

REDUCING THE TIME REQUIRED
FOR HASHING OPERATIONS

Frank Breitinger and Kaloyan Petrov

Abstract Due to the increasingly massive amounts of data that need to be ana-
lyzed in digital forensic investigations, it is necessary to automatically
recognize suspect files and filter out non-relevant files. To achieve this
goal, digital forensic practitioners employ hashing algorithms to clas-
sify files into known-good, known-bad and unknown files. However, a
typical personal computer may store hundreds of thousands of files and
the task becomes extremely time-consuming. This paper attempts to
address the problem using a framework that speeds up processing by us-
ing multiple threads. Unlike a typical multithreading approach, where
the hashing algorithm is performed by multiple threads, the proposed
framework incorporates a dedicated prefetcher thread that reads files
from a device. Experimental results demonstrate a runtime efficiency of
nearly 40% over single threading.

Keywords: File hashing, runtime performance, file handling, prefetching

1. Introduction
The availability and use of electronic devices have increased massively.

Traditional books, photos, letters and LPs have become ebooks, digital
photos, email and music files. This transformation has also influenced
the capacity of storage media, increasing from a few megabytes to ter-
abytes. Thus, the amount of data gathered during digital forensic inves-
tigations has grown rapidly. To solve this data overload problem, it is
necessary to employ automated techniques to distinguish relevant from
non-relevant information.

To cope with the massive amount of data, digital forensic practitioners
often use automated preprocessing that groups files into three categories:
known-good, known-bad and unknown files. Operating system files and
common application binaries are generally deemed to be known-good

102

files and need not be inspected. The steps involved in classifying a file
are to hash the file, compare the hash value against a hash database,
and put the file into one of the three categories.

Because of the amount of data to be processed, runtime efficiency is
an important issue. Thus, one property of hashing algorithms is the ease
of computation, which is met by popular algorithms such as SHA-1 and
MD5.

Meanwhile, the performance of modern hardware has increased con-
siderably [11]. The addition of multiple cores and powerful GPUs may
allow algorithm parallelization [1], but the principal bottleneck often
involves loading data from files [19]. One approach for speeding up
reading/writing is to use RAID systems that combine multiple disk
drive components into a logical unit. Another approach is to use solid
state drives (SSDs) that have higher throughputs than conventional hard
disks [4]. However, because RAID and SSD technologies are not very
widespread, a practical approach is to develop intelligent file handling
solutions.

This paper presents a new framework for file handling during hashing.
Instead of having several threads and/or cores that perform hashing
independently, one thread is used for reading and the remaining threads
are used for hashing. The framework can easily be used for other hashing
algorithms or other tasks involving high data throughput.

2. Background
Hash functions have two basic properties, compression and ease of

computation [10]. Hash functions are used in cryptography, databases
[18] and for file identification [2]. In addition to traditional hash func-
tions such as FNV [14], cryptographic hash functions such as SHA-1 [12]
and MD5 [15], there are also similarity preserving hash methods such
as ssdeep [9], sdhash [16] and mrsh-v2 [7]. Similarity preserving hash
algorithms are typically slower than traditional hash algorithms [7]. In
order to optimize their runtime efficiency, most researchers have focused
on algorithmic improvements [6, 8].

The most popular use case of cryptographic hash functions in digital
forensics is known file detection. To detect files based on their hashes, it
is necessary to rely on a database that includes a reference for each input
file and its hash value. The most well-known database is the Reference
Data Set (RDS) from the National Software Reference Library (NSRL)
[13]. If the hash value of a file from a storage medium matches the hash
value in the database, one can assume with some confidence that the file
is the known file.

 103

When a storage medium is examined, forensic software is used to hash
the input, perform look-ups in the RDS and filter the non-relevant files.
This reduces the amount of data that the investigator has to examine
manually. Typically, the forensic software uses one thread to read and
hash the file.

2.1 Similarity Preserving Hashing
Three similarity preserving hashing algorithms are used to demon-

strate the effectiveness of the proposed framework:

ssdeep: This algorithm [9], also called context triggered piece-
wise hashing, divides an input into approximately 64 pieces and
hashes each piece separately. Instead of dividing the input into
blocks of fixed length, it is divided based on the current context
of seven bytes. The final hash value is the concatenation of all of
the piecewise hashes where the context triggered piecewise hashing
only uses the six least significant bits of each piecewise hash. This
results in a Base64 sequence of approximately 64 characters.

sdhash: This algorithm identifies “statistically-improbable fea-
tures” using an entropy calculation [16]. The characteristic fea-
tures, corresponding to a sequence of 64 bytes, are then hashed
using SHA-1 and inserted into a Bloom filter [5]. Files are similar
if they share identical features.

mrsh-v2: This algorithm is based on ssdeep. The principal im-
provement is the removal of the restriction of 64 pieces, which cre-
ates a security issue [3]. Furthermore, instead of using a Base64
hash, mrsh-v2 creates a sequence of Bloom filters [7].

2.2 Hash Function Run Time Efficiency
This section compares the runtime efficiency of the hashing algorithms

included in the framework. All the tests used a 500 MiB file from
/dev/urandom and the times were measured using the time command
and the algorithm CPU-time (user time).

Table 1 presents the runtime efficiency comparison of the traditional
cryptographic hash functions SHA-1 and MD5 versus the three similar-
ity preserving hashing algorithms considered in this work. The results
show that the traditional cryptographic hash functions outperform the
similarity preserving hashing algorithms.

104

Table 1. Runtime efficiency comparison of hash functions.

SHA-1 MD5 mrsh-v2 ssdeep 2.9 sdhash 2.0

Time 2.33 s 1.35 s 5.23 s 6.48 s 22.82 s
Algorithm

SHA-1 1.00 0.58 2.24 2.78 9.78

3. Parallelized File Hashing Framework
Our parallel framework for hashing (pfh) optimizes file handling dur-

ing hashing. It is written in C++ and uses OpenMP 3.1 for multithread-
ing; it is available at www.dasec.h-da.de/staff/breitinger-frank.

The framework is divided into two branches – simple multithreading
(SMT) and multithreading with prefetching (MTP). SMT is used for
comparison purposes and shows the benefits of the prefetcher.

Worker 1 Worker 2 Worker N-1

…

Result

…

Files

Prefetcher

Thread 1

RAM Table

…

Figure 1. Operations of the framework.

Unlike traditional approaches where hash functions request a file and
process it, the framework shown in Figure 1 includes a prefetching mech-
anism. The prefetcher handles file reading and is responsible for commu-
nications between the hard disk and RAM. The idea is that the critical
resource bottleneck, the hard disk, should “work” all the time. Thus,
the prefetcher produces an ongoing file request.

All the files are placed in RAM, which uses a RAM table to track the
available storage. All remaining threads are “workers” and process the
files from RAM using the hashing algorithms. After hashing the files,
the outputs are denoted by result.

Depending on the computational efficiency of the hashing algorithm,
there are two possibilities:

 105

If the hashing algorithm is fast, the worker threads are faster than
the prefetching process and the workers must idle. However, the
hard disk is at its limit and cannot process any faster.

If the hashing algorithm is slow, the RAM table becomes full and
cannot store any more files. This causes the prefetcher to idle. In
this case, the prefetcher thread could turn into a normal worker
and help process the files in the RAM table. Implementing this
functionality is a part of our future work.

An alternative solution is to use a distributed system to further in-
crease the performance. As will be demonstrated later, the limiting
resource is the hard disk access time and not the computational power
of the system. Thus, there is no improvement using a distributed system
to hash inputs.

3.1 Command Line Parameters
Before describing the details of pfh, we introduce the command line

options that allow rough configuration. Note that N denotes the number
of processor cores in the system and the value of option -p is denoted
by P where P < N .

c: Mode of framework operation [optional].

d: Directory to be hashed or file with digests [required].

r: Recursive mode for directory traversal [optional].

p: Number of prefetching threads [default is 1].

t: Number of all threads [default is N].

h: Hashing algorithm [default is mrsh-v2].

m: Size of memory in MB [default is 20 MB].

A drawback is that all files larger than the RAM table are skipped.
This problem will be corrected in a future version of the framework.

The framework operates in four modes:

HASH: All the files are hashed using the specified algorithm and
the results are printed to the standard output [default].

FULL: The framework does an all-against-all comparison of all
the files in directory.

106

<DIGEST>: All the files in directory are hashed and compared
against DIGEST, which is a single fingerprint.
If parameter -d is a fingerprint file, then the framework compares
DIGEST against all fingerprints in the file and skips hashing.

<FILENAME>: <FILENAME> is replaced by a path to a file con-
taining a list of valid hash values. The framework hashes all the
files in directory and compares them against the list. This is
similar to the -m option of ssdeep. If the signature is found in the
list, then it is a valid match.

The following command executes the framework in the default mode
using a RAM table of size 256 MB.

$ pfh -c hash -m 256 -d t5 -r

The t5 directory is traversed recursively and all the hashes are sent
to the standard output. If the -t and -p options are not specified, the
program has P = 1 prefetching thread and N −P hashing threads where
N is the number of available processor cores.

3.2 Processing
Upon initialization, the framework creates the four building blocks:

(i) options parsed; (ii) hashing interface created; (iii) RAM table cre-
ated; and (iv) mode of operation. The directory containing the files is
traversed and each file that passes the file size and access rights filter is
added to the files-to-be-hashed-list.

The framework processing involves three stages: (i) reading/hashing
files; (ii) comparing hash values; and (iii) presenting results whereby only
the first and second stages are executed with multiple threads while the
third stage is performed sequentially. Threads are created before the
first stage and are finalized at the end of second stage. Thus, no time is
lost for thread management (fork/join) during execution.

1. Reading/Hashing Files:

SMT Branch: Each of the N threads places its file in the
RAM table and hashes it. All the threads continue until there
are no more files in the queue.
After being assigned to a role (reading or hashing), the threads
enter a “work loop” for execution. Based on the return value,
threads can change their role (e.g., if the RAMtable is empty).
MTP Branch: Each thread receives a role assignment and
begins execution (e.g., P prefetchers and N − P hashing
threads).

 107

RAM Table HashingMode
(interface) (interface)

RAM File md5 sha*
ripemd160

OpenSSLmrsh

ssdeep
sdhash

Figure 2. Objects in the framework.

2. Comparing Hash Values: This stage executes in parallel using
the OpenMP “parallel for” clause, in which threads work on chunks
of the global compare iterations.

Scores from the comparison are held in an array, because if the
threads print to screen, they have to synchronize and the speedup
of parallelism is lost.

3. Presenting Results: The file path, hash value and the results
are sent to the standard output.

3.3 Implementation Details
In addition to the two branches SMT/MTP and the operation modes,

the framework comprises two objects, the RAM table and the hashing
interface, which are shown in Figure 2.

SMT and MTP. Although SMT does not outperform MTP, we de-
scribe its implementation for completeness.

A configuration file called configure.ac is used to change the branch.
This template is used by the configuration script when automake is ex-
ecuted. There are three options:

without-prefetching: This option disables file prefetching and
sets the branch to SMT (default: no, i.e., MTP mode).

with-timing: This option enables timing (default: no). The sup-
ported times are total, compare, hashing, accumulated time for
waiting for RAM and file, and reading from the disk. The op-
tion also provides throughput for hashing (MB/s) and comparisons
(items/s).

with-stats: This option enables statistics (default: no). Cur-
rently, only two state variables are added, waiting for a file and
waiting for space in the RAM table.

108

RAM Table. The RAM table is the class responsible for holding
files and synchronizing threads. Files are sent to the ram_file class,
which provides functionality for reading files from the hard disk and pro-
cessing them using the hash algorithm interface. ram_table uses two
semaphores to implement the producer-consumer model. One semaphore
is used to wait for free space in the RAM table and the other is used to
wait for available/prefetched files in the RAM table.

The processing of the files in the table is based on two indices, fi and
pi. The index fi denotes the number of files in the table and is set by
the prefetcher; it increases by one after every insertion into the table.
The index pi is for the worker threads; it increases by one every time a
worker thread fetches a new file from the table. Thus, if pi ≥ fi, threads
have to wait for data.

To avoid race conditions, we use the OpenMP 3.1 “capture” clause.
This enables a thread to take the current index and increase the global
index in a single atomic operation. Thus, threads can work with RAM
files without the need for locking or critical sections.

Interfaces. The framework accesses all hashing algorithms and modes
via interfaces, enabling developers to add their own hashing algorithms.
Realizations of the interfaces are written in their own *.hpp files and are
included in the interface implementation file. Currently, the framework
includes MD5, SHA1, SHA2, SHA3 and RIPEMD160 from the OpenSSL
library and the ssdeep, sdhash and mrsh-v2 similarity hashes.

The hashing interface hash_alg.cpp provides two extensions, one for
hashing algorithms with character outputs and the other for byte out-
puts. The two extensions differ in the functions used to print and save
a digest buffer. Member variables of the class are:

Output Type: This could be a hex value or a string. For instance,
MD5 yields a buffer holding a byte array, which has to be converted
to a string.

Hash Digest Length: This is required to print the hash value.

Minimum File Size: This is required because some hashing algo-
rithms have a minimum file size requirement (e.g., ssdeep requires
4,096 bytes).

Each hashing algorithm is implemented in its own file with the name
hash_alg_NAME.hpp. Figures 3 and 4 show the changes needed to the
ssdeep algorithm.

The mode.h interface allows the framework to operate in different
ways after it is compiled. The interface itself consists of three virtual

 109

01: class hash al ssdeep: public hash alg char output{
02: public:
03: int hash(uchar *in, uint inlen, uchar **out){
04: *out = get out();
05: return (NULL == fuzzy hash buf r((const uchar*)in, inlen, *out))
06: ? -1: FUZZY MAX RESULT;
07: };
08:
09: int cmp(uchar *a, uchar *b, uint len){
10: return fuzzy compar r(a,b);
11: };
12:
13: hash alg ssdeep(): hash alg char output(){
14: type = HA SSDEEP;
15: max result size =
16: hash digest size = FUZZY MAX RESULT;
17: min file size = SSDEEP MIN FILE SIZE;
18: };
19: };

Figure 3. Framework extension for ssdeep.

01: if(0 == htype.compare(0, 6, "ssdeep")){
02: h = new hash alg ssdeep();
03: };

Figure 4. Initializing the hashing interface for ssdeep.

functions that represent the three steps of the framework: hashing files,
comparing digests and printing results/digests.

Code Optimizations. Two code optimizations reduce the number of
buffer allocations during execution. The first optimization pre-allocates
all digest buffers; this reduces execution time because there are fewer
calls of new[]. The second optimization reduces the memory footprint
by grouping all the digest buffers into a single linear buffer. For instance,
the GNU C library uses a header (two words for 8 bytes/32-bit and
16 bytes/64-bit systems) for each memory block. If a digest is allocated
for MD5 (16 bytes), there is another 16 bytes (in 64-bit systems) of
operating system administrative data (header).

Both optimizations are only available for hashing algorithms with a
static hash value length. In the case of mrsh-v2 and sdhash, which have
a variable hash value length, the linear digest buffer cannot be allocated
before hashing.

110

01: A(8), B(4), C(3), D(2), E(4), F(5) #Files order
02: TBL(0/10) #Table of size 10 with 0 space used
03: -------------------------------------
04: T1:PREF(A) -> TBL(8/10)
05: T1:PREF(B) -> TBL(8/10) -> WAIT(4) #Wait because only space of 2 is

available
06: T2:HASH(A) -> TBL(0/10)
07: -------------------------------------
08: A(8), D(2), B(4), F(5), C(3), E(4) #Files order after balancing

Figure 5. RAM table balancing example.

3.4 Future Work
A future enhancement to the implementation will be the addition of

a load balancing function. Load balancing would change the processing
order of files, reducing both the waiting time for free table space and
the fragmentation (empty space in table). A simple example is shown
in Figure 5.

Table 2. Statistics of the t5 corpus.

jpg gif doc xls ppt html pdf txt

Amount 362 67 533 250 368 1,093 1,073 711

4. Experimental Results
The experimental evaluation of pfh used the t5 corpus [17], which

contains 4,457 files of the types shown in Table 2. The unzipped size of
files was 1.78 GB, corresponding to an average file size of 418.91 KB.
The following tests are based on ssdeep-2.9 and sdhash-2.3.

All the binaries were compiled using the same compiler and configu-
ration options. The compiler flags included -g0 to disable debugging,
-O2 to enable second level of optimization and -march=native to allow
the use of CPU-specific instructions. The test environment was a server
with the following components:

CPU: Two Intel Xeon E5430 2.66 GHz × 4 cores

Hard Drive: Seagate ES Series 250 GB (SATA 2) 8 MB Cache
7,200 RPM

RAM: Eight 2 GB DDR2 FB-DIMM 667 MHz

Kernel: Linux 2.6.32-279.11.1.el6.x86 64

 111

Table 3. Runtime efficiency with ssdeep using standard output.

Time Difference Terminal Command

Original 83.67 s 100.00% $ ssdeep -r t5
SMT 69.05 s 82.52% $ pfh -d t5 -t 2 -h ssdeep
MTP 52.19 s 62.37% $ pfh -d t5 -t 2 -h ssdeep

GCC: gcc-4.4.6-4.el6.x86 64

Three execution times were recorded:

Real Time: This is the wall clock time from start to finish of the
call. It corresponds to the elapsed time, including the time slices
used by other processes and the time that the process spends in
the blocked state.

User Time: This is the amount of CPU time spent in user-mode
code (outside the kernel) within the process. This coresponds to
the actual CPU time used to execute the process. The time con-
sumed by other processes and the time that the process spends in
the blocked state do not count towards the user time.

Sys Time: This is the amount of CPU time spent in the kernel
within the process. This corresponds to the execution time spent
in system calls within the kernel, as opposed to library code, which
is still running in user space. Like the user time, this only includes
the CPU time used by the process.

Since the framework improves the entirety of processing, only the real
time is reported.

4.1 Runtime Efficiency
This section demonstrates the runtime improvement of the framework

compared with the original implementation. The tests used the -t 2
option, corresponding to one prefetching thread and one working thread.

Table 3 presents the results for ssdeep. Using SMT improves the basic
hash algorithm runtime by approximately 17.5%. The MTP process
shows an improvement of nearly 40%. The lower speedup of SMT is due
to the lack of data in RAM. Having two threads means there are twice
as many requests for file data, but with the same disk throughput. The
threads are underfed and are forced to idle. In the case of MTP, it is a
linear system – one reader and one hasher – which reduces the idle time
for each thread.

112

Table 4. Runtime efficiency of the hash algorithms.

MD5 SHA-1 mrsh-v2 ssdeep sdhash

Original 51.65 s 52.35 s 75.61 s 83.67 s 145.38 s
MTP 51.74 s 51.64 s 51.79 s 52.19 s 89.09 s

Table 4 shows the runtime improvements for the hash algorithms. All
the outputs were sent to /dev/null to eliminate any execution time
deviation caused by printing. The main result is that prefetching has
more impact on the similarity preserving hash algorithms, which are
more computationally intensive than the cryptographic hash functions.
MTP achieves similar runtimes for all the algorithms except sdhash.
This shows that the limiting factor is the underlying hardware.

Table 5. Runtime efficiency with FULL mode [default t = 2].

Time Difference Terminal Command

ssdeep 119.21 s 100.00% $ ssdeep -d -r t5
MTP 68.34 s 57.33% $ pfh -h -c full -d t5 -t 8 -m 128
sdhash > 69 min – $ sdhash -r -g -p 8 t5
MTP 186.56 s – $ pfh -h -c full -d t5 -t 8 -m 128

Table 5 presents the results obtained using the FULL mode. This
mode involves an all-against-all comparison in addition to hash value
generation. In the case of ssdeep (rows 1 and 2), an improvement of
nearly 45% was obtained. For sdhash (rows 3 and 4), the results are
even better when the all-against-all comparison was stopped after 69 min
and MTP only required 186 s.

4.2 Impact of Multiple Cores
This section explores the influence of multiple cores. The framework

command line operation is:

$ pfh -h ALG -c hash -d t5 -m 256 -t XX > /dev/null

where XX is the number of cores/threads and ALG is the hash algorithm.
The test includes two runs, denoted by R1 and R2, shown in Tables

6 and 7. In R2, all of the files were pre-cached from R1.
R1 demonstrates that using multiple cores is important for slower

algorithms like sdhash. For the faster traditional hashing algorithms, it
does not scale well because the underlying hard disk is too slow and the
prefetcher thread cannot fill the RAM table. R2 simulates fast hardware

 113

Table 6. R1: Runtime efficiency with different numbers of threads.

t = 2 t = 4 t = 8

mrsh
SMT 64.03 s 66.39 s 67.14 s
MTP 51.79 s 51.81 s 52.02 s

sdhash
SMT 89.33 s 72.03 s 68.14 s
MTP 89.09 s 51.90 s 52.08 s

Table 7. R2: Runtime efficiency with different numbers of threads and cached data.

t = 2 t = 4 t = 8

mrsh
SMT 10.15 s 5.30 s 2.92 s
MTP 17.68 s 6.23 s 2.90 s

sdhash
SMT 48.42 s 24.98 s 11.83 s
MTP 88.15 s 31.12 s 15.07 s

because all the files are cached. As a result, the prefetcher thread is
dispensable and SMT completes in less time.

Table 8. Runtime efficiency with different RAM table sizes.

m=128 m=256 m=51

SMT 66.36s 66.39s 66.20s
MTP 51.62s 51.81s 51.72s

4.3 Impact of Memory Size
Table 8 shows that the size of the RAM table does not influence

runtime efficiency. In general, there are two possibilities. The first is
that there is a “slow” hashing algorithm and the prefetching thread is
faster. Thus, the RAM table is always full because as soon as the worker
thread fetches a file, the prefetcher adds the next one. The limiting
source is thus the runtime efficiency of the algorithm.

The second possibility is that there is a “fast” hashing algorithm and
the worker threads are faster. Thus, the RAM table is always empty
because as soon as a new file is added, one worker processes the file.
The limiting source is thus the underlying hardware.

114

Table 9. Impact of two prefetching threads.

Time Difference Terminal Command

52.05 s 100.00% $ pfh -t 8 -c hash -d t5 -h md5
60.09 s 115.44% $ pfh -t 8 -c hash -d t5 -h md5 -p 2

4.4 Impact of Multiple Prefetchers
Although the number of prefetcher threads is adjustable, tests showed

that the default setting of one is the best choice. Table 9 verifies that
having two prefetchers worsens the runtime by 15% due to the additional
overhead.

Table 10. Summary of workstations used.

Files Size Av. Size

Mac OSX 322,531 100.92 GB 328.08 KB
Windows 7 139,303 36.55 GB 275.13 KB

4.5 Impact on a Forensic Investigation
Next, we examine the improvement obtained using two workstations.

The workstations listed in Table 10 were used. The results and projec-
tions are shown in Table 11.

Table 11. Investigation time using ssdeep on two workstations.

Size Standalone SMT MTP

Mac OSX 100.92 GB 99 min 51 s 73 min 43 s 56 min 43 s
Windows 7 36.55 GB 36 min 10 s 26 min 42 s 20 min 32 s

4.6 Parallelization Tool Comparison
This section compares pfh against Parallel and Parallel Processing

Shell Script (ppss). Both Parallel and ppss execute commands, scripts
or programs in parallel on local cores with multithreading and distribute
the workload automatically to different threads.

Table 12 presents the results of using different parallelization tools.
The main result is that MTP outperforms existing tools/scripts. Parallel
and ppss both perform simple multithreading and should approximate

 115

Table 12. Comparison of with different parallelization tools using ssdeep.

Time Difference Terminal Command

Original 83.67 s 100.00% $ ssdeep -r t5 > /dev/null
ppss 337.11 s 402.90% $ ppss -p 8 -d t5 -c ’ssdeep’
Parallel 69.81 s 83.43% $ parallel ssdeep -- data/t5/*
SMT 67.55 s 80.73% $ pfh -t 8 -c hash -d t5 -h ssdeep
MTP 52.04 s 62.20% $ pfh -t 8 -c hash -d t5 -h ssdeep

the SMT results. This holds true for Parallel, but in the case of ppss,
the performance is worse due to an increase in I/O operations because
ppss saves its state to the hard drive in the form of text files.

5. Conclusions
Current hashing techniques applied to entire filesystems are very time-

consuming when implemented as single-threaded processes. The frame-
work presented in this paper significantly speeds up hash value gen-
eration by including a separate prefetcher component. Experimental
results demonstrate that an improvement of more than 40% is obtained
for an all-against-all comparison compared with the standard ssdeep
algorithm. In a real-world scenario, this results in a reduction in pro-
cessing time from 1 hour and 39 minutes to 56 minutes without using
any extra hardware.

The current implementation of the framework incorporates several
cryptographic and similarity hash functions. Our future research will
attempt to eliminate the limitation that only files smaller than the RAM
table can be hashed.

Acknowledgements
This research was partially supported by the European Union Seventh

Framework Programme (FP7/2007-2013) under Grant No. 257007. We
also thank Nuno Brito with Serco Services and the European Space
Agency (Darmstadt, Germany) for valuable ideas and discussions.

References

[1] D. Alcantara, A. Sharf, F. Abbasinejad, S. Sengupta, M. Mitzen-
macher, J. Owens and N. Amenta, Real-time parallel hashing on
the GPU, ACM Transactions on Graphics, vol. 28(5), article no.
154, 2009.

116

[2] C. Altheide and H. Carvey, Digital Forensics with Open Source
Tools, Syngress, Waltham, Massachusetts, 2011.

[3] H. Baier and F. Breitinger, Security aspects of piecewise hashing
in computer forensics, Proceedings of the Sixth International Con-
ference on IT Security Incident Management and IT Forensics, pp.
21–36, 2011.

[4] A. Baxter, SSD vs. HDD (www.storagereview.com/ssd_vs_hdd),
2012.

[5] B. Bloom, Space/time trade-offs in hash coding with allowable er-
rors, Communications of the ACM, vol. 13(7), pp. 422–426, 1970.

[6] F. Breitinger and H. Baier, Performance issues about context-
triggered piecewise hashing, Proceedings of the Third International
ICST Conference on Digital Forensics and Cyber Crime, pp. 141–
155, 2011.

[7] F. Breitinger and H. Baier, Similarity preserving hashing: Eligi-
ble properties and a new algorithm mrsh-v2, Proceedings of the
Fourth International ICST Conference on Digital Forensics and Cy-
ber Crime, 2012.

[8] L. Chen and G. Wang, An efficient piecewise hashing method for
computer forensics, Proceedings of the First International Workshop
on Knowledge Discovery and Data Mining, pp. 635–638, 2008.

[9] J. Kornblum, Identifying almost identical files using context trig-
gered piecewise hashing, Digital Investigation, vol. 3(S), pp. S91–
S97, 2006.

[10] A. Menezes, P. van Oorschot and S. Vanstone, Handbook of Applied
Cryptography, CRC Press, Boca Raton, Florida, 1997.

[11] G. Moore, Cramming more components onto integrated circuits,
Electronics Magazine, pp. 114–117, April 19, 1965.

[12] National Institute of Standards and Technology, Secure Hash Stan-
dard, FIPS Publication 180-3, Gaithersburg, Maryland, 2008.

[13] National Institute of Standards and Technology, National Software
Reference Library, Gaithersburg, Maryland (www.nsrl.nist.gov),
2012.

[14] L. Noll, FNV hash (www.isthe.com/chongo/tech/comp/fnv/in
dex.html), 2012.

[15] R. Rivest, MD5 Message-Digest Algorithm, RFC 1321, 1992.
[16] V. Roussev, Data fingerprinting with similarity digests, in Advances

in Digital Forensics VI, K. Chow and S. Shenoi (Eds.), Springer,
Heidelberg, Germany, pp. 207–226, 2010.

 117

[17] V. Roussev, An evaluation of forensic similarity hashes, Digital In-
vestigation, vol. 8(S), pp. S34–S41, 2011.

[18] S. Sumathi and S. Esakkirajan, Fundamentals of Relational
Database Management Systems, Springer-Verlag, Berlin Heidelberg,
Germany, 2010.

[19] S. Woerthmueller, Multithreaded file I/O, Dr. Dobb’s Journal,
September 28, 2009.

	REDUCING THE TIME REQUIRED FOR HASHING OPERATIONS
	1. Introduction
	2. Background
	2.1 Similarity Preserving Hashing
	2.2 Hash Function Run Time Efficiency

	3. Parallelized File Hashing Framework
	3.1 Command Line Parameters
	3.2 Processing
	3.3 Implementation Details
	3.4 Future Work

	4. Experimental Results
	4.1 Runtime Efficiency
	4.2 Impact of Multiple Cores
	4.3 Impact of Memory Size
	4.4 Impact of Multiple Prefetchers
	4.5 Impact on a Forensic Investigation
	4.6 Parallelization Tool Comparison

	5. Conclusions
	References

