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Introduction

One of the critical requirements of modern (digital)
forensic investigations is the ability to perform large-scale
automated filtering and correlation of data. The most
common method deployed for this purpose is known file
filtering, which consists of computing the crypto hashes of
files on a forensic target and comparing them to a reference
database. A match can be used to either filter out (eliminate
from consideration) a known good file (perhaps from the
NSRL (NIST Information Technology Laboratory,
2003—2013) data set maintained by NIST), or to focus
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attention on a known bad file (e.g., from a contraband/
malware database).

Positive results from above process are inherently
trustworth due to the collision resistant properties of
crypto hashes. However, the main problem is that, for the
process to work robustly, we need to maintain an up-to-
date database of all versions of all files of interest. That is
increasingly impractical as both data and code are
becoming ever more dynamic. Therefore, it is useful to have
algorithms that provide approximate matches that can
correlate closely related versions of data objects.

Generally, an approximate matching scheme works by
extracting features from data objects and storing them as
digests. The digests are then compared for commonality
and the algorithm produces an estimate of the level of
correlation between the original objects. The method by
which features are picked and interpreted defines the type
of approximate matching in use, which generally falls into
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one of three categories: bytewise—, syntactic— or semantic
approximate matching.

Semantic matching operates at the highest level of
abstraction and provides results that are closest to human
perceptual notions of similarity. For example, facial recog-
nition methods could correlate images of the same person.
Semantic matching methods tend to be the most special-
ized and computationally expensive, and work across
different representations (file formats) of the object.

Syntactic matching relies on purely syntactic rules to
break up the data representation into features. Among the
simplest examples are splitting the data fixed-sized (e.g.,
disk blocks), or variable-sized (network packet payloads)
pieces and treating the pieces as features. Syntactic
matching requires basic knowledge of the syntactic struc-
ture of the data but it does not actually interpret the data.

Bytewise matching relies only on the sequence of bytes
that make up a digital artifact, without reference to any
structures (or their interpretation) within the data stream.
It is the most general in that it can compare any two blobs
of binary data and relies on the assumption that similarities
between objects are reflected by similarities in their byte
level representation. As we discuss later, there are a num-
ber of very common scenarios where this is, indeed, the
case.

In this work, we are concerned only with bytewise
approximate matching algorithms and their evaluation.
Currently the best-known algorithms are ssdeep
(Kornblum, 2006) and sdhash (Roussev, 2010) and we will
use them as a case study. Prior work from Roussev (2011)
has argued that sdhash outperforms ssdeep in terms of
a variety of metrics. This work is an effort to standardize
such evaluation and make it possible for researchers and
practitioners to easily reproduce the test results and
compare tools, both current and future. Indeed, there are
already other efforts, such as mrsh-v2 (Breitinger and
Baier, 2012), to develop approximate matching tools,
which reinforces the need for having an open and exten-
sible platform for testing and evaluation.

The specific aim of this work is to extend FRASH
(Breitinger et al., 2013) by developing precision and recall
tests that enable us to characterize the behavior of
approximate matching algorithms using a detection error
trade-off (DET) curve (a.k.a. ROC). For these tests, we use
controlled (pseudo-)random data that allows us to pre-
cisely generate and manipulate the test targets and know
the exact ground truth. The rest of the paper is organized as
follows: Section 2 introduces the necessary background
and terminology, and discusses related work; Section 3
details the design and implementation of the precision
and recall testbed; and Section 4 presents the experimental
results of applying our testing methodology to existing
approximate matching algorithms. Section 5 concludes the
paper.

Background & related work

Hash functions are popular across various fields of
computer science like cryptography (Menezes et al., 2001),
databases (Sumathi & Esakkirajan, 2007, Sec. 9.6) or digital
forensics (Altheide and Carvey, 2011, p.56ff). Mostly

hashing is associated with cryptographic hash functions
(e.g., SHA-1 from Gallagher and Director (1995)) which
fulfill some security requirements and thus imply the
avalanche effect: no matter how similar two inputs are—the
hash values of non-identical inputs differ by approximately
50% of their bits. As a consequence the community came up
with new approaches called approximate matching which
gets more and more important (Garfinkel, 2010) especially
in digital forensics.

Bytewise approximate matching algorithms

At present, there are two algorithms with mature
implementations that are in use in the forensic field—ss-
deep and sdhash. Below, we provide a brief sketch of their
operation; a detailed description is beyond the scope of this
paper as we treat them black boxes for testing purposes.

ssdeep

ssdeep—also known as context triggered piecewise
hashing (CTPH)—is the first and probably best-known
approximate matching algorithm which was presented by
Kornblum in 2006. It is based on the spam detection al-
gorithm from Tridgell (2002—2009). The implementation is
freely available and currently in version ssdeep 2.9.3

The overall idea of ssdeep is a version of Rabin's (1981)
seminal work on data fingerprinting by random poly-
nomials. CTPH identifies trigger points to divide a given
byte sequence into chunks. Each chunk is hashed using FNV
(Noll, 1994—2012). Instead of using the complete FNV hash,
CTPH only takes the least significant 6 bits which is equal to
a Base64 character. In order to generate a final fingerprint,
all Base64 characters are concatenated. To determine the
distance of two fingerprints, they are treated as text strings
and compared using the weighted edit distance. The match
score is scaled between 0 and 100.

Follow up efforts (Chen and Wang, 2008; Seo et al,,
2009; Baier and Breitinger, 2011) have targeted incremen-
tal improvement of the algorithm, however, none of these
implementation have been made available for public
testing and evaluation.

sdhash

sdhash,” proposed by Roussev (2010), uses a
completely different algorithm that attempts to pick char-
acteristic features for each object that are unlikely to be
appear by chance in other objects which is the result from
an empirical study. In the baseline implementation, each
feature is hashed with SHA-1 and inserted into a Bloom
filter (Bloom, 1970) where a feature is a sequence of 64
bytes. The signature of the data object, called a similarity
digest, is a sequence of 256-byte filters, each of which
represents approximately 10 KB of the original data, on
average.

Subsequently, a block-aligned version was developed
(Roussev, 2012), in which fixed-size blocks (16 KiB by
default) are mapped to each 256-byte filter. Although the

3 http://ssdeep.sourceforge.net (last accessed 11 Feb. 2014).
4 http://sdhash.org (last accessed 11 Feb. 2014).
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two versions are compatible (the two version of the digests
can be meaningfully compared) we did not consider the
block version in our study as it requires additional
parameters.

FRASH

FRASH is an open source, extensible framework for
testing bytewise approximate matching algorithms; it is
implemented in Ruby and is freely available at https://
www.dasec.h-da.de/staff/breitinger-frank/. The existing
implementation includes test cases for efficiency and
sensitivity and robustness.

The efficiency tests evaluate tools with respect to three
criteria:

Generation efficiency measures the execution time taken
by the algorithm to process input of a given size and
generate the similarity digest.

Comparison efficiency measures the execution time for
performing a given set of digest comparisons.

Space efficiency (compression) measures the ratio be-
tween the input length and the size of the similarity digest.

The sensitivity and robustness tests use the following
evaluation scenarios:

Single-common-block correlation (sensitivity) calculates
the smallest object that two files need to have in common
for which the algorithm reliably correlates two targets.
Fragment detection (sensitivity) quantifies the smallest
fragment for which the similarity tool reliably correlates
the fragment and the original file.

Alignment robustness analyzes the impact of inserting
byte sequences at the beginning of an input by correlating
the size of the change to changes in the comparison
output.

Random noise resistance analyzes the impact of random
input edits on the correlation capabilities of the
algorithm.

FRASH performes the above input manupulations in a
randomized fashion over numerous runs in order to obtain
statistically useful results; a detailed description of these
tests is given by Breitinger et al. (2013).

|{relevant documents}n{retrieved documents}|

recision = -
p {retrieved documents}

Terminology

Our terminology closely follows standard information
retrieval treatment of precision and recall.

Definitions

Genuines Two, or more files, defined to be similar.
Impostors Two, or more files, defined to be non-similar.
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Score (s) is the output of comparing two similarity digests
and is a number between 0 and 100.

Threshold (t) of significance A score paremeter, used to
separate matches from non-matches.

Match A score s, with s > t.

Non-Match A score s, with s < t.

True positive (TP) A match of two genuines.

True negative (TN) A non-match of two impostors.

False positive (FP), (false match) A match of two impostors.
False negative (FN), (false non-match) A non-match of two
genuines.

False positive rate (FPR) False match count divided by file
count.

False negative rate (FNR) False non-match count divided
by file count.

Error types

Approximate matching algorithms can make false de-
cisions, i.e., output a similarity scores also the input files are
not similar and vice versa. Table 1 provides a summary of
the possible classification outcomes from approximate
matching comparisons.

Whether a comparison result is erroneous or depends,
in part, on the chosen threshold t. For instance, if t = 20 and
the score of two similar files is 19, the input files are falsely
classified as non-similar (a false negative); however, for
t =15, the classification would be a true positive.

Ideally, an approximate matching algorithm would
produce results such that there is no overlap between true
positives and false positives. In other words, it would be
possible to identify a threshold such that for all scores s > t
the results are true positives, and for s<t all results are true
negatives. In other words, there would be no overlap be-
tween the scores.

In practice, the choice of t is typically a trade-off be-
tween true and false positives as a function of t—a lower
value for t can increase the TP rate at the expense of higher
FP rate and vice versa.

Precision and recall

Precision and recall are standard measures in infor-
mation retrieval to evaluate the effectiveness of query
results. Precision is defined as the ratio of the number of
relevant records retrieved to the total number of records
retrieved:

Table 1

Possible results of a comparison.

Match Similar files Non-similar files
Yes true positive (tp) false positive (fp)
No false negative (fn) true negative (tn)
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Recall is defined as the ratio of the number of relevant
documents retrieved to the total number of relevant
documents:

recall — |{relevant documents}n{retrieved documents}|
B {relevant documents}

We could also express these term using true and false
positives:
tp

recision = ————, recall = _
P Ctp+fp TEY

Methodology and implementation

Like FRASH, our precision & recall extension is imple-
mented in Ruby. The new class is called Ssyntheticbhata
PrecisionRecallTest and is responsible for the test-set
creation, test execution, and plotting the performance
graphs.

Test methodology

Generally, the tool needs to first create a set of unique
files (using random bytes), then create versions of them
using one of the four modification methods, run the actual
comparisons and summarize the results.

Depending on the desired test scope, the tool has two
main configuration parameters called file-count and runs.
The former parameter is the number of all input files; the
latter specifies the number of independent test runs to be
executed. A single run comprises the following steps:

1. Create a file set, denoted by test-set, of file-count number
of files created with SsecureRandom. random_ bytes.

2. Apply a file manipulation method and option to each of
the generated files and create versions with known level
of similarity. The single-common-block correlation test
requires a bit more elaborate setup so it uses custom test
generation code, the rest is done in a generic fashion.

3. Run the approximate matching algorithms comparing all
pairs of files across the two sets—originals and modified
copies—and return a match-string comprising of file
name 1, file name 2 and a match score, €.g.,, readme
report 000.

4. The match scores are aggregated and the results are used
to compute the overall false positive and false negative
rate per test and option.

To enable the framework to distinguish true positives
from false positives, corresponding files have equal file
names but different folders. For instance, all originals are in
the left-folder and numbered consecutively. The modi-
fied files are located in the right-folder, which is over-
written by every manipulation. Thus, a possible
comparison is left/0 | right/0 | 100 which is a true
positive.

The size of the created files is fix but adjustable.
Currently, we use the following 6 file sizes: 1, 4, 16, 64, 256
and 1024 KiB.

In terms of execution time, having a set of file-count files
results in file-count? comparisons. Hence, the total number

of comparisons per algorithm is calculated by file-
count®-runs-o where o is the number of all options (see
Section 3.2).

Test set manipulations

Our tool utilizes the four generic data manipulation
techniques that are already integrated in FRASH where
each has different options:

Fragment detection: f, is a fragment of f; where the size of
f2 is one out of X={50%,40%,30%,20%,10%,5%,4%,3%,2%,1%}.
Single-common-block correlation: f; and f, have equal
size and share a common byte string (block) of size X=
{50%,40%,30%,20%,10%,5%,4%,3%,2%,1%}. The position of the
block is chosen randomly for each file.

Alignment robustness: f, is a copy of f, prefixed with a
random byte string of length X={1%,5%,10%,20%}.
Random-noise resistance: f, is an obfuscated version of f;,
iie, X% of f,’s bytes are edited, where X=
{0.5%,1.0%,1.5%,2.0%,2.5%} of the file size. The percentage
boundaries were determined experimentally, as ssdeep
and sdhash both did not detect two files as similar, when
=2.5% of the bytes were manipulated in one file.

The term option is the combination of a test and a
specific setting, e.g., alignment 1% or fragment 10% are valid
options. Hence, there are 29 different options.

Implementation

In addition to the standard installation of Ruby, FRASH
needs the following packages (gems), which can be
installed using the gem install <GEMNAME> command:
actionpack, activesupport, i18n, activemodel, rack, erubis,
parallel, colored and terminal-table. The graphs are plotted
using Gnuplot.”

SyntheticDataPrecisionRecallTest inherits
from BaseTest and overwrites the @gen_compar-
e_command variable, so that the tools also return zero-
comparison matches. The histogram method performs the
comparisons and stores the match strings in an array. Then,
it calls the separate_genuines_from_impostors
method, which traverses every match string and assigns
the scores to the genuines or impostors. Recall, a match
string contains original file name, modified copy file name,
and match score. Hence, identical file names reveal genu-
ines and varying file names show impostors. At the end we
compute the frequency of all scores and store it in @his-
togram. The histogram is the foundation for calculating the
error probability distribution and detection error trade-off
curve.

Case study: ssdeep and sdhash

In this section we present the results from applying our
test methodology to analyze the performance of ssdeep

5 http://www.gnuplot.info (last accessed 11 Feb. 2014).


http://www.gnuplot.info

and sdhash. As the results are very comprehensive, we
only present a selection. However, all details are available
online.’

Our test examines the performance of the algorithms as
a function of file size. For that purpose we consider the
behavior at six fixed file sizes—1, 4, 16, 64, 256 and
1024 KiB. We decided for these size boundaries after
analyzing the sizes of almost 1,000,000 files in the gov-
doc-corpus.’ As shown in Table 2, nearly 91% of all files
are smaller than 1MiB.

To avoid library-level integration with the tools (which
would facilitate efficiency but introduce tight code de-
pendencies) we found it necessary to use the command line
interface provided by the tool. Thus, even though each tool
invocation completes in a fraction of a second, there is
considerable overhead that adds up on a large scale.

One challenge that may not be immediately obvious is
the amount of computation needed to complete the tests.
For this test we did 10 different runs on 100 files (vs 100
modified versions) results in 100,000 comparisons per
option which ends up in 2,900,000 comparisons per file
size and algorithm. Due to 6 different file sizes, we had 17.4
million comparisons per algorithm, which is in total 34.8
million comparisons.

To make the code run in a reasonable amount of time,
we have parallelized the implementation so it can take
advantage of multi-core architectures. In our tests, we
utilized two 2.6 GHz AMD Opteron, 48-core Ubuntu server,
which ran the above test suite in 15 h, or about 320 com-
parisons/second.

The approximate matching comparisons produced by
these tools yield a (match) score, which is a number be-
tween 0 and 100. Despite its range, this value is not an
estimate of percentage commonality between the
compared objects but a level of confidence. It is meant to
serve as a means to sort and filter the results.

The rest of this chapter is divided into three parts. First,
we explain the representation of our results in Section 4.1.
Section 4.2 presents the average results over all file sizes
and tests. As this is very general, we decided to present
some more details about specific options in Section 4.3.

Result presentation

We use three types of graphs to visually summarize the
results of our study—score histograms, error probability
distributions, and detection error trade-off curve (DET curve).

Score histograms

Show the frequency for each score value, i.e., how often
a score occurs, for both true and false positives. Ideally,
scores for known impostors would be all zero, while

6 https://www.dasec.h-da.de/staff/breitinger-frank/#downloads  (last
accessed 11 Feb. 2014).

7 “These documents were obtained by performing searches for words
randomly chosen from the Unix dictionary, numbers randomly chosen
between 1 and 1 million, and randomized combinations of the two, for
documents of specified file types that resided on web servers in the .gov
domain using the Yahoo and Google search engines” (http://
digitalcorpora.org/corpora/files).
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Table 2
File sizes distribution in the govdoc-corpus (min size is 1 KiB).

File size range (KiB) <4 <16 <64 <256 <1024
Amount (%) 5.40 20.71 52.54 75.82 90.60

genuine scores would be positive. More precisely, we need
impostor scores to be generally lower than genuine score
and we could use the threshold parameter as means to
clearly separate them. The score histogram is a convenient
means to identify suitable threshold values.

Error probability distributions

Show the false positive rate (FPR) and false negative rate
(ENR) as a function of the chosen threshold value. More
formally, let t be the threshold where 0 <t <100 and s
denote the comparison score. Then:

e FPR(t) is the number of impostor comparisons with s > t
divided by the total number of impostor comparisons.

e FNR(t) is the number of genuine comparisons with s<t
divided by the total number of genuine comparisons.

Detection error trade-off curve

Correlates the FPR (x-axis) and the FNR (y-axis). Thus,
we can answer the question if at most x% false matches shall
be tolerated, how many false non-matches must be expected?
Obviously, the more false matches are tolerated, the less
false non-matches can be expected and vice versa.

Averaged results per file size

Recall, our test considers the behavior for the file sizes 1,
4,16, 64, 256 and 1024 KiB. In the following we decided to
show the details for 256KiB which is a very common size
for files (the numbers are averaged results over all options).

Score histogram

The score histograms for ssdeep and sdhash are given
in Figs. 1 and 2, respectively. In case of ssdeep we do not
have any impostors with a score above 0 (which is perfect).
With respect to sdhash, there are only a few impostors
with a score above 0 but all below 8. With regards to the
false negatives, the absolute value of ssdeep (19,645) is
higher than for sdhash (3849).

Error probability distributions

Figs. 3 and 4 show the error probability distribution for
ssdeep and sdhash. The false positive rate of ssdeep is 0.
sdhash has a FPR of 10~ which is very close to 0. Hence,
both algorithms are nearly working perfect. With respect to
false negative, ssdeep has an initial rate of 65% for t=1
whereas sdhash performs pretty well with a rate of
approximately 3%. The reason why the sdhash FNR rate
does not go up to 100 due to the fact that we still have a lot
of 100 scores after all modifications, e.g., fragment detec-
tion or alignment.

Detection error trade-off curve
Figs. 5 and 6 show the DET curves for sdhash and
ssdeep for 256 KiB and 1024KiB files, respectively, where
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Fig. 1. Histogram for ssdeep (256 KiB files).
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Fig. 2. Histogram for sdhash (256 KiB files).

the detection rates are nearly the same. Note, the scale on
the x-axis is optimized for a better view. In case of ssdeep
there are plenty false negatives but no false positives. Thus,
the graphs drops straight to the x-axis (we manually set the
point 0.000034). sdhash has less false negatives but
therefore a few false positives: 7 for 256 KiB and 3 for
1024 KiB (indicated by the dots on the line).

Due to the significant amount of less false negatives, we
rate sdhash as better than ssdeep. However, both algo-
rithms perform very well on random data.

Detailed test results

In this section, we present the results for each of the four
types of data manipulation we use to evaluate the tools. In
all cases, we use test data of 1, 4, 16, 64, 256, and 1024 KiB in
size to obtain a consistent sample of the tools’ behavior. In
addition to the numerical scores, we discuss the relation-
ship between the observed behavior and the design of the
algorithms.

Fragment detection

In this test, we evaluate the ability of the algorithm to
find a pieces of target. Specifically, we compare a random
test file f; with a randomly sampled fragment f,; the size of
f> taken to be X% of that of the original, where X=
{1%,2%,3%,4%,5%,10%,20%,30%,40%,50%}. Table 3 shows the
results.

Observations.
e The behavior of ssdeep is consistent across all file sizes:

above 0.96 for the 50% case, 0.68—0.70 at 40%, and
(near) zero in all other cases.

Considering the algorithm, these observations make
sense—the algorithm produces a fixed-size signature,
which means that, in relative terms, it maintains the same
resolution, so the minimum detectable fragment should be
defined in relative terms; the tests clearly capture this
feature.

e The behavior of sdhash is more dynamic; it starts with
complete failure at 1 KiB but quickly improves as the file
size grows: at 4KiB, it needs a 30% sample for near-
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Fig. 3. FPR and FNR for ssdeep (256 KiB files).
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Fig. 4. FPR and FNR for sdhash (256 KiB files).

perfect detection, whereas at 256 KiB and up, even a 1%
sample is detected perfectly.

This behavior should be expected—the tool uses a
variable-sized digest so a fragment of any size above the
design minimum should be detectable, regardless of the
size of the source file. Considering—in absolute terms—the
size of the fragment at which it becomes perfectly detect-
able, we can see that it is approximately the same in all
cases: 30% x 4KiB = 10% x 16 KiB = 2% x 64 KiB.

e Finally, both tools exhibit bi-modal behavior—if the pa-
rameters fall within their design space, the results are

sdhash
9 ssdeep ———

False Negative Rate (FNR(t) in %)
3
—

0 0.000034 0.000103
False Positive Rate (FPR(t) in %)

Fig. 5. DET curves for sdhash and ssdeep (256 KiB files).
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Fig. 6. DET curves for sdhash and ssdeep (1024 KiB files).

(near) perfectly correct, otherwise, they are perfectly
wrong; there is not much in between. The good news is
that FRASH clearly delineates the two cases, giving an-
alysts an important guide on how to use them.

Single-common-block correlation

An extension of the fragment test, the single-common-
block test evaluates the ability of an approximate matching
algorithm to correlate two files, f; and f,, that are known to
have fragment in common. To simplify the analysis and
presentation, we choose the files of equal size and vary the
amount of commonality as a fraction X of the file size; X=
{1%,2%,3%,4%,5%,10%,20%,30%,40%,50%}. Table 4 shows the
results.

Observations.

e The behavior of the tools on this test is clearly correlated
with their performance on the prior test but the re-
lationships are a bit more complex.

e For ssdeep, we need at least 20% commonality to
achieve a better-than-50% TPR, and at least 30% to
achieve reliable (95%+) detection. As with the fragment
detection, the results are consistent across file sizes and
depend on the relative size of the common fragment.

e For sdhash, the usual problems at 1 KiB persist and, just
like in the fragment case, the performance improves as
the size of the source file grows. Considering the abso-
lute size of the common fragment is a good guide but we
find that the threshold that gives perfect classification
varies between 13 and 20 KiB. This is likely due to
alignment issues as the sdhash signature consist of a
sequence of Bloom filters, such one representing (on
average) 9—10 KiB of the source data. Depending on the
location of the sample, the data could map to two, or
three, separate filters and match could be numerically
diluted during comparison.
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Table 3

True positive rates for ssdeep and sdhash as a function of file and fragment size.

Fragment size (%)

1%

2%

3%

4%

10%

20%

40%

50%

ssdeep 1KiB 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.67 0.97
4KiB 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.04 0.70 0.98
16 KiB 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.04 0.68 0.97
64 KiB 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.05 0.69 0.98
256 KiB 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.69 0.96
1024 KiB 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.03 0.70 0.97
sdhash 1KiB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4KiB 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.99 1.00 1.00
16 KiB 0.00 0.00 0.00 0.00 0.05 1.00 1.00 1.00 1.00 1.00
64 KiB 0.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
256 KiB 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1024 KiB 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Alignment evidenced by the true positive rates of 99.5% and 93.3%.

Recall that the alignment test is designed to evaluate the
robustness of the algorithm with respect to data alignment.
To perform the test, we compare an original file f; to a file f5,
which consists of the entirety of f; prefixed by a random
byte string of length X={1%,5%,10%,20%}.

As it turns out, both tools deal well with this case and
give perfect true positive (100%) and perfect true negative
(0%) rates. The only exception is the sdhash case with 1 KiB
of data (which we refer to as the sdhash-1k case), which
yields TP rate in the 0.66—0.69 range. This is an edge case
for the tool, which is optimized for targets with minimum
size of about 1400 bytes (full network packet).

Random-noise resistance

In the random-noise resistance test, we attempt to
correlate a file f; and a randomly disturbed version of it—f5.
In addition to file size, we vary the fraction X of bytes
modified, where X={0.5%,1.0%,1.5%,2.0%,2.5%} of fi's size.
Table 5 presents the results.

Observations.

e In prior work by Baier and Breitinger (2011), we have
shown that ssdeep's noise resistance is a function of
the absolute number of changes made to the source
data. The current results confirm this—ssdeep performs
well for small files and small percentage values. For
instance, 0.5—1% of 1024 Bytes leads to 5—10 changes;
ssdeep can clearly tolerate the disturbance as

Somewhere around 20—22 modifications the TPR drops
below 50%, and around 80 it becomes effectively zero.

e Apart from the always-problematic 1 KiB case, sdhash
deals well with random noise of up 1.0% for all file
sizes—the true positive rate is 100%. The 1.5% case trig-
gers a fluctuating detection rate between 73% (4 KiB)
and 98% (256 KiB) and shows that the tool is starting to
fail. At 2.0% and up, the TPR crashes to zero indicating
that the tool's ability to tolerate noise has been
exhausted.

Conclusion

In this paper, we considered the problem of character-
izing approximate matching algorithm behavior with
respect to precision and recall rates. We argued that the
digital forensics community needs an open set of stan-
dardized tests that can be used for tool evaluation.

We designed a set of precision and recall tests that are
algorithm-neutral and implemented them as an extension
of the FRASH framework. To validate the approach and
implementation, we conducted a case study of the behavior
of ssdeep and sdhash and presented the resulting
observations.

The results are broadly in agreement with prior efforts,
however, our work shows in more detail the tools' perfor-
mance under different scenarios and allowed us to quantify
the relationship between tool design and real-world per-
formance. Further, we showed that each of the algorithms

Table 4
True positive rates for ssdeep and sdhash as a function of file and common block size.
com. block size (%) 1% 2% 3% 4% 5% 10% 20% 30% 40% 50%
ssdeep 1KiB 0.00 0.00 0.00 0.00 0.00 0.06 0.58 0.94 0.99 1.00
4 KiB 0.00 0.00 0.00 0.00 0.01 0.07 0.62 0.95 0.99 1.00
16 KiB 0.00 0.00 0.00 0.01 0.04 0.07 0.62 0.94 0.99 1.00
64 KiB 0.00 0.00 0.00 0.00 0.01 0.07 0.62 0.94 0.99 1.00
256 KiB 0.00 0.00 0.00 0.01 0.01 0.07 0.64 0.95 0.99 0.99
1024 KiB 0.00 0.00 0.00 0.00 0.04 0.08 0.64 0.95 0.99 1.00
sdhash 1 KiB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.37 0.52
4 KiB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.16 0.97 0.99
16 KiB 0.00 0.00 0.00 0.00 0.00 0.00 0.59 0.86 0.97 0.99
64 KiB 0.00 0.00 0.00 0.02 0.13 0.81 1.00 1.00 1.00 1.00
256 KiB 0.08 042 0.79 0.95 1.00 1.00 1.00 1.00 1.00 1.00
1024 KiB 0.32 0.95 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00




Table 5
True positive rates for ssdeep and sdhash as a function of file size and
the random noise.

com. block size (%) 0.5 1.0 1.5 2.0 25

ssdeep 1KiB 0.99 0.93 0.77 0.55 0.38
4 KiB 0.62 0.16 0.05 0.01 0.00
16 KiB 0.02 0.00 0.00 0.00 0.00
64 KiB 0.00 0.00 0.00 0.00 0.00
256 KiB 0.00 0.00 0.00 0.00 0.00
1024 KiB 0.00 0.00 0.00 0.00 0.00

sdhash 1KiB 0.61 0.56 0.33 0.13 0.31
4 KiB 1.00 0.99 0.73 0.09 0.03
16 KiB 1.00 1.00 0.82 0.04 0.00
64 KiB 1.00 1.00 0.96 0.02 0.00
256 KiB 1.00 1.00 0.98 0.01 0.00

1024 KiB 1.00 1.00 0.87 0.00 0.00

has a distinct operational range and analysts must under-
stand the relationships between input parameters and
result significance in order to operate the tools correctly.
Therefore, having a rigorous testing framework, such as
FRASH, is critical to evaluating and calibrating various
approximate matching algorithms.

We expect that further tools in the approximate
matching family will be developed, and the presented
framework is designed to accommodate them with mini-
mal effort allowing for fast, objective, and repeatable
evaluation.
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