N

N

Using Approximate Matching to Reduce the Volume of
Digital Data
Frank Breitinger, Christian Winter, York Yannikos, Tobias Fink, Michael
Seefried

» To cite this version:

Frank Breitinger, Christian Winter, York Yannikos, Tobias Fink, Michael Seefried. Using Approximate
Matching to Reduce the Volume of Digital Data. 10th IFIP International Conference on Digital Foren-
sics (DF), Jan 2014, Vienna, Austria. pp.149-163, 10.1007/978-3-662-44952-3 11 . hal-01393769

HAL Id: hal-01393769
https://inria.hal.science/hal-01393769v1
Submitted on 8 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

https://inria.hal.science/hal-01393769v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Chapter 11

USING APPROXIMATE MATCHING
TO REDUCE THE VOLUME
OF DIGITAL DATA

Frank Breitinger, Christian Winter, York Yannikos, Tobias Fink and
Michael Seefried

Abstract Digital forensic investigators frequently have to search for relevant files
in massive digital corpora — a task often compared to finding a needle
in a haystack. To address this challenge, investigators typically apply
cryptographic hash functions to identify known files. However, cryp-
tographic hashing only allows the detection of files that exactly match
the known file hash values or fingerprints. This paper demonstrates the
benefits of using approximate matching to locate relevant files. The
experiments described in this paper used three test images of Windows
XP, Windows 7 and Ubuntu 12.04 systems to evaluate fingerprint-based
comparisons. The results reveal that approximate matching can improve
file identification — in one case, increasing the identification rate from
1.82% to 23.76%.

Keywords: File identification, approximate matching, ssdeep

1. Introduction

Traditional physical media such as books, photos, letters and long-
playing records (LPs) have been replaced by digital media in the form of
e-books, digital photos, email and MP3 files. The result is that forensic
investigators are faced with overwhelming amounts of digital data even in
routine cases. Investigators need automated processes that can quickly
classify and filter terabytes of data, yielding only the relevant files that
can then be inspected manually.

A common approach is to employ cryptographic hash functions to
automatically classify files: an investigator computes the hash values of
all the files residing on digital media and compares these fingerprints

150 ADVANCES IN DIGITAL FORENSICS X

against file hash values stored in a reference database. A matching hash
confirms that the referenced file is present in the storage media. Depend-
ing on the hash values stored in the reference database, the files can be
classified as relevant (blacklisting) and non-relevant (whitelisting). Files
not found in the database are not classified.

White [18] and Baier and Dichtelmuller [1] have analyzed the impact of
using cryptographic hash functions for file classification in digital foren-
sic investigations. White obtained identification rates as high as 70%.
However, Baier and Dichtelmuller measured identification rates between
15% and 52%; these lower identification rates were due to small changes
in files that typically occur during computer use.

As a consequence, the digital forensic research community has pro-
posed the use of approximate matching that maps similar files to similar
hash values. This paper shows that approximate matching can increase
the file identification rate. In one case, the identification rate increased
from 1.82% with traditional cryptographic hash value comparisons to
23.76% with approximate matching.

The principal contribution of this paper is the quantitative evalua-
tion of identification rates for approximate matching on complete disk
images. While reference results are available for cryptographic hash-
ing [1, 18], approximate matching has not been evaluated on such a large
scale. Also, the paper analyzes the error rates for approximate matching
and establishes similarity score thresholds for use in real-world digital
forensic investigations.

2. Background

Two strategies exist for filtering known content: (i) blacklisting, which
compares a file to a reference database containing the fingerprints of ille-
gal and suspicious files (e.g., child pornography) that should be retained
for further analysis; and (ii) whitelisting, which compares a file to a ref-
erence database containing fingerprints of innocuous files (e.g., operating
system files) that should be eliminated from consideration.

The most prominent reference database is the National Software Ref-
erence Library (NSRL) [11] maintained by the U.S. National Institute of
Standards and Technology (NIST). NIST regularly publishes reference
data sets containing the cryptographic hashes of software products. The
current reference data set, RDS 2.42 of September 2013, covers approx-
imately 115 million files.

Known file filtering predominantly utilizes cryptographic hash func-
tions. However, the security properties of cryptographic hash functions
imply that only identical files can be matched using these hash func-

Breitinger, et al. 151

tions — a difference in just one bit produces a completely different hash
value. Although this property is desired for cryptographic purposes, it
complicates forensic investigations. For example, an investigator is often
interested in locating similar files, file fragments and embedded objects.
Therefore, it is helpful to have algorithms that provide approximate
matches to correlate related versions of data objects.

Approximate matching techniques find matches based on bytewise
similarity or semantic similarity. Bytewise matching operates at the
byte level: two inputs are similar if they have similar byte structures.
Semantic matching, also called perceptual hashing or robust hashing,
attempts to understand the input format and is, therefore, bound to
specific media types, images or movies. While a semantic hashing solu-
tion is highly domain specific, bytewise approximate matching has the
advantage of generality.

This paper investigates bytewise approximate matching, in particular,
using the ssdeep tool [9, 10]. This was motivated by the prominence
of ssdeep, the fact that NIST has published a reference set of ssdeep
hashes, and the ability to process large file volumes in reasonable time
using the F2S2 tool [19].

It is important to note that the concept of approximate matching
should not be confused with locality sensitive hashing. Approximate
matching reduces large files to small digests such that similar files are
mapped to similar digests. On the other hand, locality sensitive hash-
ing is an indexing strategy, which places items into hash buckets such
that similar items have a high probability of being in the same bucket.
Hence, locality sensitive hashing could speed up approximate matching
depending on the matching approach and the locality sensitive hashing
method that are employed.

2.1 ssdeep

Context triggered piecewise hashing was proposed by Kornblum [9,
10] and implemented in the ssdeep tool. It originates from the spam
detection algorithm of Tridgell [17] implemented in spamsum.

The ssdeep tool divides a byte sequence (file) into chunks and hashes
each chunk separately using the Fowler-Noll-Vo (FNV) algorithm [12].
Context triggered piecewise hashing then encodes the six least significant
bits of each FNV hash as a Base64 character. All the characters are
concatenated to create the file fingerprint.

The trigger points for splitting a file into chunks are determined by a
rolling hash function. This function, which is a variation of the Adler-32
algorithm [8], is computed over a seven-byte sliding window to generate

152 ADVANCES IN DIGITAL FORENSICS X

a sequence of pseudorandom numbers. A number r in the sequence
triggers a chunk boundary if » = —1 (mod b). The modulus b, called
the block size, correlates with the file size.

Kornblum suggests dividing a file into approximately S = 64 chunks
and using the same modulus b for similar-sized files. The modulus b is
a saltus function:

b = by, - 211082(NV/5/bmin)] (1)

where by, = 3 and N is the input length in bytes. Since two fingerprints
can only be compared if they were generated using blocks of the same
size, ssdeep calculates two fingerprints for each file using the block sizes
b and 2b and stores both fingerprints in one ssdeep hash.

The similarity of two fingerprints is calculated in two steps. First, the
fingerprints are treated as text strings and compared with each other us-
ing an edit distance function. An edit distance of zero indicates matching
strings and the distance increases with the dissimilarity of strings. In
the second step, the computed distance of the two fingerprints is con-
verted into a similarity score in the range 0 to 100, where a higher score
indicates greater similarity.

The ssdeep similarity measure defines a score boundary for small fin-
gerprints. Hence, small files that are identical often do not receive a
score of 100, although this is expected. The score boundary is enforced
in lines 600 through 604 of fuzzy.c (ssdeep version 2.10). Tridgell’s
comment in the source code says that this is done so as not to “exag-
gerate the match size” for a small block size. However, we eliminated
this constraint in our research because the score boundary introduces
uncertainty when interpreting the match results.

While ssdeep is a pioneer in the domain of approximate matching,
several improvements to ssdeep hashing have been proposed in the lit-
erature [7, 16].

2.2 F2S2

The task of comparing files to a reference list can be very time con-
suming. In particular, the comparison of similarity digests cannot be
performed as efficiently as the exact matching of cryptographic hashes.
Approximate matching tools — including ssdeep — typically compare
every hash computed for the investigation target to every hash in the
reference list.

Unlike exact matching, approximate matching cannot be accelerated
using classical indexing strategies developed for relational databases.
However, it is possible to find suitable indexing strategies. The F2S2
tool [19] implements one such solution that involves n-gram indexing.

Breitinger, et al. 153

F2S2 has been applied to ssdeep hashes and has achieved a speedup of
2,000 times in realistic test cases.

3. Experimental Methodology

The experiments were performed on an Ubuntu 12.04 host using
ssdeep 2.7-1. The drive images came from computers running the Win-
dows and Linux operating systems. Since Windows is the most com-
monly used operating system, the experiments analyzed two Windows
versions: Windows XP (Professional, 32 bit) and Windows 7 (Profes-
sional, 32 bit). The experiments also analyzed the Linux Ubuntu oper-
ating system (version 12.4, 32 bit).

3.1 Overview

The experiments focused on determining the appropriateness of SHA-
1 and ssdeep for known file identification with approximate matching.
The detection rates with respect to true positives and false positives
for cryptographic hashing (SHA-1) and approximate matching (ssdeep)
were examined. Note that the assessment only considered positive errors.

Some large files, such as hyberfil.sys (Windows XP), device files
and named pipes (Ubuntu), did not generate ssdeep hashes. Since the
algorithm was considered to be a blackbox, these problems were treated
as bugs and were not investigated further.

Hash values could not be generated for a very small number of files.
When a file hash value could not be generated, the file was treated as
if it did not exist. In the worst case (Ubuntuy), only 0.12% of the files
had to be dropped.

3.2 System Description and Snapshots

The Windows XP samples came from two snapshots of an extensively-
used system, which were 14 and 27 months old, respectively, when the
snapshots were taken (the age of a system is defined as the time elapsed
between system installation and snapshot generation). The Windows
XP system was used on a daily basis for office work; it contained soft-
ware installations, system and software update artifacts, user created
files and other software usage traces. The Ubuntu system was about
six months old when the snapshot was taken. This snapshot included
system updates, and system development and web browsing artifacts.
The Windows 7 system was used for half a day; during that time, the
latest updates were applied, some files were created and some web pages
were visited. The trusted reference snapshots were created from default

154 ADVANCES IN DIGITAL FORENSICS X

Table 1. Operating system snapshots.

Operating System File Count Disk Usage
WinXPp (Windows XP, Default installation) 8,946 1.9GB
WinXPy1 (Windows XP SP3, 14 months old) 195,186 128.4 GB
WinXPy2 (Windows XP SP3, 27 months old) 466,266 109.5 GB
Win7p (Windows 7, Default installation) 45,470 8.1GB
Win7y (Windows 7 SP1, Used installation) 66,312 9.4GB
Ubuntup (v12.04, Default installation) 185,468 3.3GB
Ubuntuy (v12.04, Used installation) 411,209 25.2GB

installations of the operating systems (i.e., without any updates, service
packs or additional programs).

Table 1 provides information about the operating system snapshots.
Note that WinXPyq used more disk space than WinXPyo because an
82 GB image file was deleted between the times that the two snapshots
were taken.

3.3 Reference Databases

The following reference databases were used to determine the identi-
fication rates for each operating system image:

» NIST Database: This NIST-published database (RDS 2.27 of
December 2009) contains more than eight million entries. The
hashes are provided in the form of a text file with one SHA-1 hash
and one ssdeep hash per line. The SHA-1 hash is used to link
each entry to the regular NIST RDS. The experiments used the
SHA-1 and ssdeep hashes from the NIST database.

s Custom Reference Databases: Because the NIST database
above is an outdated subset of the current RDS 2.42 (September
2013) and no newer ssdeep dataset was available, we created our
own reference sets based on the default installations of the operat-
ing systems. The procedure used to create the reference sets was
essentially the same as that used to create the NIST database.

3.4 Quality of Matches

The matches reported by ssdeep correspond to the number of positive
collisions. The collisions require truth data in order to be classified as
true positives and false positives. Because there were too many files to
perform a manual inspection, the true positives were considered to be
the files that matched the SHA-1 hashes.

Breitinger, et al. 155

U True Positives M False Positives

.
| S
T e

55 63 71 79 95
ssdeep score

50

45
40
35
30
25
20
15
10 ‘ 1
e
15 23 31

Figure 1. Distribution of ssdeep scores according to Roussev [14].

Frequency

w

To perform approximate matching, a threshold ¢ was set to yield a
match score M such that M > t indicates a positive match (i.e., similar
files). However, identifying an appropriate threshold ¢ was challenging
because a low t value increases the false positive rate while a high ¢ value
decreases the true positive rate.

Roussev [14] has studied the ratio between true and false positives
based on the comparison of 4,457 files (= 9,930,196 pairs). His results
are presented in Figure 1. Accordingly, we set the thresholds to ¢t = 60
and t = 40. Although the ¢ = 60 threshold yielded a few false positives,
we rated the false positive rate of the ¢ = 40 threshold as acceptable.

4. Experimental Results

This section presents the experimental results. First, the difference
between SHA-1 matches and ssdeep matches is examined. Next, iden-
tification rates are compared for the various images and databases. Fol-
lowing this, the identification rates are presented in correlation with file
names and paths. Finally, the relationship between identification rate
and file type is clarified.

4.1 Seemingly Identical Files

Minor differences exist between a SHA-1 match and an ssdeep score
of 100. A SHA-1 match implies that two files are identical with extremely

156 ADVANCES IN DIGITAL FORENSICS X

Table 2. TC1: Comparing default installations against the NIST database.

D |D| Issdeep Issdeep Issdeep ISHA—l
t =40 t=60 t=100

WinXPp 8,946 68.69% 63.85% 3584% 3524%
Win7p 45,470 16.59% 9.32 % 1.73 % 1.70 %
Ubuntup 185,468 16.14% 9.54 % 1.90 % 1.95 %

high certainty. In contrast, an ssdeep score of 100 does not necessarily
mean that the two files are identical. Additionally, identical ssdeep
hashes may not receive a score of 100 despite the fact that the small file
score boundary was removed.

The score matching problem is due to the similarity digest comparison
method used by ssdeep. The method requires that the two digests being
compared have a common substring of length seven, otherwise the score
is simply set to zero [3]. Note also that ssdeep assigns a score of zero
to two empty files whereas SHA-1 matches the two files.

An ssdeep score of 100 can be obtained even when the SHA-1 hashes
are different; this is due to fingerprint collisions and the comparison
method. Note that each ssdeep digest consists of two fingerprints and
it is sufficient to have one matching pair to obtain a score of 100. Thus,
there are two types of collisions for ssdeep. In some cases, the ssdeep
hashes match completely; in other cases, only one pair of ssdeep finger-
prints matches. We consider a similarity score 100 for two non-identical
files to be a false positive.

4.2 Detection Thresholds

We also analyzed the detection rates based on the thresholds ¢ = 40
and t = 60. When presenting the results, note that D denotes the
analyzed system and |D| denotes the number of files in the system. Also,
14 is the identification rate using algorithm A € {ssdeep, SHA-1}. For
example, Igdeep = 10 % means that 10 % of the files in system D were
found in the database using ssdeep. Thus, the higher the value of I,
the greater the number of files that are identified automatically.

m Test Case 1 (TC1): This test case compared the files in the
default operating system installations with the files represented
in the NIST database. The results are shown in Table 2. The
identification rates for the Windows XP system are significantly
higher compared with those for the other operating systems; this
because the underlying database was created in December 2009

Breitinger, et al. 157

Table 3. TC2: Comparing used installations against the NIST database.

D |D| Issdeep Issdeep Issdeep ISHA—I
t =40 t=60 t=100

WinXPyy 195,186 17.79% 14.70% 7.69% 8.03%
WinXPys 466,266 23.02% 17.39% 7.05% 7.30%
Win7y 66,312 17.88% 10.21% 145% 1.44%
Ubuntuy 411,209 23.76% 17.11% 1.79% 1.82%

when Windows XP was very popular. Still, the trend is obvious,
regardless of the operating system, the identification rate is much
higher for ssdeep (e.g., nearly ten times better for Win7 with the
threshold t = 40).

m Test Case 2 (TC2): This test case compared the files in the
used operating system installations with the files represented in
the NIST database. The results in Table 3 are comparable with
those obtained in Test Case 1 (Figure 2). Once again, the Windows
XP systems have the best identification rates due to the underlying
database. However, the identification rates are smaller than in the
previous test case because the systems contained large numbers of
files. For example, WinXPyo had in excess of 50 times more files
than WinXPp. Still, the identification rates are approximately
two to ten times higher for ssdeep with threshold ¢ = 60 compared
with SHA-1.

Table 4. TC3: Comparing used installations against default installations.

D |D| Issdeep Issdeep Issdeep ISHA—l
t =40 t=60 t=100

WinXPy:1 195,186 5.12% 4711 % 413 % 4.14 %
WinXPy2 466,266 2.27% 2.01 % 1.72% 1.74%
Win7y 66,312 93.85% 90.19% 67.41% 67.72%
Ubuntuy 411,209 55.67% 53.38% 47.74% 47.83%

m Test Case 3 (TC3): This test case compared the files in the used
installations against those in the default installations. The main
results are shown in Table 4. The low rates for the Windows XP
systems are a consequence of the “small” default installation. Re-
call that the default installation had only about 9,000 files. How-

158 ADVANCES IN DIGITAL FORENSICS X

Table 5. TC4: Comparing WinXPy2 against WinXPy1 as the reference database.

D |D| Issdeep Issdeep Issdeep ISHA»l
t =40 t=60 t=100

WinXPys 466,266 31.98% 28.87% 24.04% 2437%

ever, some files in the default installation are similar or identical
to files in the used installation. Examples are the desktop.ini
files, DLLs and file shortcuts (.1nk). Typical locations for such
files in the default installation are WINDOWS/system32/config/
systemprofile, WINDOWS/pchealth/helpctr/System and WIND
0WS/system32/dl1lcache. Hence, it was possible to identify more
files in the used system than were present in the default system.

The high identification rates for the Windows 7 system reflect the
fact that the system was not used very much. Also, the updates
introduced many files that are similar to the files found in the
default system.

m Test Case 4 (TC4): This test case compared the files in the two
Windows XP snapshots where WinXPy; emulates the database.
The main results are shown in Table 5. Despite the difference
of 13 months between the two snapshots, identification rates are
24% for SHA-1 and 32% for ssdeep, a difference of 8%. The
percentage may seem small, but 8% of the 466,266 files in the
system corresponds to approximately 37,000 files.

The experiments confirmed that the detection rates for ssdeep are
higher than for SHA-1 in all four test cases. This is especially relevant
for blacklisting (files that are similar to suspicious files could constitute
evidence). Also, as shown in the comprehensive study by Roussev [14],
the thresholds used in the experiments are reasonable and have accept-
able false positive rates.

4.3 File Names and Paths

This section analyzes the reliability of positive matches obtained us-
ing the two thresholds. Recall that the number of approximate matches
is the total number of ssdeep matches minus the number of exact SHA-
1 matches. Table 6 shows the results. The first column specifies the
comparisons, e.g., WinXP Ul versus WinXP U2. The second and third
columns list the numbers of files in the systems (|D|) and the numbers
of matches with scores greater than or equal to ¢ (ssdeep Hits), respec-

Breitinger, et al. 159

Table 6. Identification rates for file paths and names in different images.

D |D| ssdeep Without Path Name
Hits SHA-1 Matches Matches

WinXP(U1 v. U2); t=40 466,266 31.98% 7.97% 10.57 % 37.09%
WinXP(U1 v. U2); t=60 466,266 28.87% 4.86% 15.58 % 50.68 %
Win7(B v.U); t=40 66,312 93.85% 26.44% 1.51% 5.79 %
Win7(B v. U); t=60 66,312 90.19% 22.78% 1.51% 5.91%
Ubuntu(B v. U); t=40 411,209 55.67% 7.99% 16.99 % 71.37 %
Ubuntu(B v. U); t=60 411,209 53.38% 5.71% 22.91% 85.89 %

tively. The fourth column shows the benefit of ssdeep, i.e., matches
that are not identified by SHA-1 (relative to |D|) — this is the “criti-
cal amount” of files. The last two columns list the file path and name
matches relative to the numbers of files excluding the SHA-1 matches.

Consider, for example, the last row of Figure 6, which examines the
default Ubuntu installation against the used Ubuntu installation that
contains 411,209 files. When ¢t = 60, ssdeep detects 53.38% as similar
files. Reducing this figure by the number of SHA-1 matches yields 5.71%
(i.e., 23,480 files). 22.91% of these files have the same path and 85.89%
have the same file name. Hence, these files are considered to be true
positives. The remaining 100% — 85.89% = 14.11% files are either false
positives or files that have been moved or renamed. A total of 3,313 files
remain and these files need to be analyzed manually.

4.4 File Types

While approximate matching at the syntactic level can be applied to
any file, it is not useful for all file types. This depends on the file type
and the type of modification — whether small modifications preserve most
of the binary content of a file or lead to a completely different binary
pattern. For example, text is favorable while compressed data causes
problems. The reason is that small text modifications result in small
changes to the binary data of a text file, but compression algorithms
create very different byte sequences given similar inputs. Thus, approx-
imate matching at the raw byte level cannot discern the real similarity
when compression algorithms have been used.

The final experiment sought to identify the file types for which ssdeep
is better than cryptographic hashing. The test considered only ssdeep
scores between 60 and 99. Table 7 shows the ten most frequent file types
with scores between 60 and 99 for each operating system based on Test
Case 2. The numbers correspond to the file percentages compared with

160 ADVANCES IN DIGITAL FORENSICS X

Table 7. File types with high identification rates for non-identical files.

WinXPyo Win7y Ubuntuy

Type Amount Type Amount Type Amount

11.60% .mum* 40.056% .html* 60.62 %
.html* 10.44% .inf* 10.09% .h* 19.40 %
.h* 6.40% .d11 8.18% 10.63 %
.yaml* 6.09% .png 6.06% .pm* 1.42%
.svn-base* 452% .mui 4.77% .gz 0.73%
.d11 415% .gpd* 442% .png 0.63 %
.png 3.82% .fon 337T% .py* 0.63 %
.py* 253% .nls 330% .al 0.55 %
.mf* 1.86% .ttf 248% .ent 0.44 %
.htm* 1.69% .ini* 1.32% .ps 0.36 %

all the files identified within the score range. The file types that include
text are marked with an asterisk; they constitute the majority of the
listed files. However, binary file types (e.g., .d11 in Table 7) also have
high identification rates. Other results (not shown in this paper) reveal
that .exe, .pyc and .so are also among the top ten file types. Note
that files without suffixes are typically text files or binary executables.

5. Related Work

Approximate matching has been shown to be useful for detecting sim-
ilar inputs (e.g., different versions of a file), detecting embedded objects
(e.g., a .jpg file in a Word document) and detecting fragments (e.g.,
network packets) [14]. Apart from ssdeep, we are aware of six other
approximate matching algorithms. Two of them have similar qualities
as ssdeep. The first is sdhash [13], which identifies statistically improb-
able features (e.g., a byte sequence of 64 characters), hashes them using
SHA-1 and sets five bits in a Bloom filter. The second, mrsh-v2 [5], is a
combination of ssdeep and sdhash. This algorithm uses a rolling hash
to divide the input into chunks and each chunk is hashed using the FNV
algorithm and inserted in a Bloom filter.

The remaining algorithms are less practical. For example, bbHash [4]
is very slow — it requires about two minutes to process a 10 MiB file.
mvHash-B [2] needs a specific configuration for each file type, while
SimHash [15] and MinHash [6] can only handle near duplicates.

White [18] has analyzed the benefits of using hash functions in digital
forensics. Instead of hashing complete files, block hashing applies cryp-
tographic algorithms to smaller-than-filesize portions of data, where a
portion is a 4,096-byte block. According to White, file-based data re-

Breitinger, et al. 161

duction leaves an average of 30% of disk space for human investigation
and incorporating block hashes reduces the amount of data for human
review to 15% of disk space. However, White focused on basic instal-
lations, which is not a realistic scenario. Baier and Dichtelmuller [1]
showed that the reduction rates for used workstations were much worse
than those obtained by White. In particular, Baier and Dichtelmuller
obtained rates of approximately 50% for a basic Windows XP installa-
tion and rates as low as 15% for used Windows 7 and Ubuntu systems.
In both cases, Baier and Dichtelmuller used the latest reference data
set that contained many more entries than the reduced NIST database
employed in this research.

6. Conclusions

This paper describes the first experimental evaluation of approximate
matching with large test cases. The results show that approximate
matching provides substantial benefits compared with cryptographic
hashing. Approximate matching significantly increases the number of
files identified as known files. Also, it reduces the number of files that
have to be inspected manually by digital forensic investigators. Text
files and binary files can be filtered effectively using approximate match-
ing at the syntactic level. However, it is important that an up-to-date
reference database is used to obtain the best identification rates.

Better results than ssdeep can be obtained using a more accurate
approximate matching algorithm such as sdhash. However, an efficient
similarity comparison method must be devised before sdhash can be
evaluated using large test cases.

Acknowledgement

This research was partially supported by the European Union under
the Integrated Project FIDELITY (Grant No. 284862) and by the Center
for Advanced Security Research Darmstadt (CASED).

References

[1] H. Baier and C. Dichtelmuller, Datenreduktion mittels kryp-
tographischer Hashfunktionen in der IT-Forensik: Nur ein Mythos?
DACH Security, pp. 278287, September 2012.

[2] F. Breitinger, K. Astebol, H. Baier and C. Busch, mvhash-b — A
new approach for similarity preserving hashing, Proceedings of the
Seventh International Conference on IT Security Incident Manage-
ment and IT Forensics, pp. 33—44, 2013.

162

3]

[4]

[5]

ADVANCES IN DIGITAL FORENSICS X

F. Breitinger and H. Baier, Security aspects of piecewise hashing
in computer forensics, Proceedings of the Sixzth International Con-

ference on IT Security Incident Management and IT Forensics, pp.
21-36, 2011.

F. Breitinger and H. Baier, A fuzzy hashing approach based on
random sequences and Hamming distance, Proceedings of the Con-
ference on Digital Forensics, Security and Law, 2012.

F. Breitinger and H. Baier, Similarity preserving hashing: Eligi-
ble properties and a new algorithm mrsh-v2, Proceedings of the
Fourth International ICST Conference on Digital Forensics and Cy-
ber Crime, 2012.

A. Broder, On the resemblance and containment of documents, Pro-
ceedings of the International Conference on the Compression and
Complezity of Sequences, pp. 21-29, 1997.

L. Chen and G. Wang, An efficient piecewise hashing method for
computer forensics, Proceedings of the First International Workshop
on Knowledge Discovery and Data Mining, pp. 635-638, 2008.

P. Deutsch and J. Gailly, ZLIB Compressed Data Format Specifi-
cation Version 3.3, RFC 1950, 1996.

J. Kornblum, Identifying almost identical files using context trig-
gered piecewise hashing, Digital Investigation, vol. 3(S), pp. S91—-
597, 2006.

J. Kornblum, ssdeep (ssdeep.sourceforge.net), 2013.

National Institute of Standards and Technology, National Software
Reference Library, Gaithersburg, Maryland (www.nsrl.nist.gov).

L. Noll, FNV hash (www.isthe.com/chongo/tech/comp/fnv/in
dex.html), 2013.

V. Roussev, Data fingerprinting with similarity digests, in Advances
in Digital Forensics VI, K. Chow and S. Shenoi (Eds.), Springer,
Heidelberg, Germany, pp. 207-226, 2010.

V. Roussev, An evaluation of forensic similarity hashes, Digital In-
vestigation, vol. 8(S), pp. S34-S41, 2011.

C. Sadowski and G. Levin, SimHash: Hash-Based Similarity De-
tection, Technical Report UCSC-SOE-11-07, Department of Com-
puter Science, University of California Santa Cruz, Santa Cruz,
California (simhash.googlecode.com/svn/trunk/paper/SimHash
WithBib.pdf), 2007.

Breitinger, et al. 163

[16] K. Seo, K. Lim, J. Choi, K. Chang and S. Lee, Detecting simi-
lar files based on hash and statistical analysis for digital forensic
investigations, Proceedings of the Second International Conference
on Computer Science and its Applications, 2009.

[17] A. Tridgell, spamsum (mirror.linux.org.au/linux.conf.au/20
04/papers/junkcode/spamsum/README), 2002.

[18] D. White, Hashing of file blocks: When exact matches are not use-
ful, presented at the Annual Meeting of the American Academy of
Forensic Sciences, 2008.

[19] C. Winter, M. Schneider and Y. Yannikos, F252: Fast forensic sim-
ilarity search through indexing piecewise hash signatures, Digital
Investigation, vol. 10(4), pp. 361-371, 2013.

