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Abstract. A hash function is a well-known method in computer science
to map arbitrary large data to bit strings of a fixed short length. This
property is used in computer forensics to identify known files on base of
their hash value. As of today, in a pre-step process hash values of files are
generated and stored in a database; typically a cryptographic hash func-
tion like MD5 or SHA-1 is used. Later the investigator computes hash
values of files, which he finds on a storage medium, and performs look
ups in his database. Due to security properties of cryptographic hash
functions, they can not be used to identify similar files. Therefore Jesse
Kornblum proposed a similarity preserving hash function to identify sim-
ilar files. This paper discusses the efficiency of Kornblum’s approach. We
present some enhancements that increase the performance of his algo-
rithm by 55% if applied to a real life scenario. Furthermore, we discuss
some characteristics of a sample Windows XP system, which are relevant
for the performance of Kornblum’s approach.

                                                             
                                                                
                

1 Introduction

The amount of data gathered within a computer forensic acquisition process is
growing rapidly. As of today, an investigator has to deal with several terabytes of
raw data. His crucial task is to distinguish relevant from non-relevant informa-
tion, which often resembles to look for a needle in a haystack. In most of the cases
there is an automated preprocessing, which tries to filter out some irrelevant files
to reduce the amount of data the investigator has to look at by hand.

This preprocessing groups the files into three categories: known-to-be-good,
known-to-be-bad and unknown files. For instance, system files of the operating
system or binaries of a common application like a browser are said to be known-
to-be-good and need not be inspected within an investigation. The working steps
are quite simple: hash the file, compare the resulting fingerprint against a set of
fingerprints and put it in one of the categories. The most common set/database of
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non-relevant files is the National Software Reference Library (NSRL, [1]) main-
tained by the US National Institute of Standards and Technology (NIST).

For use in practice an important property of a hash function is ease of com-
putation. Differences in terms of computation complexity have significant ef-
fort on the practical usefulness of hash functions. Although the preprocessing
is done with computational power, it is very time-consuming. For instance, we
consider an installation including operating system files and some applications
(e.g. email client, browser, office). Typically such an installation comprises tens
of thousands of files. We compare the resulting slowdown of the preprocessing
time if two different hash functions of different performance are used. In our
example, h2 denotes a hash function being 25% slower than a hash function h1.
For example, if h1 can process a file of our sample image on average in 50ms,
then h2 requires on average 62.5ms for processing a file. If there are 50, 000
files of the operating system and 100, 000 personal files like pictures, mp3s, we
have to preprocess 150, 000 files. The total runtime of the preprocessing using
h1 requires

150, 000 · 50ms = 7, 500s = 2h 5min , (1)

the corresponding total runtime of h2 is

150, 000 · 62.5ms = 9, 375s = 2h 36min . (2)

Thus the generation of all hash values will differ about half an hour. Of course,
the real processing time depends on the file size, hard disk speed and processor.

Due to the security requirements of cryptographic hash functions, this pro-
ceeding has one drawback: if a single bit in the input changes, the output behaves
pseudo randomly. Thus comparing the similarity of files using a cryptographic
hash function is not possible.

Therefore Jesse Kornblum [2] proposed in 2006 a method, which he calls
context-triggered piecewise hashing, abbreviated as CTPH. Kornblum’s CTPH
approach is based on a spam detection algorithm due to Andrew Tridgell [3].
The main idea is to compute cryptographic hashes not over the whole file, but
over parts of the file, which are called segments or chunks. CTPH is currently
the only opportunity for similarity hashing and thus the only opportunity to
find similar files based on hash values. In the following we denote a similarity
preserving hash function a fuzzy hash function. Hence, we rate CTPH as one
possible implementation for fuzzy-hashing.

Over the last years Kornblum’s idea about fuzzy-hashing has been investigated
several times with respect to both performance (e.g. [4], [5]) and security (e.g.
[6]). The performance improvements often come with some drawbacks, e.g. [5]
increased the performance by decreasing the flexibility and [4] increased the
security by decreasing the performance.

1.1 Contributions and Organisation of This Paper

Currently context-triggered piecewise hashing is one of the few approaches for
fuzzy-hashing, i.e. the forensic investigator is able to find similar files based
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on fingerprints on the byte level (we do not consider semantic fingerprinting).
We present our performance improvement of 55% of CTPH with respect to
efficiency in Sec. 5.2 within a real-life scenario. In contrast to previously proposed
enhancements (see Sec. 5.1), our improvement is independent of the underlying
hash functions. For instance, it is possible to replace the used hash functions by
other/cryptographic ones as it is done in [4]. Besides the efficiency improvement
we also present a way to identify manipulated files, which could be the act of
an active adversary. In addition we show some general characteristics about a
common operating system and its files, which are important in the context of
finding similar files.

The rest of the paper is organised as follows: In the subsequent Sec. 1.2 we
introduce notation and terms, which we use throughout this paper. Then, in Sec.
2 we shortly review related work. In Sec. 3 we sketch the current use of hash
functions within computer forensics. Next, we discuss in Sec. 4 the foundations
of context-triggered piecewise hashing, which are necessary to understand our
performance improvement. The core of our paper is then given in Sec. 5, where
we present the issues of our improvement, which will be evaluated in Sec. 6. Sec.
7 concludes our paper.

1.2 Notation and Terms Used in This Paper

In this paper, we make use of the following notation and terms:

– h denotes a cryptographic hash function (e.g. MD5, SHA-1, RIPEMD-160).
– BS denotes a byte string of length m: BS = B0B1B2 · · ·Bm−1

– bs denotes a bit string of length M : bs = b0b1b2 · · · bM−1

– PRF refers to a pseudo-random function. Kornblum denotes this function as
a rolling hash function.

– A chunk is a sequence of bytes, for which a hash character is computed (i.e.
the byte string between two trigger points).

– A trigger point is the final byte within a chunk.
– A trigger sequence is a sequence of bytes BS, where PRF (BS) hits a certain

value, the trigger value. The default length of a trigger sequence are 7 bytes.
– A block size is a modulus used to determine trigger sequences. Block sizes

are of the form bmin · 2k with a minimal block size bmin (typically bmin = 3)
and a non-negative integer k. b denotes the block size.

2 Related Work

Considered quite rough, there are currently two mechanisms for so called fuzzy-
hashing, which are based on the same design: Split a file into pieces/chunks,
hash each chunk and combine all chunk hashes to the final fuzzy-hash. These
approaches differ in terms of fixed vs. variable chunk sizes. In 2002 Nicholas
Harbour developed dcfldd1, which extends the well-known disk dump tool dd.

1 http://dcfldd.sourceforge.net; visited 31.05.2011.

http://dcfldd.sourceforge.net
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[7] presents a tool called md5bloom, which is based on MD5 and bloom filters. It
can be used to compare whole hard disks on the block level.

A pioneer for chunks of variable size is Jesse Kornblum with his ssdeep ([2]),
where the file is divided into chunks by a sliding hash function that is only based
on the seven current bytes. A similar idea is given in [8] where a file is divided
based on “identifying statistically-improbable features”.

Having a closer look at Kornblum’s approaches, there are few papers about the
security of ssdeep. [4] changed the used hash functions and extended it by bloom
filters to represent the signature, which increases the security, but decreases
the performance. [9] combined it with other statistical file characteristics and
improved the false positive rate, but at the cost of efficiency. [5] is the only one
dealing with efficiency, but binds ssdeep to a homomorphic hash function. More
details about related improvements to our work are given in Sec. 5.1.

3 The Usage of Hash Functions in Computer Forensics

In this section we give an overview of the usage of hash functions in computer
forensics. First, we describe in Sec. 3.1 the use of cryptographic hash functions.
Up to now this is the most common usage. Next, we give a short introduction
to context-triggered piecewise hashing (CTPH) in Sec. 3.2.

3.1 Cryptographic Hash Functions and Their Application in
Computer Forensics

This section introduces the term of a cryptographic hash function, the basic
properties of such a function, and their use in computer forensics in the context
of a whitelist and a blacklist, respectively.

Let {0, 1}∗ denote the set of bit strings of arbitrary length, and let bs ∈ {0, 1}∗.
If we write h for a hash function then according to [10], h is a function with two
properties:

– Compression: h : {0, 1}∗ −→ {0, 1}n, n ∈ N (e.g. n = 160).
– Ease of computation: Computation of h(bs) is ’fast’ in practice.

In practice bs is a ’document’ (e.g. a file, a volume, a device). The output of
the function h(bs) is referred to as a hash value, digest or fingerprint. Sample
security applications of hash functions comprise storage of passwords (e.g. on
Linux systems), electronic signatures (both MACs and asymmetric signatures),
and whitelists / blacklists in computer forensics.

As of today the most popular use case of cryptographic hash functions within
computer forensics is detecting known files. In order to detect these files based
on their fingerprints, the computer forensic investigator must have a database
at hand, which comprises at least a referrer to the input file and its hash value.
If he finds this hash value on a storage medium within an investigation, he is
convinced that the referred file is present on the medium. In computer forensics
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hash values are typically computed over the payload of a file (i.e. hash functions
are applied on the file level). Hence known files can be identified very efficiently.

Dependent on the assessment of the file, he proceeds as follows:

1. Whitelist : If the file is known-to-be-good, the investigator can fade out the
file from further investigation. The hash database is then referred to be a
whitelist. Whitelists are used in computer forensics to get data reduction, i.e.
only files, which are not on the whitelist, are inspected by hand. We denote
the use of a whitelist within computer forensics as whitelisting.

2. Blacklist : If the file is known-to-be-bad, the investigator looks at the file by
hand and checks, if the file actually serves as evidence for e.g. possession of
child abuse pictures. The hash database is then referred to be a blacklist. We
denote the use of a blacklist within computer forensics as blacklisting.

3.2 Context-Triggered Piecewise Hashing

The origin of context-triggered piecewise hashing, within the meaning of homol-
ogous files, was made in 1999 by Andrew Tridgell and his rsync-checksum. This
algorithm used context-triggered piecewise hashing to more efficiently find up-
dates of files (e.g. during a backup process). Later Tridgell developed a context-
triggered piecewise hashing based algorithm to identify mails, which are similar
to known spam mails. He called his software spamsum (see [11]).

Jesse Kornblum modified spamsum to cope with files and released ssdeep2

in 2006 [2]. He calls his approach Context-Triggered Piecewise Hashing (CTPH).
We discuss Kornblum’s algorithm in detail in Sec. 4.

Up to now CTPH is promoted to be able to detect similar files on the byte
level. Probably the most common use case for context-triggered piecewise hash-
ing in the forensic process is the use of context-triggered piecewise hashing within
blacklists.

4 Foundations of CTPH

This section introduces the concept of context-triggered piecewise hashing
(CTPH) as proposed by Jesse Kornblum [2] in 2006. We summarise the proper-
ties of Kornblum’s approach that are relevant for understanding the remainder
of this paper.

As mentioned above, the origin of Kornblum’s idea goes back to Andrew
Trigdell’s spamsum algorithm [11]. Unlike dcfldd the blocks are not fixed-sized
and will be denoted as chunk or segment. Each chunk is determined by a pseudo
random function PRF as follows: A window of a fixed size s (we assume s = 7
bytes throughout this paper) moves through the whole input, byte for byte, and
generates a pseudo random number at each step. Let

BSp = Bp−s+1Bp−s+2Bp (3)

2 http://ssdeep.sourceforge.net; visited 30.12.2010.

http://ssdeep.sourceforge.net
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Algorithm 1. Pseudocode of the rolling hash

h1, h2, h3, c, n are unsigned 32-bit integers, initialised to zero
window is an array of length size (default size = 7)

to update the rolling hash for a byte c

h2 = h2 − h1

h2 = h2 + size · c � h2 is the sum of the bytes times the index
h1 = h1 + c
h1 = h1− windows[n mod size] � h1 is the sum of the bytes in the window
window [n mod size] = c
n = n+ 1
h3 = h3 << 5 � h3 mostly needed to cope with large block sizes values
h3 = h3 ⊕ c
return (h1 + h2 + h3)

denote the byte sequence in the current window of size s at position p within the
file and let PRF (BSp) be the corresponding rolling hash value. If PRF (BSp)
hits a certain value, the end of the current chunk is identified. We call the byte
Bp a trigger point and the current byte sequence BSp a trigger sequence. The
subsequent chunk starts at byte Bp+1 and ends at the next trigger point or EOF.

Kornblum denotes the PRF as a rolling hash. The structure of the rolling hash
function as proposed in [2] allows to compute the value PRF (BSp+1) cheaply
from the previous rolling hash value PRF (BSp). If Bp is not a trigger point,
the next processed byte sequence is BSp+1 = Bp−s+2Bp−s+3Bp+1. Kornblum
updates the value PRF (BSp+1) by removing the influence of Bp−s+1 and con-
sidering the new byte Bp+1. Algorithm 1 shows the pseudocode of the rolling
hash used by Kornblum in ssdeep. As there are only low-level operations, Ko-
rnblum’s PRF is very fast in practice.

In order to define a hit for PRF (BSp), Kornblum introduces a modulus, which
he calls a block size. If b denotes the block size, then the byte Bp is a trigger
point if and only if PRF (BSp) ≡ −1 mod b. If PRF outputs equally distributed
values, then the probability of a hit is reciprocally proportional to b. Thus if b is
too small, we have too many trigger points and vice-versa. As Kornblum aims
at having 64 chunks, the block size has to be approximately binit ≈ N

S where S
is the desired number of chunks with a default value of 64, and N is the file size
in bytes. To receive an equal block size for similar sized files he generates the
initial block size binit as follows:

binit = bmin · 2�log2(
N

S·bmin
)�

, (4)

where the minimum block size bmin is set to 3. Although we will not discuss
this formula, it should be mentioned, with respect to Kornblum’s work, that
the calculation of the block size as given in [2], Eq. (4) is not conform with his
implementation [12] (floor vs. ceiling operation in the exponent),

binit = bmin · 2�log2(
N

S·bmin
)�

. (5)
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$ dd if=/dev/urandom of=random bs=1 count=24000

$ ls -la random

-rw-r--r-- 1 user user 24000 2011-06-01 07:58 random

$ ssdeep random

ssdeep,1.0--blocksize:hash:hash,filename

384:exQOElbn4N0TSNVyCCvIiebjYKKjoKUTDeueZdTmvk1ac9slOjRXMImRHgnY5:

A8ZQVy6jYKKElPeXZdT1NaHJ5,"/home/user/random"

Fig. 1. A sample ssdeep output

Once a chunk is identified a cryptographic hash value over this chunk is com-
puted. Let BS denote this chunk and h the cryptographic hash function. Then
h(BS) is a bit string of length n. However, to save space, Kornblum only makes
use of the least significant 6 bits of h(BS), i.e. the 6 rightmost bits. We denote
this output by LS6B(h(BS)). Kornblum then identifies LS6B(h(BS)) with a
Base64 character. We refer to this Base64 character as the Base64 hash charac-
ter for the currently processed chunk. Kornblum’s hash value for a file is simply
the concatenation of all Base64 hash characters.

Since the block size is used for determining the chunks and depends on the
length of the input, only ssdeep hash values with the same block size can be
compared. To be a little bit more flexible two different block sizes are used: binit
and 2binit. If there are too few Base64 hash characters for block size binit (i.e.
at most S

2 − 1 = 64
2 − 1 = 31), Kornblum sets b ← binit

2 and the whole process
is repeated.

A sample output of ssdeep is given in Fig. 1. The ssdeep hash is computed
over the file random with its 24, 000 bytes. The number at the beginning of the
output of ssdeep is the block size used to trigger the PRF. In our example
the block size is 384, which can be computed using Eq. (4) or estimated by
24,000

64 = 375. Then the two ssdeep hash values comprising the Base64 hash
characters for block size 384 and 2 · 384 = 768 are printed, respectively. Finally,
we see the path and name of the processed file.

5 Performance Improvement of CTPH

This section discusses the performance of ssdeep, where performance means
efficiency. [13] is an online article about Kryder’s Law (based on Moore’s Law)
where it is written that “the doubling of processor speed every 18 months is a
snail’s pace compared with rising hard-disk capacity”. This fact also influences
our willingness to delete something from our disc. To process this huge amount
of data we need fast hardware and software.

As mentioned in the introduction, there are several ideas to enhance ssdeep

with respect to both efficiency (e.g. [5]) and security (e.g. [4]). In addition there
was a security analysis of CTPH in [6].
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Sec. 5.1 will explain the existing improvements in detail followed by our new
idea in Sec. 5.2.

5.1 Existing Improvements

In [4] the authors applied two main changes. First, they used a new PRF and
second, they changed the hash function for processing each chunk. Instead of
using the exiting PRF based on adler32, Roussev et al. used another simple
polynomial hash function called djb2 which is defined as follows:

h0 = 5381, hk+1 = 33hk + ck mod 232, for k ≥ 0 , (6)

where ck denotes the kth character of the input. In his paper Roussev shows that
djb2 and MD5 yield similar results concerning the chunk sizes. Both hash func-
tions were tested against several files and their basic stochastic values have been
compared. As a result Roussev states that it is not necessary to use a crypto-
graphic hash function for the PRF. But djb2 has the disadvantage compared to
original one that each window has to be processed from scratch. Remember, the
original PRF allows to compute the value for the following window by removing
the influence of the last character and add the new one, in contrast to djb2,
where we need a loop, which processes all characters3. So his changes influence
the efficiency in a negative way.

Furthermore, Roussev used the cryptographic hash function MD5 for pro-
cessing each chunk instead of the FNV-Hash. The least significant 11 bits of the
MD5 hash serve as input for a Bloom filter to represent the final signature. Even
though this modification slows down4 ssdeep, it increases the security aspects
(e.g. difficulty to find collisions or second-preimages). Hence we consider this
change to be very useful.

On the efficiency side [5] showed that it is possible to improve the straight
forward processing of ssdeep. Once again, ssdeep reads the file byte by byte,
generates the PRF and the FNV-Hash and in the very last step it examines
the signature. If it is too short, i.e. shorter than 32 characters, everything is
dropped and the file is processed again using an adapted block size b ← b

2 . [5]
showed5 that this happens in 38% of cases and therefore modified ssdeep “to
generate intermediate hashes using numbers in the geometric progression with
factor 4 as block size, generate hashes with other block sizes used in spamsum
by rehashing the intermediate hashes to decrease the scan passes and hashing
passes. [...] With current block size b, we compute two traditional hashes h and
H at block level b and 4b” and count the trigger points of the block sizes b, 2b, 4b
and 8b. Furthermore, the authors stated that they used FNV as a homomorphic
hash function and that it is possible to create the hashes for 2b by using the
hashes of b. An example is given in Fig. 2. Block size b is the smallest one and

3 The multiplication 33hk can be implemented by (hk << 5) + hk. Therefore all
previous characters influence hk+1 and an iterative processing is not possible.

4 Because FNV only requires one multiplication and one XOR, it is faster than MD5.
5 It’s the result of a test with 1575 different files from Linux and Windows systems.
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therefore triggers most often. Having a look at the chunks for 2b, they consist
of the first three chunks of b, which are represented by the FNV-hashes h1, h2
and h3. If we have a homomorphic hash function,we can create the chunk hash
for 2b by combining h1 to h3. Actually, we don’t think that FNV could be used
in such a way.

If the final signature for binit is too short than b is set to binit

4 and h is set to
H . Now only H needs to be computed again.

Fig. 2. hash signature generation process of [5]

The drawback of this approach is that a combination of hashes, i.e. use the
hashes for b and combine them to hashes for 2b might be only possible with
FNV-Hash. If we use any cryptographic hash function such as MD5, we have to
do more computations and lose the efficiency advantage.

5.2 Our Enhancements of ssdeep

Our improvement aims at three main points:

1. Each file should be processed only once and thus we have a runtime directly
proportional to the input length.

2. The implementation should be flexible so that we can change the PRF and
chunk hash function h.

3. It should be able to determine an untypical behaviour of trigger sequences,
which may be caused by an active adversary.

Our main idea is to process the file and count the trigger sequences for all
reasonable block sizes (the term reasonable is explained below). In the next
step we read the file again and set the block size b to the largest value that
yields at least 32 signature characters. Further details about the enhancement
are given below.

An important point with respect to security is the restriction of the signature
length of ssdeep. Kornblum asserts 32 ≤ length ≤ 64. However, he does not
give any justification. We deem the lower boundary to be useful in order to be
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able to make statements about similarity. However, the upper boundary is a
weakness and was exploited in [6]. Maybe a reason to set this boundary was to
satisfy the compression conditions for hash functions. Nevertheless some attacks
are not possible if we ignore this condition.

Implementation Details. We use the original software for our improvement
and insert our ideas. This means that all shown performance improvements are
only based on some algorithm changes and not on some implementation issues.

We consider a reasonable block size to be of order of magnitude
of Kornblum’s proposal for binit. To be more concrete, we allow b ∈
{2binit, binit, binit/2, binit/4}. The file is read byte by byte and the PRF is com-
puted for each byte. If we found a trigger sequence for one of the four reasonable
block sizes, we save the offset and increase a counter for this block size. As a
reminder a trigger sequence is found, if PRF (BS) ≡ b − 1 mod b. In most of
the cases we only have to check one if-condition as BS can only be a trigger
sequence for b if it is a trigger sequence for b/2, too.

For the second run the file is read again byte by byte. Now we use the stored
offsets to determine each chunk and run the chunk hash function h. As a result
we preserve the flexibility to change PRF and the hash function.

Untypical Behaviour of Trigger Sequences. In [6] the authors demon-
strated that an active adversary can manipulate a file and bypass blacklisting
and whitelisting. For this the authors exploited a peculiarity that an ssdeep sig-
nature can have at most 64 characters. The attack randomly generates trigger
sequences and inserts them at the beginning of the file.

Generally, we would expect that no file has significantly more than 64 trig-
ger sequences for their initial block size binit. In general there are two extreme
examples:

– Low entropy files: They are expected to have long runs of a specific byte, e.g.
0-byte-sequences. As this will not cause a triggering, there will be too less
trigger sequences instead of too much. Example files are *.doc or *.bitmap.

– High entropy files: They are expected to have very variable byte-sequence. A
well-tested PRF is assumed to produce approximately 64 trigger sequences.
Example files are *.jpg, *.zip or a truecrypt container.

A possible manipulation can be detected by comparing the trigger sequences
counter against a certain threshold. Of course, this mechanism could be improved
by considering the distribution of the trigger sequences, i.e. we would expect that
all chunks have a similar length.

Assessment of Our Improvement. As it is described above, the modification
needs to read the file two times: one run for receiving the amount of trigger
sequences including their offsets and one run for building the hash value for each
junk. As the amount of computations, i.e. building the PRF and FNV-Hash, is
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similar in both ssdeep versions, there should be no significant difference. The
main disadvantage is that our proposal reads the file two times from the hard
disk / cache / RAM.

On the other side, the new algorithm is superior if there are not enough
trigger sequences. Thus, the original version needs to do two complete runs,
which means: reading the file from the hard disk, generate the PRF, compute
h for each identified chunk. If this is the case, we expect the new version to be
faster. As then both algorithms needs to read the file from the hard disk two
times, we expect to have an improvement over 50%.

If the file has even less trigger sequences (e.g. the block size needs to be quar-
tered) and therefore needs to be read more often, we expect a great performance
difference between both algorithms: b← binit

4 results in 33% runtime, b← binit

8
in 25% runtime.

Thus, two new questions raise up, which will be answered in the next section:

– How often does ssdeep on average adapt the block size?
– What is an average size for all files on a hard disk?

6 Experimental Results

In this section we discuss our experimental setup to show the efficiency advantage
of our modified ssdeep version. First, in Sec. 6.1 we describe our test environ-
ment and some specific characteristics of a our sample operating system. Then
in Sec. 6.2 we present the practical relevance of our enhancement on base of a
500 MiB file. Finally, in Sec. 6.3 we discuss the performance advantage of our
enhancement with respect to a real-life scenario.

6.1 Working Environment and File System Analysis

In order to receive trustful results, which mirror a real-life scenario, we set up a
system running Windows XP Service Pack 3 including some basic applications
and user specific files. More precisely, we assume that nowadays nearly every
personal computer has at least an office suite, a browser and a PDF-Viewer
installed. We therefore set up OpenOffice 3.3, Mozilla Firefox 4.01 and Acrobat
Reader 10.0.1. In order to work on some user specific files, we additionally insert
about

– 1, 000 images of size of a few KB to 1 MB,
– 20 MP3 audio files covering music from Strauß and Bach of size of 4 to 11

MB, and
– several free available PDF files.

Even though this only reflects a very small system, it allows estimations what
happens if a hard disc image would have about 200 GB or more.

Our sample image has a total file size of 3.84 GB, containing 15, 036 files and
1, 574 folders. It is stored as a dd-image. Our working environment is based on
Ubuntu 10.04 Linux installed in a virtual machine.
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Amount and Size of Files. Our sample image comprises 15, 036 files and
3, 936, 437, 740 bytes, which leads to an average file size of

3, 936, 437, 740 bytes

15, 036 files
= 261, 800.86

bytes

file
= 255.7

KiB

file
. (7)

Assuming a modern work station with 4 GiB main memory, we easily can save
our dd image into RAM. Therefore the disadvantage that a file needs to be read
two times from a persistent storage medium can be neglected.

Block Size Changes. We use the previously declared system for our efficiency
analysis of the original ssdeep implementation. As already investigated by [5]
we expect that there is a change of the block size within the ssdeep processing
in 38% of the cases. The results of our sample test environment of 15, 036 files
are given in Table 1.

Table 1. Distribution of block size changes

1 time 2 times 3 times 4 times 5 times 6 times
and more

10,125 3,944 645 176 32 114

67.3 % 26.2 % 4.3% 1.3 % 0.2 % 0.8%

Our test image has the property that 10, 125 files only need to be processed
once, which means that approximately 33% needs to be processed more than
one time. This is in conformance with the claim given in [5].

However, if we examine the relationship between the file size and the amount of
trigger sequences, we find an interesting relationship. The files, which only need
one run (i.e. each of these files has enough trigger sequences) have a total size of
1, 302, 435, 802 bytes (i.e. an average file size of 127 KiB). On the other hand all
the rest has a total size of 2, 634, 001, 938 bytes (i.e. an average file size of 535
KiB and thus about 4 times larger than one-processed files). In general we can
say that mostly large files need more than one run. One possible answer would be
that large files, with some exceptions, often contain long 0-byte-sequences, which
do not trigger the PRF. However, this statement needs some more research.

6.2 Efficiency Improvement

Next, we have a first practical test of our performance assumptions from Sec. 5
and if they are true. We compare the original ssdeep version to our modified
one for three different files of size 500 MiB, respectively, where

– file1 has enough trigger sequences for binit,
– file2 has only enough trigger sequences for binit/2, but not for binit, and
– file3 has only enough trigger sequences for binit/4, but for no larger block

size.
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The results of our performance comparison are given in Table 2. The time has
been measured using the Linux command time -p (the flag -p is used to obtain
an output containing the three different times6). Explanations from the man
page of time say:

– user: Total number of CPU-seconds that the process used directly (in user
mode), in seconds (e.g. running through an array and do something).

– sys: Total number of CPU-seconds used by the system on behalf of the
process (in kernel mode), in seconds (e.g. reading a file from the hard disc).

Additionally, in Table 2 we add both timings to get the overall CPU time denoted
by sum.

Table 2. CPU time to process different 500MiB files with ssdeep and our modified
improved version

500 MiB 500 MiB 500 MiB

b← binit b← binit
2

b← binit
4

original ssdeep
user: 2.76 user: 5.45 user: 7.53
sys: 4.89 sys: 10.06 sys: 15.47
sum: 7.65 sum: 15.51 sum: 23.00

modified ssdeep

user: 1.50 user: 1.46 user: 1.74
sys: 7.60 sys: 7.58 sys: 7.52
sum: 9.10 sum: 9.04 sum: 9.26

modified sum
original sum

1.19 0.58 0.40

estimated modified sum
original sum

1.00 0.50 0.33

The user -time results essentially from processing the input, e.g. generating
the PRF and the FNV-Hash. In contrast the sys-time is mostly influenced by
reading/buffering the file. It is eye-catching that the sys-time for the modified
version (7.60 sec.) is faster than 2 times the original one (2 ·4.89 sec.). Our guess
is that this results from the caching mechanism of modern systems.

Furthermore, it is surprising that the user -time differs so much. Due to our
implementation change, we need to do less computations in our modified version,
e.g. do not generate all trigger sequences, have less if-conditions to check.

Having a look at the results for the original version, we recognize that there is
a linear increase; a halving block size increases the runtime by exactly one run.
The modified version has a constant run time, but is therefore approximately
20% slower compared to the original version, if there is only one run. In addition
we expected an improvement of 50% if the block size b ← binit

2 is used; the
practical relation is 58% in our test.

Overall we can say that the improvement depends on the files we investigate,
which will be discussed in the next section.

6 As we assume the ‘real-time’ for useless, we drop it.
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6.3 Performance Comparison Using Our Sample 4 GB Image

In this section we concentrate on a real-world scenario and compare the runtimes
of both ssdeep versions, the original and our modified one. Our performance test
makes use of our small disc image from Sec. 6.1. For both versions we perform
two runs. Additionally, as a benchmark we measure the run time to compute the
SHA-1 values of all files using sha1sum. As sha1sum does not have a recursive
flag, we used the following command:

find /my/path -type f -print0 | xargs -0 sha1sum

The results are given in Table 3.

Table 3. Run times (in seconds) to compute hash values of all files on our sample
image

first run second run

original ssdeep
user: 202.96 user: 201.94
sys: 52.01 sys: 56.02

sum: 254.97 sum: 257.96

modified ssdeep

user: 88.58 user: 86.04
sys: 26.29 sys: 29.19

sum: 114.87 sum: 117.23
modified sum
original sum

0.45 0.45

sha1sum
user: 26.98 user: 26.57
sys: 12.96 sys: 13.46
sum: 39.94 sum: 40.04

Comparing the runtime of our modified ssdeep version to the original one
yields an improvement of approximately 55% for a complete image (because
the runtime of the modified version is only about 45% of the original version).
Looking back at section 6.1 we can say that about 2.6 GB needs to be processed
more than one time which explains the large performance improvement.

However, compared to the cryptographic hash function SHA-1, both ssdeep

versions are severely slower.

7 Conclusion

Currently context-triggered piecewise hashing is the only approach for fuzzy-
hashingḞuzzy-hashing might get more important if besides FTK other commer-
cial tools support it. We have discussed the performance issues of CTPH as
proposed by Jesse Kornblum. As a conclusion the performance of CTPH could
be easily improved by nearly 55% with respect to a real-life scenario. This ef-
ficiency improvement is important for the future since the amount of data is
increasing and investigators are overworked. Even though CTPH does not with-
stand an active adversary, it can support an investigation process and give some
first clues, especially if the owner is not a computer specialist.
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Additionally, we presented some interesting facts about properties of an op-
erating system and its files with respect to CTPH. For example our sample
Windows XP system consists of thousands of small files mostly smaller than 262
KB. Due to the fact that ssdeep processes most of the small files only one time,
we assume a high entropy and therefore a lot of information within these files.

Acknowledgement. We thank Christian Dichelmüller for providing the sample
Windows XP image.
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