths and weaknesses of all approaches. Third, we
show how to integrate these functions based on a sample use case into
one existing process model, the computer forensics field triage process
model.

Keywords: Digital forensics · Hashing · Similarity hashing · Robust
hashing · Perceptual hashing · Approximate matching · Process model

1 Introduction

One of the biggest challenges in computer crime is coping with the huge amounts
of data – the trend is that everything goes digital. For instance, books, photos,
letters and long-playing records (LPs) turned into ebooks, digital photos, email
and mp3. In addition, we have smartphones providing access to wireless Internet
virtually everywhere.

To handle all this, the forensic community developed investigation models
to assist law enforcement [1] which mainly describe where investigators should
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start. For instance, in 2006 Rogers presented the computer forensics field triage
process model (CFFTPM) which is promoted to be “an on-site or filed approach
for providing the identification, analysis and interpretation of digital evidence in
a short time frame” [2]. While this model precisely describes how to approach
a computer crime, the author states that steps could be very time consuming
due to the amount of data. Hence, it is important to reduce the amount of data
to be inspected manually by automatically distinguishing between relevant and
non-relevant files.

A common technology for automated file identification are hash functions.
The proceeding is quite simple: calculate hashes for all files and compare these
fingerprints against a reference database (e.g., NRSL [3] from NIST). Depend-
ing on the underlying database, known files are either filtered out (no further
consideration) or highlighted as suspicious.

Currently, mostly cryptographic hash functions (e.g., SHA-1 [4]) are applied
which are very efficient in exact duplicate detection but fail in similar file detec-
tion. However, investigators might also be interested in similarity, e.g., detect the
correlation between an original image and its thumbnail, which could be solved
using approximate matching.

The contribution of this paper is tripartite. Firstly, we give an overview of
existing approximate matching algorithms. The second part is a brief comparison
of algorithms. Besides a comparison of the same group (bytewise and semantic),
we also present a sketchy comparison across groups to clearly demonstrate ben-
efits and drawbacks. The third part of the paper shows a sample use case of
how to integrate hashing and approximate matching into existing investigation
models wherefore we focus on CFFTPM.

The rest of the paper is organized as follows: First, we give a summary of
exiting bytewise and semantic approximate matching algorithms in Sect. 2. Next
is an explanation of our test methodology in Sect. 3 followed by the experimental
results and assessment in Sect. 4. Out of the assessment, we discuss a possible
usage based on a sample use case in Sect. 5. Section 6 concludes the paper.

2 Hashing and Approximate Matching

Hashing has a long tradition in computer sciences and various fields of appli-
cation. The impact of applying cryptographic hash functions in forensics was
first analyzed by White [5] and later by Baier and Dichtelmüller [6]. While
White propagates an identification rate up to 85 %, Baier and Dichtelmüller
only obtained rates between 15 % and 52 %. This low detection rates result
from changing files which happens during updates. Besides, it is very likely that
word/excel documents, logfiles or source code changes over the time.

Hence, it is necessary to have approximate matching which is able to detect
similarity between objects. In general, one distinguishes between bytewise1 and
semantic approximate matching2. While the former one operates on the byte
1 Well-known synonyms are fuzzy hashing and similarity hashing.
2 Well-known synonyms are perceptual hashing and robust hashing.
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level and thereby follows the view of a computer, the latter one works on a
perceptual level and tries to imitate the perspective of a human observer. Of
course, operating on a semantic level requires a separate algorithm for each
media type, i.e., there need to be algorithms for images, videos, audio, text
documents etc.

2.1 Bytewise Approximate Matching

Bytewise approximate matching is a rather new area and probably had it break-
through in 2006 with a tool called ssdeep. However, it has been proven to be
useful for similar inputs detection (e.g., different versions of a file), embedded
objects detection (e.g., a jpg within a Word document) or fragment detection
(e.g., network packages).

To the best of our knowledge, there are currently seven different algorithms.
We ignore the following algorithms:

– bbHash [7] is very slow as it takes about 2 min to process a 10 MiB file.
– mvHash-B [8] needs a specific configuration for each file type.
– SimHash [9] and MinHash [10] can handle near duplicates only.

The remaining three algorithms are briefly explained in the following:

ssdeep. In 2006 Kornblum presented context triggered piecewise hashing (abbre-
viated CTPH) which is based on the spam detection algorithm from Tridgell [11].
The implementation is freely available and currently in version ssdeep 2.93.

The overall idea of ssdeep is quite simple. CTPH identifies trigger points
to divide a given byte sequence into chunks. In order to generate a final finger-
print, all chunks are hashed using FNV [12] and concatenated. To represent the
fingerprint of a chunk CTPH only takes the least significant 6 bits of the FNV
hash resulting in a Base64 character.

sdhash. Four years later Roussev suggested a completely different algorithm
named similarity digest hashing which resulted in the tool sdhash4 [13]. Instead
of dividing an input into chunks the algorithm extracts statistically improbable
features by using the Shannon entropy whereby a feature is a byte sequence of
64 bytes. All features are hashed by SHA-1 [4] and inserted into a Bloom filter
[14]. Hence, files are similar if they share identical features.

mrsh-v2. In 2012 Breitinger & Baier proposed a new algorithm [15] that is
based on MRS hash [16] and CTPH. Equal to CTPH the algorithm divides an
input into chunks and hashes each chunk. In contrast to ssdeep, there are two
main modifications. Firstly, we removed the condition of a maximum fingerprint
length of 64 characters. Secondly, mrsh-v2 uses now Bloom filters instead of
Base64 characters.
3 http://ssdeep.sourceforge.net; visited 2013-Aug-20.
4 http://roussev.net/sdhash/sdhash.html; visited 2013-Aug-20.

http://ssdeep.sourceforge.net
http://roussev.net/sdhash/sdhash.html
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2.2 Semantic Approximate Matching

Semantic approximate matching can be performed for any media type, but
we restrict our analysis to algorithms for images because a main application
of semantic approximate matching in digital forensics is the detection of child
pornographic images.

Semantic approximate image matching originates from content-based image
retrieval (CBIR). This term dates back to 1992 [17] while research in the field has
an even longer tradition. CBIR systems evaluate the similarity of images based
on descriptors for color, texture and shape [18]. A standardized set of image
features for CBIR applications has been defined in the MPEG-7 standard [19].
However, the calculation of multiple image features is quite time consuming.
The INACT software, which is based on MPEG-7 descriptors, and which has
been developed for supporting forensic investigations, requires already 10 s for
processing a medium resolution image (640 × 320 pixels) [20]. This is far too
slow for a usage under real-world conditions.

The analysis of maybe hundreds of thousands images in an investigation
target and up to millions of images in the reference database requires very fast
methods for digest calculation and comparison. Hence we focus on image features
with the potential for high efficiency:

Histograms. Color histograms, lightness histograms etc. are very basic image
features with a long tradition [21]. They just count how many pixels correspond
to each value of the observed attribute. Robustness and compactness of the
information can be increased by extracting features from the histogram like its
first three moments [22], Haar wavelet coefficients (MPEG-7), or range selections
[23]. However, the extent of images considered as similar in histogram-based
matching approaches is more than just different versions of the same image, as
the histograms do not consider any spacial information. Hence such approaches
are not well suited for recognizing known images. They are more appropriate
for finding images from similar scenes and for clustering images according to the
depicted scene.

Low-Frequency Coefficients. While high-frequency parts of images get easily
disturbed or lost due to rescaling or lossy compression, low-frequency parts are
quite robust. Hence low-frequency Fourier coefficients, DCT coefficients [24],
wavelet coefficients [25], etc. can be used as robust image features. The same
idea can be used for deriving a key-dependent robust digest by replacing the low-
frequency basis functions of the aforementioned transformations with “random
smooth patterns generated from a secret key” [24]. Typically, images are scaled
to a fixed, low resolution before coefficient calculation for reasons of efficiency.

Block Bitmaps. Robust features can be obtained by dividing an image into
a small, fixed number of blocks and calculating one feature bit per block. The
most simple version of this approach scales the image down such that it has one
pixel per block and sets the bit according to whether the lightness of the pixel
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is above or below the median lightness [26]. An improved variant called rHash
considers the median of each quadrant of the image separately and incorporates
a flipping mechanism for robustness against mirroring [27]. Another approach
derives an edge map from the image. Such a map can be obtained for example by
thresholding the gradient magnitude calculated with the Sobel operator [28,29].
However, more sophisticated edge detection algorithms should be avoided to
keep the computing time low.

Projection-Based. This class of approaches has been inspired by the Radon
transform, which calculates angle-dependent, one-dimensional projections of the
image by integrating the image along straight lines parallel to each projection
direction. The hashing algorithm RASH calculates the integral along one radial
line for each direction [30]. The proposed improvement RADISH replaces the inte-
gral by the variance of the luminance of the pixels on the line [31]. Furthermore,
the low-frequency DCT coefficients of the previously calculated angle-dependent
function can be used as compact, robust digest of an image [32].

Interest points are another kind of image features. Such points are corners and
other prominent points in the image, and various kinds of perceptual hashing
based on interest points have been proposed [33,34]. Each interest point can
be attached with descriptors of the neighborhood of that point [35,36]. How-
ever, the calculation of interest points is computationally expensive – similar to
sophisticated edge detection. Lv and Wang report an average processing time of
3.91 s for an image with their default size of 256 × 342 pixels [36].

For the evaluation in this paper we selected 4 algorithms which are potentially
suitable for investigating huge amounts of images: DCT based hash [24], Marr-
Hildreth filter based hash [33], radial variance based hash [32] and block mean
based hash rHash [37]. A similar evaluation of the mentioned first 3 algorithms
and a proof-of-concept implementation of the block bitmap approach based on
[26] has been done by Zauner et al. [38,39]. In contrast to their evaluation on a
relatively small number of high-resolution images, we will show results for larger
collections of images and different resolutions.

3 Test Methodology

In order to grade the aforementioned approaches, we need criteria. These criteria
are mainly borrowed from existing literature (e.g., [39,40]).

Firstly, we focus on the general efficiency properties of approximate match-
ing algorithms like compression, runtime efficiency and fingerprint comparison in
Sect. 3.1. These properties are derived from traditional/cryptographic hash func-
tions and play an important role. The tests for bytewise and semantic approxi-
mate matching are explained in Sects. 3.2 and 3.3, respectively.
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3.1 Efficiency

The efficiency tests analyze the two main aspects of approximate matching algo-
rithms named compression and ease of computation. It is composed of the fol-
lowing three sub-tests:

Compression: The output of each algorithm is either of a fixed length or variable.
In the latter case we simply compare the input against the output size and
present a ratio.

Runtime efficiency: Runtime describes the time needed to process an input.
Simply put, the time for generate a similarity digest.

Fingerprint comparison: Once similarity digests are created, they are usually
compared against a set. To estimate the performance for large scale scenarios,
we discuss the complexity of indexing/ordering them.

3.2 Bytewise Approximate Matching

Bytewise approximate matching is especially helpful when analyzing similar files,
file fragments and embedded objects. Compared to semantic approximate match-
ing, it is file type independent and therefore also applicable for multiple, different
or unknown file types.

In order to classify existing algorithms, there is a framework called FRASH
[40] which tests algorithms by the following sensitivity and robustness tests:

Single-common-block correlation (sensitivity) calculates the smallest object that
two files need to have in common for which the algorithm reliably correlates
two targets. An example is comparing two similar documents.

Fragment detection (sensitivity) quantifies the smallest fragment for which the
similarity tool reliably correlates the fragment and the original file. Examples
are network packet analysis or RAM analysis.

Alignment robustness analyzes the impact of inserting byte sequences at the
beginning of an input by correlating the size of the change to changes in
the comparison output. Examples may be logfiles, source code files, office
documents or emails.

Random noise resistance analyzes the impact of random edits on the correlation
capabilities of the algorithm. An example may be source code files where the
name of a variable is changed.

3.3 Semantic Approximate Matching

Semantic approximate matching has two essential properties: robustness and
discriminability. Robustness refers to the ability to resist content-preserving
processing and distortions, while discriminability is the ability to differentiate
contents, i.e. to avoid collisions [41].

Content-preserving processing includes the manipulations that only modify
the digital representation of the image content and that apply insignificant per-
ceptual changes on the image content. To evaluate the robustness the following
manipulations are applied:
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- mirroring: flipped horizontally - blurring: Gaussian filter with 20px radius
- resizing: 61 % downscaling - color modification: red and blue plus 100
- cropping: remove outer 10–15% - compression: JPEG with 5 % quality
- rotation: 90 degree clockwise - stretching: horizontally 20 % downscaling.

The discriminability can be measured by the false positive rate (FPR) and
the false negative rate (FNR). FPR refers to the probability that different con-
tents result in similar hash values, i.e. non-relevant contents are identified as
relevant, while FNR denotes the possibility that the same or similar contents
produce significantly different digests, i.e. relevant contents are missed in the
identifying process. For investigating huge amount of images, low FPR is of
essential importance, which must be kept as close as possible to zero in order to
reduce the amount of data for the manual inspection followed [37].

4 Experimental Results and Assessment

Our assessment is based on the cryptographic hash function SHA-1 and the
bytewise approximate matching algorithms ssdeep, sdhash and mrsh-v2. On
the semantic approximate matching side, we run DCT based hash (dct), Marr-
Hildreth operator based hash (mh), radial variance based hash and block mean
value based rHash. The pHash C library5 offers implementation of the first three
functions. The implementation of rHash is based on the improved block mean
value based hash algorithm in [37].

4.1 Infrastructure

All tests were performed on a conventional business notebook having an Intel
Core 2 Duo T9400 CPU clocked at 2.53 GHz with 4 GB RAM.

We used 3 different test sets of images for our experiments: TS2000 is a set
of 2197 low resolution images (400 × 266 pixels) having a total size of 53.3 MB;
TS1500 is a set of 1500 medium resolution images (approximately 1000 × 800
pixels) having a total size of 603 MB; TS1000 is a set of 998 high resolution
images (3000 × 2250 pixels) having a total size of 719 MB.

To define the runtime efficiency we measured the real time which is wall clock
time - time from start to finish of the call. This is all elapsed time including time
slices used by other processes and time the process spends blocked (for example
if it is waiting for I/O to complete).

4.2 Efficiency

Compression. Actually, a fixed length fingerprint is a basic property of hash
functions. However, approximate matching only partly fulfills this issue, i.e.
ssdeep has a maximum length of 108 bytes (but might be shorter) and sdhash
has proportional length between 1.6 % and 2.6 % (depending on the mode). All
perceptual algorithms and SHA-1 have a fixed length output as shown in Table 1.
5 http://phash.org; visited 2013-Aug-20.

http://phash.org
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Table 1. Fingerprint length for different algorithms (compression).

dct mh radial rHash ssdeep sdhash mrsh-v2 SHA-1

64 bit 576 bit 320 bit 256 bit ∼600 bit 1.6–2.6 % ∼1 % 160 bit

Runtime Efficiency. The assessment of the runtime efficiency is based on all
test sets. The time for building a hash database out of a test set and the time for
checking a test set against a database are tested respectively. For hash database
building, the original images in each test set are used; for hash checking, the
images (except ssdeep) in each set are downscaled by 25 % and compressed by
JPEG 20 %.

Table 2. Time for processing test sets (in seconds).

Test Set TS2000 TS1500 TS1000

Algorithm Build Check Build Check Build Check

mh 471.39 514.96 436.21 396.52 1015.06 647.06

radial 32.26 114.53 179.87 111.12 799.23 450.44

dct 54.69 30.17 281.24 132.92 1601.42 854.64

rHash 18.37 10.88 92.33 41.55 415.08 220.41

sdhash 6.86 5.90 47.81 30.09 55.49 97.17

ssdeep 5.57 5.79 41.43 48.33 47.16 52.02

mrsh-v2 1.36 6.17 3.83 35.37 4.56 102.83

SHA-1 0.84 0.72 2.35 0.84 2.81 1.12

As shown in Table 2, the cryptographic hash function is the fastest for all test
sets, followed by bytewise approximate matching. For all test sets, SHA-1 takes
less than three seconds to build hash databases and around one second to check
the attacked images. For TS2000, SHA-1 is about 5–8 times faster than ssdeep
and sdhash, and for medium and high resolution images, SHA-1 is orders of
magnitudes faster than others.

Regarding bytewise approximate matching only, mrsh-v2 is far the fastest for
generating. However, ssdeep becomes approximately 6–10x faster when check-
ing the attacked images instead of the original ones. This is because the hash
database generated by ssdeep features a file size comparison which significantly
speeds up the hash checking process when comparing against files of different
sizes.

Among the four semantic algorithms, rHash has the best runtime for images
of any resolution. The DCT based hash is very fast for low resolution images
but becomes the slowest one while hashing high resolution images, where it takes
about 4 times longer than rHash. Comparing with other perceptual hashes, mh
is not efficient for low resolution images, but its speed is comparable with radial
when coming to large images. The checking process for radial is much slower



178                  

than the building process, which indicates that peak of cross correlation is not
so efficient as hamming distance for hash comparison.

Fingerprint Comparison. While designing the algorithms all developers pay
attention on simple hash values and thus they could be compared easily. For
instance, the hash comparison time for all the perceptual hashing functions stay
below 4µs, with the exception of radial variance based function, which needs an
average of 16µs for the comparison.

However, the focus of this subsection is the behavior of querying large scale
databases on a theoretical level (it is not based on own empirical tests).

Let n be the amount of fingerprints in the database. Cryptographic hash
values are stored within hash tables or binary trees and hence their lookup
complexity is O(1) or O(log n), respectively. Considering approximate matching,
it was not possible to sort or index the fingerprints for a while. Recently, both
algorithms were extended and now have a possibility for indexing. In case of
ssdeep the authors propagate an improvement of a factor of almost 2000 which
is ‘practical speed’. For instance, they decrease the time for verifying 195,186
files against a database with 8,334,077 entries from 364 h to 13 min [42]. With
respect to sdhash we could not find any numbers describing the improvement.

The fingerprint comparison for perceptual hashes is similar to approximate
matching – it is not trivial to sort or order them. In the worst case a lookup is
an all-against-all (bruteforce) comparison and thus a complexity of O(n). First
experimental results using locally sensitive hashing and binary trees showed that
minor improvements are possible [43]. However, this is ongoing work and final
results are unclear.

To conclude, besides cryptographic hash functions only ssdeep offers a pos-
sibility to reduce the comparison against large databases down to a practical
time.

4.3 Bytewise Approximate Matching

As mentioned in Sect. 2.1, our evaluation focuses on ssdeep, sdhash and mrsh-v2.
The former two approaches were already deeply analyzed [40,44] with the main
result that sdhash outperforms ssdeep in all points beside compression.

For instance, assuming a practical relevant file size of 2 MiB, sdhash corre-
lates them if they share a common subsequence of 170 bytes while ssdeep needs
368 bytes. Regarding fragment detection, ssdeep can only reliably detect simi-
larity down to 50 % (in 94 % of all cases) whereas sdhash works nearly perfect
down to 20 % pieces (in 97 % of all cases). The alignment test which inserts up to
400 % of the original file size only beaks down ssdeep that worked acceptable
for inserts smaller than 100 % (detection rate of 73 %). The last test described
in [40] is random-noise-resistance. While ssdeep only works acceptable for less
than 0.026 % changes, sdhash allows to change over 1.100 % of all bytes and still
has a higher detection rate. mrsh-v2 showed very similar results than sdhash
and thus we won’t give more details.
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Due to the fact that we now have at least two algorithms nearly on the same
level, we need further comparison criteria. An important aspect is always the
false positive and false negative rate.

4.4 Semantic Approximate Matching

To test the robustness of semantic approximate matching, ten images are ran-
domly selected out of TS1000 and compose a new test set TS10. Next, we applied
the manipulations listed in Sect. 3.3. For easier comparison, the matching scores
of different algorithms are represented by a normalized score varying from 0 to
100.

The score of each algorithm after resizing and blurring is always above 95
except mh which produces scores between 90 and 95. The color modification
yields similar scores but both mh and dct produce slightly lower scores (90–95)
than the others (95–100).

The results of the remaining five manipulations vary enormously and are
presented in Fig. 1. For rotation and mirroring, the scores of all algorithms are
around 50 except that rHash performs very well for mirroring. Cropping is a
challenging manipulation, where radial performs best, followed by dct, and mh
and rHash are not robust. Both radial and rHash are very robust to compres-
sion, where dct and mh are inferior. Regarding stretching all algorithms deliver
scores around 98 except radial which is only at 55.

Fig. 1. Average scores for five most influencing perceptual changes on TS10.

As mentioned in Sect. 3.3, the false positive rate (FPR) and the false negative
rate (FNR) can be used to measure the discriminability. Hence, we further eval-
uate the recall precision of different algorithms using TS2000 as the known image
set and a new test set consisting of 2197 other similar images, called TS2000U, as
the unknown image set. The 4394 images in TS1000 and TS2000U contain similar
scenes of cheerleaders.

First, each algorithm builds a hash database out of TS2000. Then, all images
in the known image set, TS2000, are downscaled by 25 % followed by JPEG
compression with a quality factor of 20. Finally, digest matching is performed
on the modified TS2000 and TS2000U respectively.
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The results are plotted in Fig. 2. The x-axis denotes FPR and the y-axis FNR.
All algorithms obtain fairly good results except dct. Among the four algorithms,
only rHash achieves zero FPR together with zero FNR. Under the requirement
of zero FPR, dct has the worst result, whose FNR reaches as high as 0.245,
while mh and radial obtain a FNR of 0.027 and 0.0045. For dct algorithm, the
best tradeoff is to achieve a FPR of 0.0009 with a FNR of 0.0396.

To conclude, all algorithms show good robustness in case of format conver-
sion, blurring, color modification, resizing, compression and stretching (except
radial), but are not robust against rotation, cropping (except radial) and mir-
roring (except rHash). Furthermore, under combined manipulation of downscal-
ing and compression, all algorithms (except dct) achieve good discriminability
between known images and unknown images.

Fig. 2. FNR/FPR of perceptual hashes on TS2000.

Byte Level Changes for Semantic Approximate Matching. Here we
briefly analyzed the behavior of semantic approximate matching for byte level
changes which corrupt the files. More precisely, we did the following byte level
modifications:

– broken data: randomly manipulates 10 bytes all in the file body.
– broken/missing header: deletes the first 128 bytes of the image file.
– missing content: deletes 128 bytes in the middle of the image file.
– missing end: deletes the last 128 bytes of the image file.
– inserting data: inserts 128 bytes from a random image file in the middle.

Real life scenarios are where these manipulations could happen are: trans-
mitting errors, defect hard disk sectors, ram analysis or deleted, fragmented
files.

‘Missing end’ does not influence the score at all–all algorithms output a score
of 100. Considering ‘missing content’ and ‘broken data’ the scores were still high
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at round about 90. The lowest scores were returned by ‘inserting data’ lying
between 72 and 82. In all cases the algorithms warn about corrupt JPG data.
Regarding ‘broken/header’ all algorithms failed to produce meaningful results,
either by aborting, crashing or delivering out of range errors.

4.5 Summary of Experimental Results

All algorithms have a good to very good compression. Most of them produce a
fixed length output or have a upper limit expect sdhash and mrsh-v2 with a
proportional length.

As shown in Table 2 the crypto hash SHA-1 is the fastest algorithms fol-
lowed by the bytewise approximate matching algorithms. Regarding perceptual
hashing, there are huge differences in the processing time where rHash is far the
fastest.

Considering the fingerprint comparison, it is obvious that the lookup com-
plexity with O(1) for crypto hashes is best followed by ssdeep. Currently it is
unclear what improvement can be obtained for sdhash indexing. For now, the
worst fingerprint comparison is for perceptual hashing.

The sensitivity & robustness is hard to decide. On the one hand we have
the semantic approximate matching algorithms which are very robust against
domain specific attacks. However, they do not allow fragment detection (e.g.,
the header is missing) or embedded object detection (e.g., JPG in a Word doc-
ument) which are the benefits of bytewise approximate matching. In addition,
semantic approximate matching is file domain bound, each domain needs its own
algorithm, e.g., images, movies or music.

5 Sample Use Case: Analyzing a USB Hard Disk Drive

In this section we present a reasonable utilization of the three different hash
function families on base of the use case allegation of production and ownership
of child abuse pictures. During a house search the police and IT forensic special
agents find besides different computers and DVDs a USB hard disk drive of size
40 GiB (presumably an old backup device).

Following Marcus Roger’s process model CFFTPM “time is of the essence”
and the search for evidence should start at the crime scene [2]. His key argument
is that accused persons tend to be more cooperative within the first hours of an
investigation.

During the planning phase of the CFFTPM the forensic investigator chooses
hardware (e.g., a forensic workstation equipped with a hardware write blocker
for USB devices) and software (implementation of at least one hash function
of each family together with respective databases of incriminated pictures) to
examine a device onsite for pictures of child abuse. The identification software
is configured to run silently in the background and notify the investigator, if
potential evidence is found or if the software terminates. An overview of our
sample process model for the use case at hand is given in Fig. 3.
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Fig. 3. Process model in case of onsite search for pictures of child abuse.

In our sample use case the investigator decides that an analysis of a 40 GiB
volume is feasible at scene. He mounts the USB HDD read-only into the file
system of his forensic workstation and starts the automatic identification of
evidence.

Due to their superior efficiency with respect to runtime, compression and
fingerprint comparison (see Sect. 4.2), the identification software first applies a
blacklist of crypto-hashes (e.g., PERKEO6) to all files on the USB HDD. If there
is a match the identification software notifies the investigator, who manually
inspects the potential evidence. If it turns out to be a picture of child abuse, he
seizes the USB HDD and informs the police to confront the accused person with
the evidence.

If the blacklist crypto-hashes do not yield a trace or if the alert turns out
to be a false-positive, the identification software turns to semantic approximate
hashing. We favor semantic approximate matching, because we expect a higher
recall in this specific use case. However, this claim has to be confirmed. The
investigator and the software operate analogously in case of a true-positive and
false-positive, respectively.

Finally, if after the second step no evidence is found, the software performs
file carving on the USB HDD and applies bytewise approximate matching to
all extracted files/fragments. Please note that in contrast to semantic approxi-
mate matching, the final bytewise approximate matching may find fragments or
embedded pictures of non-image data files (e.g., pdf, doc). If after all no evidence
is found, the investigator decides about a seizure of the device and the further
processing, e.g., in the lab.

6 Conclusion and Future Work

In this paper we analyzed the impact of different hashing technologies for foren-
sic investigations. We discussed the three families of crypto hashes, semantic
approximate matching algorithms and bytewise approximate hashing functions.
We showed that all approaches have different strengths and weaknesses and
hence all families are of relevance.
6 http://perkeo.com; visited 2013-Aug-20.

http://perkeo.com
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Semantic approximate hashing functions have proven to be most powerful
in the area of content identification. Compared to cryptographic hashing or
approximate matching, they offer significantly higher detection quality in the
areas of image (or other media) copyright violations or illegal material such
as child pornography. However, they are bound to their file domain and it is
thus necessary to run perceptual hashing for multiple domains, e.g., images and
movies – additional processing time. In addition, these approaches are by default
slower than there bitwise opponents.

The key strength of approximate matching is that is able to detect embedded
objects, e.g., detect a JPG within a Word document. In addition, it allows frag-
ment detection, which is especially important when dealing with network traffic
or defect file systems, e.g., one may analyze the hard disk on the sector or block
level.

We identified benefits of cryptographic hash functions, too. The algorithms
are superior to their competitors with respect to efficiency (runtime, compres-
sion, fingerprint comparison). They are the most recognized in court (yet) and
the US NIST provides a comprehensive database containing approximately 100
million hash values. Finally they do not err, i.e., their security properties allow
to identify equal files with nearly 100 % probability, which is very important for
whitelisting.

We finally presented a sample order of applying the hash function families
within a sample use case of investigating a USB HDD at crime scene. However,
an actual process model to optimize the operation of hash functions and its
validation is still missing. Our next step is to identify typical use cases and
propose a reasonable order of application of hash functions (both inside a family
and between different families), respectively. Then we validate our proceeding
with respect to efficiency and sensitivity and try to abstract from the use cases
to a more general model.

Finally we think that it is also necessary to consider the defendants where we
have two possibilities. On the one hand the defendant is the ‘normal user’ and
not very familiar with the personal computers. Thus, the files reside somewhere
unencrypted on the device. Maybe they are processed with a tool to all have
the same size. On the other hand the defendant is an ‘expert’ and files might
be encrypted. Hence, investigators can try to find fragments in the RAM7 or in
unallocated HDD sectors.
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