
e at SciVerse ScienceDirect

Digital Investigation 10 (2013) S50–S58
Contents lists availabl
Digital Investigation

journal homepage: www.elsevier .com/locate/di in
FRASH: A framework to test algorithms of similarity hashing

Frank Breitinger*,1, Georgios Stivaktakis 1, Harald Baier 1

da/sec – Biometrics and Internet Security Research Group, Hochschule Darmstadt, Haardtring 100, 64295 Darmstadt, Germany
Keywords:
Digital forensics
Similarity hashing
Test framework
ssdeep
sdhash
* Corresponding author.
E-mail addresses: frank.breitinger@cased.de (F.

stivaktakis@cased.de (G. Stivaktakis), harald.baier@c
1 URL: dasec.h-da.de (Frank Breitinger, Georgios S

Baier).

1742-2876/$ – see front matter ª 2013 Frank Breiti
http://dx.doi.org/10.1016/j.diin.2013.06.006
a b s t r a c t

Automated input identification is a very challenging, but also important task. Within
computer forensics this reduces the amount of data an investigator has to look at by hand.
Besides identifying exact duplicates, which is mostly solved using cryptographic hash
functions, it is necessary to cope with similar inputs (e.g., different versions of a file),
embedded objects (e.g., a JPG within a Word document), and fragments (e.g., network
packets), too. Over the recent years a couple of different similarity hashing algorithms
were published. However, due to the absence of a definition and a test framework, it is
hardly possible to evaluate and compare these approaches to establish them in the
community.
The paper at hand aims at providing an assessment methodology and a sample imple-
mentation called FRASH: a framework to test algorithms of similarity hashing. First, we
describe common use cases of a similarity hashing algorithm to motivate our two test
classes efficiency and sensitivity & robustness. Next, our open and freely available frame-
work is briefly described. Finally, we apply FRASH to the well-known similarity hashing
approaches ssdeep and sdhash to show their strengths and weaknesses.
ª 2013 Frank Breitinger, Georgios Stivaktakis and Harald Baier. Published by Elsevier Ltd.

All rights reserved.
1. Introduction

The handling of terabytes of data is a major challenge in
today’s IT forensic investigations. It is important to auto-
matically reduce the amount of data that needs to be
inspected manually by either removing non-relevant ob-
jects like operating system files ormarking suspect files like
company secrets or child pornography.

Identifying exact duplicates is often solved using
cryptographic hash functions. However, it is also helpful
to have more flexible and robust algorithms that allow
similarity detection (e.g., different versions of a file),
embedded object detection (e.g., JPG in a Word document),
fragment detection (e.g., analyzing a device on the byte
Breitinger), georgios.
ased.de (H. Baier).
tivaktakis and Harald

nger, Georgios Stivaktakis an
level or network packages) or clustering files (e.g., e-mails
and Word documents with similar content).

As a consequence the community came up with simi-
larity hashing, which either operates on the byte level or on
the semantic level (e.g., to decide about the similar
perception of pictures). Both levels feature their respective
strengths and weaknesses. For instance, in the former case
an active adversary can circumvent detection by changing
the format of a multimedia file or zip it. However, byte level
approaches offer fragment and embedded object detection.

In the following we focus on byte level similarity and
thus two inputs are equal/similar if they share common
byte sequences. This topic has become more and more
visible in the community, e.g., Garfinkel (2010) addresses
this as one of the candidates to solve the signature metrics
abstraction problem.

In general establishing a new algorithm requires a thor-
ough assessment by the community on base of well-known
criteria. For instance, the US National Institute of Standards
and Technology (NIST) governed the process to standardize
d Harald Baier. Published by Elsevier Ltd. All rights reserved.

mailto:frank.breitinger@cased.de
mailto:georgios.stivaktakis@cased.de
mailto:georgios.stivaktakis@cased.de
mailto:harald.baier@cased.de
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.diin.2013.06.006&domain=pdf
www.sciencedirect.com/science/journal/17422876
http://www.elsevier.com/locate/diin
http://dx.doi.org/10.1016/j.diin.2013.06.006
http://dx.doi.org/10.1016/j.diin.2013.06.006

F. Breitinger et al. / Digital Investigation 10 (2013) S50–S58 S51
the new symmetric block cipher AES (Nechvatal et al., 2000)
or the cryptographic hash function SHA-3 Keccak (Bertoni
et al., 2009). Hence, similarity hashing will only be
accepted byboth the scientific communityandpractitioners
if an assessment methodology and a test framework are
available (Garfinkel, 2010; Dewald and Freiling, 2012).

Our contribution within this paper is to provide a test
framework, which evaluates existing similarity hashing al-
gorithms.We call it FRASH: a FRamework to test Algorithms
of Similarity Hashing. FRASH is open source and freely
available online.2 On the one hand FRASH is inspired by
previous work on ‘eligible properties’ of similarity hashing
algorithms (Breitinger and Baier, 2012d). On the other hand
we analyzed multiple papers and how the authors evaluate
and compare similarity hashing, e.g., Roussev (2011);
Sadowski and Levin (2007); Tridgell (2002–2009). The
result of our analysis yields several test cases, which we
group in two classes: efficiency and sensitivity & robustness.

The first class measures the runtime efficiency and the
compression rate of the algorithms. Efficiency is important
for practical reasons as the computation and storage
amount must meet practical needs. The second class ad-
dresses sensitivity & robustness issues like random-noise-
resistance, alignment robustness, fragment detection, and
file correlation. FRASH assesses a similarity hashing algo-
rithm and uncovers its strengths andweaknesses in normal
operation and when under attack, respectively.

Currently ssdeep and sdhash are the best-known algo-
rithms. We therefore make use of FRASH to assess them.
Our results show that sdhash is superior to ssdeep in all
categories except for compression.

The rest of the paper is organized as follows: In Section 2
we discuss the state of the art and relevant literature. In
addition, we explain multiple similarity hashing functions
and their usage in digital forensics. The scope of FRASH is
explained in Section 3. Section 4 provides details about the
implementation itself, which is followed by some experi-
mental results in Section 5. Finally, we conclude the paper
and point to future work in Section 6.
2. Background

Nowadays a popular use case of cryptographic hash
functions within computer forensics is detecting known
inputs. The proceeding is quite simple: hash all files on a
storage medium and compare the hashes to a reference
database. In case of a match, the investigator is convinced
that the referred file actually is on the device. The most
famous database is the National Software Reference Library
(NSRL, NIST Information Technology Laboratory (2003–
2013)) with its Reference Data Set (RDS).3 However, due
to their security requirements crypto hashes only allow
yes-or-no decisions, whereas similarity hashing compari-
son outputs a match score between 0 and 100.

Identifying similarity has a long history and may start
with the Jaccard index suggested by Jaccard (1901) that
2 https://www.dasec.h-da.de/staff/breitinger-frank/#downloads; (last
accessed 2013–04–11).

3 http://www.nsrl.nist.gov; (last accessed 2013–04–11).
calculates the similarity of two finite sets A and B by
JðA;BÞ ¼ jAXBj

jAWBj. A common application of the Jaccard index
is plagiarism detection. Two strings are decomposed (e.g.,
by spaces or by n-grams) into tokens, which are the ele-
ments of the respective sets A and B. Then J(A,B) is used to
identify the similarity of the two input strings. However,
the sets have to be kept in memory to compute J(A,B),
which may be very space consuming. For instance, assume
that we split the long byte sequences into 4-g. In the worst
case we then have to keep 24$8 ¼ 232 different 4-g in
memory, i.e., 16 GiB.

Manber (1994) presented the sif tool to quantify simi-
larities among text files. “Files are considered similar if they
have a significant number of common pieces, even if
they are very different otherwise.” Manber uses a set of
anchors, which are short character sequences. In order to
test for similarity sif searches for anchors and considers the
neighborhood, e.g., the next 50 characters. As comparing
strings directly is time consumingManber integrated Rabin
fingerprinting (Rabin, 1981) to hash the substrings. Then it
is possible to compare numeric values. Themain problem is
that training data is needed in order to identify reasonable
anchors. As a consequence text files of different languages
may not be comparable as they do not contain anchors.

In recent years similarity hashing has become more and
more popular and thus newapproaches were published. All
approaches share two commonalities as they consist of

� a generation function that outputs a fingerprint/hash
value/digest and

� a comparison function that measures the similarity of
two fingerprints.

For the remainder of this paper we use the terms simi-

larity hashing and comparison function, respectively.

Although FRASH will only be applied to ssdeep and
sdhash, the following subsections briefly describe pub-
lished similarity hashing algorithms and explain, where the
algorithms succeed and where they fail in normal opera-
tion and when under attack. We decided to mention all
algorithms for two reasons. First, this paper should give a
rough overview of existing algorithms and how they pro-
ceed. Second, the papers describing the algorithms contain
valuable test information and point to the authors’ con-
cerns. Readers familiar with the existing approaches may
skip the remainder of Section 2.

2.1. Context triggered piecewise hashing

Similar to sif, Kornblum (2006) presented an algorithm
known as context triggered piecewise hashing (abbrevi-
ated CTPH) that is based on the spam detection algorithm
of Tridgell (2002–2009). The implementation is freely
available and currently in version ssdeep 2.94.

The overall idea of ssdeep is quite simple. CTPH iden-
tifies trigger points to divide a given byte sequence into
chunks. In order to generate a final fingerprint all chunks
are hashed using FNV (Noll, 1994–2012) and concatenated.
4 http://ssdeep.sourceforge.net; (last accessed 2013–04–11).

http://https//www.dasec.h-da.de/staff/breitinger-frank/
http://www.nsrl.nist.gov/
http://ssdeep.sourceforge.net/

F. Breitinger et al. / Digital Investigation 10 (2013) S50–S58S52
To represent the fingerprint of a chunk CTPH only takes the
least significant 6 bits of the FNV hash resulting in a Base64
character. To determine the distance of two fingerprints,
they are treated as text strings and compared by using the
weighted edit distance. The match score is scaled between
0 and 100.

A trigger point is identified as follows: Kornblum cal-
culates a modulus called block size b, which correlates to
the file size. Then a window of a fixed size 7 slides through
the whole input, byte for byte, and generates a pseudo
random number r at each step. If r h � 1 mod b, the byte
sequence in the window is a trigger point and thus the end
of the chunk.

Kornblum aims at having S ¼ 64 chunks, but also needs
to have the same value of b for similar sized files. He
therefore defines the block size as a saltus function

b ¼ bmin$2
Plog2

�
N

S$bmin

�
R
; (1)

where bmin ¼ 3 and N is the input length in bytes. Since the
block size b is used for determining the chunks and de-
pends on the length of the input, only ssdeep hash values
with the same value of b can be compared. To be more
flexible ssdeep outputs two hash values using b and b/2. As
a consequence ssdeep cannot find similarity between in-
puts exceeding a factor of four by design (in the worst case
only factor two).

Due to its uniqueness CTPH was improved in the up-
coming years by several researchers (e.g., Chen and Wang
(2008); Seo et al. (2009); Breitinger and Baier (2012b))
with respect to runtime efficiency. However, the paper at
hand focuses on the original version of ssdeep as the
improvements mainly address runtime efficiency. In
addition no implementation of an improved version is
available.

Baier and Breitinger (2011) did a detailed security
analysis of CTPH where the authors demonstrated pecu-
liarities and exploits to overcome this algorithm. The most
obvious attack is to change one bit in each chunk, i.e., an
expected amount of 64 manipulations per file. Due to the
fact that two fingerprints need a minimum of 7 characters
in common to be considered as similar, this attack can be
optimized: manipulate one bit in each 7th chunk. The
authors presented a second attack called adding trigger
points, where they compute trigger points in advance and
insert them at the beginning of the file, e.g., into the
header of a JPG. Thus it is possible to fake every
fingerprint.

2.2. sdhash

Four years later Roussev (2010) suggested a completely
different algorithm named similarity digest hashing, which
resulted in the tool sdhash.5 Instead of dividing an input
into chunks the algorithm extracts statistically improbable
features (Roussev, 2009) by using the Shannon entropy; a
feature is a byte sequence of 64 bytes. Hence files are
similar if they share identical improbable features.
5 http://roussev.net/sdhash/sdhash.html; (last accessed 2013–04–11).
sdhash computes the SHA-1 hash value of all extracted
features. Each SHA-1 hash is split into five sub-hashes,
however, only the least significant 11 bits of each sub-
hash are used for sdhash, the remaining bits are dropped.
In a last step the sub-hashes are inserted into a 211 ¼ 2048
bit Bloom filter: if hf denotes the 11-bit integer value of the
sub-hash, the bit at position hf is set to 1. Only a fixed
number of features are inserted into a Bloom filter. If this
number is exceeded, a new Bloom filter is created. Thus the
final sdhash digest/fingerprint is a sequence of Bloom fil-
ters. In comparison to ssdeepwe have a variable fingerprint
length, which is approximately 2.5% of the input length.

A comparison of digests is a comparison of all Bloom
filters of digest one against all Bloom filters of digest two
with respect to the Hamming distance as metric. Due to the
constant length of the Bloom filter an insertion of an
appropriate number of bytes in the beginning shifts the
features and reduces the similarity score.

The tool was improved over the last years with respect
to accuracy and runtime efficiency, e.g., the newest version
is parallelized. The current effectiveness of sdhash is
demonstrated by Roussev and Quates (2012), where it
solves the M57 triage problem in a very short time period.

Roussev (2011) provides a comparison of ssdeep and
sdhash and shows that the latter “approach significantly
outperforms in terms of recall and precision in all tested
scenarios and demonstrates robust and scalable behavior”.

Breitinger and Baier (2012c) did a detailed analysis of
sdhash. In general only 80% of all input bytes influence the
final hash value and thus it is possible to make uncovered
changes. With respect to security the authors couldn’t find
an attack to fake fingerprints. The only weakness is called
Bloom filter shifts: if a file allows inserting content in the
beginning, it is possible to reduce the match score down to
z25. However, this is still an acceptable score as Roussev
(2011) shows that scores above 21 are reliable.

2.3. bbhash

The approach bbhash (Breitinger and Baier, 2012a) uses
a fixed set of 16 random byte sequences called building
blocks (bb) each with a length of l ¼ 128 bytes (shall be
‘short’ compared to the file size). These building blocks are
used to rebuild an input as accurately as possible. To find
the optimal representation of a given file by the set of bb,
bbHash moves through the input file byte-by-byte, reads
out the current context of length l and computes the
Hamming distance of all bb against the current input byte
sequence. If the Hamming distance is smaller than a certain
threshold, its index contributes to the file’s fingerprint.

Due to the fact that processing a 10 MB needs approxi-
mately 2 min, we neglect this approach.

2.4. mrsh-v2

mrsh-v2 was proposed by Breitinger and Baier
(2012d) and is based on MRS hash (Roussev et al.,
2007) and CTPH. Similar to CTPH the algorithm divides
an input into chunks and hashes each chunk. Instead of
having a Base64 encoded fingerprint with a maximum
length of 64 characters, mrsh-v2 makes use of a sequence

http://roussev.net/sdhash/sdhash.html

F. Breitinger et al. / Digital Investigation 10 (2013) S50–S58 S53
of Bloom filters. Like sdhash this leads to a variable
length fingerprint, where the implementation aims at
having 0.5% of the input length. As a specialty mrsh-v2
has two modes, one for fragment detection and one for
file similarity.

The current implementation does not support an all-
against-all comparison of files. Therefore we cannot
consider this approach.

2.5. mvHash-B

As described by Breitinger et al. (2013), mvhash-B has
three phases to create the fingerprint. First, majority
voting is used to map every byte of the input data to either
0x00 or 0xFF. Majority voting in this case means counting
the amount of 0s/1s in the n-neighborhood of the
currently processed input byte. If the neighborhood is
crowded by 1s, the majority vote yields an output 0xFF
and vice versa. Next, run length encoding compresses
these sequences of 0x00s or 0xFFs bytes. For instance, a
run length encoded sequence can look like this
22j51j6j19j.j45. Finally, the run length encoded sequence
is inserted into Bloom filters to represent the actual
fingerprint. By design mvHash-B aims at having a finger-
print length of 0.5% of the input length.

A drawback of this implementation is the dependence
on the file type: each file type requires its own configura-
tion – no standard configuration works for all file types. In
other words: althoughmvhash-B works on the byte level, it
needs different configurations and is therefore not included
into FRASH. However, mvhash-B is not a perceptual hash-
ing algorithm.

3. Towards a test framework

Currently it is very hard to compare different algo-
rithms. Most tools were briefly compared to other existing
algorithms with respect to compression and runtime effi-
ciency. However, Roussev (2011) pointed to additional
features of similarity hashing. He enumerates the following
challenges:

1. Document similarity detection: identify related docu-
ments, e.g., different versions of a Word document.

2. Embedded object detection: identify a given object in-
side a container, e.g., a JPG within a Word document.

3. Fragment detection: identify an original input based on a
fragment, e.g., analyzing a device on the byte level.

4. Clustering files: group files that share similar content,
e.g., a Word document and an e-mail.

Based on all the papers presented in Section 2 we
designed and implemented the test framework FRASH,
which contains tests for these different challenges.
FRASH is split into two main categories efficiency and
sensitivity & robustness, which are described in the
following.

Each test description is divided into two parts. First, we
give a reason why this test is important, and second, we
explain the test itself. All details about their realization/
implementation are given in Section 4.
3.1. Efficiency

The efficiency test is composed of three sub-tests called
runtime efficiency, fingerprint comparison and compres-
sion to evaluate the basic properties of the algorithms.

3.1.1. Runtime efficiency
Runtime efficiency also known as ease of computation is

one of the fundamental properties of hash functions. Due
the large amount of data it is obvious that similarity
hashing has to be fast.

Runtime efficiency measures the time, which the algo-
rithm needs to process the input. Processing in this case
means that we measure the time for reading the file from
the device and generating the fingerprint. We include SHA-
1 (Gallagher and Director, 1995) as a benchmark.

3.1.2. Fingerprint comparison
A fast fingerprint comparison is part of the runtime ef-

ficiency as an approach is only useful if it has a fast com-
parison function. The comparison time may vary due to
different fingerprint length and comparison algorithms like
Hamming distance or Levenshtein. One could rate this test
as an extension of the aforementioned one.

Fingerprint comparison measures the time of the com-
parison proceeding. As said in Section 2 each approach has
a comparison function to measure the similarity of finger-
prints. Therefore this test does an all-against-all compari-
son of fingerprints in the corpus and measures the time.
This time excludes the fingerprint generation mentioned
from the previous paragraph.

3.1.3. Compression
Similar to runtime efficiency compression is the second

fundamental property of hash functions. Traditional hash
functions output a fixed length fingerprint, which is in
contrast to similarity hashing, where we often have a var-
iable length. As fingerprints are typically stored within a
database a preferably short fingerprint is desirable.

Compression measures the ratio between input and
output of an algorithm and returns a percentage value. To
be more precise:

compression ¼ output length
input length

,100 (2)

3.2. Sensitivity & robustness

The sensitivity & robustness test is composed of four
sub-tests called single-common-block correlation, frag-
ment detection, alignment robustness and random-noise-
resistance.

Sensitivity measures what amount of commonality is
detectable by the algorithm. The tool that detects smaller
levels of commonality is more sensitive. Higher sensitivity
is generally better (up to a point). Fragment detection and
common-block are representatives of the sensitivity part.

3.2.1. Single-common-block correlation
This test was proposed by Roussev (2011) and “simu-

lates a situation where two files have a single common

6 https://rvm.io/rvm/install; (last accessed 2013–04–11).
7 http://docs.rubygems.org; (last accessed 2013–04–11).

F. Breitinger et al. / Digital Investigation 10 (2013) S50–S58S54
object”. Considering two files f1 and f2 that are completely
different, but share a common object O, “what is the
smallest O for which the similarity tool reliably correlates
the two targets?” (Roussev, 2011).

First, two random files f1 and f2 of size X˛{512 KB,
2048 KB,8192 KB} are created followed by the common
block O of size X/2. Next, O overwrites f1 and f2 at different
and randomly chosen offsets – the size of f1 and f2 remains
X all over the time. Within the last step we perform a
comparison of f1 and f2. If we obtain a match score >0, we
reduce O by 16 KB and restart. The test stops when the
match score ¼ 0. Due to the fact that we choose the offset
randomly we perform 5 runs for each file size and average
the values.

The output shows the match scores in fives steps. For
each match score it shows theminimum averaged size of O.

3.2.2. Fragment detection
Considering a file, what is the smallest piece/fragment,

for which the similarity tool reliably correlates the frag-
ment and the original file? Classical use cases are HDD
block level analysis or network packets. For instance,
analyzing an HDD on the sector level (e.g., 512 bytes), is it
possible to find the original file; does this sector belong to
this 800 MB movie?

Fragment detection identifies the minimum correlation
between an input and a fragment. It sequentially cuts X% of
the original input length and generates the match score
whereby X ¼ 5 by default. This means the maximum
amount of cuts is Q100X Q� 1. In case that the algorithm still
identifies similarity we continuewith a further reduction in
1% steps until only 1% of the input is left.

For instance, assuming the default value of X ¼ 5 and an
input length of 100,000 bytes. This results in 19 cuts of
5000 bytes each. As the next cut would result in NULL, the
algorithm continues in cutting 1% pieces, i.e., 1000 bytes,
until only 1% ¼ 1000 bytes are left.

We decided to have two different modes:

1. Random cutting is the first mode. The framework
randomly decides whether to start cutting at the
beginning or the end of an input and then continues
randomly.

2. End side cutting is the second mode and only cuts blocks
at the end of an input.

The reason why we do not cut in the beginning is that
this is similar to the alignment test, which is described in
the next paragraph.

3.2.3. Alignment robustness
As written in Section 2 most approaches are vulnerable

to inserting content at the beginning of the file, especially
algorithms using Bloom filters. A typical real live scenario
are logfiles. Hence, this test addresses challenge 1.

This test analyzes the impact of inserting byte sequences
at the beginning of an input whereby we add fixed and per-
centage blocks. In general both tests consist of two parame-
ters, themaximumsizeM and the size of a step s. To generate
the final result the test inserts sequentially a block of size s
at the beginning and stops after n steps when n$s � M.
In both cases the result is an averaged overview, i.e., for
each step i where 0 < i � n we average the match score.

1. Fixed blocks test defines a maximum block size of
M ¼ 64 KB and a step size of s ¼ 4 KB. Additionally, it
includes the results for inserting a block of 1 KB, 2 KB and
3 KB, respectively. We decided for a step size of 4 KB as
this is the typical sector size. The additional smaller
blocks show the behavior of small changes.

2. Percentage blocks test defines a maximum block size of
M ¼ 100% and a step size of s ¼ 10% with respect to the
original file length. Additionally, it includes the results
for blocks of 200%,300%,400% and 500%. We decided
for a step size of 10% in order to analyze the impact of
large changes. Especially logfiles may grow very
rapidly.

3.2.4. Random-noise-resistance
The analysis of ssdeep showed that a few changes all

over the input are sufficient to obtain a non-match. The
intention of the random-noise-resistance check is to have a
randomly driven test trying to produce false negatives. This
allows an estimation of how many bytes need to be
changed all over the input to receive a non-match.
Furthermore, this test aims at challenge 1.

The test analyzes the impact of random changes for an
input. A random change is one of the typical edit operations
deletion, insertion, and substitution, where each edit
operation is chosen with a probability of 1/3. Additionally
each byte in the input is equiprobable to be changed. To
reduce the runtime of this test, we perform ten changes at a
time instead of a single one.

Random-noise-resistance tries to answer the following
question: What is the maximum number of changes if the
match score s is equal or above X, i.e., s � X? In order to
show a good overview we set X ¼ {90,80,.,0}. The output
shows a fixed value, but also a percentage value. For
instance, if X ¼ 90 is given the algorithm responds with 20
changes for a 58,000 byte input. Thus the percentage value
would be (20/58,000)$100% ¼ 0.03448%. As the test
framework is working on multiple inputs, it calculates an
average value.

4. Implementation details of the test framework

The framework is implemented in Ruby 1.9.3 and
currently supports sdhash and ssdeep. Due to the usage of
the bash command find, a Unix environment is necessary to
run the framework. Additionally, we included several Ruby
packages called gems: actionpack, activesupport, i18n,
activemodel, rack, erubis, colored and terminal-table. We
recommend installing the Ruby Version Manager (RVM) as
this allows easy handling of the Ruby environment
including its package manager gem that allows the instal-
lation of gems like: gem install <GEMNAME>.

Further information about RVM6 and gems7 are avail-
able online.

http://https//rvm.io/rvm/install
http://docs.rubygems.org/

Table 1
Statistics of the t5-corpus.

jpg gif doc xls ppt html pdf txt

t5-corpus 362 67 533 250 368 1093 1073 711

F. Breitinger et al. / Digital Investigation 10 (2013) S50–S58 S55
4.1. Command line parameters and options

All following parameters are optional. The only
mandatory part is PATH, which needs to be a file, a direc-
tory, or a combination separated by a space character. If the
file or directory name contains spaces, they must be
escaped with a backslash, e.g., file\ with\ spaces.txt.

FRASH has the following options:
-h prints usage instructions on the screen.
-v is the verbosemode and prints details for all files. This is
only possible for the efficiency test. More details are given
in Section 4.2.1.
-t allows to set the test scope, i.e., which tests will be
performed. By default these are all tests. Parameters for -t
are:

efficiency, single_common_block, fragment, alignment,
random-noise.

-r reads the directory recursively, i.e., -r without any
number reads all sub-directories. Optionally -r can be
extended by a number, which sets themaximumnumber of
recursive steps. If -r is not set, it is 1 by default.

The following is an example how to run the efficiency
test for a specific directory:
Currently only fixed paths are possible, which means
that the path needs to start from the root directory.
8 http://ruby-doc.org/stdlib-1.9.3/libdoc/benchmark/rdoc/Benchmark.
html; (last accessed 2013–04–11).

9 Here we talk about the environmental variable and not the console
parameter. http://www.linfo.org/path_env_var.html; (last accessed 2013–
04–11).
4.2. Proceeding

The minimum input is a file or directory otherwise the
framework exits with an error message. Next, depending
on the configuration, the framework runs the different tests
in silent mode. After finishing all tests FRASH outputs a
summary of the processed input consisting of: file count,
total duration, average file size, total file size, and largest
file followed by the test results. By default FRASH has the
following test order: (1) efficiency test and (2) sensitivity &
robustness test.

4.2.1. Efficiency test
This test is composed of 3 sub-tests called runtime ef-

ficiency, compression and fingerprint comparison, and are
performed in this order. This is necessary as tests are based
on the results of previous ones, e.g., ‘compression’ is based
on ‘runtime efficiency’ as it needs the fingerprint-file. To
derive the exact compression rate we neglect unnecessary
information like the file name and focus on the fingerprint
itself.

As said in Section 4.1 the efficiency test has two different
modes:

Default mode simply passes PATH to the different hashing
algorithms and pipes the output in a file.
Verbose mode hashes all files individually. In other words,
FRASH calls the find command to retrieve all n files. Next,
each algorithm is called n times; once per file. Thus it is
possible to receive the compression rate and runtime effi-
ciency for all files separately. For instance, this might be
helpful to analyze a couple of large files.

The runtime efficiency is based on the real time for each
algorithm call. In default mode we start timing right before
we hand the directory to the algorithm. To measure times
wemake use of Ruby’s Benchmark8 module, particularly its
realtime method, which is similar to bash’s time command,
except that it returns only the elapsed real time of the
executed code block. In order to have a benchmark for
runtime we included SHA-1.

4.2.2. Sensitivity & robustness
This test is composed of four sub-tests called single-

common-block correlation, fragment detection, alignment
robustness and random-noise-resistance. Although by
default they are performed in this order they are inde-
pendent. All tests need the find command to identify the
files within the directory. This is necessary as the tests
process all files successively.

To compare algorithms we need to have equal inputs.
Hence, we first modify the input and then hand it to all
hashing algorithms. In other words, there are four working
steps for all files: copy original input, manipulate the copy
depending on the test, compare original against copy, save
the result.

4.3. Integrating a new algorithm

In order to add a new algorithm it must fulfill the
following requirements:

� Accept a directory and a file as input.
� Print fingerprint to standard output, e.g., Base64

encoded.
� The fingerprint must also contain the file name as it is

used to determine the file producing the largest
fingerprint.

� The algorithm needs to support an all-against-all
comparison.

The new algorithm needs to be installed on the system
and set in the environmental variable PATH.9 Then it can be
added to the framework performing the following steps:

http://ruby-doc.org/stdlib-1.9.3/libdoc/benchmark/rdoc/Benchmark.html
http://ruby-doc.org/stdlib-1.9.3/libdoc/benchmark/rdoc/Benchmark.html
http://www.linfo.org/path_env_var.html

Table 2
Runtime efficiency and fingerprint comparison.

Average Total Fingerprint comparison algorithm
SHA�1

sha1sum 0.0013s 5.632s – 1.00
ssdeep -s 0.0089s 39.789s 18.217s 7.06
sdhash 0.0167s 74.278s 346.730s 13.19
sdhash -p4 0.0066s 29.382s 346.902s 5.22

Table 3
Compression test overview.

Avg. hash length Avg. ratio Digest file size

sha1sum 20 B 0.00466% 311 KB
ssdeep -s 57 B 0.01329% 483 KB
sdhash 10.6 KB 2.52033% 61.2 MB

Table 4
An extract of the single-common-block correlation with a file size of
2048 KB.

Score �40 �30 �25 �20 �5

ssdeep Avg. block size (KB) 605 384 368 – –

F. Breitinger et al. / Digital Investigation 10 (2013) S50–S58S56
1. Create a wrapper. Copy the file new_algorithm_
template.rb in the lib/hash_functions folder and decide
on a name, e.g., my_alorithm.rb. The lines, which need
to be implemented/changed, are marked with the
comment #CHANGE ME:
� PROGRAM_NAME contains the algorithm name, which
will be called.

� The variables @all_pair_comparison_command and
@gen_compare_command contain the commands for
an all-against-all and for a two-fingerprint compari-
son, respectively.

� If the fingerprint file has a header set @digest_header
to it as the framework needs to remove the header
from the fingerprint file.

� self.file_stats(digest) Processes the fingerprint and
implements two extractor functions to divide the
standard output into file name and hash value.

� self.digest_length(hash) Computes the hash value
length in bytes. For instance, if the hash value is rep-
resented by a Base64 string it should be multiplied by
0.75 as the hex presentation would be shorter.

2. The last step is the activation of the new algorithm. This
is done by creating an object of the new algorithm as an
instance variable in the initialize method of lib/testers/
base_test.rb and adding it to the @hash_functions array.
As we use inheritance it is also possible to add an algo-
rithm to a specific class, e.g., fragment_detection_test.rb.

5. Experimental results & assessment

The following subsections describe the test results for
ssdeep 2.9 and sdhash 3.2. In the latter case we only
execute the default mode, i.e., ‘block mode’ or ‘sampling’
representing trade offs between storage/speed and preci-
sionwere neglected. Thesemodes allow to improve the test
results for one domain but will worsen them in another.
Hence, we focused on the default mode. However, in order
to identify the best settings for a specific approach, the user
needs to be familiar with the modes of an algorithm.

All tests expect random-noise-resistance are based on
the t5-corpus10 Roussev (2011, section 4.1) containing 4457
files of the file types given in Table 1 with a total size of
1.78 GB. This corresponds to an average of 418.91 KB per
file. As random-noise-resistance is extremely time
consuming, we randomly extracted a subset11 containing
85 files which has a total file size of 14.4 MB and an average
file size of 165.32 KB.
10 http://roussev.net/t5/t5-corpus.zip; (last accessed 2013–04–11).
11 https://www.dasec.h-da.de/staff/breitinger-frank/#downloads; (last
accessed 2013–04–11).
Most of the test results are very comprehensive
wherefore we reduced them in the upcoming sections and
only provide an overview.

5.1. Efficiency test results

The test environment for the efficiency was a private
laptop having the following benchmark data:

CPU : 4x Intel(R) Core(TM) i7-2620M CPU @ 2.70 GHz (2
Cores, 4 Threads)
HDD : Mushkin Chronos SSD 120 GB (SATA3)
RAM : 2x4GB DDR3 SODIMM 1333 MHz.
Kernel : Linux 3.2.0-31-generic x86_64.

The -s parameter of ssdeep is the silent mode that
suppresses all error messages. In case of sdhash we did two
runs inwhich the second run had the -p4 parameter, which
parallelized it, using 4 threads.

5.1.1. Runtime efficiency and fingerprint comparison
The results for both tests are given in Table 2. Average is

the average time per file. Total and fingerprint comparison
measure the time for hashing all files and do an all-against-
all fingerprint comparison, respectively. The last column
shows the relationship of all algorithms compared to
SHA-1.

To sum it up, by default sdhash is slower than ssdeep but
outperforms it when it is parallelized. Since the fingerprint
comparison time of both sdhash runs are nearly equal, it
looks like the comparison is not performed in parallel or at
least without an improvement. Using SHA-1 as a bench-
mark all algorithms are significantly slower.

5.1.2. Compression
Table 3 shows the results for the compression test. The

framework outputs the average hash value length, average
compression ratio in percent, the maximum hash value
including the corresponding file (not included in the table)
and the size of all hashes.

To conclude, with respect to compression ssdeep out-
performs sdhash as it produces much smaller fingerprints.
Avg. block size (%) 29.53 18.75 17.97 – –

Matches 5 5 4 – –

sdhash Avg. block size (KB) 912 720 604 480 170
Avg. block size (%) 44.53 35.16 29.49 23.44 8.28
Matches 3 5 4 4 5

http://roussev.net/t5/t5-corpus.zip
https://www.dasec.h-da.de/staff/breitinger-frank/#downloads

Table 5
An extract of the fragmentation detection test using random cutting.

Fragment size 50% 30% 25% 20% 5%

ssdeep Avg. score 65.86 50.90 47.62 44.98 26.00
Matches (%) 94.64 38.64 20.75 8.86 0.04
Std. deviation 10.09 10.29 11.34 13.08 1.00

sdhash Avg. score 69.49 70.63 71.18 71.91 76.16
Matches (%) 100 99.46 98.86 97.33 75.59
Std. deviation 22.45 23.17 23.27 23.22 22.72

Table 7
An extract of the alignment robustness test with percentage blocks.

Added block 10% 50% 100% 200% 400%

ssdeep Avg. score 91.09 71.73 60.22 45.78 29.00
Matches (%) 99.62 95.03 72.85 24.07 0.06
Std. deviation 6.39 11.12 10.53 10.35 2.94

sdhash Avg. score 67.65 69.58 68.46 68.41 67.52
Matches (%) 100 100 100 100 100
Std. deviation 21.30 21.58 21.66 21.58 21.98

F. Breitinger et al. / Digital Investigation 10 (2013) S50–S58 S57
5.2. Sensitivity & robustness test results

This section is divided into four paragraphs and focuses
on the different tests single-common-block correlation,
fragment detection, alignment robustness, and random-
noise-resistance. Compared to efficiency we used a
different workstation as runtime is unimportant and these
tests are very time consuming.

5.2.1. Single-common-block correlation
Although FRASH outputs three tables showing the re-

sults for files of 512,2048 and 8196 KB this paper only in-
cludes a summary for 2048 KB as the results are similar for
the others. Row 1 shows the match score. Row 2 and 3 are
the average block size in KB and percentage, respectively.
The last row is the amount of comparisons that yield the
results, e.g., in column one we had 3 matches for sdhash
having a score �40 out of 5 runs.

The main conclusion of Table 4 is that ssdeep outputs
highermatch scores for smaller pieces compared to sdhash.
For instance, to output a match score of 30, sdhash needs a
720 KB piece whereas ssdeep is fine with a 384 KB piece.
However, sdhash is able to detect smaller blocks like a
170 KB piece with a score of 5.

5.2.2. Fragment detection
Tables 5 and 6 show the results for random cutting

and end side cutting, respectively. Actually each table
comprises 24 columns containing the results for
95%,90%,85%,.,10%,5%,4%,3%,2%,1% fragments. We reduced
this down to 5 for this paper in order to provide a suitable
overview. The first row shows the average match score.
‘Matches’ is the amount of valid scores, i.e., how many
percent of all files were matched. The last row is the
standard deviation of the score.

As mentioned in Section 2.1 in many cases ssdeep can
only detect file fragments between 50% and 25% which is
also the conclusion considering both tables. The algorithm
works with a high precision until pieces of 45%-fragments
then the ‘matches’ reduces rapidly. Table 6 shows that
ssdeep also uncovers 0.49% of 5%-fragments which is one of
Table 6
An extract of the fragmentation detection test using end side cutting.

Fragment size 50% 30% 25% 20% 5%

ssdeep Avg. score 71.73 58.26 56.76 55.35 55.68
Matches (%) 93.07 44.56 26.72 14.18 0.49
Std. deviation 11.84 14.49 15.07 15.37 19.92

sdhash Avg. score 99.51 99.21 99.09 98.93 98.26
Matches (%) 100 99.84 99.55 97.98 76.73
Std. deviation 1.36 1.79 2.04 2.25 2.96
the mentioned special cases. On the other hand sdhash
outputs a very high rate also for 5%-fragments. In case of 1%
fragments sdhash has 43.53% matches.

Comparing both cutting modes the results for ssdeep
are nearly the same. However, sdhash shows a different
behavior which is due to the fingerprint representation
using Bloom filters. End side cutting only influences the last
Bloom filters, thus, the beginning is equal which results in a
high score. On the other hand random cutting also cuts the
beginning which shifts features to different Bloom filters
and reduces the score.

5.2.3. Alignment robustness
The results are Tables 7 and 8 showing the impact of

percentage blocks and fixed blocks, respectively, inwhich the
rows are equal to the ones from fragment detection.

Similar to fragment detection, ssdeep can hardly find a
similarity if the modification is too large. For instance,
ssdeep can only detect similarity for 24% if we add 200%.
But therefore it is very robust against small changes. This is
in contrast to sdhash where we have 100% matches but
with lower scores.

In the authors’ opinion sdhash shows a better alignment
robustness as it identified all.

5.2.4. Random-noise-resistance
Random-noise-resistance is presented by Table 9. Row 1

and 2 are the average changes in value and percentage,
respectively. Matches is the amount of files yielding the
result.

Recall, this test presents the average amount of ma-
nipulations so that the match score is above or equal
90,80,.,0. Again we selected the most important columns
which are 6 out of 10.

Doing random changes all over the file is a weakness of
ssdeep. For instance, there are only 29 matches for 85
manipulations whereas sdhash identifies 78 matches with
729 manipulations (column �50). Having a look at the last
column, sdhash still outputs a similarity score �10 when
1.10% of the input file is manipulated.
Table 8
An extract of the alignment robustness test with fixed blocks.

Added block 1 KB 4 KB 16 KB 32 KB 64 KB

ssdeep Avg. score 96.56 91.25 82.66 79.33 76.47
Matches (%) 100 99.69 87.91 74.29 59.28
Std. deviation 3.79 10.51 16.27 17.84 18.40

sdhash Avg. score 84.11 51.47 64.37 52.68 78.12
Matches (%) 100 100 100 100 100
Std. deviation 10.57 21.04 17.01 21.05 15.90

Table 9
An extract of the random-noise-resistance test.

Score �80 �60 �50 �30 �20 �10

ssdeep Avg. changes 14.65 43.89 85.17 160.00 – –

Avg. changes (%) 0.009% 0.026% 0.050% 0.094% – –

Matches 71 54 29 1 – –

sdhash Avg. changes 211.67 514.62 729.36 1116.24 1483.54 1860.83
Avg. changes (%) 0.1216% 0.304% 0.431% 0.660% 0.877% 1.100%
Matches 78 80 78 85 82 84

F. Breitinger et al. / Digital Investigation 10 (2013) S50–S58S58
6. Conclusion

Manually comparing similarity hashing algorithms is a
complex task and require a lot of time. With this paper we
took the challenge to create a framework to test similarity
hashing algorithms. The result is a tool called FRASH that is
open source.

FRASHcurrently includes two test classes called efficiency
and sensitivity & robustness. The former comprises runtime
efficiency, fingerprint comparison and compression. Our
tests showed that ssdeep has the better compression and
fingerprint comparison whereas sdhash supports paral-
lelism and outperforms ssdeep in runtime efficiency.

Sensitivity & robustnessis composed of four sub-tests
named single-common-block correlation, fragment detec-
tion, alignment robustness, and random-noise-resistance.
As shown in the assessment section, sdhash dominates all
of these sub-tests.

In general there are three next steps. Further similarity
hashing algorithms need be integrated to identify their
strengths and weaknesses. The relevance and correctness
of existing tests have to be discussed by the community in
order to improve them. Additionally, we are exploring
other tests to add to the framework that would produce
data that is of interest to, and have an impact on forensic
practitioners.

Acknowledgments

The authors would like to thank Simson Garfinkel from
the Naval Postgraduate School in Monterey, California and
Vassil Roussev from the University of New Orleans for
valuable discussions. Additionally, we are thanking the
others of the ‘approximate matching working group’; John
Delaroderie, Barbara Guttman, John Kelsey, Jesse Korn-
blum, Mary Laamanen, Michael McCarrin, Clay Shields,
Douglas White, John Tebbutt, and Joel Young.

This work was partly funded by the EU (integrated
project FIDELITY, grant number 284862) and supported by
CASED (Center for Advanced Security Research Darmstadt).

References

Baier H, Breitinger F. Security aspects of piecewise hashing in computer
forensics. IT Security Incident Management & IT Forensics (IMF); 2011.
p. 21–36.

Bertoni G, Daemen J, Peeters M, Assche GV. Keccak specifications 2009.
Breitinger F, Åstebøl KP, Baier H, Busch C. mvhash-b – a new approach for

similarity preserving hashing. IT Security Incident Management & IT
Forensics (IMF); 2013.
Breitinger F, Baier H. A fuzzy hashing approach based on random se-
quences and hamming distance. In: 7th annual conference on digital
forensics, security and law. ADFSL; 2012a. p. 89–100.

Breitinger F, Baier H. Performance issues about context-triggered piece-
wise hashing. In: Gladyshev P, Rogers M, editors. Digital forensics and
cyber crime. Berlin Heidelberg: Springer; 2012b. p. 141–55. volume
88 of lecture notes of the institute for computer sciences, social
informatics and telecommunications engineering.

Breitinger F, Baier H. Properties of a similarity preserving hash function
and their realization in sdhash. In: 2012 information security for
South Africa (ISSA 2012) 2012.

Breitinger F, Baier H. Similarity preserving hashing: eligible properties
and a new algorithm MRSH-v2. In: 4th ICST conference on digital
forensics & cyber crime (ICDF2C) 2012.

Chen L, Wang G. An efficient piecewise hashing method for computer
forensics. In: Knowledge discovery and data mining, 2008. WKDD
2008. First international workshop on 2008. p. 635–8.

Dewald A, Freiling F. Is computer forensics a forensic science? In: M.-P.-I.
für ausländisches und internationales Strafrecht, Freiburg U, editors.
Proceedings of current issues in IT security 2012. pp. 0–0.

Gallagher P, Director A. Secure hash standard (SHS). Technical report
national institute of standards and technologies. Federal Information
Processing Standards Publication; 1995. p. 180–1.

Garfinkel SL. Digital forensics research: the next 10 years. Digitial Inves-
tigation 2010;7:64–73.

Jaccard P. Distribution de la flore alpine dans le bassin des drouces et dans
quelques regions voisines. Bulletin de la Société Vaudoise des
Sciences Naturelles 1901:241–72.

Kornblum J. Identifying almost identical files using context triggered
piecewise hashing. Digital Investigation 2006;3:91–7.

Manber U. Finding similar files in a large file system. In: USENIX winter
1994 technical conference 1994. p. 1–10.

Nechvatal J, Bassham EBL, Dworkin M, Foti J, Roback E. Report on the
development of the advanced encryption standard (AES) 2000.
Technical Report National Institute of Standards and Technology.

NIST Information Technology Laboratory. National software reference
library. http://www.nsrl.nist.gov; 2003–2013.

Noll LC. Fnv hash. http://www.isthe.com/chongo/tech/comp/fnv/index.
html; 1994–2012.

Rabin MO. Fingerprinting by random polynomials. Technical report
TR1581. Cambridge, Massachusetts: Center for Research in
Computing Technology, Harvard University; 1981.

Roussev V. Building a better similarity trap with statistically improbable
features. In: System sciences, 2009. HICSS ’09. 42nd Hawaii interna-
tional conference on 2009. p. 1–10.

Roussev V. Data fingerprinting with similarity digests. In: Chow K-P,
Shenoi S, editors. Advances in digital forensics VI. Berlin Heidelberg:
Springer; 2010. p. 207–26. volume 337 of IFIP advances in informa-
tion and communication technology.

Roussev V. An evaluation of forensic similarity hashes. Digital Investiga-
tion 2011;8:34–41.

Roussev III V, R. GG, Marziale L. Multi-resolution similarity hashing.
Digital Investigation 2007;4:105–13.

Roussev V, Quates C. Content triage with similarity digests: the M57 case
study. Digital Investigation 2012;9:60–8.

Sadowski C, Levin G. Simhash: hash-based similarity detection. http://
simhash.googlecode.com/svn/trunk/paper/SimHashWithBib.pdf;
2007.

Seo K, Lim K, Choi J, Chang K, Lee S. Detecting similar files based on hash
and statistical analysis for digital forensic investigation. In: Computer
science and its applications, 2009. CSA ’09. 2nd International
conference on 2009. p. 1–6.

Tridgell A. spamsum. http://www.samba.org/ftp/unpacked/junkcode/
spamsum/; 2002–2009. accessed 10.04.13.

http://refhub.elsevier.com/S1742-2876(13)00052-2/sref1
http://refhub.elsevier.com/S1742-2876(13)00052-2/sref1
http://refhub.elsevier.com/S1742-2876(13)00052-2/sref1
http://refhub.elsevier.com/S1742-2876(13)00052-2/sref2
http://refhub.elsevier.com/S1742-2876(13)00052-2/sref3
http://refhub.elsevier.com/S1742-2876(13)00052-2/sref3
http://refhub.elsevier.com/S1742-2876(13)00052-2/sref3
http://refhub.elsevier.com/S1742-2876(13)00052-2/sref4
http://refhub.elsevier.com/S1742-2876(13)00052-2/sref4
http://refhub.elsevier.com/S1742-2876(13)00052-2/sref4
http://refhub.elsevier.com/S1742-2876(13)00052-2/sref5
http://refhub.elsevier.com/S1742-2876(13)00052-2/sref5
http://refhub.elsevier.com/S1742-2876(13)00052-2/sref5
http://refhub.elsevier.com/S1742-2876(13)00052-2/sref5
http://refhub.elsevier.com/S1742-2876(13)00052-2/sref5
http://refhub.elsevier.com/S1742-2876(13)00052-2/sref6
http://refhub.elsevier.com/S1742-2876(13)00052-2/sref6
http://refhub.elsevier.com/S1742-2876(13)00052-2/sref6
http://refhub.elsevier.com/S1742-2876(13)00052-2/sref7
http://refhub.elsevier.com/S1742-2876(13)00052-2/sref7
http://refhub.elsevier.com/S1742-2876(13)00052-2/sref7
http://refhub.elsevier.com/S1742-2876(13)00052-2/sref8
http://refhub.elsevier.com/S1742-2876(13)00052-2/sref8
http://refhub.elsevier.com/S1742-2876(13)00052-2/sref8
http://refhub.elsevier.com/S1742-2876(13)00052-2/sref9
http://refhub.elsevier.com/S1742-2876(13)00052-2/sref9
http://refhub.elsevier.com/S1742-2876(13)00052-2/sref9
http://refhub.elsevier.com/S1742-2876(13)00052-2/sref10
http://refhub.elsevier.com/S1742-2876(13)00052-2/sref10
http://refhub.elsevier.com/S1742-2876(13)00052-2/sref10
http://refhub.elsevier.com/S1742-2876(13)00052-2/sref11
http://refhub.elsevier.com/S1742-2876(13)00052-2/sref11
http://refhub.elsevier.com/S1742-2876(13)00052-2/sref12
http://refhub.elsevier.com/S1742-2876(13)00052-2/sref12
http://refhub.elsevier.com/S1742-2876(13)00052-2/sref12
http://refhub.elsevier.com/S1742-2876(13)00052-2/sref13
http://refhub.elsevier.com/S1742-2876(13)00052-2/sref13
http://refhub.elsevier.com/S1742-2876(13)00052-2/sref14
http://refhub.elsevier.com/S1742-2876(13)00052-2/sref14
http://refhub.elsevier.com/S1742-2876(13)00052-2/sref15
http://refhub.elsevier.com/S1742-2876(13)00052-2/sref15
http://refhub.elsevier.com/S1742-2876(13)00052-2/sref15
http://www.nsrl.nist.gov
http://www.isthe.com/chongo/tech/comp/fnv/index.html
http://www.isthe.com/chongo/tech/comp/fnv/index.html
http://refhub.elsevier.com/S1742-2876(13)00052-2/sref18
http://refhub.elsevier.com/S1742-2876(13)00052-2/sref18
http://refhub.elsevier.com/S1742-2876(13)00052-2/sref18
http://refhub.elsevier.com/S1742-2876(13)00052-2/sref19
http://refhub.elsevier.com/S1742-2876(13)00052-2/sref19
http://refhub.elsevier.com/S1742-2876(13)00052-2/sref19
http://refhub.elsevier.com/S1742-2876(13)00052-2/sref20
http://refhub.elsevier.com/S1742-2876(13)00052-2/sref20
http://refhub.elsevier.com/S1742-2876(13)00052-2/sref20
http://refhub.elsevier.com/S1742-2876(13)00052-2/sref20
http://refhub.elsevier.com/S1742-2876(13)00052-2/sref21
http://refhub.elsevier.com/S1742-2876(13)00052-2/sref21
http://refhub.elsevier.com/S1742-2876(13)00052-2/sref22
http://refhub.elsevier.com/S1742-2876(13)00052-2/sref22
http://refhub.elsevier.com/S1742-2876(13)00052-2/sref23
http://refhub.elsevier.com/S1742-2876(13)00052-2/sref23
http://simhash.googlecode.com/svn/trunk/paper/SimHashWithBib.pdf
http://simhash.googlecode.com/svn/trunk/paper/SimHashWithBib.pdf
http://refhub.elsevier.com/S1742-2876(13)00052-2/sref25
http://refhub.elsevier.com/S1742-2876(13)00052-2/sref25
http://refhub.elsevier.com/S1742-2876(13)00052-2/sref25
http://refhub.elsevier.com/S1742-2876(13)00052-2/sref25
http://www.samba.org/ftp/unpacked/junkcode/spamsum/
http://www.samba.org/ftp/unpacked/junkcode/spamsum/

	FRASH: A framework to test algorithms of similarity hashing
	1 Introduction
	2 Background
	2.1 Context triggered piecewise hashing
	2.2 sdhash
	2.3 bbhash
	2.4 mrsh-v2
	2.5 mvHash-B

	3 Towards a test framework
	3.1 Efficiency
	3.1.1 Runtime efficiency
	3.1.2 Fingerprint comparison
	3.1.3 Compression

	3.2 Sensitivity & robustness
	3.2.1 Single-common-block correlation
	3.2.2 Fragment detection
	3.2.3 Alignment robustness
	3.2.4 Random-noise-resistance

	4 Implementation details of the test framework
	4.1 Command line parameters and options
	4.2 Proceeding
	4.2.1 Efficiency test
	4.2.2 Sensitivity & robustness

	4.3 Integrating a new algorithm

	5 Experimental results & assessment
	5.1 Efficiency test results
	5.1.1 Runtime efficiency and fingerprint comparison
	5.1.2 Compression

	5.2 Sensitivity & robustness test results
	5.2.1 Single-common-block correlation
	5.2.2 Fragment detection
	5.2.3 Alignment robustness
	5.2.4 Random-noise-resistance

	6 Conclusion
	Acknowledgments
	References

