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Abstract

Biometric characteristics are largely immutable, i.e. un-

protected storage of biometric data provokes serious pri-

vacy threats, e.g. identity theft, limited re-newability, or

cross-matching. In accordance with the ISO/IEC 24745

standard, technologies of cancelable biometrics offer solu-

tions to biometric information protection by obscuring bio-

metric signal in a non-invertible manner, while biometric

comparisons are still feasible in the transformed domain.

In the presented work alignment-free cancelable iris

biometrics based on adaptive Bloom filters are proposed.

Bloom filter-based representations of binary biometric tem-

plates (iris-codes) enable an efficient alignment-invariant

biometric comparison while a successive mapping of parts

of a binary biometric template to a Bloom filter represents

an irreversible transform. In experiments, which are car-

ried out on the CASIA-v3 iris database, it is demonstrated

that the proposed system maintains biometric performance

for diverse iris recognition algorithms, protecting biometric

templates at high security levels.

1. Introduction

Cancelable biometrics [15] consist of intentional, repeat-

able distortions of biometric signals based on transforms

which provide a comparison of biometric templates in the

transformed domain. Technologies of cancelable biomet-

rics are commonly categorized as non-invertible transforms

and biometric salting [16]. Transforms are designed to meet

two major requirements of biometric information protection

(ISO/IEC 24745). (1) Irreversibility: knowledge of the pro-

tected template can not be used to determine any informa-

tion about the original biometric sample, while it should be

easy to generate the protected template; (2) Unlinkability:

different versions of protected biometric templates can be

generated based on the same biometric data (renewability),

while protected templates should not allow cross-matching

(diversity). Meeting these requirements the vast majority

of published approaches to cancelable biometrics report a

significant decrease in recognition performance. This in-

evitable degradation of biometric performance is caused by

two major issues: in most cases (1) local neighborhoods

of feature elements are obscured and (2) transformed en-

rollment templates are not “seen”, i.e. alignment can not be

performed properly at the time of comparison [16].

The contribution of this work is the proposal of a generic

approach to cancelable iris biometrics based on adaptive

Bloom filters. A Bloom filter [1] is a space-efficient proba-

bilistic data structure representing a set in order to support

membership queries. In addition to an efficient storage and

rapid processing of queries, Bloom filters convince by their

wide field of applications, e.g. database applications [12] or

network applications [3]. In the presented work Bloom fil-

ters are utilized to map binary biometric feature vectors to

an alignment-free transformed domain. Eliminating the is-

sue of feature alignment caused by cancelable transforms,

a mapping of biometric feature elements to a Bloom fil-

ter is non-invertible, i.e. a re-construction of the original

biometric template from stored Bloom filters is not feasi-

ble. In addition, unlinkability is provided by incorporating

application-specific secrets, i.e. seed values. To the author’s

knowledge the proposed work represents the very first ap-

plication of Bloom filter in order to achieve alignment-free

cancelable biometric templates.

This paper is organized as follows: Sect. 2 reviews re-

lated works on cancelable biometrics in particular, based on

iris. In Sect. 3 the concept of Bloom filters is introduced

and the proposed system is described in detail. Experimen-

tal evaluations are presented in Sect. 4. In Sect. 5 conclu-

sions are drawn and future work is discussed.

2. Related Work

Ratha et al. [15] were the first introducing the concept

of cancelable biometrics. In their work the authors ap-

ply image-based block permutations and surface-folding in

order to obtain revocable biometric templates. In further

work [20] the authors propose different techniques to gener-

ate cancelable iris biometrics based on non-invertible trans-

forms and biometric salting, which are applied in image
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Figure 1. Basic operation mode of the proposed alignment-free cancelable iris biometric system based on adaptive Bloom filter.

and feature domain. In order to preserve a computational

efficient alignment of resulting iris-codes based on circu-

lar bit-shifting, iris textures and iris-codes are obscured in a

row-wise manner, which means adjacency of pixels and bits

is maintained along x-axis in image and feature domain,

respectively. In [6] block re-mapping and image wraping

have been applied to normalized iris textures. For both

types of transforms a proper alignment of resulting iris-

codes is infeasible causing a significant decrease of bio-

metric performance. In [13] several enrollment templates

are processed to obtain a vector of consistent bits. Re-

vocability is provided by encoding the iris-code accord-

ing to a subject-specific random seed. In case subject-

specific transforms are applied in order to achieve cance-

lable biometrics, these transforms have to be considered

compromised during inter-class comparisons [8]. Subject-

specific secrets, be it transform parameters, random num-

bers, or any kind of passwords are easily compromised, i.e.

performance evaluations have to be performed under the

“stolen-secret scenario”, where each impostor is in posses-

sion of valid secrets. In [14] cancelable iris templates are

achieved by applying sector random projection to iris im-

ages. Again, recognition performance is only maintained if

subject-specific random matrices are applied. In [4] non-

invertible iris-codes are computed by thresholding inner

products of the feature vector with randomly generated vec-

tors. The random vectors are created by using a per-subject

secret and a pseudo random number generator. Several nor-

malized iris textures are multiplied with a random kernel in

[5] to create concealed feature vectors.

The vast majority of non-invertible transforms only

maintains biometric performance for settings which leave

security doubtable, e.g. a row-wise permutation and shift-

ing of iris texture stripes in [20] or a permutation of 32×32

pixel blocks within 512×64 pixel textures in [6]. Within

approaches to biometric salting, e.g. in [4, 13], subject-

specific secrets are incorporated while experiments are per-

formed under to non-stolen-secret scenario omitting the ac-

tual biometric performance of the system.

3. System Architecture

The key components of the proposed system which is

depicted in Fig. 1 are described in detail as follows:

3.1. Bloom Filter-based Feature Transform

Basically, a Bloom filter b is a simple bit array of length

n, where initially all bits are set to 0. In order to represent

a set S = {x1, x2, ..., xm} a Bloom filter traditionally uti-

lizes k independent hash functions h1, h2, ..., hk with range

[0, n − 1]. For each element x ∈ S, bits hi(x) of Bloom

filter b are set to 1, for 1 ≤ i ≤ k. An index can be set

to 1 multiple times, but only the first change has an effect.

To test if an element y is in S, it has to be checked whether

all position of hi(y) in b are set to 1. If this is the case, it

is assumed that y is in S with a certain probability of false

positive. If not, clearly y is not a member of S, hence, tra-

ditional Bloom filter are suitable for any application where

a distinct probability of false positive is acceptable.

In the proposed system the original concept of Bloom

filters is adapted in order to achieve alignment-free cance-

lable iris biometrics. Generic iris recognition systems [2]

extract binary feature vectors (iris-codes) which are gener-

ated from a row-wise analysis of normalized iris textures,

i.e. iris-codes typically represent two-dimensional binary

feature vectors of width W and height H (see Fig. 4 (e)-

(f)). In the proposed scheme W ×H iris-codes are divided

into K blocks of equal size. Subsequently, the entire se-

quence of columns, where each column consists of w bits,

of each block is successively transformed to according lo-

cations within Bloom filters, that is, a total number of K

separate Bloom filters of length n = 2w form the protected

template of size K · 2w. The transform is implemented by

mapping each column within the 2D iris-code to the index

of its decimal value which is shown for two different code-

words (=columns) as part of Fig. 1. Thereby the original

positions of codewords is concealed, i.e. given a Bloom fil-

ter b it is not clear from which column a distinct 1-bit in

the protected template originated. In addition, it is most
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tween different pairs of binary biometric feature vectors.

likely that diverse columns are mapped to a single index and

the occurrence of distinct codewords can not be established

from the protected template. In order to provide unlinkabil-

ity between multiple cancelable templates of a single sub-

ject an application specific secret T in form of a bit vector of

length w is incorporated, which is XORed with each code-

word prior to mapping it to a Bloom filter, as depicted in

Fig. 1. It is important to note that this secret is application-

specific (and potentially subject specific) and does not serve

any security purposes. Irreversibility and unlinkability will

be discussed in detail in Sect. 3.3.

The very essence of the proposed transform is that it is

alignment-free, i.e. cancelable templates (=sets of Bloom

filters) do not need to be aligned at the time of compar-

ison. In traditional iris recognition systems, detected iris

textures (in form of a ring) are transformed to polar coordi-

nates. As a consequence a circular row-wise shifting of iris-

codes corresponds to a rotation of the eye (see Fig. 4 (b)-

(c)). In the presented approach equal columns within certain

blocks (=codewords) are mapped to identical indexes within

Bloom filters, i.e. self-propagating errors caused by an in-

appropriate alignment of iris-codes are eliminated (radial

neighborhoods persist). The rotation-compensating prop-

erty of the proposed system comes at the cost of location

information of iris-code columns. A drastic initial miss-

alignment of iris-codes would distribute a large amount

of potentially matching codewords among different blocks

which would be mapped to different Bloom filters. In ex-

periments, which are performed on a database acquired in a

rather constrained environment, this potential drawback did

not affect biometric performance.

3.2. Comparison in Transformed Domain

Typically, comparisons between binary biometric feature

vectors are implemented by the simple XOR operator ap-

plied to a pair of binary biometric feature vectors. The sum

of all detected disagreements between any corresponding

pairs of bits divided by the amount of compared bits yields
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block sizes and proportions of re-mapped codewords.

the fractional Hamming distance (HD) as a measure of dis-

similarity between pairs of binary biometric feature vectors.

Let |b| denote the amount of bits within a Bloom filter b,

which are set to 1. Then the dissimilarity DS between two

Bloom filters bi and bj is defined as,

DS (bi, bj) =
HD(bi, bj)

|bi|+ |bj |
. (1)

If pairs of Bloom filters would be compared by

merely estimating Hamming distances between these, mis-

matching bits between Bloom filters in which fewer bits are

set to 1 would be weighted less and vice versa. Obviously,

DS s are computed as efficient as HDs while DSs do not

have to be computed at numerous shifting positions. Note

that no masking bits are taken into account.

3.3. Irreversibility and Unlinkability

Within the presented scheme irreversibility is achieved

by mapping column-wise codewords to Bloom filters.

Given a Bloom filter b of length n we restrict to inserting

only l codewords, where l ≤ n (blocks do not contain more

than n columns). In case of uniformly distributed data the

probability that a certain bit is set to 1 during the insertion

of an element is 1/n, i.e. the probability that a bit is still 0 is

1−1/n. For inserting a total of l elements 1−(1−1/n)l bits

are expected to be set to 1. For n = l·c and c ∈ N, i.e. n rep-

resents a multiple of l, limn→∞(1−1/n)l = 1/el/n. Focus-

ing on biometric data this theoretical expectation does not

apply, since bits of binary biometric feature vectors must

not be expected to be mutually independent, i.e. reasonable

parts of feature vectors correlate.

A common way to estimate the average entropy (�
amount of mutually independent bits) of biometric feature

vectors is to measure the provided “degrees-of-freedom”

which are defined by d = p(1 − p)/σ2, where p is the

mean HD and σ
2 the corresponding variance between com-

parisons of different pairs of binary feature vectors, shown

in Fig. 2. In case all bits of each binary feature vector
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Figure 4. Preprocessing and applied feature extraction algorithms.

of length z would be mutually independent, comparisons

of pairs of different feature vectors would yield a bino-

mial distribution, B(z, k) =
(
z
k

)
p
k(1 − p)z−k =

(
z
k

)
0.5z

and the expectation of the Hamming distance would be

1/z · E(X ⊕ Y ) = zp · 1/z = p = 0.5, where X and

Y are two independent random variables in {0, 1}. In real-

ity p decreases to 0.5− ε while Hamming distances remain

binomially distributed with a reduction in z in particular,

B(d, 0.5) [19].

High correlation between codewords, especially neigh-

boring ones, is expected. Consequently, a significant

amount of codewords are mapped to identical positions in

Bloom filters even for small values of l. Assume |b| bits are

set to 1 within a Bloom filter after inserting l codewords,

i.e. |b| different codewords occur in a block of l. Hence,

the probability of re-mapping a bit to a certain position is

1 − |b|/l. For a potential attacker the reconstruction of

the original iris-code part involves an arranging of |b| code-

words to l positions. For |b| ≤ l the theoretical amount of

possible sequences is recursively defined by f(|b|, l) where

each of the |b| codewords have to appear at least once within

l columns,

f(|b|, l) =

⎧⎪⎨
⎪⎩
1, if |b| = 1 ,

|b|l −
|b|−1∑
i=1

(
|b|

i

)
· f(i, l) otherwise.

(2)

In other words, all sequences where less than |b| code-

words appear are subtracted from the number of all pos-

sible sequences, |b|l. Fig. 3 illustrates the rapid increase

of possible sequences even for small values of |b| (note
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for both feature extraction algorithms.

the logarithmic scales of both axis). Peaks are located

around 3l/4, in case of l = |b| we get f(l, l) = l! and

f(1, l) = 1. For instance, for l = 4 and |b| = 2 we get

f(2, 4) = 24 −
(
2

1

)
· f(1, 4) = 16 − 2 · 1 = 14 possi-

ble sequences, for l = 4 and |b| = 3 we get f(3, 4) =
34 −

(
3

1

)
· f(1, 4)−

(
3

2

)
· f(2, 4) = 81− 3 · 1− 3 · 14 = 36

possible sequences and for l = 4 and |b| = 4 we get

f(4, 4) = 4! = 24 possible sequences and so forth.

Unlinkability is provided by incorporating an applica-

tion specific bit vector, denoted by T ∈ {0, 1}w, which is

XORed with processed codewords prior to mapping these

to Bloom filters. Alternatively, different types of hash func-

tions could be applied in different applications, or a sin-

gle hash function could be applied based on an application

specific seed. In experiments it will be demonstrated that

for randomly generated bit vectors it is infeasible for po-

tential attackers to cross-match pairs of protected templates

extracted from a single subject.

4. Experimental Studies

Performance is estimated in terms of false non-match

rate (FNMR) at a targeted false match rate (FMR) and equal

error rate (EER). The FNMR of a biometric system defines

the proportion of genuine attempt samples falsely declared

not to match the template of the same characteristic from

the same user supplying the sample. By analogy, the FMR

defines the proportion of zero-effort impostor attempt sam-

ples falsely declared to match the compared non-self tem-

plate. As score distributions overlap EERs are obtained, i.e.

the system error rate where FNMR = FMR.

4.1. Experimental Setup

Experiments are carried out using the CASIA-v3-

Interval iris database1. In experiments only left-eye images

(1332 instances) are evaluated. At pre-processing the iris

1The Center of Biometrics and Security Research,

http://www.idealtest.org

                                                                                                                                              



Table 1. Performance rates (in %) for original feature extractors

with and without shifting (FNMRs are obtained at FMR=0.01%).

Alignment
1-D Log Gabor Ma et al.

1-FNMR EER 1-FNMR EER

± 8 bit shifts 95.03 1.58 96.16 1.19

No bit shift 81.48 8.35 72.17 17.41

of a given sample image is detected, un-wrapped to an en-

hanced rectangular texture of 512× 64 pixel, shown in Fig.

4 (a)-(d) applying the weighted adaptive Hough algorithm

proposed in [18]. The two-stage segmentation algorithm

employs a weighted adaptive Hough transform iteratively

refining a region of interest to find an initial center point,

which is utilized to polar transform the image and extract

polar and limbic boundary curves one after another from an

(ellipso-)polar representation.

In the feature extraction stage custom implementations2

of two different iris recognition algorithms are employed

where normalized iris textures are divided into stripes to ob-

tain 10 one-dimensional signals, each one averaged from

the pixels of 5 adjacent rows (the upper 512 × 50 rows

are analyzed). The first feature extraction method follows

an implementation by Masek [11] in which filters obtained

from a Log-Gabor function are applied. Within this ap-

proach the texture is divided into 10 stripes to obtain 5 one-

dimensional signals, each one averaged from the pixels of

5 adjacent rows, hence, the upper 512 × 50 pixel of pre-

processed iris textures are analyzed. A row-wise convolu-

tion with a complex Log-Gabor filter is performed on the

texture pixels. The phase angle of the resulting complex

value for each pixel is discretized into 2 bits. The 2 bits of

phase information are used to generate a binary code, which

therefore is again 512 × 20 = 10240 bit. This algorithm is

somewhat similar to Daugman’s use of Log-Gabor filters,

but it works only on rows as opposed to the 2-dimensional

filters used by Daugman. The second feature extraction al-

gorithm was proposed by Ma et al. [9]. Within this algo-

rithm a dyadic wavelet transform is performed on 10 signals

obtained from the according texture stripes, and two fixed

subbands are selected from each transform resulting in a to-

tal number of 20 subbands. In each subband all local min-

ima and maxima above an adequate threshold are located,

and a bit-code alternating between 0 and 1 at each extreme

point is extracted. Using 512 bits per signal, the final code

is 512 × 20 = 10240 bit. Sample iris-codes generate by

both feature extraction methods are shown in Fig. 4 (e)-(f).

The binomial distribution of Hamming distances be-

tween different pairs of binary biometric feature vectors for

both algorithms is plotted in Fig. 5. The 1D Log-Gabor

feature extractor achieves a total of 592 degrees of freedom

2USIT – University of Salzburg Iris Toolkit v1.0,

http://www.wavelab.at/sources/
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Figure 6. ROC curves of the original biometric system and the best

performing cancelable systems for both feature extractors.

for a mean of 0.493 and an according standard deviation of

0.021. The algorithm of Ma et al. yields 1291 degrees of

freedom for a mean of 0.498 and a standard deviation of

0.013. As previously mentioned feature alignment repre-

sents an essential task during comparison. Table 1 summa-

rizes the biometric performance of both feature extractors

in terms of 1-FNMRs at an FMR of 0.01% and EERs for

±8 circular bit shifts and no bit shifting. Obviously, bio-

metric performance is significantly improved if templates

are aligned properly, where 8 circular bit shifts in each di-

rection was found to be an adequate choice. It is expected

that the proposed system will take major advantage of its

rotation-compensating property. The according receiver op-

eration characteristic (ROC) curves are depicted in Fig. 6

(a). For both methods practical performance rates are ob-

tained while the iris-code extracted by the algorithm of Ma

et al. exhibit twice as much degrees of freedom compared

to the feature extraction of Masek.

4.2. Performance Evaluation

Focusing on the applied feature extraction algorithms ex-

tracted iris-codes are divided in an upper 512×10 bit half

and a lower 512×10 bit half as these represent real and

complex values or minima and maxima extracted from dif-

                                                                                                                                              



Table 2. Performance rates (in %) for both feature extractor for

different word sizes (FNMRs are obtained at FMR=0.01%).

Word size 1-D Log Gabor Ma et al.

w (bits) 1-FNMR EER 1-FNMR EER

10 93.65 2.61 95.44 1.75

9 96.11 2.31 95.70 1.69

8 96.16 1.54 96.93 1.63
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Figure 7. Correlation (1-HD) between columns of iris-codes for

both feature extraction algorithms.

ferent wavelet subbands, respectively. In case HDs are es-

timated based on column-wise codewords, i.e. a single er-

ror between two codewords defines a mis-match, FNMRs

slightly increase with the size of codewords while EERs in-

crease rather fast. 1-FNMRs and EERs for codeword sizes

of w = 8 to w = 10 bits are summarized in Table 2, where

codewords start at the top of the upper and lower half and

the original biometric performance corresponds to a word

size of w = 1.

As already stated high correlation appears between

neighboring columns of iris-codes. For both algorithms cor-

relations in terms of 1-HD are plotted in Fig. 7 for more

than 10 000 randomly chosen iris-code columns. As ex-

pected directly neighboring columns exhibit high correla-

tion since bits in iris-codes are not mutually independent.

Columns with high correlation are surrounded by columns

exhibiting rather low correlation, that is, from the estimated

degrees-of-freedom an average iris-code extracted by the al-

gorithm of Ma et al. corresponds to 1291 Bernoulli trials

which means concatenated sequences of 0s and 1s exhibit

an average length of �8 (10240/1291) bit. By analogy, for

the 1D Log-Gabor feature extractor concatenated sequences

Table 3. Performance rates (1-FNMRs at FMR=0.01 in %) for both

feature extractors and different configurations of the system.

Algorithm
Word size Block size l (bits)

w (bits) 25 26 27 28 29

1-D
10 96.36 93.45 84.75 60.19 41.48

Log Gabor
9 95.90 92.07 81.73 60.15 41.22

8 94.78 90.89 79.33 50.89 –

10 97.95 95.08 86.70 75.29 52.68

Ma et al. 9 97.49 93.50 84.04 66.08 27.46

8 96.52 92.17 75.39 31.40 –

Table 4. EERs (in %) for both feature extractors and different con-

figuration of the cancelable system.

Algorithm
Word size Block size l (bits)

w (bits) 25 26 27 28 29

1-D
10 1.49 2.12 3.17 5.04 9.04

Log Gabor
9 1.67 2.15 3.32 6.10 12.17

8 1.83 2.24 4.74 11.55 –

10 1.14 1.72 2.64 5.08 8.99

Ma et al. 9 1.44 1.95 3.74 7.57 13.90

8 1.47 2.51 4.79 11.97 –

of 0s and 1s exhibit an average length of �17 (10240/592)

bit (cf. Fig. 4(e)-(f)).

Table 3 and Table 4 summarize obtained 1-FNMRs and

according EERs for different word sizes w and block sizes

l for both feature extraction algorithms. Biometric per-

formance is maintained or even improved for small block

sizes, which support the previous claim that initial miss-

alignments do not cause a drastic decrease in biometric

performance. Throughout experiments best result were

achieved for the maximum word size of 10 bit. Fig. 6 (b)

depicts the ROC curve for the best configuration of K =
10240/(32 · 10) = 32 blocks of l = 32 codewords which

are mapped to 32 Bloom filters of size n = 2w = 210.

By applying the DS metric, which represents an improved

biometric comparator, to pairs of Bloom filters accuracy is

gained while the original biometric template is protected.

For greater block sizes (e.g. l = 28) biometric performance

decreases drastically, since too much local information is

lost. Regarding resulting template sizes for most configura-

tions K · 2w < 10 · 210, which means a compression of the

original template is achieved.

4.3. Security Analysis

The security of the entire approach relies on the non-

invertible mapping of codewords to a Bloom filter. W.l.o.g.

this transform obscures the original position of the code-

word as well as the number a codeword occurs, hence, for

different configurations certain amounts of codewords are

mapped to an identical position within according Bloom fil-
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Figure 8. Proportion of re-mapped codewords, 1-|b|/l, for differ-

ent block sizes l and word sizes w for both feature extractors.

ters. Fig. 8 depicts the average percentage of re-mapped

codewords and according standard deviations for both al-

gorithms and applied configurations, according to Fig. 3

remapping 1 − |b|/l � 1 − 3/4 = 25% would be optimal

in terms of security. In contrast to uniformly distributed

data for configurations of w = 9 and w = 10 bit more

codewords are re-mapped for smaller block sizes which

is caused by correlation between iris-code columns. For

w = 8 bit, the amount of re-mapped codewords increases

with the block size l, i.e. more information is lost compared

to larger values of w. As a result, in general, biometric per-

formance decreases with the word size w (see Table 3 and

Table 4), as opposed to the case where no information about

codeword positions is lost (see Table 2).

For best performing configurations (w.r.t. accuracy),

mapping l = 32 codewords of length w = 10 to a n = 210

bit Bloom filters, for the 1D Log-Gabor feature extraction ∼
48% of codewords are re-mapped, 1−|b|/l � 0.48 (see Fig.

8(a)). By analogy, for the algorithm of Ma et al. on average

∼ 32% of codewords are re-mapped (see Fig. 8(b)). Fo-

cusing on the 1D Log-Gabor feature extractor, according to

the previously estimated amount of possible sequences (see

Fig. 3, l = 32) a potential attacker would have to try ∼ 2126

different sequences, |b| = 32 · (1− 0.48) = 16.64, for each
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Figure 9. Score distributions for inter-class comparisons and ac-

cording unlinkability tests for both feature extractors.

of the K = 32 blocks. For the algorithm of Ma et al. the av-

erage amount of re-mapped codewords is even lower result-

ing in ∼ 2131 different sequences for |b| = 32 ·(1−0.32) =
21.76. By increasing block sizes security is significantly in-

creased, e.g. for the feature extractor of Ma et al. a total

number of ∼ 2283 possible sequences have to be tried per

block in order to guess the original iris-code for w = 10 and

l = 64, with |b| = 32 · (1 − 0.31) = 22.08, while the sys-

tem still reveals a practical EER of 1.72%. Obviously, the

cancelable biometric system is operated through a natural

trade-off between security and biometric performance.

4.4. Unlinkability Study

Unlinkability, i.e. the infeasibility of cross-matching dif-

ferent protected templates of a single subject, represents a

major issue of biometric template protection. Experimental

studies on unlinkability are commonly neglected [10] while

several template protection schemes, e.g. fuzzy vault [7],

have been exposed to be highly vulnerable to attacks via

record multiplicity [17].

In the proposed cancelable scheme unlinkability is

achieved by incorporating an application-specific bit vec-

tor which is XORed with each iris-code column prior to

transforms. In order to investigate the unlinkability of the



presented approach we focus on the best performing con-

figuration in terms of accuracy, i.e. l = 32 columns com-

prising w = 10 bits are successively mapped to accord-

ing Bloom filters of size n = 210. Subsequently, ob-

tained inter-class distributions are compared to distributions

yielded by comparing Bloom filters originating from a sin-

gle iris-code which are obscured by different bit vectors.

Obtained score distributions are depicted in Fig. 9 for both

algorithms, where unlinkability studies have been obtained

from more than 10 000 genuine comparison with randomly

chosen bit vectors. The comparison of different cancelable

templates generated from a single iris-code does not allow

cross-matching since resulting dissimilarity scores are gen-

erally higher than that of impostor comparisons within a sin-

gle application.

5. Conclusion and Future Work

In this work alignment-free cancelable iris biometrics

based on adaptive Bloom filter are proposed. Mapping

biometric feature elements to Bloom filter represents an

efficient non-invertible transform which provides a rapid

alignment-free biometric comparison in transformed do-

main. A comprehensive experimental evaluation based

on different iris biometric feature extractors confirms the

soundness of the presented approach, providing protected

templates and maintaining biometric performance of origi-

nal recognition systems.

Due to the fact that a Bloom filter-based representation

of biometric features does not require template alignment it

could be applied in an efficient serial combination of feature

extractors in order to accelerate biometric identification. In

addition, if it is possible to establish an ordering of Bloom

filter these could serve as a fuzzy hash in order to index

biometric databases.
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