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FILE DETECTION ON NETWORK TRAFFIC
USING APPROXIMATE MATCHING

Frank Breitinger and Ibrahim Baggili
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300 Boston Post Rd, New Haven, CT, 06511
{FBreitinger,IBaggili }@newhaven.edu

ABSTRACT

In recent years, Internet technologies changed enormously and allow faster Internet connections,
higher data rates and mobile usage. Hence, it is possible to send huge amounts of data / files easily
which is often used by insiders or attackers to steal intellectual property. As a consequence, data
leakage prevention systems (DLPS) have been developed which analyze network traffic and alert
in case of a data leak. Although the overall concepts of the detection techniques are known, the
systems are mostly closed and commercial.

Within this paper we present a new technique for network traffic analysis based on approximate
matching (a.k.a fuzzy hashing) which is very common in digital forensics to correlate similar files.
This paper demonstrates how to optimize and apply them on single network packets. Our contri-
bution is a straightforward concept which does not need a comprehensive configuration: hash the
file and store the digest in the database. Within our experiments we obtained false positive rates
between 10~% and 10~° and an algorithm throughput of over 650 Mbit /s.

Keywords: Approximate matching, Bloom filter, mrsh-v2, data loss prevention, network traffic
analysis

1. INTRODUCTION poses — there has been a constant increase

in data breach incidents since 2009. For in-

The opportunities offered by the Internet are  gstance, according to the Open Security Foun-
changing our lives. New technologies allow  dation (OSF), 1605 incidents were reported last
faster connectivity, higher data rates and mo-  year which is an increase of over 45% compared

bile usage. As a result, companies now pro-  to 2011. We list below some major data breach
vide Video—on—demand, cloud Computing and incidents in the last few yearsl

online storage. Furthermore, e-mail is one

of the most important communication mecha- e Attackers were successful in compromising
nisms (Radicati & Hoang, 2011) superseding all 77 IIlIH.IOIl records at the Sony Corporation
other forms of communication. This is coupled in April 2011.

with the increase in the number of Internet users
and the volume of data (IEEE 802.3 Ethernet
Working Group, 2012).

With the advent of new technologies comes
new challenges, such as virus attacks, spam
mail and data leakage, especially for compa-
nies which maintain sensitive data. As data 'http://datalossdb.org/{index/largest, statistics}
1s valuable — for legitimate and criminal pur-  last accessed 2014-May-20

e LinkedIn was allegedly compromised, with
6.5 million password hashes stolen in June
2012.

In order to secure their networks, companies
install intrusion detection and prevention sys-
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tems (IDPS), firewalls and virus scanners. How-
ever, only two-thirds of all data breaches are the
result of hacking attacks. According to OSF,
36%" of all recorded incidents involve insiders,
as shown in the popular Edward Snowden case.
This has inspired research and practice in data
leakage prevention. Vendors have now come up
with data leakage prevention systems (DLPS)
which analyze the network stream. These tools
are often based on deep packet inspection (DPI,
see Sec. 2.1) which means that network packets
are parsed.

In another sub-discipline, the digital foren-
sics community has pursued research in approx-
imate matching (a.k.a fuzzy hashing or sim-
ilarity hashing) allowing investigators to find
similar files. This area of research has gained
more popularity over the last couple of years
(Garfinkel, 2010). Approximate matching is a
rather new working field but has been proven to
be useful for similar input detection (e.g., differ-
ent versions of a file) or embedded objects detec-
tion (e.g., a jpg within a Word document). Fur-
thermore, approximate matching can be used
for fragment detection where a fragment is a
small piece of a file (Breitinger, Guttman, Mc-
Carrin, & Roussev, 2014).

Combining both the areas of DLP and ap-
proximate matching, in this work, we present
a novel technique using approximate matching
to detect files in network traffic. Compared to
existing techniques, our proposed approach is
straight forward and does not need comprehen-
sive configuration. It can be easily deployed and
maintained since only fingerprints (a.k.a. simi-
larity digest) are required. Our approach does
not require machine learning, or rule generation.
The main contribution is to demonstrate that it
is possible to use approximate matching on net-
work traffic by changing the algorithms slightly
although algorithms where never designed to
handle such small pieces. To the best of our
knowledge, this the first paper describing a tech-
nique for file identification using approximate
matching in network traffic.

The rest of the paper is organized as follows:
In Sec. 2 we present the state of the art in DPI,
DLPS, and approximate matching. Next, we
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explain the problem and summarize our solu-
tion in Sec. 3. In Sec. 4 we describe our testing
methodology before we present our experimen-
tal results in Sec. 5. The last two sections are
the ongoing research, future work as well as the
conclusion.

2. FOUNDATIONS &
RELATED WORK

This section explains the foundations and
presents related literature. In Sec. 2.1 we dis-
cuss the different levels of network packet anal-
ysis. The current techniques for data leakage
prevention systems are explained in Sec. 2.2.
Bloom filters are an essential concept of that
work and is presented in Sec. 2.3. Sec. 2.4 in-
troduces approximate matching in general and
highlights two algorithms called mrsh-v2 and
sdhash. The last section presents a concept for
an efficient database lookup for similarity di-
gests.

2.1 Packet Inspection

Static packet inspection is the most obvious
mechanism. It treats each packet as a ‘stand-
alone’ packet and decisions are made based on
information contained in packet headers. Rules
can be created based on destination IPs, source
IPs, ports and protocols. This was then ad-
vanced to stateful packet inspection (SPI) which
“shares many of the inherent limitations of the
static packet filter with one important differ-
ence: state awareness. [...] The typical dynamic
packet filter is aware of the difference between a
new and an established connection” (Tipton &
Krause, 2003, p77++). Hence, a device such as
a firewall maintains a table to be aware of the
connections.

The next step in the evolution was deep packet
inspection (DPI). Besides analyzing packet
headers, it examines the actual payload. “DPI
engines parse the entire IP packet, and make
forwarding decisions by means of rule-based
logic that is based on signature or regular ex-
pression matching. That is, they compare the
data within a packet payload to a database of
predefined attack signatures (a string of bytes).

© 2014 ADFSL
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[... However,] searching through the payload for
multiple string patterns within the datastream
is a computationally expensive task” (Proter,
2010).

2.2 Techniques for Data Leakage
Prevention

According to (Lawton, 2008), an organization’s
data can be classified into three states: a) Data
in Motion (DIM): data in the process of being
transmitted over the network, b) Data at Rest
(DAR): data in file systems, FTP servers, and c)
Data in Use (DIU): data at a network endpoint,
like a desktop computer or a USB device. Data
Loss Prevention Systems (DLPS) were created
to identify sensitive information by content in
DIM, DAR or DIU, and to prevent its leakage
outside of an organization

The main idea behind these systems is to
perform deep packet inspection (DPI) for auto-
matic network analysis. In other words, it tries
to detect protected information or files within
network traffic.

According to (SANS Institute, 2010), the fol-
lowing approaches are used in DPI:

Regular expressions are effective in case of
structured data like credit card numbers or so-
cial security numbers, however, they cannot be
used efficiently for file identification.

Database fingerprint analyzes network pack-
ets for exact strings. Instead of looking for all
credit card numbers, one may only look for spe-
cific ones. In addition, it is very common to
identify documents that are tagged with buz-
zwords like ‘confidential’ or ‘secret’, however,
this approach fails if buzzwords are omitted or
if the data is binary.

Ezact file matching uses hash functions to
find exact matches which is file type indepen-
dent. However, it is trivial to evade (alter at any
position). Another drawback is that all packets
need to be captured, the files needs to be recon-
structed and then hashed.

Statistical analysis is based on machine learn-
ing approaches. This approach includes com-
prehensive training in the beginning and only
works reliably for with the availability of a large
training dataset. Furthermore, if new protected

© 2014 ADFSL

data is added, the training step needs to be re-
started. Lastly, this approach is prone to false
positives and false negatives.

Besides the four aforementioned techniques,
there is conceptual/lexicon which is a combi-
nation of rules, directories and other analysis
methods? and categories which is also based on
rules and dictionaries.

The most promising approach for automatic
file identification is partial document matching
which looks for a complete or partial match
(e.g., a few sentences of a document) of pro-
tected content. This technique often uses a
rolling hash to compare documents against net-
work packet payloads. Unfortunately, we were
not able to find seminal published research on
this approach as most DLPS are commercial
and closed source.

2.3 Bloom Filter

Bloom filters (Bloom, 1970) are commonly used
to represent elements of a finite set S. A Bloom
filter is an array of m bits initially all set to zero.
In order to ‘insert’ an element s € S into the fil-
ter, k£ independent hash functions are needed
where each hash function i outputs a value be-
tween 0 and m—1. Next, s is hashed by all hash
functions h. The bits of the Bloom filter at the
positions ho(s), h1(s),...hk—1(s) are set to one.

To answer the question if ¢ is in S, we
compute hgo(s'),h1(s'),...hg_1(s’) and analyze
if the bits at the corresponding positions in the
Bloom filter are set to one. If this holds, s is
assumed to be in S, however, we may be wrong
as the bits may be set to one by different ele-
ments from S. Hence, Bloom filters suffer from
a non-trivial false positive rate. Otherwise, if at
least one bit is set to zero, we know that s’ ¢ S.
It is obvious that the false negative rate is equal
to zero.

In case of uniformly distributed data, the
probability that a certain bit is set to 1 dur-
ing the insertion of an element is 1/m, i.e., the
probability that a bit is still 0 is 1 — 1/m. Af-
ter inserting n elements into the Bloom filter,
the probability of a given bit position to be 1 is

2As this technique is very complex, we would like to
refer the reader to (SANS Institute, 2010, p9).

Page 25



JDFSL VIN2

File Detection on Network Traffic Using ...

1 — (1 —/m)*". In order to have a false posi-
tive, all k array positions need to be set to one.
Hence, the probability p for a false positive is

p=[1- -y~ ey ()

2.4 Approximate Matching

Approximate matching is a rather new area and
probably had a breakthrough in 2006 with an al-
gorithm called context triggered piecewise hash-
ing (Kornblum, 2006). Since then, a few more
algorithms were presented which were summa-
rized in (Breitinger, Liu, et al., 2013). A main
remark of the authors is that currently only
two algorithms have the ability to correlate
small fragments and the original file-sdhash
(Roussev, 2010) and mrsh-v2 (Breitinger &
Baier, 2012).

A brief runtime comparison showed that
mrsh-v2 outperforms sdhash by a factor of 8
(Breitinger, Liu, et al., 2013). Hence, our re-
search focuses on mrsh-v2 while we use sdhash
for an initial verification.

2.4.1 sdhash

This algorithm was proposed in 2010 by Rous-
sev (Roussev, 2010) and attempts to pick char-
acteristic features for each object that are un-
likely to be appear by chance in other objects
based on results from an empirical study. In the
baseline implementation, each feature is hashed
with SHA-1 (Gallagher & Director, 1995) and
inserted into a Bloom filter (Bloom, 1970) (de-
tails are given at the end of this section) where
a feature is a sequence of 64 bytes. The sim-
ilarity digest of the data object is a sequence
of 2048-bit filters, each of which represents ap-
proximately 10 KiB? of the original data, on
average.

2.4.2 mrsh-v2

The algorithm was proposed by Breitinger &
Baier (Breitinger & Baier, 2012) in 2012 and
is based on multi resolution similarity hash-
ing (Roussev, III, & Marziale, 2007) and con-

3Note, KiB is kibibyte which is different to KB which
is kilobyte. While kibi has a base of 1024, kilo uses the
base 1000.
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text triggered piecewise hashing (a.k.a. ssdeep,
(Kornblum, 2006)). The overall idea is quite
simple: divide an input into chunks using a
pseudo random function, hash each chunk and
insert the chunk-hashes into a Bloom filter.

2.4.3 Similarity Digest

To insert a chunk-hash* into a m = 2048 = 2!
bit Bloom filter, the algorithms take 55 bits
from the chunk-hash, splits it into £ = 5 sub-
hashes of 11 bits and sets the corresponding bit.
For instance, the sub-hash 000 1000 1100, =
8C1¢ = 14019 will set bit 140 in the Bloom fil-
ter. The implementations have an upper limit of
chunks per Bloom filter. If this limit is reached,
a new Bloom filter is created. Hence, the final
similarity digest is a sequence of Bloom filters.
To identify the similarity between two digests,
all Bloom filters of fingerprint a are compared
against all Bloom filters of fingerprint b with
respect to the Hamming distance as metric®.

2.5 Improving the Database Lookup
Complexity for Approximate
Matching Algorithms

In (Breitinger, Baier, & White, 2014) the au-
thors motivated, discussed and evaluated a
technique to overcome the lookup complexity
for similarity digests. Let x denote the amount
of digests in a database, then the complexity for
a single digest is O(x). In other words, the di-
gest has to be compared against all digests in
the database. Regarding network packets, this
means that each packet needs to be compared
against the complete database; each packet has
a complexity of O(x).

Instead of having multiple small Bloom fil-
ters for a single input, the authors suggest to
insert all files into a huge Bloom filter. Thus,
the lookup complexity per chunk is O(1).

Having only one Bloom filter comes with two
disadvantages. Due to efficiency reasons, the
Bloom filter has to be in memory completely

4Note, with respect to sdhash this is actually a fea-
ture hash, however, we use both terms as synonyms and
use chunk from here on.

5The actual comparison is not important for the re-
mainder of this paper.
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and therefore one limiting factor is the physi-
cal available memory. However, their approach
only requires 32 MiB of memory to monitor 2
GiB of data; 100 GiB requires about 2 GiB
of memory. We claim that in case of most
mid-size businesses, the data will not exceed
100 GiB when dealing with office documents,
source-code and blueprints (images).

On the other hand, our approach is a packet-
against-set comparison. That is, the answer of a
packet-query is either yes (there is a similar file
to that packet in the set) or no. Nevertheless,
we claim that in case of data leakage prevention
or virus identification this is sufficient.

A detailed description of the exact procedure
is beyond the scope of this paper and hence we
will not discuss the parameters and default val-
ues in detail.

3. WORK FLOW AND
IMPLEMENTATION

The upcoming subsections provide an overview
of our solution. We explain the exact procedure,
explain the implementation and additional ben-
efits for our approach.

3.1 Procedure Overview

Besides lookup complexity, algorithms have to
be optimized to handle fragments of MTU size.
In contrast to their original purpose (handle in-
puts of kilobytes or megabytes), they have to
handle fragments of approximately 1500 bytes.

In order to handle network packets, algo-
rithms need finer granularity. Thus, we reduced
the blocksize from the original 160 bytes to 64
bytes which results in more chunks. However,
finer granularity increases the chance for false
positives as the decision is based on less data.
That is why we deploy a filter mechanism that
eliminates non-relevant chunks from considera-
tion, e.g., long runs of zero.

Therefore, the overall procedure requires two
phases:

1. Database generation: Divide file into
chunks, filter out non-relevant chunks, hash
chunks and fill the Bloom filter.

© 2014 ADFSL

2. Network packet analysis: Divide packet
into chunks, hash chunks and compare
against the Bloom filter.

Note, the filter mechanism is only necessary
for creating the Bloom filter. During the net-
work analysis phase the packets are hashed and
only compared. To sum it up, no matter how
complex the filter mechanisms are, the perfor-
mance of the network analysis is not influenced.

3.2 Result Presentation

Conventional algorithms print a match score be-
tween 0 and 100 to show the communality be-
tween two files. In the current approach we de-
cided to have a binary decision, either a packet
is in the filter or not. If at least » > 8 consecu-
tive features of a packet are found in the Bloom
filter, mrsh-net detected a match and outputs

packet: 12 of 18 (longest run: 10)

which means that a packet was found in the un-
derlying Bloom filter. In total, the packet con-
sisted of 18 chunks where 12 were found. The
longest run was 10. As we changed the block-
size from 160 to 64 bytes, 8 consecutive features
meant, that 8- 64 = 512 bytes of the packet are
found.

3.3 Chunk Filter

As mentioned in Sec. 3.1, not all chunks are
of the same quality. In order to decide if it
is an important or an unimportant chunk, we
consider two values called entropy and random-
ness. While the former one is based on the
well-known Shannon entropy (Shannon, Jan-
uary 2001), randomness considers two neighbor-
ing bytes. If two consecutive bytes are equal
or differ by one, then anti-randomness R is in-
creased. More formally, let a chunk of length
L be given where B; denotes the byte at posi-
tion 7. Then, anti-randomness is calculated as
follows:

L-2
R= Z ar(B;) where ar(B;) = {

} 0, else
=0

A chunk has sufficient randomness if R-2 < L
(we identified this value by best practice work-
ing on 100 random files).

Page 27
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3.4 Implementation Details

To validate our findings, we released a prototype
called mrsh-net which is basically a modifica-
tion of the latest mrsh-v2 version. Currently
there is only one branch, thus a lot of testing-
code-pieces are included making the code harder
to understand. For instance, we implemented
counting Bloom filters which were necessary for
testing purposes and still an ongoing research
project (see Sec. 6). The prototype can be
downloaded on from website®.

3.4.1 Commandline Arguments

-g generates a Bloom filter from DIR and prints
it to std. Usage:
./mrshnet -g DIR/* > dbFile.

-i reads Bloom filter BF-FILE and compares
DIR/FILE against it. Usage:
./mrshnet -i BF-FILE FILE/DIR/*

-f generates the ‘false positive’ matches for a
list of files.
./mrshnet -f DIR/x* .

-e sets the minimum entropy a chunks needs to
have. Usage:
./mrshnet -e 2.8 -g DIR/* > dbFile.

-t excludes a file type for the -f option.

‘False positive’ means that all files are added
to the Bloom filter, next file f is removed (we
implemented counting Bloom filters for testing
purposes) and finally f is compared against the
filter. If combined with -t, the filter excludes all
files of -t type and compares them against it. In
both cases matches are printed to stdio.

3.5 Additional Benefits

One aspect which might not be immediately ob-
vious is privacy. Due to the usage of Bloom fil-
ters, the monitored data is stored in a preim-
age resistant format (also we use the non-
cryptographic hash function FNV). Hence, it is
possible to maintain sensitive data at a central
point, fill the Bloom filter and distribute it with

Shttp://wp1187348.server-he.de/z_downloads/
mrsh-net.zip; anonymous for review.
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no information leaks. For instance, anti virus
vendors may provide a database containing the
newest malware.

Another point is that Bloom filters can be
easily combined with each other by ORing both
filters which allows us to update filters. In the
case of counting Bloom filters, one may even
remove elements.

4. TEST METHODOLOGY

All tests run on ‘simulated’ network traffic
where simulated means that all files are split
into 1460 bytes sequences. This size results from
the MTU size of 1500 bytes minus 20 bytes IP
header and minus 20 bytes TCP header. On
real network traffic, it is easily possible to skip
40 bytes in the beginning and thus we claim this
simulates a real life circumstances. Our experi-
ments are divided into two parts: synthetic and
real-world data.

4.1 Throughput

A fundamental property of network analysis
tools is throughput — huge delays are not ac-
ceptable. According to Sec. 3.1, the through-
put considers phase 2. We neglect the database
generation process as it is independent from the
network analysis.

Our assessment is
implementation on a
We capture the time for processing a given set
of files, i.e., reading, hashing and comparing.
Note, there is neither a hardware implementa-
tion of our algorithm nor are we programing
experts. However, there exist ideas how to
build high-throughput hardware implementa-
tions for Bloom filters e.g., (Dharmapurikar,
Krishnamurthy, Sproull, & Lockwood, 2003).

4.2 Random Data

This controlled test utilizes /dev/urandom to
create a pseudo random file set. Thus, it is pos-
sible to distinguish between true positives (TP),
false positives (FP), true negatives (TN) and
false negatives (FN). In order to have a real life
distribution of file sizes, we took the t5-corpus
(more details see Sec. 4.4) as a model and cre-
ated 4457 files with identical sizes which is in

based on our C-

usual workstation.

© 2014 ADFSL


http://wp1187348.server-he.de/z_downloads/mrsh-net.zip
http://wp1187348.server-he.de/z_downloads/mrsh-net.zip

File Detection on Network Traffic Using ...

JDFSL VIN2

total 1.78 GiB.
To determine the detection rates, we did the
following tests:

TP: Fill all files from the corpus to the Bloom
filter. Next, we compare all packets against
the Bloom filter. All identified packets are
true positive. (This can be solved using the
-g and -1 options).

TN: All files are added to the Bloom filter.
Next, we remove file f from the Bloom fil-
ter and compare f against it (solved by -f
option).

FP: 1-TN.
FN: 1-TP.

As approximate matching algorithms work on
random data (Breitinger, Stivaktakis, & Rous-
sev, 2013), we expect a TP rate close to 100%
and a TN rate of exactly 100%. The TP rate
will most certainly differ from 100 (slightly) as
the last packet of a file might be too small and
does not produce a longest run of r > 8.

4.3 Similarity

Before describing the test methodology for real
data, we note our definition of similar and dis-
similar:

TP: means that two files share a significant
and interesting amount of data, e.g., same
text passages, pictures or copyright infor-
mation.

FP: means that two files have nothing in com-
mon or only unrelated information, e.g., file
headers in common, but they are matched.

TN: means that two files have nothing in com-
mon.

FIN: means that two files are not matched al-
though they share significant and interest-
ing data.

Thus, it is necessary to analyze the general
communality between files, i.e., which data is
file type specific and not related to the actual
content. Possible samples are common headers,

© 2014 ADFSL

long runs of zeros, or file structure information.
This is the input for creating useful filters.

Since there is no ground truth available, it is
hard to categorize a match. To classify the gen-
uiness (true positive + false positives), it is nec-
essary to assess all obtained matches. In order
to verify the impostors (true negative + false
negative) we have to evaluate the whole cor-
pus. Thus, we mainly focus on true positives
and false positives for the remainder of this pa-
per.

Recall, the output of our procedure is not an
exact match but a statement that there is a sim-
ilar file in the underlying set. Thus, it is nec-
essary to compare all positive matches against
the underlying file set. In order to handle this,
we apply sdhash to identify ‘possible true posi-
tives’ which then are partly inspected manually.

4.4 Real World Data

For the real world data test we choose the t5-
corpus’ (Roussev, 2011) which contains 4457
files having a total size of 1.78 GiB. Thus, the
average file size is almost 420 KiB and the file
type distribution is given in Table 1. The t5-
corpus is a subset of the govdocs® which was
obtained by crawling web servers in the .gov
domain. Due to the gathering process, we an-
ticipate to have related files in the corpus.

Table 1 Statistics of t5-Corpus

html
1093

jpg  gif doc xIs ppt pdf text
362 69 533 250 368 1073 711

4.4.1 Result Presentation

When assessing our results we consider the
packet and the file levels. The packet level de-
scribes the relation between all sent packets and
matched / non-matched ones which is especially
important for false positives. However, with re-
spect to true positives, we suggest the file level
which requires that at least one packet matches.

"http://roussev.net/t5/ (last accessed 2014-May-
20).

8http://digitalcorpora.org/corpora/files (last
accessed 2014-May-20).
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For instance, two large Microsoft office docu-
ments that share only a single graphic will not
have many packets in common but are similar
and the graphic is monitored content.

4.4.2 Cross Matching File Types

The first test examines the detection behavior
among different file types. Let Y denote the
file type, and let SETy be all files of type Y.
Then, DB_y is a database that contains all files
of t5\SETy, i.e., all files except the files of type
Y. Furthermore, let our concept be denoted by
mrshnet(SET, DB) which is a function that re-
turns all files in SET that matches the database
DB. According to that, cross matching runs
S = mrshnet(SETy,DB_y) for all file types
Y. The output of a run is a set S which con-
tains all cross matched files.

To distinguish between TP and FP, we com-
pared SETy and t5\SETy by sdhash and re-
ceived a list of possible matches. Next, we man-
ually proofed the similarity starting with the
best matches, i.e., if a file is matched two files,
we consider the higher score first.

For instance, set Y = doc. Then,
all *.docs files are compared against the
DB_4o.. The result could be a set like S =
{f1.doc, f2.doc, f3.doc} which serves as input
for sdhash. Here, the output is a list like

filel.doc matches fileA.ppt (50)
file2.doc matches fileB.xls (10)

According to this list, we picked matches and
compared them manually, i.e., open filel.doc
and fileA.ppt and compare them. The selection
process mostly focused on borderline matches.
For instance, two files yielding a sdhash score of
50 are most likely similar where two files having
a score of 5 are more critical.

The motivation for this test is that the ex-
pected number genuiness should be small. We
assume hits between Microsoft office documents
or between html and text.

4.4.3 True Positives

We have introduced techniques to minimize the
chance of false positive called entropy and ran-
domness. In general, these approaches filter out
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chunks in advance so that we come closer to ran-
dom data and do make decisions based on long
runs of zeros.

Within this test we studied the impact of dif-
ferent configurations with respect to the true
positive rate. Also chunks are filtered out, there
should be a high true positive rate on both lev-
els, file level and packet level.

4.4.4 Mixed File Types

For this test we randomly selected 100 files out
of the t5-corpus which serve as ‘monitored files’
and hashed to DB. The remaining 4357 files
are used to produce the traffic. In contrast
to cross matching, there are also comparisons
among equal file types.

5. EXPERIMENTAL
RESULTS & ASSESSMENT

For our testing, we used the configuration a
Bloom filter with m = 228 bits (32 MiB) and
a blocksize of 64 bytes, i.e., the approximate
length of a chunk.

5.1 Throughput

To determine the throughput we processed the
th-corpus which has exactly 1823.11 MiB (1.78
GiB). The measured result includes the time for
reading the input from disk, splitting it into
packets, processing (hashing) it and perform-
ing the Bloom filter comparison. The time was
measured by the Linux time-command where
we selected the user time: 23.474 s. Over-
all, this comes to 182311 MiBj3 4745 = 77.67
MiB/s which corresponds 77.67 MiB - 22 . 8 =
651,501, 914 bits/s — approximately 650 Mbit /s.

The test was performed on a 2 GHz Intel
Core i7 CPU, single threaded. However, the
approached allows for easy parallelism of the
complete approach without any synchroniza-
tion. We only need to hash packets and compare
them to the Bloom filter.

5.2 Detection Rates on Random
Traffic

The results are as expected. On the packet level,
the true positive rate is at 99.6% and the true
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negative rate is at 100.0%. The few false neg-
ative result from the length of the last packet
which could be very small and thus contain less
than 8 runs.

5.3 File Analysis and Similarity

This section explores the kind of basic-
communality between files on the basis of the
statements from Sec. 4.3. According to the
work, we rate a match as a false positive if
two underlying files only share common headers,
long runs of zeros, or file structure information.

For this test we randomly selected files from
the tb-corpus, correlated them by hand to en-
sure they are dissimilar and then compared
them automatically with respect to the longest
common subsequence. We decided for the
longest common sequences as it is very similar
to our approach — we require a minimum run
length.

Basically we made two observations which
yield long runs of non-significant data / infor-
mation. In other words, possible false positives
according to our definition.

The first kind of strings are a low entropy
sequences which are very common throughout
most types. Especially Microsoft office doc-
uments share long common low entropy se-
quences, but also types like gif or jpg. Note,
some files can be regarded as containers, capable
of embedding other types, e.g., Microsoft office
documents can contain embedded pictures. Be-
sides low entropy, we also discovered long runs
of ‘non-random’ sequences which have a normal
to high entropy.

We argue that these kind of chunks represent
non-relevant information for the user, and thus
packets comprised of these chunks can be safely
neglected. To sum it up, it is reasonable to ap-
ply a filter mechanism as described in Sec. 3.3.

5.4 Detection Rates for Cross
Matches

This section analyzes the cross matches
and thus the behavior of mrshnet(FILESYy,
DB_y) where in total 1,311,576 packets have
been sent.

A summary of our findings is given in Table 2
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which shows the matches on the packet and the
file level. For instance, row 1 states that in to-
tal 10,288 packets matched the database and
belonged to 809 different files. Since the en-
tropy is 0.0, all packets are considered. SDM
is the sdhash match rate which expresses that
sdhash also identified similarity when compar-
ing FILESy against the monitored set, e.g.,
66.8% of 10,288 packets have a high probability
to be a true positive. Rows highlighted with a
star are outputs where randomness mode is on,
i.e., packets marked as non-random are filtered
out.

When rating the settings, we mostly consid-
ered the packet-file-ratio (abbreviated pf-ratio)
which is the relation between packet matches
and file matches. For instance, a high pf-ratio
(close to 1) like for gif indicates that only single
packets matched the database which is an indi-
cator for less interesting results and vice versa.
In the specific case of gif, all files included the
same, low entropy sequence that matched the
database.

Regarding the table, an entropy over 2.8 with
the randomness test seems to be promising. In
total there are 4510 packets where the SDM
rate is 99.0%. It is obvious that the higher the
required entropy, the less overall matches.

In the following we consider the true posi-
tive and false positives for row 2.8*% Totally,
4510 packets matched which belong to 77 dif-
ferent files. Out of this 4510 packets, 99.0%
coincide with the results of sdhash. If we con-
sider all sdhash hits as true positives, our ap-
proach yields a false positive rate per packet of
4510-0.01/1 311,576 = 3.44 - 1075,

To verify the sdhash results, we manually
proofed some of the 52 file pairs (62.7% of the
77). Most matches where between text and
html or between the Microsoft office documents.
For instance, mrsh-net returned a match for
003344.doc which was correlated by sdhash to
003358.ppt. Examining these two files showed
that both contain equal graphics. We found
true positives only.

Next, we reviewed those files where sdhash
could not find a similar file. First, it was con-
spicuous that almost all hits were caused by a
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Table 2 Impact of Introducing an Entropy

[§]

0.0
0.0*
2.4
2.4*
2.8
2.8*
3.2
3.2%

ipg gif doc xls ppt

(matches on packet level / matches on file level)

133/53 17/17 2386/233 1249/117 5251/335
0/0  5/5  1147/31  504/29  2984/227
131/53 14/14 1573/118  674/60  3753/242
0/0  0/0 1017/26  191/25  2654/73
131/53  0/0  1136/35  148/5  2856/72
0/0  0/0  961/17 10/6  2497/22
130/53  0/0  1124/35  148/5  2837/72
0/0  0/0  955/17 8/6 2479/22

pdf text  html Packet level File level

matches SDM | matches SDM
1118/29 48/8 86/17 10288 66.8% 809 21.5%
932/14 38/6 77/12 5687 87.9% 324 31.8%
1018/53 40/8 85/17 7288 80.8% 538 32.3%
930/14 38/6 77/12 4907 94.8% 156 47.4%
968/20 39/7 83/17 5361 96.7% 209 74.2%
927/14 38/6 T7/12 4510 99.0% 77 67.5%
960/20 39/7 82/17 5320 96.7% 209 74.2%
925/14  38/6 76/12 4481 99.1% 75 67.5%

* Here the randomness check is turned on.

single packet which means files have only small
communality. Since our implementation works
deterministically, i.e., if A matches B, then also
B matches A., we compared all remaining files
to each other. In fact, we could detect file pairs
that are similar. For instance, some html files
where falsely identified as text files and had the
cascading style sheet (css) included. Thus, these
files have similar layout and tables. It is ques-
tionable if this is relevant or non-relevant in-
formation. Assume an internal webpage which
contains secret business numbers. Then, an em-
ployee could download it, update it with the
latest numbers and mail it to someone. An-
other example are translated documents which
are still in the same layout. Actually, this de-
pends on the scenario / use case and an ad-
min needs to consider this when creating the
database.

Nevertheless, even if we rate all these matches
as false positives we obtain a false positive rate
of 3.44-107° for cross matching which is accept-
able for a prototype.

5.5 True Positive Analysis

Deploying filter mechanism to reduce the false
positive matches imply reducing true positives
as well. Therefore, this section studies the im-
pact of different settings to the true positive
rate. The results are given in Table 3.

Equal to the random-test, there is no 100%
true positive rate if both filtering mechanisms
are turned off. The reason is the rolling hash.
For instance, one undetected file was an almost
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empty Word document. The byte structure was
composed of many zero runs and thus most
packets contained zeros. The rolling hash is not
able to determine enough trigger sequences and
the run will not exceed the minimum.

Regarding our chosen setting 2.8*, about 1/4
of all packets are filtered out due to less entropy
and randomness but we still detect 98.7% of all
files. To conclude this section: monitored files
should consist of a few kilobytes of data having
an entropy over 2.8.

5.6 Detection Rates on Mixed File
Types

This test simulates the case where the database
contains mixed content. We randomly selected
100 files out of the t5-corpus which serve as the
monitored files. The remaining files are used
to produce the traffic. We capture all packets
that provoke a match and performed an equal
analysis then in the previous sections.

In total we sent 4357 files producing 1,284,738
packets. The settings are based on our previous
findings: e = 2.8%. A summary of the results is
presented in Table 4. Note, gif and jpg are not
listed because there were no matches.

Row 1 shows the overall results. Overall 833
packets are genuines with a sdhash match rate
of 97.6%. It was conspicuous that pdf had many
matches. Studying the results shows that there
are multiple false positives which seem due to
overlapping pdf structure information. In con-
trast to Office documents and images, the struc-
ture information has a high entropy and over-
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Table 3 True Positive Rates for Different Settings Sending 4457 Files / 1,311,576 Packets in Total

e 0.0 0.0* 2.4 2.4* 2.8 2.8% 3.2 3.2%

pkt. (%) 91.9 82.0 81.2 80.1 76.4 75.9 69.4 69.2
files (%) 99.9 98.9 99.3 98.9 98.8 98.7 98.0 98.0

* Here the randomness check is turned on.
Table 4 SDM Rates for All File Types
Packet level File level doc xls ppt pdf text  html
matches SDM matches SDM

883 97.6% 109 88.1% 10 1 11 59 2 26
731 99.5% 50 92.0% 10 1 11 / 2 26

Note, gif and jpg are not listed because there were no matches.

comes our filter out techniques. Nevertheless,
there are also near duplicates, e.g., 000740.pdf
and 000743.pdf.

Row 2 considers the results without pdf. The
731 packets come to a sdhash match rate of
99.5%. Our manual review showed that all files
are true positives (most of them are similar web-
pages like 002224.html, 002758.html). Hence,
the false positive rate here is 0.

Considering the packet-file-ratio of both rows
shows that in average a match of pdf is due to
883 — 731 /59 ~ 2.5 packets. Further investigation
revealed that most matches are due to the same
byte sequence. In other words, the database
contained one sequence which a lot of pdfs in-
cluded. However, we could not find interesting
similarity among these matches.

If we classify all pdfs as false positives (which
is an upper limit as we also had true posi-
tives), the overall false positive rate becomes
883 —731/1 984,738 = 1.1 - 1074,

6. ONGOING RESEARCH
AND FUTURE WORK

The previous section demonstrated that there
are sequences that overcome our current filter
methods which is the basis for good detection
rates. Hence, our current work aims at improv-
ing filtering techniques. One idea is to provide
a list of sequences which are very common and
should be ignored. In order to create such a
list, one may study each file format intensively

© 2014 ADFSL

or use counting Bloom filters which is the focus
at the moment.

Instead of analyzing the file types indepen-
dently, we extend mrsh-net through a learning
phase based on a file set. The files should share
no significant similarity (according to our defini-
tion they are true negatives) and only have non-
relevant communality, e.g., headers or share the
company logo. Next, all files are hashed and in-
serted into a counting Bloom filter. In contrast
to traditional Bloom filter, a counting one has a
memory and knows how often a bit is set to one.
By design, dissimilar files / content is supposed
to set the different bits. Put it the other way
round, bits that are set often are most likely to
be structure information or headers. Hence, we
can use counting Bloom filters to unset bits or
block bits from setting.

A second idea is the consideration of more
than one packet. This requires a connection ta-
ble containing the information that userA has a
connection to userB. Then, we easily can count
the amount of database hits and react, e.g., the
connection is interrupted if three hits appear.

Besides improving the filtering mechanism,
we have to consider ways to evaluate impostors.
However, we argue that an approach detecting
not all true positives but having a false positive
rate close to zero is already useful.

Page 33



JDFSL VIN2

File Detection on Network Traffic Using ...

7. CONCLUSION

In this paper, we considered the challenge of
similar file identification on network traffic us-
ing approximate matching (a.k.a. fuzzy hash-
ing). We argued that data leakage is an in-
creasing problem which requires straightforward
open source tools and techniques to solve this
problem.

We demonstrated that with some minor
changes approximate matching can reliably
work on network traffic and obtain good results.
Our tests showed that random data can be de-
tected perfectly while real-world data has an ac-
ceptable false positive rate of between 10~ and
10~°. The challenge of real-world data is the fil-
tering of ‘common substrings’ which was solved
using entropy and anti-randomness. However,
this needs further research so that the consid-
ered packets are akin to random data.

Compared to existing algorithms, our ap-
proach is very simple and straightforward: hash
the file and add it to the database. Further-
more, we used only open source technologies to
achieve our goals.
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