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ABSTRACT

Bytewise approximate matching algorithms have in recent years shown significant promise
in detecting files that are similar at the byte level. This is very useful for digital forensic
investigators, who are regularly faced with the problem of searching through a seized device
for pertinent data. A common scenario is where an investigator is in possession of a col-
lection of “known-illegal” files (e.g. a collection of child abuse material) and wishes to find
whether copies of these are stored on the seized device. Approximate matching addresses
shortcomings in traditional hashing, which can only find identical files, by also being able to
deal with cases of merged files, embedded files, partial files, or if a file has been changed in
any way.
Most approximate matching algorithms work by comparing pairs of files, which is not a
scalable approach when faced with large corpora. This paper demonstrates the effectiveness
of using a “Hierarchical Bloom Filter Tree” (HBFT) data structure to reduce the running
time of collection-against-collection matching, with a specific focus on the MRSH-v2 algorithm.
Three experiments are discussed, which explore the effects of different configurations of
HBFTs. The proposed approach dramatically reduces the number of pairwise comparisons
required, and demonstrates substantial speed gains, while maintaining effectiveness.

Keywords: approximate matching, hierarchical bloom filter trees, mrsh-v2
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1. INTRODUCTION

Current digital forensic process models are
surprisingly arduous, inefficient, and expen-
sive. Coupled with the sheer volume of digi-
tal forensic investigations facing law enforce-
ment agencies worldwide, this has resulted in
significant evidence backlogs becoming com-
monplace (Scanlon, 2016), frequently reach-
ing 18-24 months (Casey et al., 2009) and
exceeding 4 years in extreme cases (Lillis et
al., 2016). The backlogs have grown due to
a number of factors including the volume of
cases requiring analysis, the number of de-
vices per case, the volume of data on each
device, and the limited availability of skilled
experts (Quick & Choo, 2014). Automated
techniques are in continuous development to
aid investigators, but due to the sensitive na-
ture of this work, the ultimate inferences and
decisions will always be made by skilled hu-
man experts (James & Gladyshev, 2015).

Perhaps the most common (and most
time-consuming) task facing digital investi-
gators involves examination of seized suspect
devices to determine if pertinent evidence
is contained therein. Often, this examina-
tion requires significant manual, expert data
processing and analysis during the acquisi-
tion and analysis phases of an investigation.
A number of techniques have been created
or are in development to expedite/automate
parts of the typical digital forensic pro-
cess. These include triage (Rogers et al.,
2006), distributed processing (Roussev &
Richard III, 2004), Digital Forensics as a
Service (DFaaS) (van Baar et al., 2014),
workflow management and automation (de
Braekt et al., 2016; J. N. Gupta et al.,
2016). While these techniques can help to

This paper is an extended version of Lillis et al.
(2017), which was presented at the 9th EAI Inter-
national Conference on Digital Forensics and Cyber
Crime (ICDF2C), Prague, Czech Republic, 9-11 Oc-
tober, 2017.

alleviate the backlog, the premise behind
many of them involves evidence discovery
based on exact matching of hash values (e.g.,
MD5, SHA1). Typically, this requires a set
of hashes of known incriminating/pertinent
content. The hash of each artefact from a
suspect device is then compared against this
set. This approach falls short against ba-
sic counter-forensic techniques (e.g., content
editing, content embedding, data transfor-
mation).

Approximate matching (also referred
to as “fuzzy hashing”) is one technique
used to aid the discovery of these obfus-
cated files (Breitinger, Guttman, et al.,
2014). A number of algorithms have been
developed including ssdeep (Kornblum,
2006), sdhash (Roussev, 2010), and
MRSH-v2 (Breitinger & Baier, 2012). This
paper focuses specifically on MRSH-v2. This
algorithm operates by generating a “simi-
larity digest” for each file, represented as
Bloom filters (Bloom, 1970). An all-against-
all pairwise comparison is then required
to determine if files from a set of desired
content is present in a corpus of unanalysed
digital material. Thus, MRSH-v2 does not
exhibit strong scalability for use with larger
datasets.

This paper presents an improvement in
the runtime efficiency of approximate match-
ing techniques, primarily through the im-
plementation of a Hierarchical Bloom Fil-
ter Tree (HBFT). Additionally, it examines
some of the tunable parameters of the al-
gorithm to gauge their effect on the required
running time. A number of experiments were
conducted, using two different formulations
of a HBFT, which indicated a substantial re-
duction in the running time, in addition to
which the final experiment achieved a 100%
recall rate for identical files and also for files
that have a MRSH-v2 similarity above a rea-
sonable threshold of 40%.

Section 2 outlines the prior work that has
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been conducted in the area of approximate
matching. The operation of MRSH-v2 is dis-
cussed in Section 3. HBFTs are introduced
in Section 4. Section 5 presents the series of
experiments designed to evaluate the effec-
tiveness of the HBFT approach, and finally
Section 6 concludes the paper and outlines
directions for further work.

2. BACKGROUND:

APPROXIMATE

MATCHING
Bytewise approximate matching for dig-
ital forensics gained popularity in 2006
when Kornblum (2006) presented context-
triggered piecewise hashing (CTPH) includ-
ing an implementation called ssdeep. It
was at that time referred to as “fuzzy
hashing.” Later, this term converted to
“similarity hashing” (most likely due to
sdhash which stands for “similarity digest
hash” (Roussev, 2010)). In 2014, the
National Institute of Standards and Tech-
nology (NIST) developed Special Publica-
tion 800-168, which outlines the definition
and technology for these kinds of algo-
rithms (Breitinger, Guttman, et al., 2014).

In addition to the prominent aforemen-
tioned implementations, there are several
others. MinHash (Broder, 1997) and
SimHash (Sadowski & Levin, 2007) are ideas
on how to detect/identify small changes (up
to several bytes), but were not designed to
compare hard disk images with each other.
Oliver et al. (2013) presented an algorithm
named TLSH, which is premised on local-
ity sensitivity hashing (LSH). There are sig-
nificantly more algorithms, but to explain
all of them would be beyond the scope of
this paper; a good summary is provided by
Harichandran et al. (2016).

While these algorithms have great capa-
bilities, they suffer one significant drawback,

which we call the “database lookup prob-
lem.” In comparison to traditional hash val-
ues which can be sorted and have a lookup
complexity of O(1) (hashmap) or O(log(n))
(binary tree; where n is the number of entries
in the database), looking up a similarity di-
gest usually requires an all-against-all com-
parison (O(n2)) to identify all matches. To
overcome this drawback, Breitinger, Baier,
and White (2014) presented a new idea that
overcomes the lookup complexity (it is ap-
proximately O(1)) but at the cost of inac-
curacy. More specifically, the method allows
item vs. set queries, resulting in the answer
either being “yes, the queried item is in the
set” or “no, it is not”; one cannot say against
which item it matches.

As a means of addressing these drawbacks,
Breitinger, Rathgeb, and Baier (2014) pre-
sented a further article where they offered a
theoretical solution to the lookup problem,
based on a tree of Bloom filters. However,
an implementation (and thus a validation)
has not been conducted to date. We refer
to this as a Hierarchical Bloom Filter Tree
(HBFT). The focus of the present work is
the empirical evaluation of this approach, so
as to demonstrate its effectiveness and to in-
vestigate some practical factors that affect
its performance.

3. THE MRSH-V2

ALGORITHM
The work in this paper is intended to im-
prove upon the performance of the MRSH-v2

algorithm. Therefore, it is important to
firstly outline its operation in informal
terms, which will aid the discussion later.
A more detailed, formal description of the
algorithm can be found in the paper by
Breitinger and Baier (2012). The primary
goal of MRSH-v2 is to compress any byte se-
quence and output a similarity digest. Simi-
larity digests are created in a way that they
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can be compared with each other, which will
result in a similarity score. Each similarity
digest is a collection of Bloom filters (Bloom,
1970).

To create the similarity digest, MRSH-v2

splits an input into chunks (also known as
“subhashes”) of approximately 160 bytes.
These chunks are hashed using FNV (a fast
non-cryptographic hash function), which is
used to set 5 bits of the Bloom filter. To di-
vide the input into chunks, it uses a window
of 7 bytes, which slides through the input
byte-by-byte. The content of the window
is processed and whenever it hits a certain
value (based on a modulus operation), the
end of a chunk is identified. Thus, the ac-
tual size of each chunk varies. Each Bloom
filter has a specific capacity. Once this has
been reached, any further chunks are in-
serted into a new Bloom filter that is ap-
pended to the digest. Approximate match-
ing occurs by comparing similarity digests
against one another. To compare two file
sets, an all-against-all pairwise comparison
is required.

One way to improve upon the all-against-
all comparison is to use the file-against-set
strategy outlined by Breitinger, Baier, and
White (2014). An alternative strategy that
has not yet been fully evaluated is to use
a hierarchical Bloom filter tree (HBFT), as
suggested by Breitinger, Rathgeb, and Baier
(2014). This approach is intended to achieve
speed benefits over a pairwise comparison
while supporting the identification of specific
matching files. The primary contribution of
this paper is to investigate the factors that
affect the runtime performance of this latter
approach, compared to the pairwise compar-
isons required by the original algorithm.

4. HIERARCHICAL

BLOOM FILTER TREES

(HBFT)

In a Hierarchical Bloom Filter Tree (HBFT),
the root node of the tree is a Bloom filter
that represents the entire collection. A key
feature of a Bloom filter is that it can say
only whether an item is probably contained
in it, or definitely not contained in it. Thus it
is possible to give false positive results, but
not false negatives. The rate of false posi-
tives depends on the size of the Bloom filter
and the number of items it contains. When
searching for a file, if a match is found at the
root of the tree, its child nodes can then be
searched. Although this structure is inspired
by a classic binary search tree, a match at a
particular node in a HBFT does not indi-
cate whether the search should continue in
the left or right subtree. Instead, both child
nodes need to be searched, with the search
path ending when a leaf node is reached or
a node does not match.

Two forms of tree layout are shown in Fig-
ure 1: one uses Bloom filters of different sizes
(referred to as a “variable-width” HBFT),
whereas the other uses a single fixed size for
each Bloom filter. For the variable-width
tree, each level in the tree is allocated an
equal amount of memory. Thus each Bloom
filter occupies half the memory of its parent,
and also represents a file set that is half the
size of its parent. The expected false posi-
tive rates will be approximately equal at all
levels in the tree. In contrast, a fixed-width
tree uses the same size for every Bloom filter.
Thus each level of the tree occupies twice the
space of the level above.

When a collection is being modelled as a
HBFT, each file is inserted into the Bloom
filter at some leaf node in the tree, and also
into its ancestor nodes. The mechanism of
inserting a file into a Bloom filter is the same
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Figure 1. Hierarchical Bloom Filter Tree (HBFT) structure using (a) variable-width and (b)
fixed-width Bloom filters.

as for the single Bloom filter approach out-
lined by Breitinger, Baier, and White (2014),
which is also very similar to the approach
taken by the classic MRSH-v2 algorithm out-
lined in Section 3. The key difference is that
instead of creating a similarity digest of po-
tentially multiple small Bloom filters for an
individual file, each subhash is used to set 5
bits of the larger Bloom filter within a tree
node that usually relates to multiple files.

Depending on the design of the tree, a leaf
node may represent multiple files. Thus a
search that reaches a leaf node will still re-
quire a pairwise comparison with each file in
this subset, using MRSH-v2. However, given
that most searches will reach only a subset
of the root nodes, the number of pairwise
comparisons required for each file is greatly
reduced.

The process to check if a file matches a
Bloom filter node is similar to the process
of inserting a file into the tree. However,
instead of inserting each hash into the node,
its subhashes are instead checked against the
Bloom filter to see if they are contained in
it. If a specific number of consecutive hashes
are contained in the node, this is considered
to be a match. The number of consecutive
hashes is configurable as a parameter named
min run. The first experiment in this paper
(discussed in Section 5.2.1) explores the ef-
fects of altering this value.

In constructing a HBFT, memory con-
straints will have a strong influence on the

design of the tree. In practical situations, a
typical workstation is unlikely (at present)
to have access to over 16GiB of main mem-
ory. Thus trade-offs in the design of the tree
are likely. Larger Bloom filters have lower
false positive rates (assuming the quantity
of data is constant), but lead to shallower
trees (thus potentially increasing the num-
ber of pairwise comparisons required).

Of the two proposed designs for a HBFT,
each has its own theoretical advantages. One
aim of the ensuing experiments is to identify
if any of these has more influence in practice.
Some considerations worthy of note include:

• Calculating the union of two Bloom fil-
ters of equal size is trivially performed
using a bitwise-OR operation. Thus a
fixed-width HBFT can be constructed
in a bottom-up manner, whereby each
file needs only be inserted into a leaf
Bloom filter. Once all files have been
processed, these leaves can be recur-
sively merged to create the parent
nodes. In contrast, a variable-width tree
design requires each file to be inserted
separately into an appropriate node at
every level in the tree.

• Another consequence of the above ob-
servation is that if the HBFT is to be
distributed over multiple computational
nodes, this has consequences for the
quantity of data that must be shared
between nodes when building the tree.

c© 2018 ADFSL Page 85
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Instead of sending the hashes of all files
throughout the system, Bloom filters
can be shared and locally merged where
necessary. This is outside of the scope
of this paper, but is discussed as future
work in Section 6.

• The memory required at each level of a
fixed-width tree increases exponentially.
This means that for an equal amount
of available memory, a fixed-width tree
must necessarily either be built to be
shallower than the variable-width tree,
or make use of smaller Bloom filters to-
wards the top of the tree. The latter ap-
proach results in a higher false-positive
rate in this part of the tree, which will
likely lead to deeper searches for files
that are not matched with anything in
the corpus. If the size of the leaf nodes
is equal, then the overall false positive
rate of the two trees will be equivalent.

For both types of tree, larger Bloom fil-
ters result in lower false positive rates at the
expense of a shallower tree (since memory
is limited). In a shallower tree, each leaf
node represents a larger subset of the cor-
pus, which may require a greater number of
pairwise comparisons for each search.

5. EXPERIMENTS

As part of this work, a number of experi-
ments were conducted to examine the factors
that affect the performance of the HBFT
structure. In each case, a HBFT was used to
model the contents of a dataset. Files from
another dataset were then searched for in the
tree, and the results reported. Because the
speed of execution is of paramount impor-
tance, and because the original MRSH-v2 im-
plementation was written in C, the HBFT
implementation used for these experiments
was also written in that language. The

source code has been made available under
the Apache 2.0 licence1.

The workstation used for the experiments
contains a quad-core Intel Core i7 2.67GHz
processor, 12GiB of RAM and uses a solid
state drive for storage. The operating sys-
tem is Ubuntu Linux 16.04 LTS. The pri-
mary constraint this system imposes on the
design of experiments is that of the mem-
ory that is available for storing the HBFTs.
For all experiments, the maximum amount
of memory made available for the HBFT was
10GiB. The size of the individual Bloom fil-
ters within the trees then depended on the
number of nodes in the tree (which in turn
depends on the number of leaf nodes).

For each experiment, the number of leaf
nodes (n) is specified in advance, from which
the total number of nodes can be com-
puted (since this is a complete binary tree).
Given the upper total memory limit (u, in
bytes), and that the size of each Bloom fil-
ter (in bytes) should be a power of two
(per Breitinger, Baier, and White (2014)),
it is possible to calculate the maximum pos-
sible size of each Bloom filter.

For a variable-width tree, all levels in the
tree are allocated the same amount of mem-
ory. Therefore the size of the root Bloom
filter in bytes (r) is given by:

r = 2blog2(u/(log2(n)+1))c (1)

The size of the other nodes in bytes is then
r
2d

where d is the depth of the node in the
tree (i.e. the size of a Bloom filter is half the
size of its parent).

For a HBFT with fixed-sized Bloom filters,
all nodes have size equal to that of the root
node. Here, r is given by:

r = 2blog2(u/(2n−1))c (2)

The ultimate goal of the experiments is to
demonstrate that the HBFT approach can

1Available at http://github.com/ishnid/mrsh
-hbft
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improve the running time of an investigation
over the all-against-all comparison approach
of MRSH-v2 without suffering a degradation
in effectiveness. It achieves this by narrow-
ing the search space so that each file that is
searched for need only be compared against
a subset of the dataset.

Using a HBFT, the final outcome will be
a set of similarity scores. This score is cal-
culated by using MRSH-v2 to compare the
search file with all files contained in any
leaves that are reached during the search.
Therefore, the HBFT approach will not iden-
tify a file as being similar if MRSH-v2 does not
also do so.

In these experiments, the similarity scores
generated by MRSH-v2 are considered to be
ground truth. Evaluating the degree to
which this agrees with the opinion of a hu-
man judge, or how it compares with other al-
gorithms, is outside the scope of this paper.
The primary difference between the outputs
is that the HBFT may fail to identify files
that MRSH-v2 considers to be similar (i.e.
false negatives) due to an appropriate leaf
node not being reached.

Therefore the primary metric used, aside
from running time, is recall: the proportion
of known-similar (or known-identical) files
for which the HBFT search reaches the ap-
propriate leaf node.

5.1 Datasets

Two datasets were used as the basis for the
experiments conducted in this paper:

• The t5 dataset (Roussev, 2011) is fre-
quently used for approximate matching
experimentation. It consists of 4,457
files (approximately 1.8 GiB) taken
from US government websites. It in-
cludes plain text files, HTML pages,
PDFs, Microsoft Office documents and
image files.

• The win7 dataset is a fresh installation

of a Windows 7 operating system, with
default options selected during installa-
tion. It consists of 48,384 files (exclud-
ing symbolic links and zero-byte files)
and occupies approximately 10GiB.

The first two experiments use one or both
of these datasets directly. The final exper-
iment includes some modifications, as out-
lined in Section 5.2.3.

5.2 Experiment Overview

The following sections present three exper-
iments that were conducted to evaluate the
HBFT approach. Section 5.2.1 compares the
t5 dataset with itself. This is intended to
find whether the HBFT approach is effec-
tive in finding identical files, and to investi-
gate the effect of varying certain parameters
when designing and searching a HBFT. It
also aims to demonstrate the extent to which
the number of pairwise comparisons required
can be reduced by using this technique.

Section 5.2.2 uses disjoint corpora of dif-
ferent sizes (t5 and win7). In a typical in-
vestigation, there may be a large difference
between the size of the collection of search
files and a seized hard disk. This experi-
ment aims to investigate whether it is prefer-
able to use the tree to model the smaller or
the larger corpus. Additionally, it examines
the performance characteristics of fixed and
variable width HBFTs.

Finally, Section 5.2.3 uses overlapping cor-
pora where a number of files have been
planted on the disk image. These files are
identical to, or similar to, files in the search
corpus. This experiment demonstrates that
using a HBFT is substantially faster than
the pairwise approach.

5.2.1 Experiment 1: t5 vs. t5

For the initial experiment, the HBFT was
constructed to represent the t5 corpus. All
files from t5 were also used for searching.

c© 2018 ADFSL Page 87



JDFSL V13N1 Hierarchical Bloom Filter Trees for ...

Thus every file searched for is also located in
the tree and should be found. Conducting
an all-against-all pairwise comparison using
MRSH-v2 required a total of 19,864,849 com-
parisons, which took 319 seconds.

To construct the tree, the smallest num-
ber of leaf nodes was 32. Following this, the
number of leaf nodes was doubled each time
(maintaining a balanced tree). The excep-
tion was that after the experiment with 2,048
leaf nodes, 4,457 leaf nodes were used for the
final run, thereby representing a single file
from the corpus in each leaf.

The aims of this experiment were:

1. Evaluate the effectiveness of the HBFT
approach for exact matching (i.e. find-
ing identical files) using recall.

2. Identify an appropriate value for
MRSH-v2’s min run parameter.

3. Investigate the relationship between the
size of the tree and the time taken to
build and search the tree.

4. Investigate the relationship between the
size of the tree and the number of pair-
wise comparisons that are required to
calculate a similarity score.

When running the experiment, it became
apparent that the first two aims are linked.

Table 1 shows the recall associated with
three values of min run: 4, 6 and 8. Using
a min run value of 4 resulted in full recall.
However, increasing min run to 6 or 8 re-
sulted in a small number of files being omit-
ted. When min run is set to 8, three files are
not found in the tree. This indicates the dan-
gers inherent in requiring longer matching
runs. The files in question are 000462.text,
001774.html, 003225.html. These files are
6.5 KiB, 6.6 KiB and 4.5 KiB in size re-
spectively. Although each chunk is approxi-
mately 160 bytes, this is variable depending
on the file content. While these are rela-
tively small files, they are not the smallest
in the corpus. This shows that even when
the file is large enough to contain 8 chunks
of the average size, a min run requirement of
8 successive matches may still not be possi-
ble. Similarly, using 6 as the min run value
results in two files being missed. The type
of HBFT used did not alter these results.

Table 1. Effect of min run on recall: identi-
cal files.

min run Recall

4 100%
6 99.96%
8 99.93%

Figure 2. Effect of varying number of leaf nodes on time taken: t5 vs. t5
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It should be acknowledged that if the aim
is solely to identify identical files, then exist-
ing hash-based techniques will take less time
and yield more reliable results. Intuitively,
however, a system that is intended to find
similar files should also find identical files.
While the chunk size of 160 bytes will always
fail to match very small files, it is desirable
to find matches when file sizes are larger.

Figure 2 shows the time taken to build the
tree and search for all files. As the number of
leaf nodes in the tree increases, so too does
the time taken to search the tree. Higher val-
ues of min run use slightly less time, due to
the fact that it is more difficult for a search to
descend to a lower level when more matches
are required to do so. However, as the recall
for these higher values is lower, 4 was used as
the min run value for further experiments.

The times shown here relate only to build-
ing the tree and searching for files within it,
and do not include the time for the pair-
wise comparisons at the leaves. Therefore,
although using 32 leaf nodes results in the
shortest search time (due to the shallower
tree), it would require a most comparisons,
as each leaf node represents 1

32
of the entire

corpus. As an illustration, using a variable-
width tree with 32 leaf nodes and min run

value of 4 requires 8,538,193 pairwise com-
parisons after searching the tree. A similar
tree with 4,457 leaves requires 617,860 com-

parisons.

One issue that is important to note is that
the time required to perform a full pairwise
comparison is 319 seconds. However, for
the largest trees, the times for building and
searching the tree are 274 and 309 seconds
for a variable and fixed HBFT respectively.
Thus, for a relatively small collection such as
this, the use of the tree is unlikely to provide
benefits in terms of overall running time.

Figure 3 plots the number of leaf nodes
against the total number of comparisons re-
quired to complete the investigation. As
the size of corpora increases, so does the
number of pairwise comparisons required by
MRSH-v2. Thus reducing this search space
is the primary function of the tree. Larger
trees tend to result in a smaller number of
comparisons. For the largest trees (with
4,457 leaves), the min run value does not
have a material effect on the number of com-
parisons required, regardless of whether the
tree is variable-width or fixed-width. This
implies that although searches tend to reach
deeper into the tree (hence the longer run-
ning time), they do not reach substantially
more leaves.

From this experiment, it can be concluded
that using a min run value of 4 is desir-
able in order to find exact matches. This
causes the time taken to search to be slightly
longer, while having a negligible impact on

Figure 3. Effect of varying number of leaf nodes on number of comparisons: t5 vs. t5
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the number of pairwise comparisons required
afterwards. Fixed-width and variable-width
HBFTs exhibit similar characteristics for a
corpus of this size

5.2.2 Experiment 2: t5 vs. win7 and
win7 vs. t5

The second experiment was designed to op-
erate with larger dataset sizes. In this ex-
periment, t5 was used as a proxy for a set
of known-illegal files, and win7 was used to
represent a seized disk.

The aims of this experiment were:

1. Investigate whether the HBFT should
represent the smaller or larger corpus.

2. Contrast the performance of variable-
width and fixed-width trees.

3. Measure the effect on overall running
time of using a HBFT.

In pursuit of the first objective, the ex-
periment was first run by building a tree to
represent t5 and then searching for the files
contained in win7. The number of leaf nodes
in this tree was varied in the same way as in
Experiment 1. Then this was repeated by
inserting win7 into a tree and searching for
the files from t5. Again the number of leaf
nodes was doubled every time, with the ex-
ception that the largest tree contained one
leaf node for every file in the collection (i.e.
48,384 leaves). This procedure was followed
for both forms of tree.

The time taken to build and search the
trees are shown in Figures 4 and 5. Figure 4
shows the results when the tree represents
t5, with the time subdivided into the time
spent building the tree and the time spent
searching for all the files from win7. The
total time is relatively consistent for both
types of tree. This is unsurprising in the
context of disjoint corpora. Most files will
not match, so many searches will end at the
root node, or at an otherwise shallow depth.

Figure 5 shows results when the tree mod-
els win7. With only 32 leaf nodes, it is no-
table that all four experimental runs take
approximately the same total time, regard-
less of the type of tree or the dataset that is
chosen for the tree to represent. Due to its
size, the build times for the win7 trees are
substantially longer than for t5. The search
time exhibits a generally upward trend as the
number of leaf nodes increases: a trend that
is far more pronounced for the fixed-width
tree.

This is a consequence of the hardware con-
straints associated with the setup of the ex-
periment. Because memory footprint is con-
strained, a tree with 48,384 leaf nodes will
contain Bloom filters that are much smaller
than for trees with fewer nodes. For the
variable-width tree representing win7, al-
though its leaf nodes are 8KiB in size, its
root node is 512MiB. In the correspond-
ing fixed-width tree, the Bloom filters are
all 64KiB. The false positive rate associated
with Bloom filters is much higher for smaller
Bloom filters. Thus even where two cor-
pora have no files in common, searches int
he fixed-width tree will descend deeper due
to false positives higher in the tree, hence in-
creasing the search time. This is likely to be
even more pronounced in corpora that have
a substantial number of similar files. There-
fore, the fixed-width tree in its current de-
sign is unlikely to successfully scale to very
large corpora.

Overall, the total time taken is less when
the tree represents the smaller dataset. As
with the first experiment, the total num-
ber of pairwise comparisons decreases as the
number of leaves increases. Table 2 shows
the total number of comparisons that are re-
quired when using the largest number of leaf
nodes (i.e. 4,457 when the tree represents
t5 and 48,384 when win7 is stored in the
tree). Both types of tree require a smaller
number of comparisons when the tree mod-
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Figure 4. Time to search for win7 in a t5 tree.

Figure 5. Time to search for t5 in a win7 tree.

els t5. This, combined with the lower build
and search time suggest that the preferred
approach should be to use the smaller cor-
pus to construct the HBFT.

Table 2. Number of pairwise comparisons
required for largest trees: t5 vs. win7

Tree Search Fixed Variable

t5 win7 98,260 98,260
win7 t5 193,924 101,386

Memory is an additional consideration.
Using a HBFT to model the larger dataset
requires the similarity hashes of all its files to
be cached at the leaves. This requires more
memory than for the smaller collection, thus
reducing the amount of memory available to

store the HBFT itself.

Following these observations, the experi-
ment was repeated once more. A variable-
width tree was used, which modelled t5 with
4,457 leaves. All files from win7 were then
searched for. The total running time, includ-
ing pairwise comparisons, was 1,094 seconds.
In comparison, the time taken to perform
a full pairwise comparison using MRSH-v2 is
2,858 seconds.

5.2.3 Experiment 3: Planted
evidence

The final experiment involved overlapping
datasets, constructed as follows:

• A set of simulated “known-illegal” files:
4,000 files from t5.
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• A simulated seized hard disk: the win7

image, plus 140 files from t5, as follows:

– 100 files that are contained within
the 4,000 “illegal” files.

– 40 files that themselves are not
contained within the “illegal” files,
but that have a high similarity
with files in the corpus, according
to MRSH-v2. 10 of these files have a
similarity of 80% or higher, 10 have
a similarity between 60% and 79%
(inclusive), 10 have a similarity be-
tween 40% and 59% (inclusive) and
10 have a similarity between 20%
and 39% (inclusive).

The aims of this third experiment were:

1. Evaluate the time taken to per-
form a full search, compared with
the all-against-all pairwise approach of
MRSH-v2.

2. Evaluate the success of the approach in
finding the 100 “illegal” files that are
included verbatim in the hard disk im-
age, and the 40 files from the image that
are similar to “illegal” files, according to
MRSH-v2.

For the first aim, the primary metric is
the time taken for the entire process to run,
comprising the time to build the tree, the
time to search the tree and the time required
to conduct the pairwise comparisons at the
leaves. In evaluating the latter aim, recall is
used. Here, “recall” refers to the percentage
of the 100 identical files that are successfully
identified, and “similar recall” refers to the
percentage of the 40 similar files that are suc-
cessfully found. A file is considered to have
been found if the search for the file it is sim-
ilar or identical to reaches the leaf node that
contains it, yielding a pairwise comparison.

The total running time for MRSH-v2 was
2,592 seconds. The running times of the
HBFT approach are shown in Figure 6. Fol-
lowing the insights gained in the previous
experiment, the smaller collection of 4,000
“illegal” files was used to construct the tree
and then searches were conducted for all of
the files in the larger corpus. The “Search
Time” includes the time spent searching the
tree and the time to perform the compar-
isons at the leaves.

As expected, for both types of tree the
maximum number of leaf nodes resulted in
the fastest run time. This configuration also
yielded the maximum reduction in the num-
ber of pairwise comparisons required, with-
out substantially adding to the time required
to build and search the tree. The remain-
der of this analysis focuses on this scenario,
where the tree has 4,000 leaf nodes.

Using a variable-width tree took 1,182 sec-
onds (a 54% reduction in the time required
for an all-against-all pairwise comparison).
The fixed-width tree took 1,207 seconds (a
53% reduction). This illustrates that in
terms of run-time, the HBFT approach offers
substantial speed gains over pairwise com-
parison. Due to the lack of scalability of the
pairwise approach, this difference is likely to
be even more pronounced for larger datasets.

Table 3. Similar recall for Planted Evidence
experiment.

MRSH-v2 Files Files Similar
similarity planted found recall

80%-
100%

10 10 100%

60%-79% 10 10 100%
40%-59% 10 10 100%
20%-39% 10 8 80%

Overall 40 38 95%

In terms of effectiveness, all 100 files that
were common to the two corpora were suc-
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Figure 6. Time to search for planted evidence (including pairwise comparisons).

cessfully found in both tree types. The sim-
ilar recall is shown in Table 3 and is the
same for both types of tree. All files with
a MRSH-v2 similarity of 40% or greater with
a file in the “illegal” set were successfully
identified. Two files with a lower similarity
(25% and 26%) were not found. This yields
an overall similar recall score of 95% for all
40 files.

This is an encouraging result, indicating
that the HBFT approach is extremely effec-
tive at finding files that are similar above a
reasonable threshold of 40% and exhibits full
recall for identical files. Thus it can be con-
cluded that the HBFT data structure is a
viable alternative to all-against-all compar-
isons in terms of effectiveness, while achiev-
ing substantial speed gains.

6. CONCLUSIONS

AND FUTURE WORK
This paper aimed to investigate the effec-
tiveness of using a Hierarchical Bloom Fil-
ter Tree (HBFT) data structure to improve
upon the all-against-all pairwise comparison
approach used by MRSH-v2. A number of
experiments were conducted with the aim
of improving the speed of the process. Ad-
ditionally, it was important that files that
should be found were not omitted (i.e. that

recall is maintained).

The first experiment found that while
HBFTs with more leaf nodes take longer to
build and search, they reduce the number of
pairwise comparisons required by the great-
est degree. It also suggested the use of a
min run value of 4, as higher values resulted
in imperfect recall for identical files.

The results of the second experiment in-
dicated that when using corpora of differ-
ent sizes, it is preferable to build the tree to
model the smaller collection and then search
for the files that are contained the larger cor-
pus. For larger trees, it was additionally
noted that the fixed-width HBFT did not
scale as well as its variable-width counter-
part. This is due to the small size of the
Bloom filters used in the tree as the number
of nodes increases.

For the final experiment, a Windows 7 im-
age was augmented by the addition of a num-
ber of files that were identical to those be-
ing searched for, and a further group that
were similar. The HBFT approach yielded
a recall level of 100% for the identical files
and of 95% for the similar files, when using
mrsh-v2 as ground truth. On examining the
two files that were not found, it was noted
that these had a relatively low similarity to
the search files (25% and 26% respectively),
with all files with a higher similarity score
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being identified successfully. The run time
for this experiment was substantially quicker
than an all-against-all comparison: a 54%
time reduction for a variable-width tree and
a 53% reduction for a fixed-width tree.

These experiments lead to the conclusion
that the HBFT approach is a highly promis-
ing technique. Due the poor scalability of
the traditional all-against-all approach, it
can be inferred that this performance im-
provement will be even more pronounced as
datasets become larger.

Given the promising results of the experi-
ments presented in this paper, further work
is planned. A number of avenues for future
work are apparent:

• Cuckoo filters have been identified as
a promising replacement for Bloom fil-
ters for approximate matching pur-
poses (V. Gupta & Breitinger, 2015).
It is possible that these could be incor-
porate into a similar hierarchical tree
structure to produce further improve-
ments.

• Currently, when building the tree, files
are allocated to leaf nodes in a round-
robin fashion. For trees with multiple
files represented at each leaf, it may be
possible that a more optimised alloca-
tion mechanism could be used for this
(e.g. to allocate similar files to the same
leaf node).

• The current model also uses balanced
trees, with the result that all success-
ful searches reach the same depth in the
tree. Further investigation may reveal
circumstances where an unbalanced tree
is preferable so as to shorten some more
common searches.

• Parallelisation and distribution are
highly likely to yield further perfor-
mance improvements, and this should
be investigated.

• Fixed-width HBFTs do not scale to the
same extent as variable trees, due to
the high false positive rates that are
associated with the small Bloom fil-
ters that result from using large trees
with many nodes. Although the exper-
iments presented in this paper indicate
that variable-width HBFTs are prefer-
able, there may be circumstances where
fixed-width trees may be useful, due
to their theoretical advantages noted in
Section 4.

• While these experiments have used
MRSH-v2 as the algorithm for calculat-
ing the similarities at the leaf nodes,
other algorithms should be considered
also (e.g. sdhash).
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