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Abstract

Handling hundreds of thousands of files is a major challenge in today’s digital forensics.
In order to cope with this information overload, investigators often apply hash func-
tions for automated input identification. Besides identifying exact duplicates, which is
mostly solved running cryptographic hash functions, it is also necessary to cope with
similar inputs (e.g., different versions of files), embedded objects (e.g., a JPG within a
office document), and fragments (e.g., network packets). Thus, the essential idea is to
complement the use of cryptographic hash functions, to detect data objects with byte-
wise identical representation, with the capability to find objects with bytewise similar
representations.
Unlike cryptographic hash functions, which have a wide range of applications and have

been studied as well as tested for a long time, approximate matching algorithms are still
in their early development stages. More precisely, currently the community is missing a
definition, an evaluation methodology and (additional) fields of application.
Therefore, this thesis aims at establishing approximate matching in computer sciences

with a special focus on digital forensic investigations. One of our firsts step was to de-
velop a generic definition for approximate matching, in collaboration with the National
Institute of Standards and Technology (NIST) which is applicable to the different lev-
els approximate matching, e.g., bytewise and semantic. A subsequent detailed analysis
of both existing approaches uncovers different strengths and weaknesses, therefore we
present improvements. To extend the range of algorithms, this work introduces three of
our new algorithms, that are based on well-known techniques of computer sciences.
A core contribution of this thesis is the open source evaluation framework called FRASH

which assesses tools on different criteria. Besides traditional properties (borrowed from
hash functions) like generation efficiency and space efficiency (compression), we conceive
methods to determine precision and recall rates based on synthetic as well as real world
data.
Since digital investigations are often time critical, we improve the performance of

automated file identification by a mechanism we call prefetching. Compared to a straight
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forward analysis, the performance increases by almost 40% without additional hardware.
In this context we also discuss the impact of different hashing/approximate matching
algorithms for digital investigations and conclude that it is absolutely reasonable to
apply crypto hashing as well as bytewise/semantic approximate matching algorithms in
a prosecution.
To extend the fields of application, this thesis demonstrates the capabilities of applying

approximate matching on network traffic analysis and biometric template protection. Our
research shows that approximate matching is perfectly suited for data leakage prevention
and can also be applied for biometric template protection, biometric data compression
and efficient biometric identification.
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Zusammenfassung

Heutzutage ist das Bearbeiten von hunderttausenden Dateien eine der wesentlichen Her-
ausforderungen der digitalen Forensik. Um diese Datenflut zu bewältigen verwenden
Ermittler oft Hashfunktionen zur automatisierten Dateierkennung. Neben exakten Du-
plikaten, wofür meist kryptographische Hashfunktionen verwendet werden, ist es jedoch
auch hilfreich ähnliche Dateien (z.B. verschiedene Versionen einer Datei), eingebettete
Objekte (z.B. JPG in einem Office Dokument) und Fragmente (z.B. Netzwerkpakete) zu
erkennen. Die wesentliche Idee ist den klassischen Ansatz der kryptographischen Hash-
funktionen zu ergänzen und somit auch ähnliche Bytesequenzen zu klassifizieren.
Im Gegensatz zu kryptographischen Hashfunktionen, die zahlreiche Anwendungsgebie-

te haben und ausgiebig getestet werden, sind ähnlichkeitserhaltende Algorithmen (engl.
Approximate matching algorithms) noch in einer frühen Entwicklungsphase. Genauge-
nommen fehlt der Community derzeit eine Definition, eine Evaluations-Methodologie und
weitere Anwendungsgebiete.
Diese Dissertation hat daher das Ziel ähnlichkeitserhaltende Algorithmen in der In-

formatik, mit besonderem Blick auf die digitale Forensik, zu etablieren. In einem er-
sten Schritt präsentieren wir eine generische Definition, die in Zusammenarbeit mit dem
National Institute of Standards and Technology (NIST) entstanden ist. Im Anschluss
werden die beiden existierenden Algorithmen untersucht um Stärken / Schwächen zu
analysieren. Um das Sortiment dieser Algorithmen zu erweitern, präsentieren wir drei
weitere, eigene Algorithmen, die auf bewehrten Techniken der Informatik basieren.
Ein wesentlicher Bestandteil dieser Arbeit ist das open source Evaluationsframework

FRASH welches Tools anhand verschiedener Kriterien bewertet. Neben den traditionellen
Eigenschaften wie Laufzeit oder Kompression, haben wir Methoden entwickelt um die
Precision & Recall Raten auf synthetischen und realen Daten zu messen.
Da Ermittlungen in der digitalen Forensik oft zeitkritisch sind, haben wir ein Ver-

fahren namens ‘prefetching’ entwickelt, welches die Laufzeit um ca. 40% verbessert,
ohne zusätzliche Hardware. In diesem Zusammenhang wird auch der Einfluss unter-
schiedlicher Verfahren für kriminalistische Ermittlungen untersucht mit dem Entschluss,
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dass es durchaus Bedarf für unterschiedliche Algorithmen (d.h. auch kryptographische
Hashfunktionen, semantische Hashfunktionen) in der Strafverfolgung gibt.
Abschließend zeigen wir weitere Anwendungsgebiete und wenden ähnlichkeitserhal-

tende Algorithmen zur Netzwerkanalyse und zum Schutze biometrischer Daten an. Die
Ergebnisse zeigen, dass diese Techniken sich zum Schutze sensibler Daten eignen (Data
leakage prevention) und auch in der Biometrie für Template Protektion eingesetzt werden
können.
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1
Introduction

The trend is that everything is going digital, e.g., books, photos, letters and long-playing
records (LPs) turned into ebooks, digital photos, email and mp3. Thus, a requirement
of modern forensic investigations is the ability to perform large-scale automated filtering
and the correlation of data, which reduces the amount of data an investigator has to look
at by hand.
A common method deployed for this purpose is known file filtering, which is quite

simple: compute the crypto hashes for all files on a target device and compare them to
a reference database. Depending on the underlying database, files are either filtered out
(e.g., files of the operating system) or filtered in (e.g., known offensive content). A very
common database for filter out data is the NSRL [68] maintained by National Institute
of Standards and Technology (NIST).
However, the security properties of cryptographic hash functions require that the files

are completely identical – a difference by a single bit produces a pseudo randomly hash
value. Although this property is desired for cryptographic purposes, it complicates foren-
sic investigations. For instance, one cannot do similarity detection (e.g., different versions
of a file), embedded object detection (e.g., JPG in a office document), fragment detec-
tion (e.g., analyzing a device on the byte level or network packages) or clustering files
(e.g., e-mails and Word documents with similar content). Therefore, it is useful to have
algorithms that provide approximate matches that can correlate closely related versions
of data objects.
While hashing has a long tradition in various fields of application like cryptography [64],

databases [56, Sec. 7.8.2] or digital forensics [1, p.56+], approximate matching is a rather
new area. Generally one distinguishes between bytewise– and semantic approximate
matching.
Bytewise approximate matching1 had its breakthrough in 2006 with an algorithm called

context-triggered piecewise hashing [57]. The essential idea was to complement the use of
cryptographic hash functions to detect data objects with bytewise identical representation
with the capability to find objects with bytewise similar representations. Thus, it relies

1Well-known synonyms are fuzzy hashing and similarity hashing.
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only on the sequence of bytes that make up a digital artifact, without reference to any
structures (or their interpretation) within the data stream. It is the most general, in
that it can compare any two blobs of binary data and relies on the assumption that
similarities between objects are reflected by similarities in their byte level representation.
Semantic approximate matching2 operates at a higher level of abstraction and provides

results that are closest to human perceptual notions of similarity. For example, facial
recognition methods could correlate images of the same person.
Although previous research on bytewise approximate matching demonstrated the use-

fulness of these approaches, there are several issues missing in order to establish them in
the community:

• The community requires a definition / standardization for this kind of algorithms.

• Approximate matching will only be accepted by both the scientific community and
practitioners if an assessment methodology based on well-known criteria as well as
an evaluation of existing approaches is available [42, 37].

• Similar to hashing, approximate matching might have multiple application fields
which need to be highlighted and proven.

To solve these issues we come up with research questions presented in the following
section which are the motivation for this dissertation.

1.1. Research questions

The leading research question for this dissertation is

What is the utility of bytewise approximate matching and how can we
establish it in the computer science community?

To answer this question and the open issues of previous research, we followed a tradi-
tional development process and conclude to these more specific research questions (RQ):

Requirements:

RQ1 - Requirements: What is a possible definition for approximate matching?

RQ2 - Analysis of existing approaches: Do the existing algorithms have any strengths
or weaknesses (by design) and is it possible to improve them?

Design and implementation:

RQ3 - New concepts for approximate matching: Can we develop new approaches
based on well established proceedings from computer science?

2Well-known synonyms are robust hashing and perceptual hashing.
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RQ4 - Efficiency: How can we improve the quadratic lookup complexity of similarity
digests?

Verification:

RQ5 - Testing: What is a reasonable methodology to test and evaluate bytewise ap-
proximate matching?

Application:

RQ6 - Process model: How can approximate matching improve and support the cur-
rent forensic investigation process?

RQ7 - Use cases in forensics: Are there further applications/concepts for approxi-
mate matching besides automated file identification in ‘dead system analysis’3?

RQ8 - Further application fields: Is it possible to adapt concepts from byte approx-
imate matching to improve existing biometric template protection schemes?

1.2. Document structure

The introduction has already motivated the necessity and benefits of bytewise approxi-
mate matching. In addition, we have shown current drawbacks which concluded in our
research questions. The remaining thesis is structured as follows:

Chapter 2 - Foundations & definition

Traditional hash functions are sophisticatedly defined, well-known and established in
many different fields such as cryptography, databases or checksums. This chapter briefly
presents the properties of hash functions and their deployment in digital forensics. The
core of this chapter is the definition, terminology and use cases of approximate matching.
At the end we explain Bloom filters which play an important role throughout this thesis
and provide some basic information about test data and time measurements.

Chapter 3 - Related work

This chapter summarizes the relevant literature. We briefly discuss the origin of find-
ing similarities between two objects which has a long history and has started in the
early twentieth century. Next, we focus on fingerprint based similarity detection (later
called approximate matching) that first became popular in 2006 with an algorithm called
context-triggered piecewise hashing and an implementation named ssdeep. As it was the
first of its kind, a few improvements as well as a security analysis were published. Besides
we also outline a second algorithm called sdhash and a comparison of both algorithms.
The last part of this chapter explains SimHash which is an implementation for detecting
near duplicates only.

3The process to analyze an HDD when the working station is turned off.
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Chapter 4 - Assessment & improvement of existing approximate matching
approaches

In here, we focus on analyzing and improving existing approximate matching approaches.
First, we present a performance improvement for context-triggered piecewise hashing
which also increases the security. With respect to sdhash, we highlight weaknesses,
peculiarities and improvements which are the result of a detailed design analysis. The last
part releases mrsh-v2 which originates from combining techniques from multi-resolution
similarity hash, ssdeep and sdhash.

Chapter 5 - Algorithms, concepts and applications

Besides improvements on existing algorithms, we also worked on three of our own ideas.
Random building block hashing (bbHash) was inspired by data deduplication and eigen-
faces (biometrics) which are both well-established procedures in computer sciences. Sta-
tistical analysis hashing (saHash) estimates the byte level similarity of two objects with
respect to the Levenshtein distance which makes it unique. Our last approach called
majority vote hashing (mvhash) is based on the widespread compression technique run-
length encoding. The last two sections present a new concept as well as a new application.
First, we introduce an idea that improves the database lookup complexity of similarity
digests and second, we demonstrate the possibilities of approximate matching on network
traffic.

Chapter 6 - Testing bytewise approximate matching

The challenge of testing bytewise approximate matching is a main issue of this thesis and
discussed at this point. Basically testing is divided into three parts: efficiency, sensitivity
& robustness, and precision & recall. The efficiency tests are borrowed from traditional
hash functions and measure the generation efficiency, comparison efficiency and the space
efficiency (compression). The second test class focuses on the absolute performance of
an algorithm, e.g., what is the smallest fragment an algorithm can identify. Finally, we
developed techniques to calculate the precision & recall rates based on synthetic and real
world data. The final part of this chapter gives a brief overview of our testing framework
called FRASH.

Chapter 7 - Towards signature based similarity detection in forensic
investigations

After presenting and evaluating some approaches, this chapter shows ideas of how ap-
proximate matching can support forensic investigations. In the beginning we highlight a
framework that increases the overall runtime efficiency when using hashing/approximate
matching in investigations. Next, we briefly present semantic approximate matching ap-
proaches, which may also play an important role during an investigation, followed by a
brief comparison of different existing hashing and approximate matching techniques. As
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a last point, we demonstrate a possible usage of these algorithms based on a sample use
case.

Chapter 8 - Excursus - Bloom filter in iris recognition

This excursus demonstrates the flexibility of approximate matching and shows how to
apply techniques from bytewise approximate matching in biometrics. More precisely, we
developed a technique to use approximate matching for biometric template protection,
biometric data compression and efficient biometric identification.

Chapter 9 - Conclusion & future work

Based on the results described in the previous chapters, this chapter presents the final
conclusion where we answer the research questions. The very last part of this thesis
proposes possible future work.
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2
Foundations & definition

Hash functions have a long tradition in computer science and various fields of application.
Therefore, they are well-known, studied frequently and are properly defined. Besides their
common application in cryptography, they are utilized in databases for indexing purposes
or in digital forensics. However, their usage in digital forensics is especially questionable
as they were never designed for this purpose. The community therefore suggests a new
approach called approximate matching which was designed for forensic purposes.
The overall idea of this chapter is to give a common understanding and terminology

of hash functions and approximate matching. In Sec. 2.1 we summarize the properties
of traditional / cryptographic hash functions which is followed by use cases and limits
of these algorithms with respect to digital forensics. Sec. 2.3 is an abstract description
of the overall problem. The core of this chapter is Sec. 2.4 which provides common
terminology, properties and use cases for approximate matching. This part is the result
of a collaboration of leading researchers in approximate matching as well as the National
Institute of Standards and Technology. It was published as a NIST special publication
[18]. The last two sections briefly explain Bloom filter (Sec. 2.5) and test basics (Sec. 2.6).

2.1. Hash functions

Let {0, 1}∗ denote a set of bit strings of arbitrary length, and let bS ∈ {0, 1}∗. If we
write h for a hash function, then according to [64], h is a function with two properties:

Compression: h : {0, 1}∗ −→ {0, 1}n for n ∈ N.

Ease of computation: Computation of h(bS) is ‘fast’ in practice.

In practice bS is a ‘document’ (e.g., a file, a volume, a device). The output of the func-
tion h(bS) is referred to as a hash value, fingerprint, signature or digest. Sample security
applications of hash functions comprise storage of passwords (e.g., on Linux systems),
electronic signatures (both MACs and asymmetric signatures), and whitelists/blacklists
in digital forensics.
For use in cryptography, hash functions have three further conditions:
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Preimage resistance: Let a hash value H ∈ {0, 1}n be given. Then it is infeasible in
practice to find an input (i.e., a bit string bS) with H = h(bS).

Second preimage resistance: Let a bit string bS1 ∈ {0, 1}∗ be given. Then it is infeasi-
ble in practice to find a second bit string bS2 with bS1 6= bS2 and h(bS1) = h(bS2).

Collision resistance: It is infeasible in practice to find any two bit strings bS1, bS2 ∈
{0, 1}∗ with bS1 6= bS2 and h(bS1) = h(bS2).

These security conditions have an important consequence regarding the output of a
hash function: Let bS and h(bS) be given. If bS is replaced by bS′, h(bS′) behaves pseudo
randomly, i.e., we do not have any control over the output, if the input changes. This
effect is called avalanche effect. According to this, if only one single bit in bS is changed
to get bS′, the two outputs h(bS) and h(bS′) look ‘very’ different. More precisely, every
bit in h(bS′) changes with probability of 50%, independently of the number of different
bits in bS′. Sample cryptographic hash functions are given in Table 2.1.

Table 2.1.: Sample cryptographic hash functions.

Name MD5 SHA-1 SHA-256 SHA-512 RIPEMD-160
n 128 160 256 512 160

2.2. Use cases

Nowadays a popular use case is to employ hashing methods for known file filtering of
files which is quite simple: An investigator computes the crypto hashes for all files on a
target device and compares them to a reference database. Depending on the underlying
database, files are either filtered out (e.g., files of the operating system) or filtered in
(e.g., known offensive content). Files not found in the database remain unclassified.
The decision between filter out and filter in depends on the underlying database where

the established terms are:

Blacklisting means that the database contains illegal or suspicious inputs that we like
to highlight (filter in), e.g., child abuse or leaked company secrets (intellectual
property).

Whitelisting means that the database contains non-criminal files that should be masked
out, e.g., operating system files or well-known programs.

As it is a challenging task to maintain a capacious database, often global ones are
used. The most prominent database for filter out data is the National Software Reference
Library (NSRL, [68]) from National Institute of Standards and Technology (NIST). They
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regularly publish Reference Data Sets (RDS) containing hashes of the collected software
products. The current RDS 2.42 covers approximately 115 million files1.
In addition to the RDS, there are also non-RDS hash datasets, that may also be used

within a digital forensic investigation. For example, there are data sets for SHA-256,
MD5 of the first 4096 bytes of a file or an RDS containing ssdeep digests (a.k.a. ‘fuzzy
hashes’)2.
NIST points out that its RDS is not a whitelist, as it also contains entries of files which

may be suspicious in some countries depending on regional law, e.g., steganographic tools
or hacking scripts. However, there is no illicit data within the RDS, e.g., child abuse
images.

Limits of cryptographic hash functions. Currently, mostly cryptographic hash func-
tions are applied for filter in/out data. These algorithms show good results in terms of
ease of computation and compression. In addition, they are the most recognized in court
(so far) as they do not err, i.e., their security properties allow to identify equal files with
nearly 100% probability (except MD5), which is very important for whitelisting.
The impact of applying cryptographic hash functions in computer forensics was ana-

lyzed by White [103] as well as Baier & Dichtelmüller [49]. While White propagates an
identification rate of 85%, Baier & Dichtelmüller only obtained rates between 15% and
52%. This low detection rates result from changing files during updates. Besides, it is
very likely that word/excel documents, logfiles or source code change over the time.
As a consequence, in recent years the forensic community came up with approximate

matching which aims at preserving resemblance by mapping similar inputs to similarity
digests (similar hash values).

Forensic software. In order to do blacklisting/whitelisting, there are a couple of com-
mercial tools for forensic investigators [50, p11]. All of these tools have an interface to
import the RDS from NIST. However, besides exact duplicate detection, common tools
start to integrate technologies for similar object detection. For instance:

EnCase by Guidance Software3 is probably the most common forensic tool. The software
has the possibility to identify similar malware using an entropy near-match analyzer
technology as said in [90], but this functionality is not available for other files.

Moreover, a script is available which aims at finding partial file matches using
ssdeep [43]. It searches in non-allocated clusters for fragments of files and compares
them against previously created hash-sets.

X-Ways Forensics by X-Ways Software Technology AG4 seems not to include an ap-
proximate matching algorithm. However, there is functionality at the semantic

1http://www.nsrl.nist.gov/RDS/rds_2.42/READ_ME.txt (last accessed 18-Dec.-2013).
2http://www.nsrl.nist.gov/ssdeep.htm (last accessed 2013-12-18).
3http://www.guidancesoftware.com/ (last accessed 2014-03-12).
4http://www.x-ways.de/ (last accessed 2014-03-12).
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level for pictures (i.e., image recognition) as stated in [105, post #118]: “Known
pictures can be recognized even if they are stored in a different file format, resized,
if the colors or the quality are different or they have been edited, etc.”

Forensik Toolkit (FTK) by AccessData5 contains an approximate matching utility [51].
The method is advertised to save time for investigators, to match parts of files to
the original one or to identify similar files. Although no detailed description is
available, it seems that the FTK implements ssdeep.

Despite the positive assessment, the manufacturers warn against relying entirely on
the results: “investigator will still be required to make the final decision on whether
certain documents in a case are similar or not” [51, p9].

Regarding blacklisting, tools like Perkeo ([45], a German blacklisting tool) and Artemis
[46] are popular in Germany and accepted in court. Perkeo is a special data scanner for
child abuse whose basic database is maintained by the German Federal Criminal Police
Office (BKA).

2.3. Problem description

Let X be a finite set and XB ⊆ X, where usually the amount of elements in XB is much
less than in X, i.e., |X| � |XB|. For instance, we are focusing in the binary level then
X is the set of all byte sequences of a maximum length.

2.3.1. Identification of exact duplicates

Problem A. Let x ∈ X and let the set XB be given. It is of interest to answer the
following question: Does x ∈ X belong to XB?

Solution for Problem A. To answer the question of interest, proceed as follows: Test
sequentially for each x′ ∈ XB whether or not x = x′ and return the corresponding answer.

Remark. Obviously, it is guaranteed that this answer is correct. But this procedure has
two major problems.

1. In order to compare x and x′, we need to have x′ available (memory/space problem).

2. A comparison of x and x′ might be very time consuming.

In order to solve this problem we use a compression function6 h : X → Y having the
following general requirements (GR):

GR1 - The computation h(x) is fast in practice for every x ∈ X (ease of compu-
tation).

5http://accessdata.com/ (last accessed 2014-03-12).
6Note that every traditional hash function serves as an appropriate compression function.
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GR2 - There is a constant c > 0 such that |h(x)| = c for all x ∈ X (compression).

– GR2.1 - Current algorithm output a variable length digest and do not fulfill
GR2.

Problem A′. Let h and the set h(XB) be given. Using a compression function h, the
following question is of interest: Does an x ∈ X belong to XB?

Solution for Problem A′. To answer the question of whether or not x ∈ XB, compute
y = h(x), test if y ∈ h(XB) and return the corresponding answer. Note, it is not
necessarily required to compare y against all elements of h(XB).

Remark. This solution may be false as we have a one-sided error:

1. Although x /∈ XB it is possible that h(x) ∈ h(XB) . We denote this by a false
match.

We accept false matches due to performance and memory/space issues. However, we
need to optimize it to have only few false matches.

2.3.2. Identification of near duplicates

Let dx denote a function dx : X ×X → R+
0 having two properties:

• ∀x1, x2 ∈ X : dx(x1, x2) = 0 if and only if x1 = x2 (coincidence).

• ∀x1, x2 ∈ X : dx(x1, x2) = dx(x2, x1) (symmetry).

• ∀x1, x2, x3 ∈ X : dx(x1, x3) ≤ dx(x1, x2) + dx(x2, x3) (triangle inequality).

dx is used to measure the similarity/distance between two inputs and thus we call it
distance function. Clearly, similarity depends on the application context. The upper
bound of distance is represented by εx ∈ R, i.e., two inputs x, x′ ∈ X are considered to
be similar, if and only if dx(x, x′) ≤ εx.

Problem B. Let XB, dx and εx be given. Then we denote C(XB, dx, εx) = {x ∈ X |
dx(x, x′) ≤ εx for an x′ ∈ XB}. It is of interest to answer the following question: Does
x ∈ X belong to C(XB, dx, εx)?

Solution for Problem B. To answer the question of interest, proceed as follows: Test
sequentially for each x′ ∈ XB whether or not dx(x, x′) ≤ εx and return the corresponding
answer.
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Remark. Equal to Problem A, it is guaranteed that this answer is correct. However,
there are the same performance problems and therefore a similar solution is required.
Additionally, the set C(XB, dx, εx) is not explicitly given and a computation of h(C(XB,

dx, εx)) = {h(x) | x ∈ C(XB, dx, εx)} is too inefficient in practice, we need an alternative.

In order to solve Problem B we introduce approximate matching which consists of a
feature extraction function (h) and a distance function (dy) which is defined as follows:

GR3 - dy : h(X) × h(X) → R+
0 is a comparison function that outputs a distance

score for two fingerprints.

Problem B′. Let h, the set h(XB), εy and dy be given. Then we denote C(h(XB), dy, εy)
= {y | dy(y, y′) ≤ εy for an y′ ∈ h(XB)}. It is of interest to answer the following question:
Does x ∈ X belong to C(XB, dx, εx).

Solution for Problem B′. To answer the question of whether or not x ∈ C(XB, dx, εx),
compute y = h(x), test if y ∈ C(h(XB), dy, εy) and return the corresponding answer.

Remark. This solution may be false as we have a two-sided error:

1. Although x /∈ C(XB, dx, εx) it is possible that h(x) ∈ C(h(XB), dy, εy) . We denote
this by false match.

2. Although x ∈ C(XB, dx, εx) it is possible that h(x) /∈ C(h(XB), dy, εy) . We denote
this by false non-match.

We accept false matches and false non-matches due to performance and memory/space
issues. However, we need to optimize them.

Additional requirements

In order to be usable in practice, there are requirements concerning correctness and
similarity preserving:

1. ∀x1, x2 : If dy(h(x1), h(x2)) ≤ εy then dx(x1, x2) ≤ εx (correctness).

2. ∀x1, x2 : If dx(x1, x2) ≤ εx then dy(h(x1), h(x2)) ≤ εy (similarity preserving).

As mentioned the solution may be false due to a two-sided error. Therefore, correctness
cannot always be fulfilled and might be replaced by usability:

3. P (dy(h(x1), h(x2)) ≤ εy|dx(x1, x2) > εx) should be small (usability).
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2.4. Definition and terminology for approximate matching

Approximate matching is a generic term describing any technique designed to identify
similarities between two digital artifacts. In this context, an artifact (or an object)
is defined as an arbitrary byte sequence, such as a file, which has some meaningful
interpretation.
Different approximate matching methods may operate at different levels of abstraction.

At the lowest level, generic techniques may detect the presence of common byte sequences
(substrings) without any attempt to interpret the artifacts. At higher levels, approximate
matching can incorporate more abstract analysis that is closer to what a human analyst
might do. The overall expectation is that lower level methods would be faster, and
more generic in their applicability, whereas higher level ones would be more targeted and
require more processing.
One common approach in security and forensic analysis is to find identical objects using

cryptographic hashing. Approximate matching can be viewed as a generalization of that
idea in that, instead of providing a yes/no {0, 1} answer to a comparison, it provides a
range of outcomes, [0, 1], with the result interpreted as a measure of similarity.

2.4.1. Use cases

Broadly, there are two types of similarity queries that are of interest–resemblance and
containment [28]. In the case of resemblance, we compare two similarly sized objects and
interpret the result as a measure of the commonality between them; for example, two
successive versions of a piece of code are likely to resemble each other substantially. When
the compared objects differ in size significantly, such as a file and a whole-disk image,
the test for commonality is interpreted as a containment query because it addresses the
question of whether the large object contains the smaller one.
An approximate matching algorithm should be able to handle at least one of the

following challenges (divided according to whether the query type is (R)esemblance or
(C)ontainment) [81, 23]:

Object similarity detection (R): identify related artifacts, e.g., different versions of
a document.

Cross correlation (R): identify artifacts that share a common object, e.g., a Mi-
crosoft Word document and a PDF document containing the same image, or other
embedded object.

Embedded object detection (C): identify a given object inside an artifact, e.g., an
image within a compound document, or an executable inside a memory capture.

Fragment detection (C): identify the presence of traces/fragments of a known ar-
tifact, e.g., identify the presence of a file in a network stream based on individual
packets.

In most analytical scenarios, approximate matching is used to filter data in, or out, based
on a known reference set. In security monitoring applications, approximate matching
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could potentially be used to blacklist known bad artifacts, and (by extension) anything
closely resembling them. However, approximate matching is not nearly as useful when it
comes to whitelisting artifacts as malicious content can often be quite similar to benign
content; e.g., a backdoored ssh server would look very similar to a regular one.

2.4.2. Terminology

Based on the level of abstraction of the similarity analysis performed, approximate match-
ing methods can be placed in one of three main categories [19]:

Bytewise matching relies only on the sequences of bytes which make up a digital object,
without reference to any structures within the data stream, or to any meaning the
byte stream may have when appropriately interpreted. Such methods have the
widest applicability as they can be applied to any piece of data; however, they also
carry the implicit assumption that artifacts that humans perceive as similar have
similar byte-level encodings. The validity of this assumption varies widely and the
analysts must have the appropriate background to interpret the results correctly.

Syntactic matching uses internal structures present in digital objects. For example, the
structure of a TCP network packet is defined as an international standard and
matching tools can make use of this structure during network packet analysis to
match the source, destination or content of the packet. Syntax-sensitive similarity
similarity measurements are specific to a particular class of objects that share an
encoding but require no interpretation of the content to produce meaningful results.

Semantic matching uses contextual attributes of the digital object to interpret the ar-
tifact in a manner that more closely resembles human cognitive processing. For
example, perceptual hashes allow the matching of visually similar images and are
unconcerned with the low-level details of how the images are persistently stored.
Semantic methods tend to provide the most specific results but also tend to be the
most computationally expensive ones.

Approximate matching algorithms work in two phases–in the first, a similarity digest
representation (also referred to as signature, or fingerprint) is generated for the original
data; in the second phase, digests are compared to produce the result. More precisely:

Similarity digest. A similarity digest is a (compressed) representation of the original
data object that is suitable for comparison with other similarity digests created by
the same algorithm. In most cases, the digest is much smaller than the original
artifact and the original object is not recoverable from the digest.

Every approximate matching technique requires at least two core functions:

Feature extraction function, which identifies and extracts features/attributes from each
object, allowing a compressed representation of the original object. The mecha-
nism by which features are picked and interpreted depends on the approximate
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matching algorithm. The representation of this collection is the similarity digest of
the object; the number or fraction of features which are shared by objects defines
their similarity.

Similarity function, which compares two similarity digests and outputs a score s in the
0 ≤ s ≤ 100 range, where 0 indicates no similarity and 100 indicates high similarity.
Despite its range, this value is not necessarily an estimation of the percentage
commonality between the compared objects but rather a measure of confidence. It
is primarily meant to serve as a means to sort and filter the results.

In current literature, researchers use a number of terms to refer to various approxi-
mate matching methods: fuzzy hashing, similarity hashing, and similarity digest denote
bytewise approximate matching; perceptual hashing and robust hashing denote semantic
approximate matching. There appears to be no pre-existing terminology for syntactic
approximate matching as it is mostly viewed as pre-processing (to separate the features)
before hashing, or applying a bytewise approximate matching algorithms. For example,
network flows are usually reconstructed before any processing is done on them.

2.4.3. Essential requirements

Like traditional hash functions, there are several defining characteristics that approximate
matching functions should exhibit. Each algorithm should define how it incorporates each
of these properties and how it satisfies the reporting requirements for those properties,
where appropriate.

Similarity preservation: The algorithms should yield similar ‘similarity digests’ for sim-
ilar inputs where the algorithm defines how it measures similarity. The similarity
measure may include multiple attributes, and should be accompanied by a mea-
sure of the accuracy of the matching technique under the circumstances in which
it is used in addition to the matching score, e.g., a margin of error or confidence
level. The description of the technique should also state whether it identifies exact
matches as such.

Compression: A compact similarity digest is desired as it normally allows a faster com-
parison and requires less storage space. In the best case, it will have a fixed length
like the output of traditional hash functions. If the efficiency and reliability of the
results remains unchanged, then a shorter similarity digest is preferable.

Ease of computation: First, the algorithm description should include the results of test-
ing the runtime efficiency of the feature extraction function and of the similarity
function. The former might be expressed relative to a standard hashing algorithm,
such as SHA-1.

Second, the algorithm description should state the theoretically complexity for a
similarity digest comparison which is known as O-notation. For instance, common
lookup complexities for comparing a single digest against a database with n entries,
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are
O(1), e.g., crypto hashes stored in hash tables,
O(log2 n), e.g., crypto hashes stored in binary trees or
O(n), e.g., no indexing/sorting is possible and bruteforce is needed.

2.4.4. Reliability of results

The reliability of the results for a given approximate matching technique depends on
three factors. Each algorithm should define how it incorporates these factors and how it
satisfies their reporting requirements.

Sensitivity & robustness: The algorithms should provide some measure of their robust-
ness. A technique’s robustness will define the operating conditions in which it can
function effectively, also called its performance envelope. For example, robustness
addresses the minimum and maximum object sizes that an algorithm can reliably
distinguish between.

Precision & recall: The algorithms should include a description of the methods used to
determine its reliability and to select the test data. Specifically, it should indicate
whether test data is culled from existing collections or developed solely to specif-
ically support testing. Test results may include precision & recall rates as well as
false positive and false negative rates.

Security of results: The algorithms should indicate whether they include security prop-
erties designed to prevent attacks. Such attacks include manipulation of the match-
ing technique or input data such that a data object appears dissimilar to another
object to which it is similar or similar to another object with which it has little in
common.

2.5. Bloom filter

Bloom filters [6] have a wide field of applications, e.g., database applications [67] or
network applications [30] and are commonly used to represent elements of a finite set S.
A Bloom filter bf is an array consisting of m bits initially all set to zero. In order to
‘insert’ an element s ∈ S into the filter, k independent hash functions are needed where
each hash function h outputs a value in the range [0, . . . ,m− 1]. Next, s is hashed by all
hash functions h. To insert s, the bits bf [h0(s)], bf [h1(s)], . . . , bf [hk−1(s)] of the Bloom
filter bf are set to one.
To answer the question if s′ is in S, we compute h0(s′), h1(s′), . . . , hk−1(s′) and analyze

if the bits at the corresponding positions in the Bloom filter are set to one. If this holds,
s′ is assumed to be in S, however, these bits may be set to one by different elements
previously inserted to S. Hence, Bloom filters suffer from a non-trivial false positive
rate. Otherwise, if at least one bit is set to zero, we know with certainty that s′ /∈ S, i.e.,
it is obvious that the false negative rate is equal to zero.
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In case of uniformly distributed data the probability that a certain bit is set to one
during the insertion of an element is 1/m, i.e., the probability that a bit is still zero is
1 − 1/m. After inserting n elements into the Bloom filter, the probability of a given bit
position to be one is 1−(1−1/m)k·n. In order to have a false positive, all k array positions
need to be set to one. Hence, the probability p for a false positive is

p =
(

1− (1− 1/m)kn
)k

≈
(

1− e−
kn/m

)k
for

1

m
� 1. (2.1)

If we fixm and n, we can determine k such that the false positive probability minimizes.
Looking at the derivate of p as a function of k shows that p is minimal for

k = m/n · ln(2). (2.2)

2.6. Test basics

This section briefly presents test relevant information and terms which are specially
relevant for chapter 5 and 6.

Test data. Basically we distinguish between two kinds of test data throughout this
thesis. When talking about random data, we actually mean pseudo random data gathered
from /dev/urandom/ or an analogous program function.
Besides, we also work on real world data which is represented by the t5-corpus [82].

This set was introduced by Roussev to evaluate ssdeep and sdhash in 2011. t5 is a subset
of the govdocs corpus [33] which “are real files obtained by spidering US Government
websites and are free of copyright restrictions” [81].
The t5-corpus contains 4457 files of the file types given in Table 2.2 with a total size

of 1.78GB. All files are between 4 kB and 16.4MB which corresponds to an average of
418.91 kB per file.

Table 2.2.: Statistics of the t5-corpus.

JPG GIF DOC XLS PPT HTML PDF TXT
362 67 533 250 368 1093 1073 711

Measuring times. In general there are three different times [91]:

• Real is wall clock time, the time from start to finish of the call. This is all elapsed
time including time slices used by other processes and time the process spends
blocked (for example if it is waiting for I/O to complete).
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• User is the amount of CPU time spent in user-mode code (outside the kernel)
within the process. This is only actual CPU time used in executing the process.
Other processes and time the process spends blocked do not count towards this
figure.

• Sys is the amount of CPU time spent in the kernel within the process. This means
executing CPU time spent in system calls within the kernel, as opposed to library
code, which is still running in user-space. Like ‘user’, this is only CPU time used
by the process.

2.7. Summary

This chapter provided the required foundations. First, we explained the general proper-
ties (compression and ease of computation) and security properties (preimage resistance,
second-preimage resistance and collision resistance) of cryptographic hash functions. As
described in the use cases, it is very common to apply them for file identification during
forensic investigations (i.e., blacklisting and whitelisting), although hash functions were
designed for cryptographic purposes.
Next was an abstract problem description which basically goes back to the nearest

neighborhood search. The core of this chapter was the definition and terminology of
approximate matching. Besides the use cases, we explained the three levels of approxi-
mate matching, bytewise–, syntactic– and semantic approximate matching and that each
algorithm requires at least two functions: a feature extraction function and a similarity
function. The output of approximate matching is called similarity digest. In addition to
this terminology, we presented essential requirements and discussed the reliability of the
results.
At the end we briefly introduced Bloom filters which is an important concept for some

approximate matching algorithms. Finally, the last section described the test data and
the measurement of times.
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Identifying similarity has a long history which may go back to the beginning of the 19th

century and Paul Jaccard. In order to identify the similarity between two finite sets A
and B, the author suggested the Jaccard index [53, 54]: J(A,B) = |A

⋂
B|

|A
⋃
B| . For instance,

two strings are decomposed into tokens (e.g., by spaces), which are the elements of the
respective sets A and B. Then J(A,B) is used to identify the similarity of the two input
strings. However, the sets have to be kept in memory to compute J(A,B) which can
be very space consuming. Assuming that we split a string (a long byte sequences) into
4-grams of bytes, then in the worst case, we have to keep 24·8 = 232 different 4-grams
in memory, i.e., 16 GiB. Nowadays a common application of the Jaccard index is within
computer linguistics for plagiarism and authorship detection.
In 1997, Broder showed the necessity to distinguish between ‘roughly the same’ (re-

semblance) and ‘roughly contained inside’ (containment) [28] which so far hasn’t been
considered by standard string distance functions (e.g., Levenshtein). To define resem-
blance r, he utilized the Jaccard index r(A,B) = J(A,B). With respect to containment
c, Broder suggested to use c(A,B) = |A

⋂
B|

|A| which “indicates that A is roughly contained
within B”.
In addition, he reduced these set intersection problems by a process of random sampling

which can be done independently for each document. The result is an efficient method to
estimate these similarities between two sets [29], called MinHash. Instead of comparing
the sets completely, he utilized a hash function h : A

⋃
B → N. Further, let S be

any set, then hmin(S) denotes the minimum hash value in S. According to this, if
hmin(A) = hmin(B), then the minimum hash value is within the intersection A

⋂
B

and thus P [hmin(A) = hmin(B)] = J(A,B). As this is very imprecise, one may apply
k different hash functions instead of only one. Thus, estimating J(A,B) is equal to
k/k where k denotes the amount of hash functions with hmin(A) = hmin(B). To sum
it up, one can decide between runtime efficiency (k is small, e.g., k = 1) and precision
(k ≈ |A⋂B|). In case of a high precision which is desirable during forensic investigations,
the runtime efficiency is reduced due to applying k hash functions on all x ∈ A⋃B.
A different idea to quantify similarities among text files was presented by Manber in
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1994 [63] and implemented in sif. “Files are considered similar if they have a significant
number of common pieces, even if they are very different otherwise.” sif uses a set of
anchors which are short character sequences. In order to test for similarity, sif searches
for anchors and considers the neighborhood, e.g., the next 50 characters. As comparing
strings directly is time consuming, Manber integrated Rabin fingerprinting [74] to hash
the substrings and thus, it was possible to compare numeric values. The main problem
is that training data is needed in order to identify reasonable anchors. For instance, text
files of different languages need a different set of anchors.
Another concept which is sometimes linked with approximate matching and may be

confusing is locality sensitive hashing (LSH) [75]. Note, LSH is mostly used for data
clustering or nearest neighbor search and thus is more like an indexing strategy. The
basic idea of LSH is to process (mostly hash) an input so that similar inputs are mapped to
the same buckets with a certain probability. In contrast, approximate matching reduces
inputs to small digests whereby similar files are mapped to similar digests.
The beginning of bytewise approximate matching within forensics was in 2002 where

Harbour developed a program called dcfldd1, which extends the well-known disk dump
tool dd. The aim of the tool is to ensure integrity on the sector level during imaging.
Therefore, the software splits the input data into chunks of a fixed length (e.g., 512 bytes)
and computes the hash value for each of these blocks. Thus, we call this approach block
based hashing. A key property of Harbour’s method is that a flipping bit in the input
only affects the hash output of the corresponding block. However, deleting a byte in
the beginning shifts the offsets of all following blocks and leads to a completely different
sequence of hash values.
In recent years, approximate matching has become more and more popular and new

approaches have been published.

3.1. Context-triggered piecewise hashing (ssdeep)

This section introduces the concept of context-triggered piecewise hashing (CTPH) which
is probably the best-known approximate matching algorithm. It was presented by Korn-
blum in 2006 [57] and is based on the spam detection algorithm from Tridgell [99]. The
implementation is freely available and is currently in version ssdeep 2.102.
The overall idea of ssdeep is a version of Rabin’s [74] seminal work on data finger-

printing by random polynomials. CTPH identifies trigger points to divide a given byte
sequence into chunks. The trigger points are determined by a pseudo random function
(PRF) as follows: A window of a fixed size s (ssdeep sets s = 7) moves through the
whole input, byte for byte, and generates a pseudo random number at each step. Let

BSp = Bp−s+1Bp−s+2 . . . Bp (3.1)

denote the byte sequence BS in the window of size s consisting of the bytes Bp−s+1

1http://dcfldd.sourceforge.net (last accessed 2014-03-10).
2http://ssdeep.sourceforge.net (last accessed 2013-03-10).
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to Bp at position p within the input file. Then, PRF (BSp) denotes the corresponding
rolling hash value. If PRF (BSp) hits a certain value, the end of the current chunk is
identified. We call the current byte sequence BSp a trigger sequence. The subsequent
chunk starts at byte Bp+1 and ends at the next trigger sequence or EOF.
Kornblum denotes the PRF as a rolling hash which is based on the Adler-32 func-

tion. The structure of the rolling hash function as proposed in [57] allows to compute
PRF (BSp+1) cheaply from the previous value PRF (BSp). Kornblum updates the value
PRF (BSp+1) by removing the influence of Bp−s+1 and considering the new byte Bp+1.
Algorithm 1 shows the pseudocode of the rolling hash implemented in ssdeep. As there
are only low-level operations, Kornblum’s PRF is very efficient in practice.

Algorithm 1 Pseudocode of the rolling hash
h1, h2, h3 . Unsigned 32-bit integers, set to zero after each trigger point.
Bi . Current byte at position i.
window . Is an array of length size (default size = 7).

to update the rolling hash for a byte Bi
h2 = h2 − h1

h2 = h2 + size ·Bi . h2 is the sum of the bytes times the index.
h1 = h1 +Bi
h1 = h1− window[i mod size] . h1 is the sum of the bytes in the window.
window[i mod size] = Bi
h3 = h3 << 5 . h3 mostly needed to cope with large block size values.
h3 = h3 ⊕Bi
return (h1 + h2 + h3)

In order to define a hit for PRF (BSp), Kornblum introduces a modulus, which he
calls a block size. If bs denotes the block size, then BSp is a trigger sequence if and
only if PRF (BSp) ≡ −1 mod bs. If PRF outputs equally distributed values, then the
probability of a hit is reciprocally proportional to bs. Thus, if bs is too small, we have too
many trigger points and vice-versa. As Kornblum aims at having 64 chunks, the block
size has to be approximately bsinit ≈ N/S where S is the desired number of chunks with
a default value of 64, and N is the file size in bytes. To obtain an equal block size for
similar sized files, he generates the initial block size bsinit as follows:

bsinit = bsmin · 2blog2(N/S · bsmin)c , (3.2)

where the minimum block size bsmin is set to 3. However, we discovered that the calcula-
tion of the block size as given in the description does not conform with the implementation
(floor vs. ceiling operation in the exponent) [4]. Actually the block size is calculated as
follows:

bsinit = bsmin · 2dlog2(N/S · bsmin)e . (3.3)

Once a chunk is identified, it is hashed using 32-bit FNV-1a [69]. To save space,
Kornblum only takes the least significant 6 bits of the hash, which is a Base64 character.
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Thus, the similarity digest of ssdeep for a file is simply the concatenation of all Base64
hash characters.
Since the block size is used for determining the chunks and depends on the length of

the input, only similarity digests with the same block size can be compared. To be a
little bit more flexible two different block sizes are used: bsinit and 2 bsinit. If there are
too few Base64 characters for block sizes bsinit (i.e., at most S/2 − 1 = 64/2 − 1 = 31),
Kornblum sets bsinit ← bsinit/2 and the whole process is repeated.

$ ssdeep file1
ssdeep,1.0--blocksize:hash:hash,filename
384:exQOElbn4N0TSNVyCCvIiebjYKKjoKUTDeueZdTmvk1ac9slOjRXMImRHgnY5:

A8ZQVy6jYKKElPeXZdT1NaHJ5,"/home/user/file1"

Figure 3.1.: A sample similarity digest of ssdeep.

A sample output of ssdeep is given in Fig. 3.1. The ssdeep similarity digest is com-
puted over the file file1 with its 24,000 bytes. The number at the beginning of the
output of ssdeep is the block size used to trigger the PRF. In our example the block
size is 384, which can be computed with Eq. 3.3 or estimated by 24, 000/64 = 375. Next
are both similarity digests for block sizes 384 and 2 · 384 = 768, respectively. Finally, we
see the path and name of the processed file.

3.1.1. Extensions

In 2008, Chen and Wang [32] described an efficiency improvement which is supposed
to reduce the scan passes. Recall, if the ssdeep similarity digest is too short then
bsinit ← bsinit/2 and the input is processed again.
The authors tested with 1575 different files from Linux and Windows systems and

showed that this re-processing happens in 38% of the cases. They modified ssdeep to
“generate intermediate hashes using numbers in the geometric progression with factor
4 as block size, generate hashes with other block sizes used in spamsum by rehashing
the intermediate hashes to decrease the scan passes and hashing passes.” More formally,
bsinit is determined by

bsinit =

{
bsmin, if N < 2 · S · bsmin
2 · bsmin4blog4(N/(2·S·bmin))c, else

(3.4)

where bsmin is set to 3. According to [32], “3 and 6 are used for small pieces, following
numbers are quadruple of the prior one (24, 96, 384, etc.). [...] With current block size
bs, we compute two traditional hashes h and H at block level bs and 4 bs”3 and count
the trigger sequences for bs, 2 bs, 4 bs and 8 bs. An example is given in Fig. 3.2 which
shows that there are 8 pieces for bs, 5 pieces for 2 bs, and so on. Then, the authors claim
that “the hash of the first piece at 2 bs level can be computed from h1, h2, h3.” In other

3The original paper used the variable b which we replaced by bs.
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words, the authors used FNV as a homomorphic hash function and created the hashes
for 2 bs by using the hashes of bs. Actually, FNV isn’t a homomorphic hash function and
hence we do not think that this procedure is working.

2. Context triggered piecewise hashes 
 
Piecewise hashing separates a whole file (data 

object) into many pieces and generates a hash for each 
piece. All hashes form a hash sequence. This technique 
was originally developed to mitigate the effect of errors 
during forensic imaging. If an error occurred, only one 
of the piecewise hashes would be invalidated, the 
integrity of the remainder of the data was still assured.  

Traditional fixed-size piecewise method is 
alignment sensitive. If a file is shifted by a byte (say by 
inserting a byte at the start) then a completely different 
hash sequence will be generated. Spamsum, a context 
triggered piecewise hash algorithm, uses rolling hash 
technique to determine when split a piece. 

Imaging that a window is sliding from the start to 
the end of a file, then a hash can be computed with the 
several bytes data in the window at any position (in 
byte). A rolling hash is such a hash value computed by 
a fast algorithm and depends only on the current 
context, i.e. data in the window. Therefore, the rolling 
hash algorithm maintains a state which is based solely 
on the last few bytes from the input. 

When the output of the rolling hash produces a 
specific output, a new piece is obtained. The bytes data 
in the window are considered as a trigger.  

Suppose that we want separate an n bytes data 
stream or file into S pieces, then the average size of a 
piece b is about [n/S]. While processing the input file, 
one begins to compute the traditional hash for the file. 
Simultaneously, one must also compute the rolling 
hash for the file, and modulo the block size b to adjust 
to the range 0~b-1. When the rolling hash produces a 
trigger value b-1, the value of the traditional hash is 
recorded, and the traditional hash is reset, i.e. reset all 
initial parameters of hash algorithm, and computes the 
traditional hash from scratch. 

The hash sequence formed from all separated pieces 
is an identity or condensed blueprint of a file, called 
hash signature.  

Context triggered piecewise hash (CTPH) implies 
that two hash signatures can be compared only if they 
use same block size during generation. To cope with 
block size mismatch resulted from modification, 
spamsum algorithm chooses 3 as base block size and 
numbers in geometric progression with factor 2 as 
usable block size. Furthermore, two signatures are 
generated at block size b and 2b level to form the final 
file signature.  

If the length of hash signatures at block size b is less 
than S/2, then regenerate the hash signature with a 
block size b/2 until the length is not less than S/2 or b is 
equal to 3. 

Reading in the input file and generating the rolling 
hash from start to end is called a scan pass, while the 

generation of a traditional hash sequence is called a 
hashing pass. Therefore, the generation of a file 
signature would cost 1 scan pass and 2 hashing pass at 
least. Spamsum’s regeneration process is same as the 
first time. 

 
3. Improved CTPH algorithm 

 
The main idea of the improved CTPH algorithm 

(referred as FKsum next) is that we generate 
intermediate hashes using numbers in the geometric 
progression with factor 4 as block size, generate hashes 
with other block sizes used in spamsum by rehashing 
the intermediate hashes to decrease the scan passes and 
hashing passes.  

FKsum uses block sizes with bigger distance. The 
initial block size binit can be formulated as: 

4 min

min min
log ( /(2 * ))

min

2 *

2 4init n S b

b n S b
b

b else« »¬ ¼

<­°= ®
°̄

      (1) 

The base block size bmin is set to 3. 3 and 6 are used 
for small pieces, following numbers are quadruple of 
prior one (24, 96, 384, etc.).  

 
3.1. File signature generation 

 
With current block size b, we compute two 

traditional hashes h and H at block level b and 4b. We 
count the triggered times at block size b, 2b, 4b and 8b 
when the rolling hash hit the trigger value, We also 
record the corresponding triggered block size of each 
piece at the same time. Obviously, only the biggest 
block size is recorded because a trigger at a bigger 
block size must be a trigger at a smaller block size. The 
file signature generation process of FKsum algorithm is 
shown in Figure. 1. 

 
recorded

block 
size 

b b 2b 4b b 8b 4b 2b

pieces 
(b) h1 h2 h3 h4 h5 h6 h7 h8

pieces 
 (2b) 1 2 3 4 5 

pieces 
 (4b) H1 H2 H3 H4

pieces 
 (8b) 1 2 

Figure.1 hash signature generation 
process of FKsum 

 
From Figure.1, we can find that there are 8 pieces at 

block size b, noted as fb=8, and in the same way, f2b = 5, 
f4b = 4, f8b = 2. The hash of the first piece at 2b level 

636636636636636

Figure 3.2.: Similarity digest generation overview [32]4.

In 2011, the PRF of ssdeep was improved with respect to both efficiency and ran-
domness [4]. As a consequence, the performance of ssdeep is enhanced with respect to
both speed and stochastic properties of CTPH. The exact implementation is shown in
Algorithm 2 which is a variation of the rolling hash.
The main two differences compared to Kornblum’s one are first the initial values for

the registers h3 and h2, and second the right-shift-operation on register h2. h2 is used
to mutate the higher bits of the rolling hash (c << 24) and h3 for the lower bits. Due
to the multiplication in the return-value, h1 influences all 32 bits too.
In order to test the randomness of a PRF, we first used an existing framework of NIST

[86]. This framework is a test suite for the validation of pseudo random number generators
for cryptographic applications consisting of 15 different tests: Frequency (Monobit) Test,
Frequency Test within a Block, Runs Test, tests for the Longest-Run-of-Ones in a Block,
and so on. Furthermore, we analyzed the behavior for four files all a of different type. We
conclude that our proposal of a PRF induces significantly less second preimage collisions.
The runtime efficiency was analyzed measuring the time to process a 50MiB and a

100MiB from /dev/urandom and considers exclusively the rolling hash. The results show
that the new implementation is approximately 1.5 times faster.

3.1.2. The F2S2 Software

This section briefly describes an indexing scheme for ssdeep similarity digests in order
to speed up the database comparison.
Let z be the amount of similarity digests in the database. Cryptographic hash values

are stored within hash tables or binary trees and hence the lookup complexity for a single
4Note, the authors used b for block size, which we denote by bs.
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Algorithm 2 Pseudocode of the new rolling hash
h1, h2, h3 . Unsigned 32-bit integers, set to zero after each trigger point.
Bi . Current byte at position i.
window . is an array of size (default size = 7)
h2 = 0x81a5c9f3
h3 = 0xa51fbc31

to update the rolling hash for a byte c
h1 = h1 + Bi
h1 = h1 - window[i mod size] . h1: is the sum of the bytes in the window
window[i++ mod size] = Bi

h2 = (h2 >> 5) ⊕ (Bi << 24) . h2: right-shift; new byte influences higher bits
h3 = (h3 << 5) ⊕ Bi . h3: left-shift; new byte influences lower bits

return h3 ⊕ h2 ⊕ (h1*0x7FFFFFFF) . 0x7FFFFFFF = 231 − 1

digest is O(1) or O(log2(z)), respectively. Considering approximate matching, it is not
possible to sort digests in such a trivial way. Therefore, Winter et al. presented an
indexing scheme based on n-grams for ssdeep [104].
Roughly speaking, F2S2 initializes a hash table that allows to insert n-grams of the

Base64 similarity digest. Each similarity digest is split into its n-grams and the ID to
the corresponding file is put into its corresponding hash table bucket. In order to look
for a similarity digest, the queried digest is split into its n-grams. Next, the index is used
to find all candidates, i.e., the tool returns all similarity digests that contain at least one
n-gram from the query. The final decision is then made by using the ssdeep comparison
function.
The authors propagate an improvement of a factor of over 2000 which is ‘practical

speed’. For instance, they decrease the time for verifying 195,186 files against a database
with 8,334,077 entries from 442 h to 13min.

3.1.3. Security analysis

A security analysis concludes that CTPH is reasonable for detecting similar files, if no
anti-forensic measures are present, however, it does not withstand an active adversary.
In [4, 9] we give a proof of concept of how to circumvent a blacklist / whitelist which is
demonstrated for the file types TXT, JPG, BMP and PDF.
In general we present two ideas: editing between trigger sequences and adding trigger

sequences. The former one is mainly for TXT and BMP files which allow small changes
all over the file, e.g., changing a letter from lowercase to uppercase. The attack simply
changes one byte within each chunk and thus all chunk hashes change. This attack can
be optimized so that an attacker only needs to change one byte in every 7-th chunk as
two similarity digest must have a common substring of 7 characters.
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The second attack uses the possibility of pre-computed trigger sequences which are
independent of the file at hand. Table 3.1 shows a sample set of twelve global trigger
sequences, which serve as triggers for any file of size ≤ 15MiB.

Table 3.1.: Sample pre-computed global trigger sequences and their corresponding Base64
characters [4].

Trigger sequence Base64 character Trigger sequence Base64 character

AAAD?Hp 9 AAAV?Hf l
AAAD?Og v AAAf?Ft p
AAAD?QI 7 AAAr?xj V
AAAJ?MW P AAAx?Fj 1
AAAJ?PJ F AAAx?OC n
AAAJ?V0 Z AAAx?tx 5

The generation of these global trigger sequences is very efficient. Once these sequences
are generated, they only need to be inserted at the beginning of a file. For instance, PDF
and JPG allow to insert header information like author name which can be misused. If
we could insert multiple trigger sequences in a row, we can create any similarity digest.

3.2. Multi-resolution similarity hashing (mrsh)

Multi-resolution similarity hashing (abbreviated mrsh) was presented in 2007 by Roussev
et al. and is a powerful variation of CTPH [85]. The authors made four major changes:

Rolling hash. While the original implementation uses a rolling hash which is a variation
of the Adler-32 checksum, the new version uses the polynomial hash function djb2
which is defined as follows:

h−1 = 5381; hi = 33hi−1 + ci; for i ≥ 0
where ci denotes the i-th character of the byte sequence. The decision is based on
a detailed comparison between MD5 and djb2 which shows that the latter one is
completely sufficient.

Chunk hash function. Instead of using FNV, the authors use MD5 for hashing the
chunks as “FNV is not a collision-resistant function and has some known collision
issues, which are common among multiplicative functions”.

Similarity digest representation. As described in Sec. 3.1, ssdeep outputs a nearly fixed
size Base64 string, which can be compared using the edit distance. In contrast, mrsh
generates a variable sized similarity digest and adapts a technique from md5bloom
[84] that uses Bloom filters to represent the MD5 chunk hashes.

The motivation for Bloom filters is the better compression and the faster compar-
ison therefore they accept a higher false positive rate. For instance, “consider a
256 byte Bloom filter versus a 256 byte LSB6 hash. The filter can accommodate
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256 elements at 8 bits per element with four hash functions and will have a false
positive rate of 0.024. The LSB6 hash will have at most 256/6 = 42 elements (in
reality, 32 with byte alignment) with a false positive rate of 1/64 = 0.015”.

In order to insert a chunk hash into the Bloom filter, the MD5 chunk hash is split
into four 32 bit sub hashes. Next, the sub hash is reduced to 11 bits. Finally, each
sub hash sets one bit within the 211 bits = 2048 bits = 256bytes Bloom filter. For
instance, the sub hash 010 1100 00112 = 70710 set bit 707 to 1. After inserting 256
chunks, the Bloom filter reaches its maximum and a new Bloom filter is created.
Therefore, the final similarity digest is a sequence of Bloom filters.

Similarity digest comparison. While ssdeep uses the weighted edit distance to compare
two Base64 sequences, this approach has to compare sequences of Bloom filters.
Let SD1 = {bf1, bf2, . . . bfs} and SD2 = {bf ′1, bf ′2, . . . bf ′r} the similarity digests of
two inputs and s ≤ r. Furthermore, let z(SD1, SD2) be the similarity score with
0 ≤ z ≤ 1 and

z1 = max{z(bf1, bf
′
1), z(bf1, bf

′
2), . . . , z(bf1, bf

′
r)}

z2 = max{z(bf2, bf
′
1), z(bf2, bf

′
2), . . . , z(bf2, bf

′
r)}

. . .

zs = max{z(bfs, bf ′1), z(bfs, bf
′
2), . . . , z(bfs, bf

′
r)}

then z(SD1, SD2) = (z1 + z2 + · · ·+ zs)/s. The authors claim the following: “We
refer to the similarity between two filters as a Z-score, since it is derived from
counting the number of zero bits in the filters and their inner product. It can be
shown [...] that the magnitude of the intersection of the original sets from which the
filters are derived is proportional to the logarithm of Z = (Z1 +Z2−Z12)/(Z1Z2),
where Z1 is the number of zero bits in the first filter, Z2 - in the second filter, and
Z12 in their inner product (bitwise AND). The expected minimum is reached for
Z1 = Z2 and Z12 = 0 (no common elements) so Zmin = 1/Z2 = 1/2048, for our
specific case of 256 bytes. Similarly, maximum is achieved whenever the two filters
are identical so Z1 = Z2 = Z12 → Zmax = 1/Z1. Thus, we can map the interval
[log(1/2048), log(1/Z1)] interval to [0, 1] to obtain a score”[85, p6].

The overall proceeding is then like for ssdeep. djb2 is used to split a file into chunks
which are hashed using the new chunk hash function MD5. Instead of calculating a trigger
value, mrsh uses several fixed trigger values, 8, 12, 16, 20, 24, 28, and 32. Thus, multiple
levels / resolutions are created for larger files which allows an efficient comparison.

3.3. Similarity digest hashing (sdhash)

In the following we summarize the original implementation of sdhash as proposed by
Roussev in 2010 [80, 83]. As it is ongoing project, there were several improvements in
recent years which are explained at the end.
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Each input can be denoted by a byte sequence B0, B1 . . . BL−1 of length L. Then a
feature fk is a sub byte sequence of length l = 64 starting at Bk with 0 ≤ k ≤ L− l:

f0 = B0, B1 . . . Bl−1

f1 = B1, B2 . . . Bl

. . .

fL−l = BL−l, BL−l+1 . . . BL−1

For every feature fk the following two steps are required:

• Firstly, the normalized Shannon entropy score Hnorm is calculated on base of the
empirical entropy H of fk

H = −
255∑
i=0

P (Xi) · log2 (P (Xi)) , (3.5)

where P (Xi) is the empirical probability (i.e., the relative frequency) of encounter-
ing byte value i in fk. Then H is scaled to a value in the integer range [0, 1000]
using

Hnorm = b1000 ·H/ log2 lc . (3.6)

• Secondly, according to [79], “we associate a precedence rank [(abbreviated Rprec)]
with each entropy measure value that is proportional to the probability that it will
be encountered. In other words the least likely feature is measured by its entropy
score gets the lowest rank.” The result is a sequence of Rprec values.

Next is the identification of the popular features, which is done using a sliding window
Win of a fixed size W (sdhash uses W = 64) going through all Rprec values. At each
position sdhash increments the Rpop score for the leftmost feature with the lowest Rprec
within Win.
An example is given in Fig. 3.3 where the size of the window is set to W = 8. Let

Rprec(i) and Rpop(i) denote the precedence and popularity rank of fi, respectively. In
Fig. 3.3 we have Rprec(0) = 882, Rprec(1) = 866, . . . . As Rprec(3) = 834 has the
leftmost lowest Rprec within Win, Rpop(3) is incremented and the window slides. Within
the second iteration Rprec(3) is still the leftmost lowest Rprec in Win and Rpop(3) is
incremented again, and so on. All features whose Rpop score are higher-equal than a
given threshold (sdhash uses 16) are part of the fingerprint. We denote these features
F0, F1, . . . Fp (capital F ).
As the threshold is 16, the minimum byte distance between neighboring features Fi

and Fi+1 is 16. For instance, let E be the last element within the window and also having
the lowest Rprec. As E is the last element, the Rpop could be at most one. When sliding
the window, there are two possibilities: The Rprec of the new element

1. is higher-equal, then Rpop of E is increased or
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212 ADVANCES IN DIGITAL FORENSICS VI

Rprec 882 866 852 834 834 852 866 866 875 882 859 849 872 842 849 877 889 880
Rpop 1
Rprec 882 866 852 834 834 852 866 866 875 882 859 849 872 842 849 877 889 880
Rpop 2
Rprec 882 866 852 834 834 852 866 866 875 882 859 849 872 842 849 877 889 880
Rpop 3
Rprec 882 866 852 834 834 852 866 866 875 882 859 849 872 842 849 877 889 880
Rpop 4
Rprec 882 866 852 834 834 852 866 866 875 882 859 849 872 842 849 877 889 880
Rpop 4 1
Rprec 882 866 852 834 834 852 866 866 875 882 859 849 872 842 849 877 889 880
Rpop 4 1 1
Rprec 882 866 852 834 834 852 866 866 875 882 859 849 872 842 849 877 889 880
Rpop 4 1 1 1
Rprec 882 866 852 834 834 852 866 866 875 882 859 849 872 842 849 877 889 880
Rpop 4 1 1 2
Rprec 882 866 852 834 834 852 866 866 875 882 859 849 872 842 849 877 889 880
Rpop 4 1 1 3
Rprec 882 866 852 834 834 852 866 866 875 882 859 849 872 842 849 877 889 880
Rpop 4 1 1 4
Rprec 882 866 852 834 834 852 866 866 875 882 859 849 872 842 849 877 889 880
Rpop 4 1 1 5

Figure 1. Example Rpop calculation.

code i. Then, the entropy score is computed as Hnorm = !1000 ×
H/ log2 B#.
Rprec Calculation: The precedence rank Rprec value is obtained
by mapping the entropy score Hnorm based on empirical observa-
tions.

Rpop Calculation: For every sliding window of W consecutive
features, the leftmost feature with the lowest precedence rank Rprec

is identified. The popularity score Rpop of the identified feature is
incremented by one.

Feature Selection: Features with popularity rank Rpop >= t,
where t is a threshold parameter, are selected.

Figure 1 illustrates the Rpop calculation and feature selection steps.
A snippet of 18 Rprec numbers from an actual computation is used; a
window W = 8 is used for the Rpop calculation. Assuming a threshold
t = 4 and feature size B = 64, two features are selected to represent an
82-byte piece of data.

The principal observation is that the vast majority of the popularity
scores are zero or one; this is a very typical result. For an intuitive

Figure 3.3.: Example for the Rpop calculation from [80].

2. is lower, then the Rpop of the new element is increased.

A more general argumentation shows that if Rpop(i) = k (1 ≤ k ≤ 64), then Rpop(i+n) ≤
n for all 1 ≤ n < k.
In order to generate the similarity digest, the byte string of each corresponding feature

F0, F1, . . . Fp is hashed using SHA-1 and the resulting 160 bit hash value is split into five
sub hashes of 32 bit length. As Roussev’s Bloom filters consist of 256 bytes = 2048 bits
= 211 bits, he uses 11 bits from each sub hash to set the corresponding bit in the Bloom
filter.
Roussev decided on a maximum of 128 features per Bloom filter, which results in a

maximum of 128 features · 5 bits/feature = 640 bits per Bloom filter. If a Bloom filter is
full, a new Bloom filter is created and added to the final similarity digest.
To define the similarity of two Bloom filters, we have to do some calculations about

the minimum and maximum overlapping bits by chance whereas Roussev introduces a
cutoff point C. Let |bf | denote the number of bits set to one within a Bloom filter. If
|bf ∩ bf ′| ≤ C, then the similarity score is set to zero.
C is determined as follows

C = α · (Emax − Emin) + Emin (3.7)

where α is set to 0.3, Emin is the minimum number of overlapping bits due to chance
and Emax the maximum number of possible overlapping bits. Thus, Emax is defined as

Emax = min(|bf |, |bf ′|). (3.8)
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Let k be the number of sub hashes (= 5 within sdhash), bf the number of features
within a Bloom filter, m the size of a Bloom filter in bits (= 2048) and p = 1− 1/m the
probability that a certain bit is not set to one when inserting a bit. Thus,

Emin = m · (1− pk·bf − pk·bf ′ + pk·(bf+bf ′)) (3.9)

is the expected number of common bits set to one in the two Bloom filters bf, bf ′ under
the assumption that they do not have a common feature.
Let SD1 = {bf1, bf2, . . . bfs} and SD2 = {bf ′1, bf ′2, . . . bf ′r} the similarity digests of two

inputs and s ≤ r. If bf1 < 6 or bf ′1 < 6 then the original input does not contain enough
features and so the similarity score is −1, i.e., not comparable. Otherwise the similarity
score is the mean value of the best matches of an all-against-all comparison of the Bloom
filters, formally defined as

SDscore(SD1, SD2) =
1

s

s∑
i=1

max
1≤j≤r

SFscore(bfi, bf
′
j) (3.10)

where SFscore is the similarity score of two Bloom filters

SFscore(bf, bf
′) =

{
0, if e ≤ C
[100 · (e− C)/(Emax − C)], otherwise

(3.11)

with e = |bf ∩ bf ′|.

3.3.1. Extensions and improvements

sdhash is currently available in version 3.3 and thus we summarize the main changes,
extensions and improvements in the following.
Primarily, approximate matching was designed to do a file against file comparison

which is a sequential process. However, in 2012 the authors came up with a parallelized
version of sdhash which uses block-aligned similarity digests [83]. Instead of treating
the target as one single piece, it is divided into fixed blocks first with a default size of
16KiB. Each block is hashed separately and put in exactly one Bloom filter. The amount
of features per Bloom filter increased from 128 to 192. As a block could have more than
192 features, the authors choose the features that have the highest popularity score.
In literature, this new version is referred as sdhash-dd whereby the original/sequential
version is still called sdhash. Here, the number of inserted features increased from 128
to 160 which improves the compression ratio.
To speed up the comparison of the similarity digests, Roussev introduces a -s option

called sampling. In sampling, the idea is to pick a few filters from the queried similarity
digest and look for those only. This is useful when looking for a whole file inside a
disk/RAM image. If the whole file is there, then we could use a small piece of it to find
it (note: for every comparison, only the first argument is sampled). This can speed up
the scan of a target tremendously. Allowed range for -s is 1-16, recommended value is
4; by default it is set to zero (no sampling).
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A second extension is the segmentation mode. This just sets the size of the input that
the algorithm processes at once (i.e., makes a single digest out of). For example, if a
512MiB file serves as input and the segment size is set to 128MiB, sdhash outputs 4
similarity digests. Hence, it acts as one passed it 4 separate files, one for each 128MiB
chunk. The similarity digest will include information regarding which chunk they were
generated from.

3.3.2. Comparison and evaluation of ssdeep and sdhash

A comprehensive evaluation of ssdeep and sdhash was done by Roussev in 2011 [81]. In
his paper he tries to find out what “kind of byte-level correlations do these tools actually
detect [and] how do detected correlations relate to human-perceived correlations between
the same artifacts?”. The evaluation is two-tier and presents a controlled study based on
pseudo-random data and a manually evaluated study on real world data.

Random data. For the evaluation, Roussev analyzed the behavior of the algorithms for
the following three scenarios:

Embedded object detection measures if the tool can correlate files and arbitrary blobs.
For example, assuming a JGP file and a Word document, then the JPG could be
embedded. Another scenario is a memory dump and a JPG.

Single-common-block file correlation “simulates a situation where two files have a sin-
gle common object. [...] For example, documents sharing an image, or pieces of
software sharing library code.”

Multiple-common-blocks file correlation is similar to single-common-block but now the
“commonality might be significant but fragmented. [...] Generally, this is a more
difficult task and demands more precision from the tools.”

For all tests, sdhash showed vastly better results. For instance, given an object of
256KiB, ssdeep needs a minimum single-common-block of 80KiB while sdhash is satis-
fied with a 16KiB block. The results show a similar behavior for all test scenarios.

Real world data. This test is based on the t5-corpus and is done manually based on
the following idea. As the tools work on “syntactic commonality [..., hence] neither tool
performs any kind of semantic analysis; therefore, any correlation needs to be visible
rather quickly. For web pages, this almost always means a common template (header/
footer/navigation); for office documents, and across different file types it means common
images, or large blobs of common text.”
The manual inspection of 1699 files showed that ssdeep has less true positives but

more false positives compared to sdhash. The main conclusion for both tests is, that
sdhash “significantly outperforms in terms of recall and precision in all tested scenarios
and demonstrates robust and scalable behavior.”
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3.4. SimHash

SimHash was presented in 2007 by Sadowski & Levin [87] and is another tool for “hash-
based similarity detection”. The following presents a brief summary of the algorithm,
however, we give all of the details as SimHash is “focused on files which have a strong
degree of similarity” [87].
SimHash consists of a feature extraction function and a similarity function. For hash-

ing, the authors define a set of 16 8-bit strings, called tags, which are randomly chosen
(0x00 is excluded). Next, an input is processed bit for bit, the occurrences of the tags are
counted and stored in a sum table. Based on the sum table, SimHash computes a hash
key which is a linear combination of the sums. This is needed for indexing/ordering the
hashes in a database. “Once this has all been computed, the file name, path, and size,
along with its key and all entries in the sum table, are stored in a MySQL database”.
Besides this original implementation, the authors tried a second key function which con-
siders the file extensions. The motivation is that “it is not unreasonable to claim that
two files are inherently different if they contain different extensions”.
To find entries in the database, SimFind is used to search for similar keys. First, a

single tolerance level is set, which is multiplied by the file size as key values are expected
to increase proportionally to file size. For all returned values, SimFind verifies that the
file size does not differ too much. The last step of the comparison calculates the distance
of the sum tables “which is the sum of the absolute values of the differences between
their entries. If this distance is within a certain tolerance, then we report the two files
as similar.”
Compared to other existing approaches, SimHash works for near duplicates only as

it expects a very similar file size. The variation of the key function to consider the file
extension narrows the effectiveness even more. To conclude, SimHash could only be used
for near duplicates of the same type. Hence, fragment detection or embedded objects
(e.g., a JPG in a office document) are not identified.

3.5. Summary

This chapter gave an overview of existing approximate matching algorithms. It pointed
out that SimHash and MinHash are only usable for very similar files (i.e., no fragment
detection is possible) and hence they are excluded from further consideration. Besides
those, there are three more approaches.
ssdeep is probably the most popular one and was studied by many different researchers.

An important extension for this algorithm was F2S2. Now it is possible to index the sim-
ilarity digests which brings ssdeep to practical speed when doing a forensic investigation.
However, a security analysis demonstrated different exploits.
The second algorithm called sdhash is way more secure and ongoing work. A detailed

comparison between ssdeep and sdhash showed that sdhash outperforms ssdeep with
respect to precision and recall.
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The last tool was mrsh which actually was never really studied or compared against
other approaches.
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matching approaches

The previous chapter described existing algorithms and implementations which are stud-
ied in more detail here. In the case of ssdeep we contribute with an improvement of
generation efficiency of 55% by changing the overall proceeding of the implementation.
The results were published in [13]. Similar to the security analysis for ssdeep from the
last chapter, we analyzed sdhash. Our contribution discusses several bugs which yield to
an unexpected behavior. Additionally, we present some weaknesses that allow uncovered
changes and attacks. We published these results in [16, 14]. The last section focuses on
mrsh. We extended the algorithms which increased the overall performance. The result
is mrsh-v2 which has a better generation efficiency and compression. With respect to
similarity detection, it has a similar behavior than sdhash. The results are published in
[15].

4.1. Context-triggered piecewise hashing

The upcoming paragraphs discuss multiple performance improvements of context-triggered
piecewise hashing (CTPH) which were published in [13]. The contribution besides the
detailed algorithm and design analysis, was a runtime improvement of 55%. In addition,
we also present a way to identify manipulated files, which could be the act of an active
adversary.

4.1.1. Enhancements overview

Due to the design of CTPH, it is possible that ssdeep needs to process an input several
times. More precisely, if there are too few Base64 characters for block size bsinit (i.e.,
at most S/2 − 1 = 64/2 − 1 = 31), Kornblum sets bs ← bsinit/2 and the whole process is
repeated.
Our improvement aims at three main points:
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1. Each file should be processed only once and thus we have a runtime directly pro-
portional to the input length.

2. The implementation should be flexible so that we can change the pseudo random
function (PRF) and chunk hash function h.

3. It should be able to determine an untypical behavior of trigger sequences, which
may be caused by an active adversary.

The main idea is to process an input and count the trigger sequences for all reasonable
block sizes (the term reasonable is explained later). In the next step, we read the file again
and set the block size bs to the largest value that yields at least 32 Base64 characters.
An important point with respect to security is the restriction of the similarity digest

length. Kornblum asserts 32 ≤ length ≤ 64. However, he does not give any justifica-
tion. We deem the lower boundary to be useful in order to be able to make statements
about similarity. The upper boundary is a weakness and was exploited in [4]. Maybe a
reason to set this boundary was to satisfy the compression conditions for hash functions.
Nevertheless, some attacks are not possible if we ignore this condition.

Implementation details. We use the original software for our improvement and insert
our ideas. This means that all shown performance improvements are only based on some
algorithm changes and not on some implementation issues.
We consider a reasonable block size to be of order of magnitude of Kornblum’s proposal

for bsinit and thus, we allow bs ∈ {2 bsinit, bsinit, bsinit/2, bsinit/4}. The file is read byte for
byte and the PRF is computed for each byte. If we found a trigger sequence for one of
the four reasonable block sizes, we save the offset and increase a counter for this block
size. As a reminder, a trigger sequence is found, if PRF (BS) ≡ −1 mod bs. In most
of the cases we only have to check one if-condition as BS can only be a trigger sequence
for bs if it is a trigger sequence for bs/2, too.
For the second run, the file is read again byte for byte. Now we use the stored offsets

to determine each chunk and run the chunk hash function h. As a result, we preserve
the flexibility to change PRF and the hash function.

Untypical behavior of trigger sequences. We demonstrated that an active adversary
can manipulate a file and bypass blacklisting and whitelisting [4]. For this, we exploited a
peculiarity that a similarity digest can have at most 64 characters. The attack randomly
generates trigger sequences and inserts them at the beginning of the file.
Generally, we would expect that no file has significantly more than 64 trigger sequences

for their initial block size binit. In general there are two extreme examples:

• Locally non-sensitive files: They are expected to have long runs of a specific byte,
e.g., 0-byte-sequences. As this will not cause a triggering, there are too few trigger
sequences instead of too much. Example file types are DOC or BMP.
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• Locally sensitive files: They are expected to have very variable byte-sequence. A
well-tested PRF is assumed to produce approximately 64 trigger sequences. Ex-
ample file types are JPG, ZIP or a truecrypt container.

A possible manipulation can be detected by comparing the trigger sequences counter
against a certain threshold. Of course, this mechanism could be improved by considering
the distribution of the trigger sequences, i.e., we would expect that all chunks have a
similar length.

Assessment of our improvement. As it is described above, the modification needs to
read the file two times: one run for receiving the amount of trigger sequences including
their offsets and one run for hashing each junk. The amount of computations, i.e.,
building the PRF and FNV-Hash, is similar in both ssdeep versions and hence there
should not be a significant difference. The main disadvantage is that our proposal reads
the file two times from the hard disk / cache / RAM.
On the other side, the new algorithm is superior if there are not enough trigger se-

quences. Thus, the original version needs to do two complete runs, which means: reading
the file from the hard disk, generate the PRF, and compute chunk hash. If this is the
case, we expect the new version to be faster. As then both algorithms need to read the
file from the hard disk two times, we expect to have an improvement over 50%.
If the file has even less trigger sequences (e.g., the block size needs to be quartered) and

therefore needs to be read more often, we expect a great performance difference between
both algorithms: bs← bsinit/4 results in 33% runtime, bs← bsinit/8 in 25% runtime.
Thus, a new question raises up, which will be answered in the next section: How often

does ssdeep on average adapt the block size?

4.1.2. Experimental results

This section shows some experimental results of our enhanced version. Firstly, we present
the practical relevance of our enhancement on base of a 500MiB file and secondly, we
discuss the performance advantage with respect to a real-life scenario.

Efficiency improvement. In the following we make a practical test to verify our im-
provement. We compare the original ssdeep version to a modified copy for three different
500MiB files where

File1 has enough trigger sequences for bsinit,

File2 has only enough trigger sequences for bsinit/2, but not for bsinit, and

File3 has only enough trigger sequences for bsinit/4, but for no larger block size.

Hence, file2 and file3 are processed 2 and 3 times, respectively.
The results are given in Table 4.1 where the time is measured using the Linux time-

command. Sum denotes the total time. The user-time results essentially from processing
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Table 4.1.: CPU time to process different 500MiB files with ssdeep and our modified
improved version.

File1 File2 File3

org. ssdeep
user-time: 2.76 user-time: 5.45 user-time: 7.53
sys-time: 4.89 sys-time: 10.06 sys-time: 15.47

sum: 7.65 sum: 15.51 sum: 23.00

mod. ssdeep
user-time: 1.50 user-time: 1.46 user-time: 1.74
sys-time: 7.60 sys-time: 7.58 sys-time: 7.52

sum: 9.10 sum: 9.04 sum: 9.26
mod. sum/org. sum 1.19 0.58 0.40

estimated mod. sum/org. sum 1.00 0.50 0.33

the input, e.g., generating the PRF and the FNV-Hash. In contrast, the sys-time is
mostly influenced by reading/buffering the file.
As expected, we have a constant user-time and a higher sys-time for the modified

version. Our version needs to do less computations, i.e., we do not generate all trigger
sequences and have less if-conditions to check. Having a look at the results from the
original version, we recognize that there is a linear increase; a halving block size increases
the runtime by approximately one run.
To conclude, the modified version has a constant runtime, but is approximately 20%

slower compared to the original version if there is only one run. In addition, we expected
an improvement of 50% if the block size bs← bsinit/2 is used; the practical relation is 58%
in our test. Overall we can say that the improvement depends on the files we investigate.

Impact on real world data. In order to receive trustful results which mirror a real-life
scenario, we set up a system running Windows XP Service Pack 3 including some basic
applications and user specific files. We assume that nowadays nearly every personal
computer has at least an office suite, a browser and a PDF-Viewer installed; we installed
OpenOffice 3.3, Mozilla Firefox 4.01 and Acrobat Reader 10.0.1. Additionally, we inserted

• 1, 000 images having a size from a few KiB to 1MiB,

• 20 MP3 audio files having a size from 4 to 11MiB, and

• several free available PDF files.

Even though this only reflects a very small system, it allows estimations what happens
if a hard disc image would have about 200GiB or more.
Our sample image comprises 15, 036 files and 3, 936, 437, 740 bytes, which leads to an

average file size of

3, 936, 437, 740 bytes/15, 036 files = 261, 800.86 bytes/file = 255.7 KiB/file .
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The adjustment of the block size is the critical point. If an image contains many files
where the block size changes, the performance of our modified version is better. As
already investigated by [32], we expect that there is a change of the block size within
the ssdeep processing in 38% of the cases. The results of our sample test environment
of 15, 036 files are given in Table 4.2.

Table 4.2.: Distribution of block size changes.

1 time 2 times 3 times 4 times 5 times ≥ 6 times

10,125 3,944 645 176 32 114
67.3% 26.2% 4.3% 1.3% 0.2% 0.8%

10, 125 files only need to be processed once, which means that approximately 33%
needs to be processed more than once. This is in conformance with the claim given in
[32].
However, if we examine the relationship between the file size and the amount of trigger

sequences, we find an interesting relationship. The files, which only need one run (i.e.,
each of these files has enough trigger sequences) have a total size of 1, 302, 435, 802 bytes
which is an average file size of 127KiB. On the other hand, all the rest has a total size
of 2, 634, 001, 938 bytes which is an average file size of 535KiB and thus about 4 times
larger than one-processed files. In general we can say that mostly large files need more
than one run. One possible answer would be that large files, with some exceptions, often
contain long 0-byte-sequences, which do not trigger the PRF.
Next, we concentrate on a real-world scenario and compare the runtimes of both ssdeep

versions. Additionally, the runtime for SHA-1 is measured and serves as a benchmark.
The results are given in Table 4.3. We performed two runs that we can exclude caching
issues.
Comparing the runtime of our modified ssdeep version to the original one yields an

improvement of approximately 55% for the complete image (because the runtime of the
modified version is only about 45% of the original version). The large improvement can
be explained by the 2.6GB that needs to be processed more than one time. However,
compared to the cryptographic hash function SHA-1, both implementations are severely
slower.

4.2. Similarity digest hashing analysis

This section is a detailed analysis of sdhash that is split into two parts. Firstly, we
made a detailed implementation analysis which was published in [16]. The contribution
was to prove if the current implementation (version 1.2) coincides the specification. The
main result was that there are a couple of implementation and design errors that lead to
an untypical behavior of the algorithm. All findings were sent to the authors and thus
should be fixed in the current version 3.3. However, we did not conduct a second analysis
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Table 4.3.: Runtimes (in seconds) to compute similarity digest of all files on our sample
image.

first run second run

org. ssdeep
user-time: 202.96 user-time: 201.94
sys-time: 52.01 sys-time: 56.02

sum: 254.97 sum: 257.96

mod. ssdeep
user-time: 88.58 user-time: 86.04
sys-time: 26.29 sys-time: 29.19

sum: 114.87 sum: 117.23
mod. sum/org. sum 0.45 0.45

sha1sum
user-time: 26.98 user-time: 26.57
sys-time: 12.96 sys-time: 13.46

sum: 39.94 sum: 40.04

to verify the fixing. Some details are given in Sec. 4.2.1.
The second part compares the behavior of sdhash against self-defined properties which

was presented in [14]: compression, runtime efficiency, coverage and similarity score.
Besides comparing against properties, our security analysis identified some weakness of
the algorithm. More details are given from Sec. 4.2.2 to Sec. 4.2.5.

4.2.1. Implementation

In the following we briefly summarize our findings. A detailed description of the bugs is
given in Appendix A. We discovered two important bugs when computing the popularity
rank Rpop:

1. The window size bug is a typical off-by-one error concerning the window size used to
compute Rpop. Thus, the implementation does not correctly identify the minimal
Rprec value in the current window and does not always select the ‘statistically
improbable feature’ as defined by the specification.

2. The leftmost bug means that the implementation does not necessarily uses the
leftmost feature as described in the specification. The impact of this second bug is
low but we argue that the specification and the implementation should coincide.

In addition, Appendix A.2 shows three bugs in the comparison class.

4.2.2. Compression & runtime efficiency

As stated by the authors [80], the similarity digest size of sdhash is proportional to
the input size and has a compression rate of approximately 2.6%. The basis for this
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calculation are six sample 100MiB document sets from the NPS Corpus [34] containing
DOC, HTML, JPG, PDF, TXT, XLS and a 100MB file from /dev/urandom. In order to
validate this result, we used the t5-corpus, processed all files and compared the similarity
digest length to the original file size. As shown in Table 4.4 line 17, we obtained a
compression rate of approximately 3.3%.
Regarding the runtime, the algorithm of sdhash is by design more complex than

ssdeep. For instance, while ssdeep divides an input into chunks which are hashed with
FNV, sdhash identifies statistically improbable features that are hashed with SHA-1.
Although SHA-1 is optimized for performance, it is slower than non-cryptographic hash
functions or cryptographic hash functions like MD5. Thus, we identified two possibilities
to increase the performance:

1. In the case that preimage resistance is important, one could change the feature
hash function to MD5 as it is faster [8]. The security benefits of SHA-1 can be
neglected, as sdhash only relies on 55 bits out of the 160 bit SHA-1 hash.

2. In the case that preimage resistance is not a prerequisite one could use FNV for
feature hashing or any other non-cryptographic hash function. It is obvious that
this simple hash function containing one multiplication and a XOR outperforms
SHA-1 and MD5.

4.2.3. Coverage

In general hash functions are designed so that each bit of the input influences the hash
value which we denote by full coverage. Otherwise it might be possible that a modification
is not discovered. Therefore, we present two major drawbacks of sdhash that allow to
change up to 20% of an input with an unaltered similarity digest.

Gaps and overlaps. In the following we show that only approximately 80% of an input
is considered within the similarity digest although it is theoretically possible to have
full coverage. This raises the question if the parameters for the window size and the
popularity rank threshold are chosen suitably.
A core result of our work are the statistics given in Table 4.4, which show the average

measurements for all files within the t5-corpus (the min/max values are no absolute
values, but averaged). Besides the original version we also built the statistics for an
modified version of sdhash, where we fixed the bugs from Sec. 4.2.1.
The first block describes the statistics for gaps where row 2 is the amount of gaps

followed by the minimum, maximum and average gap in bytes. Row 6 gives the ratio
between the gap and the file size. The next block (rows 7-11) is constructed identically
but with respect to overlaps. Details about the features are given in the last block (rows
12-16). Row 13 describes the ratio between features and file size without overlappings.
To conclude, there are two core statements:

1. The first two blocks (rows 2-11) show that many features are overlapping, resulting
in wide gaps between two non-overlapping consecutive features.
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2. The last block (rows 12-16) describes the impact of the overlappings. In the case of
wanting to manipulate each feature (e.g., to achieve a non-match) we do not need
to change all inserted features (row 12) but only 60% of it due to the overlappings.

Table 4.4.: Different statistics on sdhash using the t5-corpus.

average... modified original

1. file size* 428,912 428,912

2. gaps count 2888 2889
3. min_gap* 1.090 1.076
4. max_gap* 1834 1834
5. avg_gap* 33.46 34.27
6. ratio to file size 20.65% 21.21%

7. overlap count 4387 4402
8. min_lap* 1.110 1.108
9. max_lap* 47.81 62.50
10. avg_lap* 22.53 22.71
11. ratio to file size 21.41% 21.86%

12. inserted features 6923 6937
13. ratio to file size 58.47% 57.45%
14. all features 7276 7292
15. required mod. 4248 4214
16. ratio mods. 60.14% 59.48%

17. SDsize % of file 3.321% 3.344%

* values are given in amount of bytes.

In the following we analyze the coverage of sdhash. Let L denote the length in bytes
of an input and s the size of all Bloom filters as percentage in relation to L. Thus, the
size of all Bloom filters (SD, the similarity digest) can be estimated by SDsize = L · s/100.
As each Bloom filter consists of 256 bytes, the number of Bloom filters is SDamount =
dSDsize/256e. Furthermore, each Bloom filter except the last one contains 128 features
and therefore can represent at most 128 · 64 bytes = 8192 bytes of the input. An upper
bound of coverage (cv) (influencing bytes) can be estimated by

cv = SDamount · 8192

= L · s/100 · 256 · 8192

= 0.3200 · s · L.
As we aim at a coverage of 100% we equate cv with L.

L = 0.3200 · s · L
s = 3.125 .
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In order to achieve a full coverage, a similarity digest length of 3.125% is sufficient.
However, although sdhash has approximately 3.3%, it does not have full coverage. The
coverage can be calculated by adding up rows 11 and 13 of Table 4.4. Thus, the modified
version results in 79.88% and the original one in 79.07% which also coincides with the
gaps from row 6. Due to the averaging the percentage values are not exactly 100%.
Although it is questionable if all bytes need to influence the similarity digest, sdhash

statistically allows to change approximately 20% of an input and the similarity score its
still maximal. On the other hand, due to the overlapping of features one changed byte
of the input changes multiple features.

Unnoted Footer Changes. This paragraph shows the possibility to have two inputs
that differ by 11% but still result in the highest similarity score of 100. As this issue is
not addressed within the specification [80], it was found during the code review and is
based on appending, deleting or modifying the end of an input.
Let r denote the amount of Bloom filters of a similarity digest. Based on [80] there

is only one restriction: If r = 1 and bfr < 6, the generation process stops and prints an
error message.
In fact, this is different to the actual implementation where a second condition is

present: If r ≥ 2 and bfr < 16 then bfr is skipped.
Due to this behavior it is possible to append or delete data at the end of a file. For

instance, if a file has exactly 128 features, we can append data containing up to 15
features or the other way round we can cut off features if the input has between 129 and
143 features. In both cases sdhash outputs the highest similarity score of 100.
The average byte length of an input containing exactly 15 features can be estimated us-

ing Table 4.4. In average a file has 428, 912 bytes and contains 7292 features. Thus, a byte
sequence containing 15 features has a medial length of approximately 428, 912 · 15/7292 =
882.29 bytes.
To conclude, if we have an input containing exactly 128 features which results in a

length of approximately 428, 912 · 128/7292 = 7528.90 bytes then we can append 882.29 bytes
(which is over 11%) and sdhash outputs the highest similarity score. It is questionable
if the highest match score is acceptable if a file changes by 11%.

Unnoted byte changes. Besides overlaps and gaps, we also discovered a minor issue
concerning the first and last 15 bytes of a byte sequence [16]. By design the first and
last 15 bytes will never influence the similarity digest as there have to be 16 slides of the
window to obtain a popularity score above 16. We rate this as a minor weakness due to
the following two reasons:

• Besides text files, most file types do not allow to change the header or footer
information.

• After changing 30 bytes both files are quite similar for files of practical interest.
Nevertheless it is a drawback of sdhash that it outputs the highest match score
even if the first and final 15 bytes are modified.
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An easy way to resolve this weakness is to create a cryptographic hash value over the
whole input, treat it as a ‘feature’ and insert it as first element into a Bloom filter.

4.2.4. Similarity score

sdhash is promoted in two ways. First, it can be used to identify similar files and second
it can be used to find small pieces of an original file (fragments). Both issues are very
important in the area of computer forensics but sdhash does not distinguish between
these two cases. For instance, assuming a file containing 128 features and a fragment
of this file with 64 features, sdhash outputs the maximum score of 100. This might
be desired for fragment detection but with respect file similarity detection, one would
assume a score round about 50. However, we agree that fragment detection has better
detection rates and is the default mode. In the following we explain how the comparison
algorithm could be adapted to have two modes.
The fragment mode uses the original comparison algorithm. Recall, the computation of

the similarity score SFscore(bf, bf ′) = [100 (e− C)/(Emax − C)] and the definition of Emax =
min(|bf |, |bf ′|) (see Sec. 3.3 on page 26) where e denotes the amount of common bits in
bf and bf ′.
A full match score occurs, if a full Bloom filter is compared to a non-full Bloom filter,

and if both Bloom filters are related to each other. More precisely, let bf be a full Bloom
filter and bf ′ be a Bloom filter where we dropped x features compared to bf . Roussev
scales the comparison score to the number of bits set in the non-full Bloom filter bf ′,
i.e., we have Emax = min(|bf |, |bf ′|) = |bf ′|. However, as every feature of bf ′ is also
represented by bf , we have e = |bf ′|, too. Thus, if e > C, the similarity score is 100
although bf and bf ′ are obviously different. Hence, the comparison algorithm yields the
highest match score by design.
In order to obtain file similarity detection, we recommend to change the min-function

in SFscore into a max-function: Emax = max(|bf |, |bf ′|). The cutoff point should still
use the old variant of Emax. As an example we consider a non-full Bloom filter bf ′,
where we ignore 64 features compared to bf . The number of expected bits set in bf ′ is
2048 ·

(
1− [1− 1/2048]5·64

)
= 296.3. As we now have Emax = 549.8 instead of 296.3, our

proposal yields an overall similarity score of 100 · (296.3− 42.87)/(549.8− 42.87) = 50.0, which
is a reasonable result for this setting.
To conclude, it is easily possible to extend the implementation to have two modes, one

for finding fragments and one for finding similar files. If a user aims at finding fragments
the original setting is perfect. Otherwise our suggestions should be considered.

4.2.5. Security analysis

Bloom filter resistance. The most obvious idea to obtain a non-match is to manipulate
the features as the similarity digest is based on the hashed features. Due to the compar-
ison mechanism, it is not necessary to modify all features. Hence, the following question
arises: How many features need to be changed in order to obtain a false negative?
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The average amount of bits set to one within a full Bloom filter bf = 128 of size
m = 2048 with k = 5 sub hash functions by chance is

Eavg = m ·
(

1− (1− 1/m)k·bf
)

= 2048 · (1− 0.999511725·128) = 549.77.

As both filters approximately contain 550 bits, Emax is equal to Eavg.
On the other side the minimum overlapping bits by chance is

Emin = m · (1− pk·bf − pk·bf ′ + pk·(bf+bf ′))

Emin = 147.433.

Based on this key data, the cutoff point is C = 0.3·(549.77−147.43)+147.43 = 268.13.
After defining the underlying conditions, we estimate how many bits change when we

manipulate one feature. The probability that one bit is set to zero in a full Bloom filter is
0.999511725·128 = 0.7315598. Thus, the manipulation of one feature will approximately
change 0.7315598 · 5 = 3.65779898 bits within a Bloom filter. We successfully verified
this value through an empirical test where we used 10,000 random files having exactly
128 features, manipulated the first one and analyzed the amount of varying bits.
Let e be the bits in common. If e ≤ C, the Bloom filters are treated as a non-match.

Thus, we need to change e−C bits. Two identical full Bloom filter have approximately 550
bits in common and a cutoff point C of 268 which result in 550− 268 = 282 bits. Due to
the pseudo-randomness of SHA-1 we do a linear approximation. By changing one feature
we approximately change 3.66 bits therefore we have to manipulate 282/3.66 = 77.05
features.
A test on real-world data showed that approximately 83.37 changes are necessary to

receive a non-match which might be because of the reoccurring features. Thus, each
feature changes 282/83.37 = 3.383 bits within a Bloom filter.
The average byte length of an input containing exactly 128 features can be estimated

using Table 4.4 where we averaged a large file corpus. In average, a file has 428, 912 bytes
and contains 7292 features. Thus, a byte sequence containing 15 features has a medial
length of approximately (428, 912 · 15)/7292 = 882.29 bytes.
From Sec. 4.2.3 we know that a lot features are overlapping which reduces the amount

of needed changes. As a consequence, within each chunk of 7545.46 bytes we have to
change approximately 83.37 ·0.6 = 50.02 bits. This results in a lot of changes all over the
file which is only feasible for locally non-sensitive file types, e.g., BMP, TXT but hardly
only for locally sensitive file types, e.g., JPG, PDF.

Bloom filter shifts. In the following we describe an easy way how to reduce the simi-
larity of both digests down to approximately 25. Let SD, SD′ be two identical similarity
digests. A SD is comprised of bf0, bf1, ...bfs where

• bf0 contains F0, F1, . . . F127,
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• bf1 contains F128, F129, . . . F255,

• and so on.

The idea to diminish the similarity score is to build our own features which would be
inserted at the beginning of an input. For instance, we build a feature F ∗−1 and insert it.
As a consequence

• bf0 contains F ∗−1, F0, . . . F126,

• bf1 contains F127, F128, . . . F254

• and so on,

which will reduce the similarity score for all following bf . As all Bloom filters, except
the last one, contain 128 features, we expect to achieve the lowest score by inserting 64
new features F ∗.
The previous section analyzed the impact of changing one feature and concluded that

approximately 3.383 bits change within the Bloom filter for real-world data. Thus, if we
insert 64 new features in the beginning, this will approximately change 3.383·64 = 216.51
bits. The similarity score of two Bloom filters is SFscore = 100 · (e− C)/(Emax − C). Due to
the feature insertion, e should reduce from 550 to 550− 216 = 334 and

SFscore = 100 · (e− C)/(Emax − C)

= 100 · (334− 268)/(550− 268)

= 23.40 .

In order to test our conclusion, we used our modified version of sdhash and did three
tests:

1. We changed 64 features of 10,000 randomly generated files containing exactly 128
features and obtained an average similarity score of 24.61.

2. We inserted 64 features into cut files from the t5-corpus where ‘cut’ means we
reduced to original files down to 128 features. The result was 21.34.

3. We inserted 64 features into each file of the t5-corpus which resulted in an average
similarity score of 27.27.

Inserting byte sequences is often possible for a lot of file types. In [4] we demonstrated
that for the locally sensitive file types like JPG and PDF. Regarding TXT or BMP, it is
even more trivial.
An important question in this context is: how much of an input do we have to change

at least in order to reduce the similarity score to a minimum? Theoretically it is possible
to create a shortest byte sequence with 16 · 63 + 64 = 1072 bytes as there is a minimum
distance of 16 between two features. However, in our test case we took the shortest
sequence we found within the t5-corpus which has a length of 2765 bytes. Once we
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identified such a byte sequence, the time complexity of manipulation is O(1) – this pre-
computed feature sequence is simply inserted in a file.
Since version 2.0, sdhash has a parallelized mode which splits an input in fixed blocks

of lb bytes. Therefore, the proceeding differs only by one detail. Instead of inserting
all features above a given threshold, the features with the highest popularity score were
used. Thus, an active adversary can insert/delete a byte sequence of lb/2 in the beginning
which shifts the offset of all blocks.
The problem due to these shifts is that we now do have two best matching Bloom

filters. Thus, an idea to overcome this issue would be to use to change the matching
algorithm and consider the two consecutive Bloom filters (if the similarity score of the
first one is lower than a certain threshold).

4.3. Multi-resolution similarity hashing version 2 (mrsh)

mrsh-v2 is an improvement of the original implementation from Sec. 3.2 and was pub-
lished in [15]. The contribution was to create a new implementation that is based on the
best features of the existing algorithms ssdeep, sdhash and mrsh. Therefore, we ana-
lyzed the different design decisions, combined them and received a very fast and robust
approximate matching algorithm.

4.3.1. Pseudo random function

We propose two important requirements on a pseudo random function (PRF). First,
its output should behave pseudo randomly and second, it has to be very efficient with
respect to its runtime as it is invoked for roughly every byte of the input.
[85, Sec. 3] compares the randomness of djb2 with MD5 and concludes that djb2

totally fulfills the expectations of a fast, random PRF. In addition, [4, Sec. V] shows
that the original PRF (rolling hash) is appropriate, too.
In order to test both algorithms we separated them, run them ‘stand-alone’ and used

all optimizations modes of the gcc compiler1. Of course, both versions are improved for
performance, e.g., the struct of the rolling hash from ssdeep was removed. The result is
given in Table 4.5 (we excluded the time it takes to read the file into a buffer).

Table 4.5.: Runtime efficiency for rolling hash and djb2 for 500MiB random data.

optimization mode None O1 O2 O3

djb2 23.620 s 11.021 s 1.236 s 1.241 s
rolling hash 9.835 s 4.315 s 1.138 s 1.085 s
djb2 / rolling hash 2.402 2.554 1.086 1.143

When integrating both PRF into mrsh-v2, the differences are actually higher. While
rolling hash only needs 3.808 s, djb2 needs 8.532 s within mrsh-v2 for processing the

1http://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html (last accessed 2014-03-12).
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same file. Actually we cannot explain these serious differences, we recognized them by
testing.
Regarding the runtime, our test concludes that rolling_hash outperforms djb2. The

point is, although latter algorithm looks less complex (see Sec. 3.2), it needs to compute
the hash value over the whole window at each time (7 loops per window) whereas the
original version (rolling hash) is able to remove the last byte and add the new one to the
hash value (only one loop per window).

4.3.2. Chunk processing

Chunk hash function. The motivation to change the chunk hash function in mrsh from
FNV to MD5 was that “FNV is not a collision-resistant function and has some known
collision issues [...] especially for inputs with lower entropy which would present a serious
problem for simple hashes” [85].
The latter argument is in contrast to [69] where it says that “the high dispersion of the

FNV hashes makes them well suited for hashing nearly identical strings”. Moreover, mrsh
reduces the MD5 hash value from 128 bit to 44 bit in order to insert it into the Bloom
filter. Thus, the hash looses its cryptographic properties. Additionally, we discussed the
necessity of security requirements for approximate matching in Sec. 2.4.
If we neglect the cryptographic properties and only focus on efficiency, then FNV

outperforms MD5. To test the runtime of MD5 we took the OpenSSL library and used
a freely available version of FNV-1a. The test is focused on the algorithm time (read-in
time is neglected) and is solved by the clock()-function from C++. The result is 0.742 s
from FNV versus 1.354 s of MD5. Using these functions within mrsh-v2, the times are
5.235 s and 6.569 s, respectively.
To conclude, mrsh-v2 integrated the 64bit hash function FNV-1a.

Minimum chunk size. A minimum chunk size comes with two improvements. First,
it overcomes one of the main attacks on ssdeep presented in [4] called ‘adding trigger
points’. Second, it increases the runtime as the PRF needs not to be computed at each
offset within the input sequence. A drawback is that some details may lost. This is the
case if two subsequent trigger sequences have a distance of at most bs/4 − 1 (bs denotes
the block size).
We illustrate this characteristics on base of an extreme example. We assume that the

input byte sequence has a trigger sequence every (bs/4− 1)-th byte. They are denoted by
t0, t1, t2, .... Then, every second trigger sequence is skipped (only trigger sequences with
an even index are used). Removing the first trigger sequence t0 from the input results
in considering the trigger sequences t1, t3, ... yielding a fundamental different similarity
digest.
However, for performance reasons we agree on the same minimum chunk size as used

in mrsh, bs/4.
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4.3.3. Similarity digest

Recall, mrsh uses Bloom filters of size m = 2048 and inserted BFmax = 256 chunks each
setting 4 bits within the Bloom filter. This is in contrast to our implementation which
is based on the similarity digest representation and comparison of sdhash (see Sec. 3.3).
The Bloom filter size is still m = 2048 bits but we changed BFmax = 160 and k = 5

(five sub-hashes). The maximum is therefore 800 bit in one Bloom filter.
In order to insert the chunk hash value into a Bloom filter, we use the least significant

k · log2(m) bit. As a consequence, our chunk hash function needs at least so many bits
which is fulfilled by FNV-1a using the default setting k = 5, m = 2048. Algorithm 3
shows a performant proceeding how to set bits in a Bloom filter based on the FNV. In
addition, the design of mrsh-v2 allows to change the parameters like k,m or the chunk
hash function.

Algorithm 3 Insertion of a chunk hash into a Bloom filter
h is the chunk hash value
k = 5 . Amount of sub-hashes.
MASK = 0x7FF . To use least significant bits.
SHIFTOPS = 11 . Calculated by log2(m).
filter[m] . Array of length m.

for j = 0→ k − 1 do . Create k sub hashes.
masked_bits = ( h >> (SHIFTOPS ·j)) & MASK;
byte_pos = masked_bits >> 3;
bit_pos = masked_bits & 0x7;
filter[byte_pos] |= (1 <<(bit_pos));

end for

Compression. The similarity digest length depends on the block size bs, the amount
of chunks per Bloom filter BFmax and the size of a filter m (in bits). Each Bloom filter
represents approximately BFmax · bs bytes of a given input and thus the compression
ratio is m/8 · 1/BFmax · bs.
As stated in the beginning, our implementation uses m = 2048 bits and BFmax = 160.

Assuming these fix values, the compression ratio is 2048/8 · 1/(160 · bs) = 8/(5 · bs) for bs > 0
and therefore adjustable by changing bs. Table 6.3 shows the proportion between block
size bs and the expected similarity digest length. For instance, by default we set bs = 160
and thus the compression ratio is at 1.000%.

Table 4.6.: Proportion between block size bs and the similarity digest length in percent.

bs 128 160 256 320 512
expected length in % 1.250 1.000 0.625 0.500 0.313
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False positive rate. Due to the changes from [k = 4, BFmax = 256] to [k = 5, BFmax =
160] we reduced the false positive rate(

1− (1− 1/m)k·BFmax

)k
=
(

1− (1− 1/2048)4·256
)4

= 0.0240 (4.1)

down to (
1− (1− 1/m)k·BFmax

)k
=
(

1− (1− 1/2048)5·160
)5

= 0.0035 . (4.2)

which is a factor of approximately 7.

4.3.4. Comparing similarity digest

The overall idea is copied from sdhash and described in Sec. 3.3. In Sec. 4.2.4 we
discussed the difference between fragment detection and similar file detection. Hence,
our implementation has two different modes where fragment detection is set by default.

Fragment detection mode. Is an exact copy of the sdhash implementation.

File similarity detection. In order to achieve file similarity there are two adaptations:

1. We make use of a new function E′max = max(|bf |, |bf ′|) (the min function is replaced
by the max function).

2. Additionally, we replace 1/s by 1/r where r and s are the amount of Bloom filters
of the larger and smaller similarity digests, respectively.

4.4. Summary

This chapter analyzed the three existing approximate matching algorithm and presented
several improvements with respect to efficiency and security. However, all implementa-
tions have some drawbacks. ssdeep is extremely efficient but is not secure against an
active adversary. For sdhash it is the other way round. While the efficiency and the sim-
ilarity digest length might be improved, it is very robust against attacks. In addition, we
helped to improve sdhash by reporting some bugs which lead to inconsistency between
implementation and algorithm description.
In mrsh-v2, we tried to combine the best properties of all algorithms. The result is a

very efficient algorithm that has a similar robustness than sdhash. By design we obtain
full coverage, which is a benefit in our point of view.
The developers of these algorithms pursue different strategies for proceeding and sim-

ilarity digest representation which raises some further questions. For instance, which is
the better format for similarity digest representation? Are there more strategies how
approximate matching can be done?
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This chapter presents new algorithms, concepts and applications for approximate match-
ing. Within the first three sections we describe the new algorithms called bbHash
(Sec. 5.1, [12]), mvhash (Sec. 5.2, [11, 3]) and saHash (Sec. 5.3, [27, 111]). The origin of
all algorithms are well-known concepts from different areas of computer sciences.
Sec. 5.4 addresses the lookup problem for Bloom filter based similarity digests. We

explain a divided & conquer based concept including a theoretical assessment (currently
in review [21]). Additionally, we present an implementation which is totally sufficient for
the use case blacklisting [17]. Sec. 5.5 studies the behavior of approximate matching on
network traffic which is a complete new and promising working field [48, 10]. The last
section summarizes this chapter.

5.1. Random building block hashing (bbHash)

bbHash is a new algorithm for approximate matching and was published in [12]. The
main contribution was to design this new algorithm which is based on proceedings from
data compression and biometrics.
The overall idea of bbHash is based on data deduplication (e.g., [62, Sec. II]) and

eigenfaces (e.g., [100, Sec. 2]). Deduplication is a backup scheme for saving files effi-
ciently. Instead of saving files as a whole, it uses lots of small pieces. If two files share a
common piece, it is only saved once, but referenced for both files. Eigenfaces are a similar
approach which are deployed in biometrics for face recognition. They correspond to the
well-known method in linear algebra of representing each vector of a vector space by a
linear combination of the basis vectors. According to this, having a set of N eigenfaces,
then any face can be represented by a combination of standard faces.
The overall proceeding is quite simple. bbHash creates a fixed set of random byte

sequences with a length l called building blocks. Once the building blocks are created,
bbHash slides through the input file byte for byte, reads out the current input byte
sequence of length l, and computes the Hamming distances (HDs) of all building blocks
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against the current input byte sequence. If the building block with the smallest HD is
smaller than a certain threshold, its index contributes to the file’s similarity digest.
In contrast to other approximate matching approaches, bbHash is based on a compar-

ison to external data structures, the building blocks. The building blocks are randomly
chosen static byte blocks which are independent of the processed input.

5.1.1. Building blocks

A building block is a random byte sequence of length l. Our current implementation uses
a fixed set of N = 16 building blocks. We decided on 16 as we can index each building
block by a unique hex digit 0, 1, 2 . . . f (half a byte). Thus, we have the building blocks
bb0, bb1, · · · , bbf . The index is later used within the similarity digest to uniquely reference
a certain building block.
The length of a building block in bytes is referred to by l and influences the following

two aspects:

1. A growing l decreases the speed performance as the Hamming distance is computed
at each offset i for l bytes.

2. An increased l shortens the length of the hash value as there should be a trigger
sequence approximately every l bytes (depending on the threshold t).

Due to runtime efficiency reasons we decided to use ‘short’ building block sizes compared
to the file size. Currently we set l = 128 bytes.
To create a building block, we call the rand() function to fill an array of unsigned

integers. Thus, all building blocks are stored in one array whereby the boundaries can
be determined by using their size. As rand() gets the same seed each time, it is a
deterministic generation process. One may consider the building blocks as a kind of
initialization vectors (IV) which are common for many hash functions, e.g., SHA-1.

5.1.2. Detailed proceeding

To find the optimal representation of a given file by the set of building blocks, we slide
through the input file, byte for byte, read out the current input byte sequence of length
l, and compute the Hamming distances (HDs) of all building blocks against the current
input byte sequence. If the building block with the smallest HD is smaller than a certain
threshold, its index contributes to the file’s similarity digest.
The pseudo code of our algorithm bbHash is given in Algorithm 4. Let Lf denote the

length of the input file in bytes. Then, for each offset i within the input file, 0 ≤ i ≤
Lf − 1− l the algorithm proceeds as follows: If BSi denotes the byte sequence of length
l starting at the i-th byte of the input, then the algorithm computes the N Hamming
distances of BSi to all N building blocks. hdk,i = HD(bbk, BSi) is the Hamming distance
of the two parameters bbk and BSi, 0 ≤ k < N . As the HD is the number of different bits,
we have 0 ≤ hdk,i ≤ 8 · l where we defined l = 128 bytes. For instance, HD(bb2, BS100)
returns the HD of the building block bb2 and the bytes B100 to B227 of the input. In
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Algorithm 4 Pseudocode of the bbHash Algorithm
l . Processed chunk size; default length is 128 bytes.
N . Amount of building blocks; default is 16.
BSi . A byte sequence of length l starting at the i-th byte of the input.
t . Threshold; default is 461.
Lf . Length of the input file in bytes.
mHD, tHD, tk . Unsigned int; temporary variables.
signature . String variable for final hash value.

bb = set_building_blocks(N , l)
for i = 0→ Lf − 1− l do . Run through input, byte by byte.
tHD = mHD = 0xffffffff

for k = 0→ N − 1 do . Run through all building blocks.
tHD = getHammingDistance(bbk, BSi)
if tHD < mHD then . Two same HDs will use the smaller k.

mHD = tHD
tk = k . tk is a hex digit.

end if
end for
if mHD < t then sim_digest = "sim_digest" + tk . Conversion to string.
end if

end for

other words, the algorithm slides through the input, byte for byte, and computes the HD
at each offset for all N building blocks as is given in Fig. 5.1.
The similarity digest of bbHash is formed by the ordered indicies of triggered building

blocks. In order to trigger a building block to contribute to the bbHash, it has to fulfill
two conditions:

1. For a given i (fixed offset), we only make use of the closest building block, i.e., we
are looking for the index k with the smallest Hamming distance hdk,i.

2. This smallest hdk,i also needs to be smaller than a certain threshold t.

Each BSi that fulfills both conditions will be called a trigger sequence. To create the
final similarity digest, we concatenate all indicies k of all triggered building blocks (in
case we have two triggered building blocks for BSi, only the smallest index k is chosen).
We have already explained why the choices l = 128 and N = 16 are appropriate for

our approach. In what follows we explain how to choose a fitting threshold t.
Equal to cryptographic hash functions, we designed bbHash to have full coverage, i.e.,

every byte of the input file is expected to be within at least one offset of the input file, for
which a building block is triggered to contribute to the bbHash. Thus, we expect to trigger
every l-th byte. In order to have some overlap, we decrease the statistical expectation to
trigger at every 100-th byte.

51



5. Algorithms, concepts and applications

                                                                                          Input

b       b

Building Block of size nBuilding Block of size nBuilding Block of size nBuilding Block 0

Building Block of size nBuilding Block of size nBuilding Block of size nBuilding Block 0

                                                                                          Input

Building Blockbuilding block

 hd  = HD(bb  , b ) 

   b    b    i      i+1 

i                 n     i

 hd    = HD(bb  , b    ) i+1               n     i+1

   i-1      i 

 hd    = HD(bb  , BS ) 0,i                0         i

 hd    = HD(bb  , BS ) 1,i                1         i

 hd       = HD(bb      , BS ) N-1,i                 N-1         i

...

Figure 5.1.: Workflow of bbHash.

For our theoretical considerations we assume a uniform probability distribution on the
input file blocks of byte length l. Let d be a non-negative integer (the distance) and
P (hdk,i = d) denote the probability, that the Hamming distance of our building block k
at offset i of the input file is equal to d.

1. We first consider the case d = 0, i.e., the building block and the input block
coincide. Thus, we simply have P (hdk,i = 0) = 0.5lbit = 0.51024.

2. For d ≥ 1 we have
(
lbit
d

)
possibilities to find an input file block of Hamming distance

d to bbk. Thus, P (hdk,i = d) =
(
lbit
d

)
· 0.5lbit =

(
1024
d

)
· 0.51024.

3. Finally, the probability to receive a Hamming distance smaller than t for bbk is

p1 := P (hdk,i < t) = 0.5lbit ·
t−1∑
i=0

(
lbit
i

)
= 0.51024 ·

t−1∑
i=0

(
1024

i

)
. (5.1)

The binomial coefficients in Eq. 5.1 are large integers which were processed using the
computer algebra system LiDIA1 (LiDIA is a C++-library maintained by the Technical
University of Darmstadt).
Let pt denote the probability that at least one of the N buildings blocks satisfies

Eq. 5.1, i.e., we trigger our input file and find a contribution to our bbHash. This is
easily computed by the opposite probability that none of the building blocks triggers,
that is pt = 1 − (1 − p1)N . As explained above we aim for pt = 0.01. Thus, we have to
find a threshold t with

0.01 = 1− (1− p1)N ⇐⇒ p1 = 1− 0.99
1
N = 1− 16

√
0.99 = 0.00062795 . (5.2)

According to our LiDIA-computations for Eq. 5.1, we identify a threshold of t = 461.
1http://www.cdc.informatik.tu-darmstadt.de/TI/LiDIA/ (last accessed 2013-12-12).
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5.1.3. Assessment and experimental results

Similarity digest length. The similarity digest length depends on three different prop-
erties: the file size Lf , the threshold t and the building block length l. If we expect that
both other parameters are fixed, then

• a larger Lf will increase the similarity digest length as the input is supposed to
have more trigger sequences.

• a higher t will increase the similarity digest length as more BSi will have a Hamming
distance lower than the threshold t.

• a large l will decrease the performance and the similarity digest length.

Due to performance reasons, we have decided on a building block length of l = 128
bytes. As we set the threshold to t = 461, the similarity digest length nearly results in
approximately Lf/100 digits whereby every digit has half a byte length. Thus, the length
is approximately 0.5% of the original file size.
In addition, the file type may also influence the length. Compressed file formats like

ZIP, JPG or PDF consist of ‘random’ (i.e., high entropy) byte strings and therefore
bbHash should yield digests of 0.5% with a high probability. This is in contrast to TXT,
BMP or DOC formats where the sequences are less random.

Generation efficiency. The runtime is the main drawback of bbHash which is quite
slow compared to other approaches. ssdeep processes a 10MiB file in 0.15 seconds while
bbHash needs about 117 seconds for the same file. This is due to the use of building
blocks as external comparison data structures and the computation of their Hamming
distance to the currently processed input byte sequence. Recall that at each position i
we have to build the Hamming distance of 16 building blocks each with a length of 1024
bits.
To receive the HD we XOR both sequences and count the amount of remaining ones

(bitcount(bbk⊕BSi)). To speed up the counting process, we precomputed the amount of
ones for all sequences from 0 to 216 − 1 bits. Thus, we can lookup each 16-bit-sequence
with a complexity of O(1). However, since there are N · lbit/16 = 16·1024/16 = 1024 lookups
at each processed byte, it is quite slow.
This problem is often discussed in literature and there are several issues for improve-

ments. For instance, [2] states that their algorithm finds all locations where the pattern
has at most t errors in time O(Lf

√
t log t). Compared against our algorithm which needs

O(Lf · l) time that is a great improvement. As we make use of N building blocks, we
have to multiply both runtime estimations by N .

Applicability of bbHash depending on the file size. Our first prototype is very re-
stricted in terms of the input file size and will not work reliably for small files. Files
smaller than the building blocks’ length l cannot have a trigger sequence and cannot be
hashed. To receive sufficient trigger sequences for reliable results the input file should be
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at least 5000 bytes, which results in 5000−1− l possible trigger sequences. On the other
hand large files result in very long hashes wherefore we recommend to process files smaller
than a couple of megabytes. By changing the threshold t, it is possible to influence the
similarity digest length.

Detection of fragments. A file fragment is a piece of a file which could be the result of
fragmentation and deletion. By design bbHash allows users to compare similarity digests
of those pieces against similarity digests of complete files.

Attacks. This section focuses on attacks with respect to both types of forensic issues:
blacklisting and whitelisting. From an attacker’s point of view anti-blacklisting/anti-
whitelisting can be used to hide information.
Anti-blacklisting means that an active adversary manipulates a file in a way that

approximate matching will not identify the files as similar–the similarity digests are too
different. We rate an attack as successful if a human observer cannot see a change
between the original and manipulated version (the file looks/works as expected). If a file
was manipulated successfully then it would not be identified as a suspicious file and will
be categorized as unknown file.
The most obvious method is to change the triggering whereby the scope of each change

depends on the HD. For instance, assuming a HD of 450 at position i, an active adversary
has two possibilities:

1. He needs to change at least 11 bits in this segment to overcome the threshold t and
kick out this trigger sequence from the final similarity digest.

2. He needs to manipulate it in a way that another bb has a closer HD.

From the perspective of an active adversary: in the best case each building block has
a HD of 460 and a ‘1-bit-change’ is enough to manipulate the triggering. In this case
an active adversary approximately needs to change Lf

100 bits, one bit for each position i.
Actually a lot more changes need to be made as there are also positions where the HD
is much lower than 460.
Anti-whitelisting means that an active adversary has similarity digests from a whitelist

(digests from good files) and manipulates a file (normally a suspicious one) that its digest
matches to one on the whitelist. Again, we rate an attack as successful if a human
observer cannot see a change between the original and manipulated version.
In general this approach is not preimage-resistance as it is possible to create files for a

given similarity digest: generate valid trigger sequences for each building block and add
some zero-strings in between.
The manipulation of a specific file to a given similarity digest should also be possible

but will result in a corrupted file with a high probability. In a first step an active adversary
has to remove all existing trigger sequences (result in approximately Lf

100). Second, he
needs to imitate the triggering behavior of the white-listed file which will cause a lot
more changes.
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5.2. Majority vote hashing (mvhash)

This section explains the underlying idea of our second new approximate matching algo-
rithm called mvhash which was published in [11, 3]. The main contribution was to design
an approximate matching algorithm that is based on the popular compression technique
called run length encoding [7, Sec. 1.10].
The algorithm consists of three phases: First, majority vote is done on the bit level

in order to transform any byte sequence into long runs of 0s and 1s. Second, run length
encoding (RLE) is applied to represent these sequence of 0s and 1s by its length (in
bytes). And third, the similarity digest is created. Due to the majority vote, small local
changes of the input byte sequence do not affect the majority vote as the majority of
bits remains unchanged. Thus, the similarity digest does not change and similarity is
preserved.
Our implementation consists of two branches, mvhash-L and mvhash-B, which differ

by their similarity digest representation. The former outputs Base64 encoded similarity
digests which are comparable by applying the Levensthein distance. All details about
mvhash-L are given in [3]. On the other hand, mvhash-B utilizes Bloom filters for the
similarity digests which is the focus of the upcoming sections.

5.2.1. Algorithm design and proceeding

Phase 1 - majority vote. The core idea of the first phase is to transform an input into
long runs of equal bits, which may easily be compressed during the subsequent phases.
The transformation is based on a majority vote.
Before explaining the majority vote phase, we have to introduce some notations. Let

BS denote a byte sequence (e.g., a file) of length L. The byte at position i of the input
(0 ≤ i < L) is written as Bi. Furthermore, Ni denotes the n-neighborhood of Bi, i.e., a
byte sequence of length (n+ 1) (n has to be even):

Ni := Bi−n
2
, Bi−n

2
+1, . . . , Bi−1, Bi, Bi+1, . . . , Bi+n

2
−1, Bi+n

2
.

At the beginning or the end of the input the length of the n-neighborhood is smaller
than n+ 1, that is we do not perform any padding. For instance, we have

N0 = B0, B1, B2, . . . , Bn/2 (of length
n

2
+ 1)

N1 = B0, B1, B2, . . . , B1+n/2 (of length
n

2
+ 2)

The function bitcount(Ni) returns the amount of bits set to 1 for Ni. If bitcount(Ni)
is greater or equal to a certain threshold t (bitcount(Ni) ≥ t), the majority vote of Bi is
0xFF and 0x00 otherwise.
An example of the majority vote step is given in Fig. 5.2, where the 2-neighborhood

of the byte B5 is considered. We have N5 = 11001100.01110101.00111000, which results
in bitcount(N5) = 12. As we use the threshold t = 12, the majority vote yields 0xFF
for B5.

55



5. Algorithms, concepts and applications

11111000.10101010.11001100.01000110.11001100.01110101.00111000.10101010.11001100.00000110.11001111

11111111.11111111.00000000.00000000.11111111.11111111.11111111.00000000.00000000.11111111.11111111

Input:

Majority vote:

RLE:
0 | 2 | 2 | 3 | 2 | 2

Figure 5.2.: A sample majority vote of N5 (upper part) and subsequent RLE (lower part)
with parameters n = 2, t = 12.

Finally, we have to explain how to set the threshold t to a reasonable value. By
intuition one could assume that if at least half of the bits within Ni are 1, then the
majority vote of Bi is 0xFF . Thus, t = (n+ 1) · 8/2 seems to be a canonical threshold.
As we discuss later, there are byte sequences where the most significant bit (MSB) is 0
most of the time which would distort the results of the majority vote if the canonical
threshold is used. Therefore, we revise the canonical choice of t and use

t =
(n+ 1) · ib

2
(5.3)

where ib is the average amount of influencing bits for a byte (1 ≤ ib ≤ 8). For instance,
if MSB is always zero, then ib = 7 (the default value is ib = 8).
Note, we have to adjust the factor n + 1 in Eq. 5.3 to the actual length of the n-

neighborhood, if the neighborhood does not comprise n + 1 bytes. As an example, we
have t =

(n
2

+1)·ib
2 in case of the n-neighborhood of B0.

Phase 2 - encoding the majority vote bit sequence with RLE. In order to reduce
the length of the majority vote bit sequence, we adjust the run length encoding (RLE)
technique. RLE simply counts the amount of identical consecutive bytes and returns this
number. Our implementation assumes that the majority vote bit sequence starts with a
0-run. Thus, if there is a 1-run in the beginning, the first RLE element is set to 0. An
example is shown in the lower part of Fig. 5.2.

Phase 3 - Similarity digest generation. As mentioned in the beginning, there are two
branches of mvhash which have a Bloom filter similarity digest and a Base64 encoded
similarity digest, respectively. The problem with the Base64 encoded one is the runtime
of comparing two digests which is solved using the Levensthein distance–quadratic com-
plexity. Hence, this paragraph shows how to insert a RLE sequence into a Bloom filter
of size m = 2048 bits.
In contrast to other existing approaches, mvhash does not make use of a hash function,

but uses the RLE sequence directly. To insert the RLE sequence, it is divided in groups.
Each group consists of log2(m) consecutive RLE elements, that is log2(2048) = 11. Next,
the RLE elements are reduced modulo 2. Due to the modulo 2 operation, the result is
a bit sequence b10b9b8 . . . b0. To insert this bit sequence into a Bloom filter, it is divided
into two parts:
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v1 = b10b9b8b7b6b5b4b3 is used to identify the byte within the Bloom filter and

v2 = b2b1b0 is used to identify the bit within the byte.

To identify the bit which should be set, go to byte number v1 simply by counting from
left to right and set bit number v2 within this byte, where v2 = 0 means that the least
significant bit is set.
In order to be alignment robust, groups cannot be consecutive and need to have an

overlap. The only two possibilities are an overlap by 9 or 10 elements whereby 9 obviously
has a better compression. Thus, when sliding through the RLE sequence, two subsequent
groups need to share 9 RLE elements, that is we shift the group by 2 elements when
turning to the next one.
An example is illustrated in Fig. 5.3 where we marked the first three groups in the

RLE sequence. Group 1 sets one bit within the Bloom filter, group 2 sets the next bit
within the Bloom filter and so on. The position of the bit of group 1 is determined as
follows (bit positions for group 2 and group 3 are illustrated only):

1. Identify the first group of 11 RLE elements: 0.2.2.3.2.2.2.1.4.13.14

2. Use the modulo 2 operation for each element: 0.0.0.1.0.0.0.1.0.1.0

3. Divide the bit sequence in 2 parts: v1 = 00010001 = 0x11 and v2 = 010 = 0x2.

4. Go to byte v1 = 17 of the Bloom filter and set bit v2 = 2 to one.

RLE: 0.2.2.3.2.2.2.1.4.13.14.9.1.3.6.8.2.9.1.3.1.4.5.1.7.66.3
Group 3

Group 2
Group 1

00010001  010     01000101  011     00010101  110
Entry 1           Entry 2           Entry 3

17        2       69        3       21        6

Figure 5.3.: An illustration of how the RLE encoded string is processed.

One may argue that overlapping groups by 9 is redundant. In fact, there are two
reasons why it is this way. First, if only one RLE element changes, this affects up to 6
groups. Thus, there is a high probability that bits flip within the Bloom filter. Second
is the more important fact, an overlapping by 9 makes our algorithm alignment robust
which is best explained by example. Taking the marked three groups from Fig. 5.3 there
are two options in the case of a manipulation. First, it is possible that only the value of
a RLE element itself changes, e.g., the second byte which is 2 turns to X. This would
influence Group 1 only. Second, it is possible that a manipulation causes a ‘deletion’
of the RLE element, e.g., there are lots of changes within the underlying byte sequence
which changes the ‘polarity’ from a 1-run to a 0-run.
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Assuming the RLE sequence given in Fig. 5.3, a heavy change could cause a polarity
flip of the second RLE element. Due to the fact that we only changed bytes, the RLE
sequenced 0.2.2. turned into a single RLE element 4 (0 + 2 + 2). The exact example is
given in the following where we can see that G3 and G2 are equal.

Original sequence
Input 0.2.2.3.2.2.2.1.4.13.14.9.1.3.6
G1 0.2.2.3.2.2.2.1.4.13.14
G2 2.3.2.2.2.1.4.13.14.9.1
G3 2.2.2.1.4.13.14.9.1.3.6

manipulated sequence
Input 4.3.2.2.2.1.4.13.14.9.1.3.6
G1 4.3.2.2.2.1.4.13.14.9.1
G2 2.2.2.1.4.13.14.9.1.3.6

To conclude, a RLE polarity flip affects three RLE elements and result in a new one.
Thus, we need a group shifting by two.

Similarity digest comparison. The comparison algorithm is self created and based on
the Jaccard index [53]. As our similarity digest is composed of a sequence of Bloom
filters, we first explain how to determine a distance score of two Bloom filters. In a
second step, the computation of the final match score is presented.
The distance score discore of two Bloom filters is based on the Hamming distance

(HD). Hence, the lower the score, the more similar are two Bloom filters. The number
of groups which are entered into a Bloom filter is fix, except that the last one can have
fewer entries. Note, small files may only have one Bloom filter. Therefore, the HD is
considered relative to the number of entries in the Bloom filters.
Let bf1, bf2 be two Bloom filters and let |bf | denote the number of 1-bits within a

filter. Furthermore, hd(bf1, bf2) computes the Hamming distance between two filters.
Then, the distance score discore of two filters is

discore(bf1, bf2) =
hd(bf1, bf2)

|bf1|+ |bf2|
· 100 . (5.4)

Obviously we have 0 ≤ discore ≤ 100 where 0 indicates a perfect match. A distance
score close to 0 means a small distance of the two Bloom filters and Thus, a high similarity
of the underlying RLE sequences.
As a similarity digest consists of a list of Bloom filters, we build the average over all

best-matching filters. Let SD = {bf1, bf2, . . . bfs} and SD′ = {bf ′1, bf ′2, . . . bf ′t} be two
similarity digests (Bloom filter sequences), which shall be compared. We assume s ≤ t.
Then the final similarity score SC-function is

SC(SD, SD′) =

−1, if t− s > 4

100− 1
s

∑s
i=1 min

1≤j≤t
discore(bfi, bf

′
j), otherwise . (5.5)

In other words, to receive a final similarity score between two similarity digests we
do an all-against-all comparison of Bloom filters and average the lowest distance scores.
As a high similarity shall be represented by a large final score, we subtract this value
in a last step from 100 (recall that a small distance score means a high similarity). If
the number of Bloom filters in SD, SD′ is too different (t− s > 4), a comparison is not
possible and the algorithm returns −1.
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5.2.2. Design decisions

mvhash depends on multiple parameters and therefore this section explains their default
values. The main aim is to have a similarity digest length of approximately 0.5% of
the input file length, which is adjustable by 3 settings. For tuning the configuration of
mvhash we build a c-corpus (configuration corpus) by downloading files from a search
engine using various key words. Table 5.1 provides an overview of the file types and their
average file size in our c-corpus.

Table 5.1.: Statistics of the c-corpus.

JPG DOC PDF TXT

Number of files 2066 2000 1723 2000
Average file size (kB) 251.4 293.0 1022.1 53.2

mvhash needs the following three parameters:

ib is the amount of influencing bits per byte and 8 by default, 1 ≤ ib ≤ 8. This parameter
is used to adjust the threshold t of the majority vote as defined by Eq. 5.3. There
are file types where the most significant bit (MSB) is mostly zero. For instance,
if we analyze ASCII-encoded2 text documents, we realize that the MSB is hardly
ever used, which influences the majority vote. Thus, for text files the ib parameter
should be adapted to ib = 7.

gr is the amount of groups which are inserted into a Bloom filter. After gr groups are
inserted, a new Bloom filter is created. Thus, the similarity digest of an input is a
sequence of one or more Bloom filters each with a size of 256 bytes.

In order to find a suitable value for gr, we have to consider that the more groups are
inserted in a Bloom filter, the shorter the similarity digest and vice versa. However,
if gr increases the possibility for collisions rises, too. The difficulty was finding a
good trade-off between compression and detection rate.

Table 5.2.: Statistics of mvhash for JPG files.

gr 512 1024 2048 4096

p(bit = 1) 22.12% 39.35% 63.22% 86.47%
Relative similarity digest length 1.26% 0.78% 0.59% 0.52%
similarity digest sensitivity (in bits) 3.89 3.03 1.84 0.68

Table 5.2 summarizes the main results of our analysis. Row p(bit = 1) is according
to Eq. 5.6 the probability that a certain bit is 1 after inserting gr groups. The
formula of Eq. 5.6 may easily be derived, if a uniform probability distribution is

2http://www.asciitable.com/ (last accessed 2014-03-13).
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assumed:

p(bit = 1) = 1−
(

1− 1

2048

)gr
(5.6)

The relative similarity digest length is the ratio between input length (original file
size) and the corresponding output. Row 4 similarity digest sensitivity denotes the
expected amount of bits which will be influenced in the Bloom filter if one RLE
element changes.

Recall, a group starts at every second RLE element and covers 11 RLE elements.
Thus, changing one RLE element effects 5 to 6 groups except in the beginning or
at the end of the RLE sequence. Assuming gr = 2048, approximately 63.22% of
the Bloom filter bits are set to one. As a consequence, the manipulation of one
RLE element changes approximately (1− 0.6322) · 5 = 1.84 bits within a filter.

By default we set gr = 2048 as 1.84 seems plausible for such a small change and
0.59% is a good compression.

n is the size of the neighborhood to perform the majority vote. Our tests show that a
large neighborhood produces long runs, but loses accuracy and vice versa. Table 5.3
presents the average length of runs for different file types. We denote this quantity
by arl. As expected, the average length for compressed file types like JPG/PDF is
shorter than for uncompressed file types like DOC/TXT. Thus, besides the neigh-
borhood size, the run lengths also depend on the file type, more specifically the
entropy of the byte sequences.

Table 5.3.: Average length of runs (arl) for different file types (ib = 8).

n=20 n=50 n=100 n=200

JPG 13.75 24.97 41.91 73.40
PDF 14.31 29.49 47.15 81.89
DOC 26.86 55.88 96.69 172.39
TXT 37.41 275.39 915.62 1886.59

Finally, we explain our approach to set n for different file types. We chose one com-
pressed file type (JPG) and one uncompressed file type (DOC). We neglect TXT and
PDF as they show similar behavior than DOC and JPG, respectively. If the RLE se-
quence of the second phase of mvhash is shorter than 11 elements, it is not possible to
generate an entry for the Bloom filter. Using our c-corpus and the neighborhoods of
Table 5.3, we search for the largest neighborhood which creates an RLE encoded string
of at least 11 elements for all files in the c-corpus. The result is n = 20 for DOC-files
and n = 50 for JPG-files.
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5.2.3. Assessment and experimental results

To assess mvhash we used the t5-corpus and the c-corpus. Overall mvhash yielded similar
results for both corpuses. We decided on the following settings based on our analyzes
from the previous section:

JPG-Files
n: 50
ib: 8 (default)
gr: 2048

DOC-Files
n: 20
ib: 7
gr: 2048

Similarity digest length. We agreed on inserting 2048 groups in each Bloom filter. As
each group consists of 11 RLE elements but overlap by 9 RLE elements, each group
effectively represents 2 RLE elements. Accordingly, each Bloom filter is able to compress
approximately m · 2 · arl bytes and thus, we obtain a compression ratio of m/8

gr·2·arl .
For instance, let n = 50 and the average run length for JPG is arl = 24.97. This

results in a compression ratio of 2048/8
2048·2·24.97 = 0.0025 = 0.25% for JPG files.

Practical tests on the c-corpus showed that the actual similarity digest length differs.
Having n = 50 for JPG files and n = 20 for DOC files, mvhash results in 0.59% and
0.47%, respectively. This is due to lots of small files which have a similarity digest length
of 256 bytes (= one Bloom filter) at least. For instance, imagine all files are small and the
similarity digest always consists of only one Bloom filter. Then, the absolute similarity
digest length is constant.

Accuracy. Accuracy is the ability to detect similar files with low costs in terms of false
positive and false negative results. Therefore, we first need to identify a threshold which
may distinguish between similar and non-similar files.
As said, the c-corpus is a collection of randomly collected files, therefore most files

should be non-similar. Performing an all-against-all comparison of all JPG-files in the
c-corpus, mvhash outputs multiple scores up to 70 with none above. Hence, we claim
that no non-similar pair gets a score above 70 and define this as the threshold.
Since no JPG file pair had a score above 70, we state that mvhash does not produce

false positive results. To identify false negative results, we performed the all-against-all
comparison by using sdhash. If sdhash detects similar files that mvhash does not, it is a
false negative. Using sdhash, no file pairs got a score above 21 which is sdhash’ threshold
for non-TXT files [81]. This means that for JPG, mvhash produces neither false positive
or false negative results.
In addition, we performed similar tests for DOC-files. It turned out that there were

lots of file pairs for each value up to 70, but only some few scores above. Thus, also
for DOC-files 70 seems a suitable threshold. Manually analyzing the 21 file pairs with
a score above 70, we found 8 non-similar and 13 similar file pairs. To conclude, mvhash
produces some false positive results for DOC-files. To analyze false negatives, we again
run sdhash with a threshold of 5 (see [81]). Out of the nearly 2 million comparisons,
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thousands were identified to be similar, e.g., DOC-files share some common syntax due
to the file format. However, in the case of mvhash we rate them as false positives. In
addition, as there are some thousands file pairs, it is not feasible to manually determine
the similarity. To summarize, we do not know if false negatives are an issue for mvhash.
Finally, we decided to include a real-life scenario. Our basis is a 20 page DOC-file

named Barker.doc3 with text only, based on the original file we made two different
versions. In the first version we included a table in the middle of the file, in the second
we included a picture in the middle. Comparing these files showed true positives in both
cases, where the detailed results are given in Table 5.4.

Table 5.4.: Real-life example of mvhash.

file size mvhash score sdhash score

Barker.doc 115 kB
Barker.doc with table 125 kB 99 65
Barker.doc with picture 149 kB 95 65

5.3. Statistical analysis hashing (saHash)

This section presents another new idea for approximate matching called statistical analysis
hash abbreviated saHash which was published in [27, 111]. This approach is based on k
sub-hash functions where each of them creates its own sub-hash value. In order to receive
the final digest, all k sub-hash values are concatenated. saHash estimates the byte level
similarity based on the Levenshtein distance and therefore, we have an exact measure of
similarity which differentiates this algorithm from all existing ones.
Note, saHash allows to detect near-duplicates only, where near means that the under-

lying byte sequences are essentially the same but vary by some hundreds Levenshtein
operations. In this case, saHash provides a lower bound for the Levenshtein distance
between both byte sequences as its similarity score.

5.3.1. Algorithm design and proceeding

The algorithm is based on k independent sub-hash functions also called statistical ap-
proaches. Each results in an own hash value whereby the final fingerprint is created
by concatenating all k sub-hash values. In order to compare the final fingerprint, it is
split into its k sub-hash values and k comparison functions are used to estimate the
Levenshtein distance. We denote this by similarity score.
The procedure to identify k sub-hash functions was simple. We started using triv-

ial sub-hash functions such as the byte sequence length or byte frequency. We stopped

3It is included in the mvhash (v3.0) ZIP-file and available at https://www.dasec.h-da.de/staff/
breitinger-frank/#downloads (last accessed 2014-04-01).
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adding new sub-hash functions when we couldn’t find any attack to overcome our ap-
proach. Attack in this case means the following. Let BS,BS′ be two different byte
sequences. Furthermore let LD(BS,BS′) the Levenshtein distance of BS and BS′ and
saH(BS,BS′) the Levensthein assumption of saHash. An attack is valid if an attacker
can find BS,BS′ such that LD(BS,BS′) ≤ saH(BS,BS′).
At the end we tested to see if all approaches were still necessary, as it might be possible

that an approach is already covered by another one. In case an active adversary finds
an exploit, the modular design allows to add a new sub-hash function and comparison
function.
Currently saHash uses k = 4, all described in the following section. The current

prototype is available online4. Our implementation was tested with Microsoft visual
studio C++ and GCC on 32 Bit systems. Thus, there might be problems running it in
64 Bit mode.

Statistical approaches. This section describes all four sub-hash functions of saHash.
Let BS denote a byte sequence (i.e., a file) of bytes B0, B1, . . . Bl−1 of length l (|BS| = l;
parameters are associated with the file) which serves as input. In order to reduce some
sub-hash values we use a modulus mo determined as follows

mo = 2
max

(
8,
⌈
log2 l

2

⌉)
. (5.7)

The value of mo depends on the exponent max
(

8,
⌈

log2 l
2

⌉)
which results in a minimum

modulus of mo = 256. We decided on this due to uniformity so that the range of values is
utilized well. For instance, in [13] we observed that the average file size for a Windows XP
installation is 250 KB ≈ 250 · 103 bytes. Assuming an equal distribution of bytes, every
byte will appear ≈ 103 times. Thus, the modulo counters overflow and the probability
distribution for all modulo counters approach a uniform distribution. As a consequence,
the lower bound ensures a sufficient magnitude of mo. If we handle large files we need to
store more information to uncover more Levenshtein operations therefore mo increases.
Let hk denote the k-th statistical approach a.k.a. sub-hash function for 0 ≤ k ≤ 3 and

BS a byte sequence of length l.

h0 returns the byte sequence length equal to l as an unsigned integer. The bit size
of the integer depends on the compilation mode and is 32 bit or 64 bit. h0 is an
order criteria and used to drop unnecessary comparisons: If the lengths of two
byte sequences deviate too widely (depending on the thresholds), the comparison
is canceled.

Trivial attack: Any BS′ with the same length l will result in the same hash value
h0(BS′).

h1 returns the byte frequency abbreviated freq (it is a histogram showing bytes 0x00
to 0xff, i.e., 0 to 255). For instance, to receive the byte frequency of 0xaa, the

4https://www.dasec.h-da.de/staff/breitinger-frank/#downloads (last accessed 2014-04-01).
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algorithm counts the occurrences of 0xaa within BS. The result of h1(BS) is
an array containing the frequencies of all 256 bytes (freq0 to freq255) congruent
mo. In order to reduce the fingerprint further, we only store values from freq0 to
freq254, as freq255 is then predictable by

freq255(BS) = (h0(BS)−
254∑
i=0

freqi(bs)) mod mo.

The byte length is |h1(BS)| = 255·log2(mo)
8 .

Trivial attack: Any BS′ of length l containing the same amount of bytes in any
order will overcome the combination of h0 and h1.

h2 returns the transition frequency, abbreviated tfreq. First we do an initial left circular
bit shifting5 by 4 and then proceed as in h1. In other words it is the amount of one
specific transition within BS where transition means the 4 lowest bits of Bx and
the 4 highest bits of Bx+1.

As above we only store tfreq0 to tfreq254 congruent tomo and therefore |h1(BS)| =
|h2(BS)|.
Trivial attack: Any BS′ of length l containing the same amount of bytes in any or-
der where we switch blocks having the same transition to overcome the combination
of h0, h1 and h2.

h3 returns the unevenness array, abbreviated uneva, which is an own creation and in-
spired by the question of which statistical features are relevant. Besides the fre-
quency of occurrences, we identified the frequency of repeated occurrence. The
unevenness of a byte B within BS is a measure of how evenly the occurrences of
B in BS are spread.

The result is an ordered array of 256 bytes starting with the less ‘uneven’. As the
last uneven byte is predictable (it is the one we have not found within uneva), the
byte length is |h3(BS)| = 255.

Algorithm 5 shows how to compute the unevenness of all 256 bytes for a given byte
sequence BS.

In the following we describe the three parts of the algorithm, each for-loop.

1: mean-value calculates the average distance between the same B. Thus, it is
the sum of all distances between the same B divided by the amount of occurrences
freq. The additional +1 is due to the last occurrence of a B until EOF. As the sum
of all distances is equal to the input length, we can use the fix value length(BS).

2: deviations for each B is equal to the square deviation between each occurrence
of a B.

5http://en.wikipedia.org/wiki/Circular_shift (last accessed 2013-02-18).
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Algorithm 5 Generating uneva array containing the unevenness of BS and byte i at
the i-th array position.
array uneva[256] = means[256] = {0, 0, ...}

for i do 0 to 255 . Create mean values.
means[i] =

length(BS) + 1
freq(BS, i) + 1

end for

array lastOcc[256] = {-1, -1, ...}
for i do 0 to length(BS) - 1 . Create deviations for each byte.

byte = BS[i]
dev = means[byte] - (i - lastOcc[byte])
uneva[byte] += dev2

lastOcc[byte] = i
end for

for i do 0 to 255 . Deviation from last occurrence until end.
dev = means[i] - (length(BS) - lastOcc[i])
uneva[i] += dev2

uneva[i] *= (freq(BS, i) + 1)
end for

3: deviation until end of a B describes last occurrences until EOF.

The actual saHash is denoted by H and comprises the concatenation of all four sub-
hashes, i.e., H(BS) = h1(BS) ‖ h2(BS) ‖ h3(BS) ‖ h4(BS) .

Sub-digest comparison. Let BS1, BS2 be two byte sequences and let dk denote a
distance function that returns a measure of the distance of the sub-digests hk(BS1),
hk(BS2). It is important to note that dk (hk(BS1), hk(BS2)) is a parameter of the ‘in-
verse similarity’ of both sub-digests, i.e., the more distant the sub-digests the less similar
they are.

sub-hash function for h0: An obvious distance function for d0 which represents the byte
sequence length is defined as d0 = |h0(BS1)− h0(BS2)| .

sub-hash function for h1: In order to define the measure for h1 which is an array
containing the frequencies of all bytes, we use a function subi(h1(BS1), h1(BS2))
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that subtracts the i-th element from h1(BS1) from the i-th one in h1(BS2):

tmp =

255∑
i=0

|subi(h1(BS1), h1(BS2))|

d1 =

⌈
tmp− d0

2

⌉
+ d0.

First, we sum the absolute values for all position-differences for all frequencies.
Thus, we know how many byte frequencies are different. In general there are two
possibilities. If the |BS1| = |BS2|, we need

⌈
tmp−d0

2

⌉
substitutions. In case of an

unequal-length we need to add d0.

For instance, AAAAA and AABA result in d0 = 1 and tmp = 3. Thus, d1 = d(3 −
1)/2e + 1 = 2. The difference in length is considered by d0 = 1 while all other
differences can be corrected due to a substitution (B into A).

sub-hash function for h2: h2 is similar to h1 wherefore we again use the same auxiliary
function sub. One difference is the division by 4 instead of 2 which is caused by
the initial left circular bit shifting operation: one deletion/insertion can influence
up to 4 positions within the tfreq array.

tmp =

255∑
i=0

|subi(h2(BS1), h2(BS2))|

d2 =

⌈
tmp− d0

4

⌉
+ d0.

sub-hash function for h3: To define the similarity of two uneveness lists, we first intro-
duce a function posb(h3(BS)) that returns the position of byte b inside the array.
The maximum distance is 256 · 128 which happens if the array is shifted by 128.

tmp =
255∑
b=0

|posb(h3(BS1))− posb(h3(BS2))|

d3 =

(
1− tmp

256 · 128

)
· 100

Final similarity decision. We decided to have a binary decision and therefore saHash
outputs either yes two byte sequences are considered to be similar or no. To receive
this result saHash expects two thresholds tLB and tCS . The first one is a lower bound of
Levenshtein operations and the latter one is called certainty score and allows assumptions
of the quality to be made.
In order to make an assumption about the lower bound of Levenshtein operations LB

we set LB = max(d0, d1, d2). CS is simply set to d3. If LB ≤ tLB and CS ≥ tCS then
two byte sequences are considered as similar.

66



5.3. Statistical analysis hashing (saHash)

The following shows how the default thresholds are defined. saHash identifies a match
with default settings if two different byte sequences yield LB ≤ 282 and CS ≥ 97. Of
course, a user can adjust these default values but then the probability of obtaining false
positives is raising.
To define the default thresholds tLB and tCS , a set of 12,935 files was used. First, we

did an all-against-all-other comparison and entered the LB values into a matrix. Next,
we compared all file pairs by hand starting at the lowest LB within the matrix and
stopped at the first false positive which had a LB of 283. Thus, we set tLB = 282. As
all true positives exceed 97 for CS we set tCS = 97.
Due to the large test corpus we claim that tLB = 282 is a realistic threshold to avoid

false positives. We have to keep in mind that this is a lower bound, the real amount of
Levenshtein operations might be higher.

Adjusting sub-digests to modulus. This paragraph demonstrates the special case of
having two different moduli. Let BS1 and BS2 be two inputs yielding the moduli mo
and mo′, respectively, where mo < mo′. Due to the fact that saHash is designed to only
identify small changes between two inputs, the moduli will at most differ by a factor of
2 and therefore mo′ = 2 ·mo.
In order to build the distances d1 and d2, we have to adjust h1(BS2) and h2(BS2).

As (x mod 2 · mo) mod mo = x mod mo, we simply go through the array for h1(BS2)
and h2(BS2) and use mo to recompute the frequency values. Afterwards we are able to
compare the sub-hash values.

5.3.2. Assessment and experimental results

This section aims at evaluating the correctness and performance of our approach saHash
with respect to efficiency. Furthermore, we compare saHash to the existing approaches
ssdeep and sdhash to demonstrate its benefits and drawbacks.
Our working environment was a Dell Laptop using Windows 7 64 Bit with 4GB RAM

and Intel Core 2 Duo 2x2GHz. All tests are based on a file corpus of 12,935 files6 which
have been gathered through a python script using Google.
Remark: In the following we often talk about random byte sequences. These have

been generated using the function int rand() with seed srand(time(NULL)).

Generation efficiency. One property of approximate matching is ease of computation
where we gave a high priority to generation efficiency during the saHash development
process. As a result, the time complexity to compute H(BS) for a byte sequence BS is
O(|BS|) and therefore optimal.
In order to compare the run time performance we generated a 100MiB file from

/dev/urandom/ and used it for all algorithms. C++ provides a clock() function, which
has the benefit that times of parallel processes do not influence the timing.

62,631 DOC, 67 GIF, 362 JPG, 1729 PDF and 8146 TXT.

67



5. Algorithms, concepts and applications

As shown in Table 5.9 saHash is almost as fast as SHA-1 and therefore faster than
both other approaches.

Table 5.5.: Ease of computation for approximate matching and SHA-1.

SHA-1 saHash ssdeep 2.9 sdhash 3.2
runtime 1.23 s 1.76 s 2.28 s 4.48 s

Space efficiency. The overall hash value length |H(BS)| in bytes for a byte sequence
BS of length l is the sum of all k sub-hashes bit length. Thus, the bit length is
|h0(bs)| = 4 bytes (32 bit),

|h1(bs)| =
255·max

(
8,
⌈
log2 l

2

⌉)
8 bytes,

|h2(bs)| =
255·max

(
8,
⌈
log2 l

2

⌉)
8 bytes,

|h3(bs)| = 255 bytes.


⌈

4 +
2·255·max

(
8,
⌈
log2 l

2

⌉)
8 + 255

⌉
.

For instance the fingerprint for a 1MiB file (=220) is 897 bytes and thus, has a com-
pression ratio of 0.08554%.
The compression property is best fulfilled by ssdeep which generates hash values up

to a maximum of 104 Base64 characters regardless of the input length.
[80] stated that sdhash approximately creates hash values of 2.6% of the input. Our

test with several thousand real-world files showed that sdhash creates fingerprints of a
length of approximately 2.5%. Therefore, saHash has a better compression for all files
larger than approximately 897·100

2.5 ≈ 35, 880 bytes. Recall, [13] observed that the average
file size of a Windows XP installation is 250KiB.

Modulus. In this section we discuss the impact of a variable modulus. According to
Eq. 5.7, the modulus is fix for all byte sequences with less than 216 bytes. Following this,
the factor rises by two if the input size increases by factor of four. We assume that a
larger modulus is able to determine more modifications and thus, has a better detection
rate.
As small files do not provide enough information and do not exhaust the counters, our

test scenario only used files out of the corpus that are larger than 1MiB which resulted
in 749 files. In order to analyze the consequences of an increasing modulus, we manually
changed the modulus to 7, 8, 9 and 10 bits. Based on the methodology, we searched for
the smallest LB yielding a false positive and received 2, 527, 4, 304, 7, 207 and 13, 503
LB, respectively. To conclude, the higher the modulus, the more robust saHash is.
One thing we would like to point out is the transition from 9 to 10 bit, where it was

possible to identify more true positives which were quashed using smaller moduli. Thus,
we argue it makes sense to use an increasing modulus.

Correctness. This section presents a randomly driven test case and mainly focuses on
false positives. Randomly in this case means that we make changes all over the file by

68



5.4. A concept for an efficient similarity digest lookup

chance.
First, we analyzed the impact of random changes for a byte sequence BS of length

250 kB (average file size for Win XP). A random change is one of the typical edit oper-
ations; deletion, insertion and substitution, each with a probability of 1/3 whereby each
byte in BS is equiprobable to be changed.
We generated a test corpus T700 of 700 files each of size 250 kB using the rand()

function. Then, for each n ∈ N where 1 ≤ n ≤ 700 and for each BS ∈ T700 we then
applied n random changes and received the file BS′. Next, all pairs (BS,BS′) have been
used as inputs for saHash to decide about similarity. We expect that as n increases the
dissimilarity of the corresponding files is growing, too.
saHash outputs two different values LB and CS. Fig. 5.4 presents the behavior of

up to n = 700 edit operations (x-axis) and the number of detected edit operations by
saHash (y-axis). Even n = 700 yields a ‘number of operations’ lower 282 wherefore we
only had true positives. Thus, although the default value for LB is 282, saHash is able
to detect a lot more modifications without any false positives. Remember, the output is
a lower bound for the amount of Levensthein operations.
According to our findings, we set the default threshold for CS to 97. Fig. 5.5 shows the

certainty score in relation to the number of random edit operations. With a threshold of
97, saHash is able to detect reliably similarity for n < 600.
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Figure 5.4.: Number of edit operations
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5.4. A concept for an efficient similarity digest lookup

The main drawback of Bloom filter based similarity digests is that it is not possible to
order / index them. As a consequence, looking for a single digest in a database containing
z digests, comes with an ‘against-all’ comparison (brute-force) and thus a complexity of
O(z).
For instance, we measured the time to do an against-all comparison of the t5-corpus
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(1.78GiB = 4457 files) which took 1281 s. In other words, comparing 1.78 × 1.78 =
3.17GiB of data takes about 20 minutes. According to this, we estimated the runtime
for having 256GiB of files in the database and a hard drive with 200GiB of data. Overall,
we have to compare 200 × 256 = 51, 200GiB of data which comes to 51, 200/3.17 · 1281 s
≈ 20689968 s ≈ 240 days.
In contrast, for cryptographic hashes the complexity is O(log2(z)) or even O(1) de-

pending on the storing technique: binary tree data structures or hash tables, respectively.
Recently, Base64-based approaches such as ssdeep have also been improved (see Sec. 3.1.2
on page 23) and now operate with practical speed. However, it is not possible to adapt
the n-gram technique from F2S2, since inserting features into a Bloom filter ‘randomly’
sets bits all over in the filter.
In the upcoming section we present an divide & conquer approach for Bloom filter based

approaches (not published but submitted [21]). The rest of this section is structured as
follows: Sec. 5.4.1 gives an overview of the basic operation mode of the proposed concept.
Subsequently, we present the design decisions in Sec. 5.4.2 followed by a workflow for
trees. A theoretical assessment for our approach is given in Sec. 5.4.4. The last section
shows the special use case of a single Bloom filter.

Hierarchical tree data structure. A tree data structure Ψ of degree x is a tree where
each node has x references to nodes (the ‘children’) or leaves. Let |Ψ| define the total
number of leaves in Ψ, then the height, i.e., the number of nodes on the longest path
from the root to a leaf is estimated as

h(Ψ) = dlogx(|Ψ|)e, (5.8)

where Ψ has exactly h(Ψ) levels. Fig. 5.6 shows examples of a binary and a tertiary
tree containing a total number of |Ψ| = 7 leaves. Obviously, for fixed values of |Ψ|
increasing x decreases the height h(Ψ), and vice versa.

1 2 3 4 5 6 7

1 2 3 4 5 6 7

level 1

level 2

level 3

x = 2 x = 3

h(Ψ) = dlogx(|Ψ|)e

Figure 5.6.: Hierarchical tree data structures: examples of a binary tree (left) and a
tertiary tree (right) containing seven leaves.

5.4.1. Proceeding overview

The key idea is to build a tree data structure of Bloom filters over all similarity digests
where the leaves are ‘file identifiers’ (FI ). A FI is a link to a database which contains
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. . .

. . .. . .

s1 s2 sz. . .

. . .

Ψ S

FI 1 FI 2 FI z. . . bf . . . Bloom filter

level 1
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h(Ψ) =
dlog2(z)e

z elements

z/2 elem.
z/2 elem.

z/4 elem.

FI z−1

bf

bf bf

bf bf

Figure 5.7.: Construction of Bloom filter-based tree data structure: schematic illustration
using a binary tree.

at least the similarity digest, but may contain additional information, too. Thus, this
section first shows the generation process followed by the lookup.

Tree generation. For a given set S containing z elements, each element s ∈ S is inserted
to the root node of the tree; a huge Bloom filter. Subsequently, depending on the degree
x of the tree data structure, z/x consecutive elements are inserted to x Bloom filters
stored in the children nodes of the root node. This procedure is applied recursively, i.e.,
in level L, z/xL−1 elements are inserted into xL−1 different Bloom filters, while z/xL−1 > 1.
Finally, FI s are stored at the corresponding leaves. The procedure is summarized in
Fig. 5.8, an example for a binary tree is illustrated in Fig. 5.7.

Input:

• Set of elements, S

Output:

• Hierarchical tree data structure, Ψ

Procedure:

1. Insert each element s ∈ S into the root Bloom filter b

2. In level L insert xL−1 consecutive sequences of z/xL−1

elements into Bloom filters of according xL−1 nodes

3. Repeat 2. while z/xL−1 > 1

4. Insert FI s at leaves of Ψ

Figure 5.8.: Generalized construction of Bloom filter-based tree data structure.

Lookup strategy. Having a tree means that it is not necessary to compare each di-
gest against all digests in the reference dataset; it only has to be compared against a
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subset of nodes. Moreover, we claim that most comparisons yield a non-match (i.e.,
|good files| >> |bad files|) and hence are dropped in the first step. Once a match is
found, we trace a path down the tree data structure, ending at a leaf. If an exact match
score is needed, the FI can be used to fetch the similarity digest from the database. This
improves the lookup complexity for one digest to O(logx(z)).
The final lookup procedure is different since we do not compare files to the nodes, but

to fragments of files. The impact and final workflow is discussed in Sec. 5.4.3.
Note, if we only have a single node (the root node), this works as an easy filter for the

all-against-all comparison which will be discussed in Sec. 5.4.5. Only files that are found
in the node need to be compared against the database. We denote this special case by
file-against-set comparison as it outputs ‘yes, the file is in the set’ or ‘no, it is not’.

Terminology & definitions. This section gives the notations which are necessary to
understand all improvements and design decisions described in the following section. For
m, k, n, z ∈ N, abbreviation and according descriptions are defined as,

z. . . denotes the number of files which is equal to the number of similarity digests.

feature. . . describes a byte sequence which is hashed and inserted into the Bloom filter.

m. . . denotes the Bloom filter size in bits.

k. . . number of sub-hashes where each one sets a bit in the Bloom filter.

n. . . number of features inserted into a Bloom filter.

p. . . false positive probability for an element / feature to be in the Bloom filter.

In case of mrsh-v2 feature equals a chunk of approximately 160 bytes and regarding
sdhash, feature is a sequence of exactly 64 bytes.

5.4.2. Design decisions

This section explains our design decisions for the various parameters needed to implement
our concept. The first paragraph shows the correlation between the input file size and
the number of features which are inserted into the Bloom filter. Next, the size and height
of the binary tree is discussed. Subsequently, we introduce our match decision approach
and the false positive rate. Based on all these findings, we explain the procedure of how
to calculate the best Bloom filter size. Finally, the relevance of the feature hash function
is discussed.

Correlation between elements (n) and file set size. In Eq. 2.1 on page 17, n denotes
the number of elements that are inserted into a Bloom filter. However, the number of
elements is different to the amount of files in the set (= z) but equal to the number of
features. Hence, this section analyzes the relation between n and file set size. Let µ
denote the file set size in MiB.
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• sdhash inserts 192 features into a Bloom filter for approximately every 10KiB of
the input file. Thus, n is calculated by n = µ · 220 · 192/(10 · 210) ≈ µ · 214, where
220 and 210 is needed to change from MiB and KiB to bytes, respectively.

• In case of mrsh-v2, the implementation splits the input in 160-byte features. Thus,
n is calculated by n = µ · 220/160 ≈ µ · 213 where 220 converts MiB into bytes.

We use n = µ · 214.

Seize and height of the tree. Eq. 5.8 on page 70 shows how to calculate the height of
the tree if every leaf only contains one FI. If we assume a total size of ΩGiB and an
average file size of ω KiB, then our dataset consists of Ω · 230/(ω · 210) = Ω/ω ·220 files which
results in a maximum height of h(Ψ) = dlogx(Ω/ω · 220)e which each bucket has exactly
on entry.
As this is very memory consuming, there is also the possibility that a leaf is a bucket

and contains multiple FI s instead of a single one. In that case the queried similarity
digest must be compared to all files in the bucket. However, by storing a total number
of l FI s at each leaf, we reduce the height to:

h(Ψ) = dlogx(|Ψ|/l)e.

The actual size of the each Bloom filter (each node) is variable. However, if we require
that k, p, n are fix, then the size is 1/x between two consecutive levels. More precisely,
let L ∈ N denote the level in the binary tree (L = 1 is the root level) and let mL be the
Bloom filter size at the corresponding level. Then, mL+1 = mL/x. On a subsequent level
we have an x-fold number of Bloom filters yielding a constant size of all filters per level.
Accordingly, the overall size of the tree is (h(Ψ)− 1) ·m1.
Remark : we reallocated the elements but the overall number is constant at each level.

If the number of inserted elements reduces and k, p are fix, then the size of the filter
reduces, too.

Match decision and false positives. Traditionally approximate matching compares
two similarity digests against each other and returns the score. Our procedure works
differently. Instead of searching for the complete files, we focus on fragments to identify
potential buckets. A fragment of a file matches a Bloom filter, if r subsequent features
are found in the node. Once a leaf is identified, we might perform the conventional
comparison.
More precisely, Eq. 2.1 relates the false positive probability p for a single feature to

the different parameters k, n,m. In fact, we are less interested in the false positive rate
for a single feature but more for a fragment of a whole file. Let pf denote the desired
false positive probability for a fragment. If we require r ∈ N consecutive false positive
features to be a false positive fragment, the false positive probability for a fragment is
pf = pr.
For instance, if we request a false positive probability for a file (which is equal to a

fragment) of 10−8 and set r = 8, then p = 108/−8 = 0.1.
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Note, r = 8 corresponds an approximate overlapping of 8 · 160 = 1024 bytes in case
of mrsh-v2. We argue that this is a sufficient lower bound to talk about similarity. Of
course, one may change these settings to their personal requirements.

Root Bloom filter size. Before discussing the Bloom filter size, recall probability p for
a false positive from Eq. 2.1:

p ≈
(

1− e−
kn/m

)k
.

Let n and p be given and k be the optimal value from Eq. 2.2. Then aforementioned
equation becomes

p =
(

1− e− ln(2)
)m/n·ln(2)

= 2−
m/n·ln(2) = e−

m/n·(ln(2))2 .

According to this, the root Bloom filter size is estimated as

m1 = n · − ln p/(ln 2)2 . (5.9)

Based on the findings from the previous paragraph, p = r
√
pf , we use r = 8 and the

false positive probability for a fragment pf = 10−8. Then we have p = 108/−8 = 0.1 and
m1 = n · − ln 0.1/(ln 2)2 = µ · 214 · 4.7925 = µ · 216.26. Depending on µ, each level of the
binary tree could easily have Bloom filters of 1-2GiB (the size of the Bloom filter has to
be of type 2a where a ∈ N).

Feature hash function. As known from Eq. 2.2, if n and m are given, the value k
minimizing the false positive probability is

k = m/n · ln 2. (5.10)

Note, k is independent from the considered level as m and n are both multiplied by 1/x.
According to this, the best value for k = µ · 216.26/µ · 214 · ln 2 = 21.73 = 3.34. Since k ∈ N

and it may vary depending on the further parameters, we propose 3 ≤ k ≤ 7.
Generally speaking, to set k bits in a Bloom filter of m bits length, it requires a

feature hash function of at least k · log2(m) bits. More formally, having a feature hash
function of b bits, b ≥ k · log2(m). Having a Bloom filter of 1GiB therefore requires
b ≥ 4 · log2(230) = 120 bits.
Since, the default implementations of sdhash and mrsh-v2 run 160-bit SHA-1 and the

64-bit FNV hash, respectively, both algorithms have to be adapted. In order to allow
larger reference sets like 256GiB or 512GiB which need Bloom filters of 4 or 8GiB,
we recommend implementing 256-bit versions of the hashing algorithms. For instance,
set k = 5 and using a 256-bit hash function allows us to handle Bloom filter sizes of
2256/5 = 251.2 bits ≈ 218 GiB.
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5.4.3. Workflow for trees

Traditionally the reference data is hashed and stored in a database. Next, for the com-
parison, the file is processed and the similarity digest is compared against all entries in
the database. Due to the usage of a tree and fragments (i.e., r consecutive features)
the overall procedure changes. In the following we discuss diverse design decisions in-
cluding their impact. We decided for binary trees as they are very common and easy to
understand.

Input:

• Bloom filter b and file A

Output:

• Binary match decision 1...match, 0...no match

Procedure:

1. Identify and hash feature of A

2. Add it to the similarity digest

3. Compare the feature to b

4. If it matches, then increase counter τ and save feature
hash, otherwise τ = 0

5. If τ = r, return ’1’, otherwise apply 1. to the next feature

6. Return ’0’

Figure 5.9.: Generalized overview of the proposed matching function ξ.

One vs. all fragment comparisons. In general there are two possibilities of when to
stop. First, one can stop when one fragment is found or second, one may stop after
comparing all fragments. The difference is that in the former case probability for a
false positive is higher. In the latter case the output is a list of possible leaves, i.e., file
identifiers, and if several fragments point to the same leaf, the result is considered more
reliable.
Depending on the personal preference, one may fetch the real similarity digests from

the database based on the FI and perform the conventional comparison. Moreover, we
recommend to sort the FI based on match frequency, e.g., if FI of A was matched 100
times and FI of B only twice, A is considered more important.

Analysis of subsequent level (for binary trees). If a fragment is found in the root
node, we jump to the Bloom filters on level 2. Let us always start with the left node.
If the fragment matches there too, we continue on the next level. In case of a negative,
there are two possibilities:
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1. Hard decision: we trust that this fragment is not a false positive and jump to the
next level of the right node.

2. Soft decision: we verify the result by comparing the fragment against the right
node.

In the former case we obtain a logarithmic lookup efficiency where in the latter case
we approximately have an additional 50% comparisons. However, we reduce the false
positive rate. The entire procedure is depicted in Fig. 5.10.
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Figure 5.10.: Generalized overview of the proposed workflow.

Nearest neighbor vs. all neighbors If we are interested in having ‘all similar files’
instead of only ‘one match’, we always compare the fragment to all nodes of the next
level and stop when we arrive at a leaf or if the fragment is not found. In this case
complexity is upper bounded by O(z), i.e., in the rather unlikely case that all FI s are
similar to the given query element all nodes have to be processed, which will then require
2log2(z) = z comparisons for a binary tree.

Insertion & deletion of file identifiers Within any tree data structure the insertion of
an FI can be handled in O(log(z)) steps by inserting according features to log(z) Bloom
filters and one FI at the resulting leaf. To construct Ψ we recommend to start from the
top and go to the bottom as we can reuse the feature hashes from higher levels.
In contrast, the deletion of an FI can not be performed on an existing tree data

structure. Since features are hashed into Bloom filters in an irreversible manner, i.e., we
do not know which ones result from which features and the number of times these occur,
deletion has to be performed off-line. In order to delete a single FI from the proposed
Bloom filter-based tree data structure Ψ, the according FI has to be deleted from the
original set S and Ψ has to constructed from scratch. However, we claim that blacklisted
files will always remain blacklisted and therefore deleting a FI never happens.
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Recommend setting for blacklisting With respect to blacklisting we argue that iden-
tifying one match is sufficient. Therefore, we think that ‘one fragment comparison’ and
‘nearest neighbor’ are sufficient. For more reliability and to obtain a match score, we
recommend to compare the final similarity digests with each other to obtain a match
score. As we stop after matching one fragment we would always check against both
Bloom filters when jumping to the subsequent level.

5.4.4. Theoretical assessment for Bloom filter digests in trees

This section presents a theoretical assessment of the proposed concept. Therefore, we
briefly discuss the average file sizes and used settings in the rest of this section. Next,
we present an overview of the required memory for different scenarios followed by some
calculations about the estimated efficiency improvement.
As we are interested in a functional evaluation, the actual type of the database (black-

list vs. whitelist) does not matter. Since no blacklisted files are available, we studied
whitelisted files. To get an overview of the average file size of large datasets, we analyzed
the sizes of almost 1,000,000 files in the govdoc-corpus. “These documents were obtained
by performing searches for words randomly chosen from the Unix dictionary, numbers
randomly chosen between 1 and 1 million, and randomized combinations of the two, for
documents of specified file types that resided on web servers in the .gov domain using
the Yahoo and Google search engines”7.
The average file size is 494KiB with a distribution as shown in Table 6.10 – nearly

91% of all files are smaller than 1MiB. Additionally, we checked the average file size on
our working stations which is 510KiB and 611KiB, respectively.

Table 5.6.: File sizes distribution in the govdoc-corpus (min size is 1KiB).

File size (KiB) ≤ 4 ≤ 16 ≤ 64 ≤ 256 ≤ 1024
Amount (%) 5.40 20.71 52.54 75.82 90.60

Any tree vs. binary tree. The size and the height of a tree depends on their degree x.
For instance, if we assume a database S with 10,000 entries, then for choosing a binary
tree, x = 2, we get a total number of h(Ψ) − 1 = dlog2(10, 000)e − 1 = 13 levels. The
complexity of looking up a single digest reduces from 10,000 comparisons to 14 (at most).
If the digest is not found in the root node, it is dropped immediately. In case there is not
enough memory to handle a binary tree of 13 levels, we can set an upper limit. Thus,
the leaves do not contain a single FI but a bucket with multiple FI s, e.g., setting an
upper limit of 10 levels results in d10, 000/xL−1e = d10, 000/2L−1e = 20 FI s per bucket.
In addition, it is possible to increase x, e.g., setting x = 4 reduces the number of levels
to dlog4(10, 000)e − 1 = 6.
In order to handle such a tree data structure and its huge Bloom filters, we require

powerful hardware. However, we argue that nowadays hardware is not as expensive as it
7http://digitalcorpora.org/corpora/files (last accessed 2014-03-07).
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was and that companies working in prosecution have servers with hundreds of gigabytes
or even a terabyte of RAM.

Setup. Based on these findings, we decided for an underlying dataset of 256GiB and
an average file size of 512KiB. Recall, we apply approximate matching in the context of
blacklisting. We claim that blacklists are far smaller than whitelists and thus 256GiB
is reasonable (e.g., the whitelist of NSRL contains about 2TiB of unique files). While
emphasis is put on this single setting, which we consider as representative, the concept
can be easily adapted to any other setting. In addition, it is important to note that the
binary tree is precomputed and, hence, its generation time is irrelevant.
We restrict our analysis to focus on binary trees where leaves correspond to single FI s.

Assuming an average file size of 512KiB, the number of files is 256 · 230/(512 · 210) = 219 =
524, 288. Thus, the binary tree has 19 levels and the size of the Bloom filter at the root
m1 is 2GiB. Overall, the tree requires 19 · 2 = 38GiB of memory. An overview of the
relation between average file size and tree height is given in Table 5.7.

Table 5.7.: Height of the binary tree with respect to the average file size ω.

ω in KiB 32 64 128 256 512 1024
h(Ψ) 22 21 20 19 18 17

Further, we presume an HDD having around 450,000 files with a total file size of
200GiB which corresponds to an average file size of 466KiB.

Memory requirement. As mentioned earlier, see Sec. 5.4.1, the required amount of
memory depends on the amount of data and the number of files, z. Based on the overall
size of the data and the configuration of the employed tree data structure Ψ, we can
define the size and number of required Bloom filter nodes, σ. The number of files defines
the height of the tree, h(Ψ). For the considered setting, i.e., the application of a binary
tree data structure where each leaf points at a single FI , diverse sample configurations
are summarized in Table 5.8.
As already mentioned, any restriction to memory can be handled by utilizing buckets

of FI s at leaves or extending the degree x of the tree data structure. Both of these
actions will reduce the amount of required Bloom filters and, hence, the overall memory
requirement.

Comparison efficiency. This subsection studies the comparison efficiency of the tradi-
tional approach and the new one. We decided to focus on the bit comparisons of each
proceeding.

Traditional lookup: Recall, a similarity digest may consist of several ‘small’ Bloom
filters (mostly each 256 bytes). In order to compare two digests, all filters of digest A
have to be compared against all filters of digests B. Consequently, doing an all-against-all
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Table 5.8.: Correlation between data size and average file size. First value is h(Ψ), second
value is total size of the binary tree in GiB.

Avg. file size Data size

128GiB 256GiB 512GiB 1024GiB 2048GiB
m1 = 1 m1 = 2 m1 = 4 m1 = 8 m1 = 16

32 22 / 22 23 / 46 24 / 96 25 / 200 26 / 416
64 21 / 21 22 / 44 23 / 92 24 / 192 25 / 400
128 20 / 20 21 / 42 22 / 88 23 / 184 24 / 384
256 19 / 19 20 / 40 21 / 84 22 / 176 23 / 368
512 18 / 18 19 / 38 20 / 80 21 / 168 22 / 352
1024 17 / 17 18 / 36 19 / 76 20 / 160 21 / 336

comparison of similarity digests equals an all-against-all comparison of all Bloom filters
and thus of all bits. Hence, we need to know how many Bloom filters of 256 bytes exist.

sdhash roughly compresses 10 KiB of the input into a 256 bytes Bloom filter. Therefore,
the 256GiB reference dataset results in 256 ·220/10 = 224.68 filters and the analyzed
data corresponds 200 · 220/10 = 224.32 filters. To sum it up, we have to compare
around 249.00 Bloom filters each consisting of 211 bits (256 bytes). In all we have
to compare 260 bits in total.

mrsh-v2 approximately compresses 25 KiB of the input into a 256 bytes Bloom fil-
ter. Thus, we have 256 · 220/25 = 223.36 filters for the reference dataset and
200 · 220/25 = 223.00 for the HDD. Overall, it requires to compare 246.36 Bloom
filters or 257.36 bits.

Proposed approach: On page 72 we correlated the input size and the amount of elements
or features by n = µ · 214. This means that 200GiB of data equal n = 200 · 210 ·
214 = 231.64 features. If we use k = 5, then each feature requires to compare 5 bits:
231.64 · 5 = 233.96 bits. If we perform an ‘all fragments comparison’ where all of these
exist in the database, these features have to be compared at all 19 = 24.25 levels which
comes to a total of 238.21 bits that have to be compared. This represents the worst case
where all fragments are found. In the best case (no fragment is found), we only require
2(31.64+33.96)/2 = 232.80 bit comparisons (i.e., on average we compare 2.5 bits out of the
5 to the Bloom filter). Additionally, the similarity digest comparison is more expensive
as after comparing two similarity digests, the amount of 1s needs to be counted. If we
assume a uniform distribution of matches (which is rather unlikely as blacklisted files
will occur less frequent), we have to compare (238.21 − 233.96)/2 = 237.13 in the average case.
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5.4.5. Special use case: only a single Bloom filter

In this section we present and evaluate the special case were we only have a single Bloom
filter which allows a file-against-set comparison with a lookup complexity of O(1) for
a single digest (published in [17]). In contrast to general approximate matching, our
approach can only answer the question “does this set contain a similar file to file A?” by

• yes, there is a similar file (but it cannot say which one), or

• no, there is no similar file,

which is sufficient in case of blacklisting. We obtain this benefit either at the cost of
more hashing operations or requiring a lot of main memory.

Proceeding. The basic idea is to insert all features into a single Bloom filter instead
of having multiple filters as the lookup complexity per filter is O(1). More precisely, let
SB and SD be two sets of digests. Traditionally (using cryptographic hash functions)
an investigator possesses a database containing the elements of SB (e.g., the blacklist).
When he receives D (e.g., a seized device), he hashes all files to SD and compares them
against SB. Note, the database SB can be precomputed and hence its generation time
is irrelevant.
Regarding our concept, there are basically two alternatives depending on the underly-

ing hardware:

1. Alternative one is identical to the traditional procedure. That is, the Bloom filter is
filled with the features of SB in advance, meaning that we can neglect its generation
time.

2. The second possibility assumes that SB does not fit into the Bloom filter, but SD
does. In that case we turn the work flow upside down by filling the Bloom filter
with SD and compare SB against it.

The difference between these two procedures is the overall time. While in traditional
procedure (alternative (1)) only SD needs to be processed, the second possibility also has
to hash SB as a precomputation step. In the following (1) is denoted by best-case and
(2) by worst-case.
The reason why alternative (2) might be necessary is that it is not possible to load

the Bloom filter for SB into main memory. Hashing all files of a set into a single Bloom
filter requires a large Bloom filter which has to fit into main memory due to efficiency
reasons. Thus, the limiting source is the physically available RAM.
For instance, let us assume that |SB| = 1500GiB and |SD| = 200GiB. As shown later,

an everyday working station with 8GiB RAM cannot handle a Bloom filter of SB but
can of SD. Therefore, we suggest creating a Bloom filter out of SD and comparing all
files of SB in a second step. It is obvious that both sets have to be hashed – it is not
possible to create the database in advance.
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To optimize (2), one may store a list of hash values of SB instead of the files. Thus, the
files are already hashed and the overall proceeding is almost as fast as (1). In addition,
the compression is better as we only store a 256-bit (32 byte) hash for each 64-byte
chunk.

Implementation details. To verify our findings, we released a tool called mrsh-net
which is basically a modification of the latest mrsh-v2 version. The implementation is
very simple and only has two options:

-g generates the database and prints it to stdout. Usage:
./mrsh-net -g t5-corpus > dbFile

-i reads DB-FILE dbFile and compares DIR/FILE against it. Usage:
./mrsh-net -i dbFile t5-corpus

The final step is to compile it and run make mrsh-net.
The main change was the implementation of the FNV-1a 256-bit function which only

consists of an XOR and the multiplication with the prime 2168+28+0x63. As the runtime
efficiency is very important, the implementation of the multiplication is ‘hardcoded’, i.e.,
it is not trivial to change the prime number or extend it to 512-bit.
In order to speed up the implementation, one may manipulate the FNV implementation

in src/fnv.c. The function mulWithPrime2 is responsible for the multiplication with
the 256-bit prime. However, in case of a small Bloom filter, we do not need the most
significant bits and can remove them. For instance, setting the Bloom filter to 32 MiB
and k = 5, we only need log2(32 · 220 · 8) · 5 = 140 bits. Thus, we can comment out lines
108-112, which then ignores the bits 160 to 255.
To adapt our prototype for a specific use case, the user can change the following

configuration in header/config.h:

SUBHASHES - amount of sub-hashes, parameter k (default: 5).
MIN_RUN - minimal longest run, parameter r (default: 6).
BF_SIZE_IN_BYTES - Bloom filter size in bytes (default: 33 554 432 = 225 = 32MiB). It
has to be a power of 2.

Experimental results for special use case

First, we analyze the general efficiency of different approaches. The second part relates
mrsh-net with the longest common substring. The final part compares mrsh-net and
mrsh-v2 with each other. All the presented results are based on the t5 -corpus.
For our testing, we used the default configuration of mrsh-net, with k = 5, rmin = 6

and a Bloom filter size of 32MiB. The blocksize, i.e., the approximate length of a feature,
is set to 64 bytes.
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Table 5.9.: Database size and runtime efficiency of different algorithms.

sdhash mrsh-v2 mrsh-net mrsh-net mrsh-net F2S2 SHA-1
worst worst best

Database size 61.18MiB 27.33MiB 1.78GiB 1.78GiB 32.00MiB 3.69MiB 0.24MiB
Generation eff. 178 s 53 s 123 s 77 s 123 s 221 s 24 s

Comparing 1281 s 1259 s < 1 s∗ < 1s∗ < 1 s < 1 s < 1s
Total 1459 s 1312 s 246 s 154 s 123 s 221 s 24 s

*The comparison itself need less than a second, however, in the worst case DS needs the be hashed.

Efficiency in general. Let SD denote the hashes of files from a device and let SB denote
database set (i.e., the blacklist). Traditionally the proceeding requires to hash all files
in SD and to compare the hashes against an ‘existing database’ of SB files. Thus, this
section focuses the general properties of the different approaches with respect to runtime
efficiency and database size (compression).
The results are given in Table 5.9 whereby the details are discussed in the upcoming

subsections. The first subparagraph analyzes the compression (row 1). Next, we explain
the runtime of the algorithms (rows 2-4). The last subparagraph is an estimation for a
large scale scenario to clarify the impact of non-indexing.
Columns 1 and 2 present the results for the original implementations of sdhash and

mrsh-v2, respectively. In column 3 we show the results for the worst case which means
that we do not have an underlying database. The following column also presents the
worst case but we modified mrsh-net based on the default settings (less bits of the FNV
hash are considered). For completeness we included the results for F2S2 and SHA-1 in
the last two columns.

Database size. Let SB be the t5-corpus. Then, this section shows the size of the
corresponding database. In case sdhash, mrsh-v2, F2S2 and SHA-1 the database is
trivial as the database is equal to the hashes.
Regarding mrsh-net there are two possibilities: worst vs. best case. The worst case

describes the scenario where the database does not fit in RAM and hence a hash-database
as such does not exist. The investigator needs to have the whole dataset available. In
contrast, for the best case where sufficient RAM is available, the database is simply the
Bloom filter.
To conclude, the size of the databases of sdhash, mrsh-v2 and mrsh-net (best) are in

the same order of magnitude and therefore only a weak assessment criterion.

Experimental generation efficiency. This section focuses on the time of hashing SD
and comparing it against the database of SB (generating the database is neglected as it
can be done in advance). As we are interested in the runtime only, we use t5-corpus as
both SB and SD. Note, this results in 4457× 4457 comparisons8.

8We run the tools by ./tool -c D B which compares both lists also there are duplicate comparisons,
i.e., A against B and B against A.
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The times are given in Table 5.9. Row 2 states that all algorithms perform well in
hashing but are still slow compared to SHA-1. The problem is shown in row 3 where both
Bloom filter approaches need an extremely long time for the all-against-all comparison.
The last row only sums rows 2 and 3. Note, the ‘worst-columns’ constitute an exception.
Admittedly the comparison takes less then a second, however there is no underlying
database and thus SB has to be processed. Therefore, row 4 contains two times the
hashing time (as D = B).
One should keep in mind that the comparison has quadratic complexity and thus in-

creases enormously when the number of files increases. In contrast, our new concept has
a linear runtime as it only needs to hash the files.

Impact on runtime in large scale forensics. Based on the findings from before, this sec-
tion estimates the efficiency for a real life scenario. We used the numbers from Table 5.9
and calculated the upcoming ones for a larger use case where we pick up the example
from the beginning of this section and assume 200GiB of seized data and a database of
1500GiB9.
The results are given in Table 5.10. The estimated database size is given in row 1

where in the best case mrsh-net needs the less space, however, it should be kept in
RAM. Row 2 calculates the approximate hashing time by multiplying 200/1.78 (we have
to process 200GiB instead of 1.78GiB). The last row assesses the comparison time. For
instance, sdhash needed 1281 s for comparing 1.78 × 1.78 = 3.17GiB of data. As this
sample requires to compare 200 × 1500 = 300, 000GiB of data, we estimate the overall
time by 300, 000/3.17 · 1281 s.
Again, there are two possible scenarios with mrsh-net. In the worst case, we hash

the 200GiB to the Bloom filter and then process the 1500GiB. As the comparison ‘costs
nothing’, mrsh-net has to hash 1700GiB which is 1700/1.78 · 123 s = 117, 471 s (approx
32 h). In the best case we have a powerful station that can hold the Bloom filter for
1500GiB data in RAM (approximately 16GiB of RAM are needed). Thus, we only need
to process the 200GiB which takes 227min.

Table 5.10.: Estimated runtime for a sample use case.

sdhash mrsh-v2 mrsh-net mrsh-net
worst best

Database size 49.79GiB 22.22GiB 1500GiB 16GiB
Hashing 329min 98min 227min 227min

Comparing 3.84 years 3.77 years 32.63 h < 1min

Precision & recall on base of the longest common substring. The current version
of mrsh-net decides between match and non-match based on the longest run. Hence,
this section focuses on the relation between mrsh-net and the longest common substring.

9The current NSRL of NIST contains about 2TiB of unique data, hence this a realistic size.
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Due to the complexity, we build our ground truth on the approximate longest common
substring which is briefly described in Sec. 6.2.4. The basic idea of the approximate
longest common substring metric (aLCS) is not to compare files byte by byte but rather
block by block.
To calculate the precision and recall rates, we perform an all-against-all-other com-

parison and use the following simplified notation. mrsn(f,BF ) compares file f against
the Bloom filter bf and returns the longest run. aLCS(f,GT ) returns the longest aLCS
score for f in the ground truth GT .
According to this, we define the true positive (TP), false positive (FP), true negative

(TN) and false negative (FN) as follows:

TP: mrsn(f, bf) ≥ rmin and aLCS(f,GT ) ≥ rmin · bs.
FP: mrsn(f, bf) ≥ rmin and aLCS(f,GT ) < rmin · bs.
TN: mrsn(f, bf) < rmin and aLCS(f,GT ) < rmin · bs.
FN: mrsn(f, bf) < rmin and aLCS(f,GT ) ≥ rmin · bs.
where rmin · bs = 6 · 64 = 384 bytes.

Positives. Our comparison returned 2555 positive matches with a true positive rate
of 99.3% and a false positive of 0.7%. Reviewing the false positives, all but one of the
longest run lr do not exceed 9 which means that they are very close to our threshold.
In addition, we studied the distribution of the aLCS scores daLCS relative to rmin · bs

for the false positives where

daLCS =

⌈
100×

(
1− aLCS(f,GT )

384

)⌉
, daLCS ∈ N.

This shows how close the false positives are to the threshold of 384. The results are
given in Table 5.11. For instance, over 60% have an aLCS score above 30% (=269 bytes).
To sum it up, although these are false positive, they are close to the thresholds.

Table 5.11.: Empirical probability distribution function (pdf) and cumulative distribution
function (cdf) for daLCS .

X 10 20 30 50 70

P{daLCS = X} 0.1111 0.2778 0.2222 0.1111 0.0556
P{daLCS ≤ X} 0.1111 0.3889 0.6111 0.8889 0.9444

Next, we consider the relation between the longest run and the aLCS score. In other
words, we expect that the longest run lr multiplied by the blocksize bs is greater or equal
the aLCS score, i.e., lr · bs ≥ aLCS. According to that, we adapt the configuration from
the beginning of this section and changed rmin · bs to lr · bs. Thus, the new true positive
setting is:

TP: mrsn(f, bf) ≥ rmin and aLCS(f,GT ) ≥ lr · bs.
...
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In this case, the detection rates worsen and fall down to a true positive rate of 92.3%
and a false positive rate of 7.7%. Again, we consider the distribution for the aLCS scores
in Table 5.12. As we can see, over 75% vary by less than or equal to 30% and we rate
these results as still acceptable.

Table 5.12.: Empirical pdf & cdf for daLCS for the relation between longest run and aLCS
score.

X 10 30 50 70 100

P{daLCS = X} 0.3214 0.2296 0.0714 0.0051 0.0051
P{daLCS ≤ X} 0.3214 0.7551 0.9235 0.9796 1.0000

Negatives. Obviously the negatives are 4457 − 2555 = 1902 which can be broken
down into 77.1% true negatives and 22.9% false negatives. Having a closer look at these
very high false negatives, we observe that most aLCS matches are based on low entropy
sequences. In other words, the high aLCS scores between some files are based on long
runs of zeros only, i.e., the entropy of the substring is e = 0, or runs of with a lot of
zeros, e.g., the entropy of the substring is 0 < e < 3. Thus, Table 5.13 shows the impact
of considering aLCS sequences with a higher entropy.
Nevertheless, false negatives are not so much relevant. For instance, with respect

to blacklisting, these files remain unclassified and an investigator has to analyze them
manually. Hence, false negatives are considered during a further investigation.

Table 5.13.: Distribution of false negative with respect to entropy.

entropy > 0 > 1 > 2 > 3

TN 78.5% 82.3% 86.4% 91.2%
FN 21.5% 17.7% 13.6% 8.8%

Precision & recall rates compared to mrsh-v2. This section compares the relation be-
tween mrsh-v2 and mrsh-net. As both are based on the same procedure, we expect that
both implementations yield similar results. In other words, comparing a file f against
database DB, both algorithms should either output a match or a non-match. Thus, we
define the following rates:

TP: mrsn(f, bf) ≥ rmin and mrsh(f,DB) ≥ 1.
FP: mrsn(f, bf) ≥ rmin and mrsh(f,DB) = 0.
TN: mrsn(f, bf) < rmin and mrsh(f,DB) = 0.
FN: mrsn(f, bf) < rmin and mrsh(f,DB) ≥ 1.

Positives. Regarding the 2555 positive matches from mrsh-net, 92.1% are true posi-
tives and also identified by mrsh-v2. The false positive rate is therefore at 7.9%. Com-
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paring the false positives against the aLCS showed that in fact only 3.6% (out of the
7.9%) are really false positive. On the other side, Table 5.14 shows the distribution of the
longest run for the false positives. Most of them are close to the longest run threshold 8.
To conclude, the results are slightly different, however, the mrsh-net shows a finer

granularity as in fact these are not false positives but true positives.

Table 5.14.: Empirical pdf & cdf for longest run lr.

X 10 15 20 30 50

P{lr = X} 0.1095 0.0200 0.0200 0.0200 0.0050
P{lr ≤ X} 0.4925 0.7363 0.7960 0.9665 0.9950

Negatives. The negatives yield a 61.8% true negative rate and a 38.2% false negative
rate. Recall, false negative means that mrsh-net does not identify a match while mrsh-v2
outputs a score greater 0. In other words, mrsh-v2 identifies a positive.
Thus, we first compared the mrsh-v2 results against aLCS. In fact, almost 70% percent

of these matches are based on files that share less than 384 bytes which have no false
negatives for mrsh-net (our setting aims at having more than 384 bytes). Regarding the
remaining 30%, most of the matches are again based on a low entropy, e.g., over 75%
have e < 3.
To conclude, the algorithms do not coincide very much with respect to negatives.

5.5. File fragment detection on network traffic

In this section we show how to use approximate matching to detect similar files in net-
work traffic. Compared to existing techniques, our approach is straightforward and does
not need a comprehensive configuration. It can be easily deployed and maintained as
only fingerprints (a.k.a. similarity digest) are required, unlike providing verbose rules or
machine learning. The results are not published yet but submitted [10].
There are two challenges in order to apply approximate matching approaches to net-

work traffic. First, algorithms have to be optimized to handle fragments of MTU size. In
contrast to their original purpose (handling inputs of kilobytes, megabytes or gigabytes),
they have to be optimized to handle fragments where each has less approximately 1460
bytes. Second, we need a fast lookup strategy for the similarity digests which is solved
by the findings from Sec. 5.4.5.

5.5.1. Foundations

This section explains the foundations and presents related literature. First, we briefly
present the network basics. Next, we discuss the different levels of network packet anal-
ysis. The current techniques for data leakage prevention systems are explained in the
following.
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Network basics. Network traffic can be analyzed on different levels which result from
the network architecture, the TCP/IP reference model. This model was proposed by
Cerf and Kahn in 1974 [31] and divides the network into four layers named application,
transport, Internet (IP) and link layer.
In order to send information over the Internet, the payload is split into chunks of 1460

bytes and each layer has a specific header prefixed to it [97]. This size results from the
maximum transmission unit (MTU, [71]). MTU is the maximum packet size that can be
handled by the IP-layer and is 1500 bytes for Ethernet traffic.
Literature often uses the terms ‘segment’ for TCP traffic units on transport layer,

‘datagram’ for units on the internet layer, and ‘frame’ for the unit of a link layer. The
term packet is a more generic term and can be used for units on all layers. We will use
the term ‘network packet’ as a synonym for datagram.

Packet inspection. There are several approaches for firewalls to filter and analyze pack-
ets on the network which will be discussed in the following.
The simplest one is static packet inspection from 1988 which treats each packet as

‘stand-alone’ and decides on information contained in the packet headers. Common rules
are based on destination IP, source IP, ports and protocol. An improvement is stateful
packet inspection (SPI) which “shares many of the inherent limitations of the static packet
filter with one important difference: state awareness. [...] The typical dynamic packet
filter is aware of the difference between a new and an established connection” [98, p77++].
Hence, the firewall maintains a table to be aware of any connection.
The next step in the evolution is deep packet inspection (DPI). Besides analyzing packet

headers, it examines the actual payload. “DPI engines parse the entire IP packet, and
make forwarding decisions by means of a rule-based logic that is based upon signature
or regular expression matching. That is, they compare the data within a packet pay-
load to a database of predefined attack signatures (a string of bytes). [... However,]
searching through the payload for multiple string patterns within the datastream is a
computationally expensive task” [72].

Techniques for data leakage prevention. According to [58], organization’s data can
be classified into three states: a) Data in Motion (DIM): data in the process of being
transmitted over the network, b) Data at Rest (DAR): data in file systems, FTP server,
and c) Data in Use (DIU): data at an network endpoint, like desktop or USB device. Data
Loss Prevention Systems (DLPS) is a mechanism that identifies sensitive information by
content in DIM, DAR or DIU, and prevent its leakage to outside of the organization
The main idea behind these products is to use deep packet inspection (DPI) for auto-

matic network analysis. In other words, it tries to detect protected information or files
within the network traffic. According to [88], there are the following approaches:
Regular expressions are effective in case of structured data like credit card numbers or

social security numbers, however, they fail in case of file identification.
Database fingerprint analyzes network packets for exact strings. Hence, instead of

looking for all credit card numbers, one may only look for specifics ones. In addition, it
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is very common to identify documents that are tagged with buzzwords like ‘confidential’
or ‘secret’, however, this approach fails if buzzwords are omitted or in case of binary
data.
Exact file matching uses hash functions to find exact matches which is file type inde-

pendent. However, it is trivial to evade (alter at any position). Another drawback is
that all packets needs to be captured, the files need to be rebuilt, then hashed.
Statistical analysis is based on machine learning approaches. This approach includes

a comprehensive training in the beginning and only works reliably for a large corpus. In
addition, if new protected data is added, the training needs to be re-started. Furthermore,
this approach is prone to false positive and false negatives.
Besides these four mentioned techniques, there is conceptual/lexicon which is a com-

bination of rules, directories and other analyzes10 and categories which is also based on
rules and dictionaries.
The most promising approach for automatic file identification is partial document

matching which looks for complete or partial matches (e.g., a few sentences of a doc-
ument) on protected content. This technique often uses a rolling hash to compare docu-
ments against network packets payload. Unfortunately we could not find any information
as most DLPS are commercial and therefore closed source.

5.5.2. Solution and proceeding overview

In order to handle network packets, algorithms need a finer granularity and we reduce
the blocksize from mrsh-v2 from the original 160 bytes to 64 bytes which results in
more features. However, a finer granularity increases the chance for false positives as the
decision is based on less data. That is why we deploy a filter mechanism that eliminates
non-relevant chunks from consideration, e.g., long runs of zeros.
To overcome the lookup complexity, we decide to have only one single Bloom filter

which overcomes the drawback of existing approaches (all details are given in Sec. 5.4.5).
According to that, the overall process requires two phases:

1. Database generation: Divide file into chunks, filter out non-relevant chunks, hash
chunks and fill Bloom filter.

2. Network packet analysis: Divide packet into chunks, hash chunks and compare
against Bloom filter.

Note, the filter mechanism is only necessary for creating the Bloom filter. During the
network analysis phase the packets are hashed and compared only. To sum it up, no
matter how complex the filter mechanisms are, the performance of the network analysis
is not influenced.
Having only one Bloom filter comes with two downsides. The first of these is that we

can only monitor a finite set of files. For the sake of efficiency, the Bloom filter has to
be completely ‘in memory’ and therefore the limiting source is the physically available
10As this technique is very complex, we like to refer to [88, p9].
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memory. However, as shown later, our approach only requires 32MiB of memory to
monitor 2GiB of data; 100GiB of data requires about 2GiB of memory. We claim that
in the case of most mid-size business the data will not exceed 100GiB when dealing with
office documents, source-code and blueprints (images).
The second disadvantage is that our approach is a packet-against-set comparison. That

is, the answer of a packet-query is either yes (there is a similar file to that packet in the
set) or no. In order to receive the exact file, further analysis is needed. Nevertheless, we
claim that in case of data leakage prevention or virus identification this is sufficient. It is
not relevant to know the file name, it is more important to have a yes or a no and cancel
the connection.

Additional benefits. One aspect which might not be immediately obvious is privacy.
Due to the usage of Bloom filters, the monitored data is stored in a preimage resistant
format (although we use the non-cryptographic hash function FNV). Hence, it is possible
to maintain the sensitive data at a central point, fill the Bloom filter and distribute it
while no information leaks. For instance, anti virus vendors may provide a database
containing the newest malware.
Another point is that Bloom filters can be easily combined with each other by ORing

both filters which allows do update filters. In case of counting Bloom filters one may
even remove elements.

Feature filter. As mentioned, not all features are of the same quality. In order to decide
if a chunk is important or not, we consider two values called ‘entropy’ and ‘randomness’.
While the former is based on the well-known Shannon entropy [89], randomness is a value
developed for this project and considers two neighboring bytes. If two consecutive bytes
are equal or differ by one, the anti-randomness is increased. More formally, let a chunk
of length L be given where Bi denotes the byte at position i. Then anti-randomness R
is calculated as follows:

R =

L−2∑
i=0

ar(Bi) where ar(Bi) =

{
1, if |Bi −Bi+1| ≤ 1
0, else

A chunk has sufficient randomness if R · 2 < L.

Implementation details. To verify our findings, we released a prototype called mrsh-net
which is basically a modification of the latest mrsh-v2 version. Currently there is only
one branch and thus a lot of testing-code-pieces are included which makes the code harder
to understand as it is. For instance, we implemented counting Bloom filters which were
necessary for testing purposes, and research into these is ongoing research.
The upcoming subsections briefly explain the functionality and the some implementa-

tion details. The prototype can be downloaded on our website11.
Commandline arguments
11http://www.dasec.h-da.de/staff/breitinger-frank/#downloads (last accessed 2014-03-13).
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-g generates a Bloom filter from DIR and prints it to std. Usage:
./mrshnet -g DIR/* > dbFile.

-i reads Bloom filter BF-FILE and compares DIR/FILE against it. Usage:
./mrshnet -i BF-FILE DIR/FILE.

-f generates the ‘false positive’ matches for a list of files.
./mrshnet -f DIR/* .

-e sets the minimum entropy a chunks needs to have. Usage:
./mrshnet -e 2.8 -g DIR/* > dbFile.

-t excludes a file type for the -f option.

‘False positive’ means that all files are added to the Bloom filter, file f is removed
(we implemented counting Bloom filters for testing purposes) and finally f is compared
against the filter. If combined with -t, the filter excludes all files of -t type and compares
them against it. In both cases matches are printed to stdout.

5.5.3. Test methodology

All tests run on ‘simulated’ network traffic where simulated means that all files are split
into 1460 byte sequences. This size results from the MTU size of 1500 bytes minus 20
bytes IP header and minus 20 bytes TCP header. On real network traffic it is easily
possible to skip 40 bytes in the beginning and thus we claim this simulates real life
circumstances. Our experiments are divided into two parts based on the input – synthetic
and real world data.
The rest of this section is divided as follows. First, throughput is discussed which is

an essential property for all kind of algorithms. Next, we explain our test-setup using
synthetic data. In the last section, we describe our opinion on similarity and explain the
testing of real world data.

Throughput. A fundamental property of network analysis tools is throughput – huge
delays are not acceptable. According to Sec. 5.4.1, the throughput considers phase 2. We
neglect the database generation process as it is independent from the network analysis.
Our assessment is based on our C-implementation on a usual workstation. We capture

the time for processing a given set of files, i.e., reading, hashing and comparing. Note,
there is neither a hardware implementation of our algorithm nor are we programing
experts. However, there exist ideas of how to build high-throughput hardware imple-
mentations for Bloom filters e.g., [38].

Random data. This controlled test utilizes /dev/urandom to create a pseudo random
file set. Thus, it is possible to distinguish between true positives (TP), false positives
(FP), true negatives (TN) and false negatives (FN). In order to have a real life distribution
of file sizes, we took the t5-corpus as a model and created 4457 files with identical sizes
which is in total 1.78GiB.
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To determine the detection rates, we did the following tests:

TP: Fill all files from the corpus to the Bloom filter. Next, we compare all packets
against the Bloom filter. All identified packets are true positive. (This can be
solved using the -g and -i options).

TN: All files are added to the Bloom filter. Next, we remove file f from the Bloom filter
and compare f against it (solved by -f option).

FP: 1-TN.

FN: 1-TP.

As approximate matching algorithms are working perfectly on random data [24], we
expect a TP rate close to 100% and a TN rate of exactly 100%. The TP rate will most
certainly differ from 100 as the last packet of a file might be too small and does not
produce a longest run of r ≥ rmin.

Similarity. Before describing the test methodology for real world data, we describe our
understanding of similar and dissimilar. According to our point of view, a

TP: means that two files share a significant and interesting amount of data, e.g., same
text passages, pictures or copyright information.

FP: means that two files have nothing in common or only unrelated information, e.g.,
file headers in common, but they are matched.

TN: means that two files have nothing in common.

FN: means that two files are not matched although they share significant and interesting
data.

According to this, it is necessary to analyze the general communality between files, i.e.,
which data is file type specific and not related to the actual content. Possible samples
are common headers, long runs of zeros, or file structure information. This is the input
for creating useful filters.
Since there is no ground truth available, it is hard to categorize a match. To classify the

positives (true positive + false negatives) it is necessary to assess all obtained matches.
In order to verify the negatvies (true negative + false negative) we have to evaluate the
whole corpus. Thus, we mainly focus on positives.
Recall, the output of our procedure is not an exact match but a statement that there is

a similar file in the underlying set. Thus, it is necessary to compare all positive matches
against the underlying file set. In order to handle this, we apply sdhash to identify
‘possible true positives’ which then are partly inspected manually.
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Result presentation. When assessing our results we consider the packet and the file
level. The packet level describes the relation between all sent packets and matched
/ non-matched ones which is especially important for false positives. However, with
respect to true positives, we suggest the file level which requires that at least one packet
matches. For instance, two large office documents that share only one small table will
not have many packets in common but are similar and the graphic is monitored content.

Cross matching file types. The first test examines the detection behavior among dif-
ferent file types. Let Y denote the file type, and let SETY be all files of type Y . Then,
DB−Y is a database that contains all files of t5\SETY , i.e., all files except the files of
type Y . Furthermore, let our concept be denoted by mrshnet(SET,DB) which is a
function that returns all files in SET that matches the database DB. According to that,
cross matching runs S = mrshnet(SETY , DB−Y ) for all file types Y . The output of a
run is a set S which contains all cross matched files.
To distinguish between TP and FP, we compared SETY and t5\SETY by sdhash and

received a list of possible matches. Next, we manually proofed the similarity starting
with the best matches, i.e., if a file is matched with two files, we consider the higher
score first.
For instance, set Y = doc. Then, all *.doc files are compared against the DB−doc. The

result could be a set like S = {f1.doc, f2.doc, f3.doc} which serves as input for sdhash.
Here, the output is a list like

file1.doc matches fileA.ppt (50)
file2.doc matches fileB.xls (10)
...

According to this list, we picked out matches and compared them manually, i.e., open
file1.doc and fileA.ppt and compare them. The selection process mostly focuses on bor-
derline matches. For instance, two files yielding a sdhash score of 50 are most likely
similar whereas two files having a score of 5 require manual inspection.
The motivation for this test is the expected number of positive matches should be

small. We mostly assume hits between office documents or between HTML and TXT.

True positives. We have introduced techniques to minimize the chance of false positives
called entropy and randomness. In general, these approaches filter out chunks in advance
so that we come closer to random data and do not make decisions based on long runs of
zeros.
Within this test we study the impact of different configurations with respect to the

true positives. Although chunks are filtered out, there should be a high true positive rate
on both levels, file level and packet level.

Mixed file types. For this test we randomly selected 100 files out of the t5-corpus which
serve as ‘monitored files’ and hashed toDB. The remaining 4357 files are used to produce
the traffic. In contrast to cross matching, there are also comparisons among equal file
types.
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5.5.4. Experimental results & assessment

For the real world data test we choose the t5-corpus as described in Sec. 2.6 on page
17. Moreover, we used the following configuration: k = 6, rmin = 8 and m = 228 bits
(32MiB). The blocksize is set to 64 bytes, i.e., the approximate length of a chunk.

Throughput. To determine the throughput we processed the t5-corpus which has ex-
actly 1823.11MiB (= 1.78GiB) . The measured result includes the time for reading the
input from disk, splitting it into packets, processing (hashing) it and performing the
Bloom filter comparison. The time was measured by the Linux time-command where we
selected the user time: 23.474 s. Overall, this comes to 1823.11 MiB/23.474 s = 77.67MiB/s
which corresponds 77.67MiB · 220 · 8 = 651, 501, 914 bits/s; approximately 650Mbit/s.
The test was performed on a 2GHz Intel Core i7 CPU, single threaded. However, the

concept allows an easy parallelism* of the complete approach without any synchroniza-
tion. There are only requests if specific bits are set to one; the underlying Bloom filter
does not change.
Analyzing the bottlenecks of the code showed that there are two time consuming parts

which are accessed for each byte: the rolling hash and FNV hash calculation12.
The rolling hash is based on 2 subtractions, 5 additions, 1 multiplication, 1 shift and

1 XOR. Thus, on the one hand it could be possible to create a more efficient assembler
version. On the other hand, it might be possible to run this on dedicated hardware as
there are only a few operations.
The FNV hash function consists of one multiplication and one XOR. We implemented

this using 8 32-bit integers and stored the result of each multiplication in a 64-bit integer.
Of course, we considered the simplicity of the prime to have only few multiplications.
Nevertheless, we are sure this can be optimized.

Detection rates on random traffic. This test runs on synthetic data which was cap-
tured from /dev/urandom and imitates the t5-corpus – we created 4457 synthetic se-
quences having the same sizes as the files in the corpus.
The results are as expected. On the packet level the true positive rate is at 99.6% and

the true negative rate is at 100.0%. The few false negatives result from the length of the
last packet which could be very small and thus contain less than 8 runs.

File analysis and similarity. This section explores the kind of basic-communality be-
tween files based on the statements from the paragraph titled Similarity from page 91.
According to this, we rate a match as a false positive if two underlying files only share
common headers, long runs of zeros, or file structure information.
For this test we randomly selected files from the t5-corpus, correlated them by hand

to ensure they are dissimilar and then compared them automatically with respect to the

12Note, the entropy calculation is also very time consuming. However, this is only necessary when
creating the Bloom filter and not while the comparison process.
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longest common subsequence. We decided upon the longest common sequence as it is
very similar to our approach – we require a minimum run length.
Basically we made two observations which yield long runs of non-significant data /

information. In other words, possible false positives according to our definition.
The first kind of strings are low entropy sequences which are very common throughout

most types. Especially Microsoft Office documents share long common low entropy
sequences, but also types like GIF or JPG. Note, some files are more like container
which can embed other types, e.g., office documents can have embedded pictures. This
hex-dump is a sample from a GIF.

0000010: ffff ccff ff99 ffff 66ff ff33 ffff 00ff
0000020: ccff ffcc ccff cc99 ffcc 66ff cc33 ffcc
...
0000200: 6633 3366 0033 33ff 3333 cc33 3399 3333
0000210: 6633 3333 3333 0033 00ff 3300 cc33 0099

Besides low entropy, we also discovered long runs of ‘non-random’ sequences which
have a normal to high entropy. The following hex-dump is a sample from a PPT.

00a1d80: 5657 5859 5a63 6465 6667 6869 6a73 7475
00a1d90: 7677 7879 7a83 8485 8687 8889 8a92 9394
...
00a1dc0: cad2 d3d4 d5d6 d7d8 d9da e1e2 e3e4 e5e6
00a1dd0: e7e8 e9ea f1f2 f3f4 f5f6 f7f8 f9fa ffc4

Finally, we studied office documents to check to see if they share another ‘base-
similarity’ e.g., an empty DOC-file has a size of ≈ 21KiB. An example of a common
chunk is the following hex-dump which was fund in many office documents. However,
this would be filtered out due to too less entropy and randomness.

001a600: 0100 0000 0200 0000 0300 0000 0400 0000
001a610: 0500 0000 0600 0000 0700 0000 0800 0000
...
001a8f0: bd00 0000 be00 0000 bf00 0000 c000 0000
001a900: c100 0000 feff ffff c300 0000 c400 0000

We argue that these kinds of chunks represent non-relevant information for an inves-
tigator and thus packets comprised of these chunks can be safely neglected. To sum it
up, it is reasonable to apply filter mechanism like those described in paragraph Feature
filter on page 89.

Detection rates for cross matches. This section analyzes the cross matches and thus
the behavior of mrshnet(FILESY , DB−Y ) where in total 1,311,576 packets have been
sent.
A summary of our findings is given in Table 5.15 which shows the matches on the

packet and the file level. For instance, row 1 states that in total 10,288 packets matched
the database and belonged to 809 different files. Since the entropy is 0.0, all packets are
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Table 5.15.: Impact of introducing an entropy.

JPG GIF DOC XLS PPT PDF TXT HTML Packet level File level

e (matches on packet level / matches on file level) matches SDM matches SDM

0.0 133/53 17/17 2386/233 1249/117 5251/335 1118/29 48/8 86/17 10288 66.8% 809 21.5%
0.0* 0/0 5/5 1147/31 504/29 2984/227 932/14 38/6 77/12 5687 87.9% 324 31.8%
2.4 131/53 14/14 1573/118 674/60 3753/242 1018/53 40/8 85/17 7288 80.8% 538 32.3%
2.4* 0/0 0/0 1017/26 191/25 2654/73 930/14 38/6 77/12 4907 94.8% 156 47.4%
2.8 131/53 0/0 1136/35 148/5 2856/72 968/20 39/7 83/17 5361 96.7% 209 74.2%
2.8* 0/0 0/0 961/17 10/6 2497/22 927/14 38/6 77/12 4510 99.0% 77 67.5%
3.2 130/53 0/0 1124/35 148/5 2837/72 960/20 39/7 82/17 5320 96.7% 209 74.2%
3.2* 0/0 0/0 955/17 8/6 2479/22 925/14 38/6 76/12 4481 99.1% 75 67.5%

* Here the randomness check is turned on.

considered. SDM is the sdhash match rate which expresses that sdhash also identified
similarity when comparing FILESY against the monitored set, e.g., 66.8% of 10,288
packets have a high probability to be a true positive. Rows highlighted with a star are
outputs were randomness mode is on, i.e., packets marked as non-random are filtered
out.
When rating the settings we mostly considered the packet-file-ratio (abbreviated pf-

ratio) which is relation between packet matches and file matches. For instance, a high
pf-ratio (close to 1) like for GIF indicates that only single packets matched the database
which is an indicator for less interesting results and vice versa. In the specific case of
GIF, all files included the same, low entropy sequence that matched the database.
Regarding the table, an entropy over 2.8 with the randomness test seems to be promis-

ing. In total there are 4510 packets where the SDM rate is 99.0%. It is obvious that the
higher the required entropy, the less overall matches.
In the following we consider the matches for row 2.8*. In total, 4510 packets matched

which belong to 77 different files. Out of these 4510 packets 99.0% coincide with the
results of sdhash. If we consider all sdhash hits as true positives, there are 45 false
positives (out of the total 1,311,576 packets). Thus, our approach yields a false alert rate
of 4510 · 0.01/1, 311, 576 = 3.44 · 10−5. In other words, every ≈ 105 packet there is a false
alert (Note, this is not the false positive rate).
To verify the sdhash results, we manually proofed some of the 52 file pairs (62.7% of the

77). Most matches where between TEXT and HTML or between the office documents.
For instance, mrsh-net returned a match for 003344.doc which was correlated by sdhash
to 003358.ppt. Examining these two files showed that both contain equal graphics which
are listed in Fig. 5.11. We found true positives only.
Next, we reviewed those files where sdhash could not find a similar file. First, it

was conspicuous that almost all hits were caused by a single packet which means files
have only small communality. Since our implementation works deterministically (i.e.,
if A matches B, then also B matches A), we compared all remaining files with each
other. In fact, we could detect file pairs that are similar. For instance, some HTML files
where falsely decelerated as TXT files and had the cascading style sheet (css) included.
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Growth intervals, based upon the time required to reach 20 cm of average canopy height varied among sites, and 
were 126d at the O and only 98d at the W site.  Gompertz growth curves of cumulative yields show O sites 
producing more shoot and root over more of the growing season than W or E sites. 

Shoot regrowth was rapid in W and EW sites (fast-growers) early in the growing season.  Maximum shoot growth 
rates, based on instantaneous growth rates (IGR), occurred 35 d later in the O (slow) than W (fast-grower) site.  

Maximum root growth rates occurred 49 d later in the O than W site.  The EO and EW sites achieved maximum 
growth early in the growing season and were similar to those for the W site.   

PRODUCTION MECHANISMS 

Specific leaf area (SLA) increased as light 
attenuation increased. SLA was greater in 
the W than O site illustrating morphological 
adaptation to low light conditions and 
contributed to greater RGR in W.  Leaf DM 
content was less in W compared to O plants 
(data not shown). 

Photosynthetic N use efficiency (PNUE;  
whole  plant  DM / mol leaf N / Δ time) 
decreased 43% as light attenuation 
increased, leading to greater herbage 
production at high light and relatively low 
N (O) compared to low light and high N 
conditions in W. [See Hirose and Bazzaz 
(1998. Ann. Bot. 82:195-202) for further 
interpretation of PNUE.] 

Relative regrowth rate (RGR) calculated 
as:  RGR = NAR * LMR * (1/DMCL) * AL/
MF

L  includes morphological and 
physiological attributes of RGR.  RGR was 
inversely associated with whole plant 
mass, and as such regrowth rates of W 
were greater than O plant rates. 

DISTRIBUTION AND RATE OF PRODUCTION 

Abundance of TNC in shoots exceeded 
CHO assimilatory capacity of N-limited plant 
at the O site, whereas at the W site plants 
had very little TNC and excess N.  W plants 
were unable to generate leaves and tillers.  

PNUE and TNC are linearly and positively 
related. PNUE corresponds with TNC 
concentrations and the ability to generate 
TNC reserves.   Relationship suggests 
strong light use efficiency in W relative to 
O where excess TNC accumulates and 
additional tissue development is retarded 
by insufficient N. 

INCREASED SHADE WAS 
ASSOCIATED WITH: 

LESS EVAPOTRANSPIRATION 

SMALLER PLANTS  

FEWER TILLERS 

GREATER TILLER LOSS 

LARGE, THIN LEAVES 

SHORTER GROWTH INTERVAL 

GREATER RGR 

LOWER PNUE 

Figure 5.11.: Both files, 003344.doc and 003358.ppt, contained these two graphs and thus
they are classified as a true positive.

Thus, these files have a similar layout and tables. It is questionable if this is relevant
or non-relevant information. Assume an internal webpage which contains secret business
numbers. Then, an employee could download it, update it with the latest numbers and
mail it to someone. Other examples are translated documents which are still in the same
layout. Actually, this depends on the scenario, and an admin needs to consider this when
creating the database.
Nevertheless, even if we rate all these matches as false positives we obtain a false

alert rate of 3.44 · 10−5 (otherwise 0) for cross matching which is acceptable for a first
prototype.

True positive analysis. Deploying filter mechanisms to reduce the false positive matches
implies that true positives will also be reduced. Therefore, this section studies the impact
of different settings on the true positive rate. The results are given in Table 5.16.

Table 5.16.: True positive rates for different settings sending 4457 files / 1,311,576 packets
in total.

0.0 0.0* 2.4 2.4* 2.8 2.8* 3.2 3.2*

pkt. (%) 91.9 82.0 81.2 80.1 76.4 75.9 69.4 69.2
files (%) 99.9 98.9 99.3 98.9 98.8 98.7 98.0 98.0
* Here the randomness check is turned on.

Equal to the random-test, there is no 100% true positive rate if both filtering mech-
anisms are turned off. The reason is the rolling hash. For instance, one undetected file
was an almost empty Word document. The byte structure was composed of many zero
runs and thus most packets contained zeros. The rolling hash is not able to determine
enough trigger sequences and the run will not exceed the minimum.
Regarding our chosen setting 2.8*, about 1/4 of all packets are filtered out due to less

entropy and randomness but we still detect 98.7% of all files. To conclude this section:
monitored files should consist of a few kilobytes of data having an entropy over 2.8.
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Table 5.17.: SDM rates for all file types.

Packet level File level File types

matches SDM matches SDM DOC XLS PPT PDF TXT HTML

883 97.6% 109 88.1% 10 1 11 59 2 26
731 99.5% 50 92.0% 10 1 11 / 2 26

Note, GIF and JPG are not listed because there were no matches.

Detection rates on mixed file types. This test simulates the case where the database
contains mixed content. We randomly selected 100 files out of the t5-corpus which serve
as the monitored files. The remaining files are used to produce the traffic. We capture
all packets that provoke a match and performed analysis as in the previous sections.
In total we sent 4357 files producing 1,284,738 packets. The settings are based on our

previous findings: e = 2.8∗. A summary of the results is presented in Table 5.17. Note,
GIF and JPG are not listed because there were no matches.
Row 1 shows the overall results. Overall 833 packets are positives with a sdhash match

rate of 97.6%. It is conspicuous that PDF has so many matches. Studying the results
shows that there are multiple false positives which seem due to overlapping structure
information. In contrast to office documents and images, the structure information has
a high entropy and overcomes our filter out techniques. Nevertheless, there are also near
duplicates, e.g., 000740.pdf and 000743.pdf.
Row 2 considers the results without PDF. The 731 packets come to a sdhash match

rate of 99.5%. Our manual review showed that all files are true positives (most of them
are similar webpages like 002224.html, 002758.html). Hence, the false positive rate here
is 0.
Considering the packet-file-ratio of both rows shows that on average a match of PDF

is due to 883− 731/59 ≈ 2.5 packets. Further investigations reveal that most matches are
due to the same byte sequence. In other words, the database contained one sequence
which a lot of PDFs included. However, we could not find interesting similarity among
these matches.
If we class all PDFs as false positives (which is an upper limit as we also had true

positives), the overall false positive rate is 883− 731/1, 284, 738 = 1.1 · 10−4.

5.6. Summary

This chapter presented algorithms, concepts and applications of approximate matching.
The algorithm part is composed of three new algorithms named bbHash, mvhash and
saHash. Additionally, we explained a concept for an efficient similarity digest database
lookup in Sec. 5.4. The last part of this chapter described a new application for approx-
imate matching based on network traffic.
bbHash is the first algorithm using an external data structure to create a similarity

digest. Its settings aim at having a similarity digest length of 0.5% of the original

97



5. Algorithms, concepts and applications

file size. However, the performance is too slow for practical use which is future work.
mvhash was the second algorithm. Due to three trivial phases majority vote, run-length
encoding and Bloom filters we have several advantages compared to existing algorithms.
A strong advantage of mvhash is high generation efficiency. Our approach is almost as
fast as the SHA-1. Equal to bbHash, the compression ratio of 0.5%. The drawback is
that the current version has some configuration options; each file type requires its own
configuration, no standard configuration works for all file types. This is future work
e.g., distinguish between file types automatically using the entropy. The last presented
approach is called saHash which is very modular by design and is very robust against
changes all over the file. The main unique feature is that the similarity measure is based
on the Levensthein metric. However, it does not work for file fragments or embedded
objects which is future work.
In Sec. 5.4 we presented a possibility for a faster lookup for Bloom filter based similarity

digests which was one of the main drawbacks. We demonstrated a prototype which
yielded promising results. However, this implementation is only able to perform a file-
against-set. In a next step we want to extend this prototype to verify our theoretical
concept of the whole tree.
In the last section we considered the challenge of similar file identification on network

traffic using approximate matching. We demonstrated that with some minor changes
approximate matching can be used on network traffic. Our tests showed that random
data can be detected perfectly while real-world data has a false alert rate between 10−4

and 10−5. The challenge of real-world data is the filtering of ‘common substrings’ which
was solved using entropy and anti-randomness. However, this needs further research so
that the considered packets are akin to random data. Compared to existing algorithms,
our approach is very simple and straightforward: hash the file and add it to the database.
In addition, we only use open source technologies.
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6
Testing bytewise approximate matching

Currently it is very hard to assess and classify the different approximate matching al-
gorithms. Most tools were briefly compared to other existing algorithms with respect
to compression and runtime efficiency. However, there are additional features that are
important for approximate matching. For instance, Roussev pointed out the following
scenarios [81]:

1. Document similarity detection: identify related documents, e.g., different versions
of a Word document.

2. Embedded object detection: identify a given object inside a container, e.g., a JPG
within a Word document.

3. Fragment detection: identify an original input based on a fragment, e.g., analyzing
a device on the byte level (HDD sectors).

4. Clustering files: group files that share similar content, e.g., a Word document and
an e-mail.

Based on previous research, we designed and implemented the test framework FRASH
(published in [23]) which addresses these different challenges. Currently, FRASH v1.0 is a
collection of scripts used to analyze the efficiency, sensitivity & robustness and precision
& recall. In the latter case, we perform tests on both synthetic (published in [24, 25])
and real world data (published in [22]).
We divided this chapter into five main parts. In Sec. 6.1 we describe the different test

categories which motivate our tests. The exact realization of the tests is explained in
Sec. 6.2 followed by the results in Sec. 6.3. The details about the implementation of
FRASH 1.0 are given in Sec. 6.4. In Sec. 6.5 we summarize this chapter.
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6. Testing bytewise approximate matching

6.1. Test categories

This section gives an overview of the different test categories. First, we present the
efficiency tests which are equal to an overall benchmark for approximate matching al-
gorithms. Sec. 6.1.2 explains the sensitivity & robustness tests which determine the
operating conditions. The last section describes a possibility to define the precision &
recall rates.

6.1.1. Efficiency

According to the definition in Sec. 2.4 on page 13, efficiency is an essential characteristic
of hash functions and approximate matching algorithms. In order to test compression and
ease of computation, we designed an efficiency test which is composed of three sub-tests
called generation efficiency, comparison efficiency and space efficiency (compression).

Generation efficiency. Runtime is one of the fundamental properties of most algorithms
and in case of hashing often denoted by ease of computation. Due to large amounts of
data during investigations, it is obvious that approximate matching has to be fast.
Generation efficiency measures the time which the algorithm needs to process the in-

put. Processing in this case means that we measure the time for picking the features and
forming the similarity digest. We included SHA-1 [41] as a reference point.

Comparison efficiency. The comparison efficiency completes the runtime efficiency test.
First, an overall statement should be given by the theoretical complexity (O-notation).
Since there are currently rarely ways to order/index similarity digests in a database, most
have a quadratic lookup complexity.
Besides the theoretical O-notation, the actual time is important as the ‘similarity

function’ might be based on different algorithms, e.g., Levensthein vs Hamming distance.
Thus, the absolute time of an all-against-all comparison for a given set should be given.

Of course, algorithms equipped with an indexing mechanism have an advantage. Note,
this time excludes the digest generation mentioned from the previous paragraph.

Space efficiency. Compression is the second essential property of hash functions. Tra-
ditional hash functions return a fixed length fingerprint, which is different to approximate
matching, where we often deal with a variable length. As similarity digests are typically
stored within databases a short digest is desirable.
Space efficiency measures the ratio between input and output of an algorithm and

returns a percentage value. More precisely,

space efficiency =
output length
input length

· 100 . (6.1)
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6.1.2. Sensitivity & robustness

The definition requires a sensitivity & robustness test (see Sec. 2.4.4 on page 16) to
determine the operating conditions, the performance envelope. In contrast to precision
& recall, these are no detection rates but absolute values of the robustness. Based on
the four challenges from the introduction, we created the following test categories (later
called modifications):

Fragment detection: An important property of approximate matching is the minimum
size of a fragment that can be matched back to an original file. Thus, this test
can answer the question: what is the smallest piece/fragment, for which the tool
reliably correlates the fragment and the original file? Possible use cases are HDD
block level or network packet analysis. For instance, analyzing a device on the
sector level (e.g., 4KiB), is it possible to find the original file – does this sector
belong to this 800MiB movie?

Single-common-block correlation: This test “simulates a situation where two files have
a single common object” [81]. Considering two files f1 and f2 that are completely
different, but share a common object O, “what is the smallest O for which the
similarity tool reliably correlates the two targets?”.

Alignment robustness: Some approaches are vulnerable to inserting content at the be-
ginning of the file. Especially Bloom filter based approximate matching approaches
split an input into features which are then inserted into the filters. In the case con-
tent is added at the beginning, these features shift and reduce the similarity score.
Typical real life scenarios are logfiles, email traffic or office documents.

White-noise-resistance: The origin of this test goes back to the security analysis of
ssdeep [4] where we showed that a few changes all over the input are sufficient to
obtain a non-match. The intention of white-noise-resistance is to have a randomly
driven test trying to produce false negatives. This allows an estimation of how
many bytes need to be changed all over the input to receive a non-match. An
example could be source code where a variable name is changed.

A random change is one of the typical edit operations deletion, insertion, and sub-
stitution, where each edit operation is chosen with a probability of 1/3. Additionally,
each byte in the input is equiprobable to be changed.

Knowing these test categories, the sensitivity part is guaranteed by fragment detec-
tion and single-common-block correlation. These modifications measure the amount of
commonality which is detectable by the algorithm. The tool that detects smaller levels
of commonality is more sensitive. On the other hand, alignment robustness and white-
noise-resistance examine the robustness.
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6.1.3. Precision & recall tests

Besides the performance envelope from the previous section, the precision & recall rates
are important when classifying algorithms. Critical in any evaluation process is the
establishment of the ground truth. Here, this means establishing whether or not two
digital objects (files) are similar. Prior work, such as [81], has approached this problem
from two perspectives: automated controlled tests based on synthetic data, and manual
user evaluation of positive results.
The main advantage of controlled experiments is that the ground truth is constructed

and therefore, precisely known. This allows randomized tests to be run completely au-
tomatically and the results to be interpreted with standard statistical measures. The
obvious down side is that the majority of real data is far from random and so the ap-
plicability of the result to the general case remains uncertain. Nevertheless, running
controlled tests in this manner is quite useful in characterizing baseline capabilities of
algorithms.
The main advantage of user evaluation is that it provides results on real data as it

would be experienced by an investigator. The downside is that the process is manual
and not suitable for large-scale testing. Also, the results include a degree of subjective
judgment on whether two objects are, in fact, similar. Finally, there is also the problem of
how to treat objects that exhibit non-trivial commonality that is not normally observable
by the user (the significance of such findings is inherently case-specific).
Based on this brief discussion, we decided on the following procedure:

Synthetic data: First is a test scenario based on controlled (pseudo-)random data. This
returns exact results since we precisely know the ground truth. An obvious pro-
ceeding is to create byte sequences based on a random source (e.g., /dev/urandom),
create mutations of them using different kinds of modification methods, run the
actual comparison and summarize the results.

Real world data: Compared to synthetic data, real world data yields more realistic re-
sults and allows a better characterization of the behavior of approximate matching
algorithms. To work on real world data, we have to create a ground truth and next
analyze the behavior of algorithms to it. Since we have to handle huge amounts of
data, it is not possible to manually create the ground truth. In other words, to set
the ground truth, the similarity of objects should be defined based on a well-known
metric.

Thus, we seek to bridge the gap between the two approaches by providing the means
to perform fully automated testing on real data. In order to solve this challenge, we
need a practical algorithm that can establish whether two (arbitrary) data objects
are similar, or not.
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6.2. Realization of tests

In the following we describe the realization of our different tests. Since the efficiency
part is trivial, we skip this part and explain the sensitivity & robustness tests followed
by the precision & recall tests.

6.2.1. Sensitivity & robustness

Each modification consists of different options where an option is a specific setting/test,
e.g., ‘fragment and 99%’ or ‘alignment and 4KiB’. As one may be interested in absolute
and percentage values, each modification supports two test series. However, in the default
configuration, only the alignment test uses this possibility, all further tests focus on
percentage values only.

Alignment robustness. This test analyzes the impact of inserting byte sequences of size
X at the beginning of an input where we have the following two proceedings:

1. Fixed blocks: X ∈ {1, 2, 3, 4, 8, 16, 32, 64}KiB. We decided on these fixed numbers
as we like to analyze the impact of small changes (i.e., 1, 2 and 3) and multiples of
four as they are very common in computer sciences (e.g., 4KiB is the typical sector
size of a HDD).

2. Percentage blocks: X ∈ {10%, 25%, 50%, 75%, 100%, 200%, 400%}. We decided on
these numbers in order to analyze the impact of large changes. Especially as logfiles
may grow very rapidly.

Fragment detection. Fragment detection identifies the minimum correlation between
an input and a fragment. Therefore, it sequentially cuts X ∈ {25%, 50%, 60%, 70%, 75%,
80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%} of the original input and compares both in-
puts.
We decided to have two different cutting modes:

1. Random cutting: The test randomly decides at each step whether to cut at the
beginning or the end of an input.

2. End side cutting: The test only cuts blocks at the end of an input.

The reason why we do not cut in the beginning is that this shows a similar behavior than
the alignment test.

Single-common-block correlation. First, two random files f1 and f2 of size S ∈ {512,
2048, 8192}KiB are created followed by the common block O ∈ {75%, 50%, 40%, 30%,
20%, 10%, 5%, 4%, 3%, 2%, 1%} of S. Next, O overwrites f1 and f2 at different and
randomly chosen offsets – the size of f1 and f2 remains S all over the time. Finally, we
perform a comparison of f1 and f2. If we obtain a match score > 0, we reduce O further
and restart. Due to the fact that we choose the offset randomly, we perform multiple
runs for each file size and average the values.
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White-noise-resistance. First, the original file f1 is copied to have f2. Next, the test
obfuscates f2, i.e., X of f2’s bytes are manipulated whereX ∈ {0.1%, 0.25%, 0.5%, 0.75%,
1.0%, 1.5%, 2.0%, 2.5%}. The percentage boundaries were determined experimentally, as
no algorithm did detect two files as similar when more than 2.5% of the bytes were
manipulated.
A random change is one of the typical edit operations deletion, insertion, and substi-

tution, where each edit operation is chosen with a probability of 1/3. Additionally, each
byte in the input is equiprobable to be changed.

6.2.2. Precision & recall on synthetic data

Depending on the desired test scope, there are two main configurations: file-count and
runs. The former parameter is the amount of files in the test set; the latter specifies the
number of independent test runs to be executed. Each run creates its own new test set.
In terms of execution time, having a set of file-count files results in file-count2 com-

parisons. Hence, the total number of comparisons per algorithm is calculated by file-
count2 · runs · o where o is the number of all options.
The mutated set is created by applying the four generic modification techniques from

Sec. 6.2.1. We reduce the scope in order to decrease the overall runtime. The following
settings are used:

Alignment robustness: f2 is a copy of f1, prefixed with a random byte string of length
X = {25%, 50%, 100%, 200%}.

Fragment detection: f2 is a copy of f1 where X = {50%, 60%, 70%, 80%, 90%, 95%,
97%, 99%} is cut off.

Single-common-block correlation: f1 and f2 have equal size and share a common byte
string (block) of size X = {50%, 40%, 30%, 20%, 10%, 5%, 3%, 1%}. The position
of the block is chosen randomly for each file.

White-noise resistance: f2 is an obfuscated version of f1, i.e., X of f2’s bytes are edited,
where X = {0.5%, 1.0%, 1.5%, 2.0%, 2.5%} of the file size.

Recall, the term option is the combination of a modification and a specific setting/test,
i.e., valid options are alignment 1% or fragment 50%. To sum it up, there are 25 different
options for the pseudo random data test.

6.2.3. Precision & recall on real world data

We decided to characterize the behavior of approximate matching algorithms with re-
gards to the longest common substring (LCS) metric. The reason for this metric is that
we are most interested in shared byte sequences between objects (and actually this is
what bytewise approximate matching is designed for). For instance, we like to answer
the question: do these two documents contain a common picture or text-paragraph?
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We are less interested of single words or translations where one needs special semantic
approaches.
Recall that we are interested in byte-level similarity, which means that we do not con-

sider any synthetic, or semantic features in our analysis. In other words, the artifacts are
being compared as strings and similarity is defined as the presence of common substrings.
Considering the strings ABABBCADEF and ABAECADEBF, for example, their longest

common substring is CADE. Since its length is 40% of the length of the strings, we could
use that as a baseline measure of similarity. In general, it is clear that there could be
additional sources of commonality, so LCS should be considered as a lower bound.
One problem with using LCS is that the algorithm has quadratic time complexity–

O(mn), where m and n are the string lengths in bytes. Given that files could be quite
large, and the number of test cases grows quadratically as a function of the number of
files in the test set, the use of an exact algorithm quickly becomes infeasible. Due to this,
we created a tool which outputs a good approximation of the longest common substring
and, by design, provides a lower bound on LCS (details are given in Sec. 6.2.4).

Testing methodology. First, we created a ground truth and identified the similarity of
objects based on our own metric called approximate longest common substring (aLCS).
We validate our aLCS results by comparing them against the traditional longest common
substring (LCS). In a second step, we analyzed the false positive and false negative rates
of the approximate matching algorithms with respect to the ground truth.
Our approximate ground truth is a text file of unordered pairs of files (f1, f2) structured

as follows:

filename1 | size1 | filename2 | size2 | L_a | entropy | L_r
1.pdf | 98781 | 2.pdf | 185271 | 2500 | 4.66 | 0.03
3.pdf | 16661 | 4.pdf | 18530 | 2077 | 1.75 | 0.12

where La is the absolute result (a lower bound on the length of the longest common
substring), entropy is the information content of the substring and Lr is the relative
result. More precisely,

La = alcsa(f1, f2), where 0 ≤ La ≤ min(|f1|, |f2|).
Lr = d100× La/min(|f1|, |f2|)e , where 0 ≤ Lr ≤ 100.

where |f | denotes the file size in bytes.
For instance, the first line states that 1.pdf and 2.pdf have an absolute length of

La = 2500 bytes which corresponds a relative length Lr = 0.03 = 3% with an entropy
of 4.66. The second line shows a special case with a very low entropy which could be an
indicator that both files share mostly zeros.
Although, in theory, any two strings sharing a substring are related, we place a more

practical lower bound on the minimum amount of commonality to declare two files re-
lated. For our testing, we decided to study the following two perspectives:
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Relative: We require that the absolute size La is at least 100 and that the relative result
Lr exceeds 0.5% of the size of the smaller file. According to this, the true positive
function TPalcs(f1, f2) is defined as

TPalcs(f1, f2) ≡ La ≥ 100 ∧ Lr ≥ 1 .1

Clearly, the true negative function TNalcs(f1, f2) = ¬TPalcs(f1, f2).

Absolute: We require that the absolute size La is at least 2048 bytes (2 KiB) regardless
the file size.

TPalcs(f1, f2) ≡ La ≥ 2048 .

6.2.4. Approximate longest common substring

The basic idea of the approximate longest common substring metric (aLCS) is not to
compare files byte by byte but rather in variable sized chunks. To pick the chunks, we
use a derivative of the standard approach to data fingerprinting by random polynomials
pioneered by Rabin. Specifically, we borrow the rolling hash from ssdeep and adjust
the parameters such it produces chunks of 40 bytes, on average. Each chunk is hashed
with the FNV-1a hash [69] and the sequence of all hash values forms the basis for the
alcs-digest. Besides the hash values, we also store the entropy and length for each chunk.
Given two digests, it is straight forward to construct an estimation of the LCS; a

reference implementation is publicly available on our website2.

Implementation details. The tool is implemented in C and separated into three steps:
reading, hashing and comparing, which are declared in the main class. It has a command
line interface and is run against all files in a target directory: ./aLCS <dir> .
First, all files in dir are read. Out of the file names, we create ‘hash-tasks’ which are

added to a thread pool. A hash-task contains the path to a file and denotes ‘hash file x’.
Depending on the amount of threads, these tasks are processed. Once all alcs-digests are
created, we perform an all-against-all comparison. Therefore, we create compare-tasks
(compare file1 against file2) which are again added to the thread pool. The output is
printed to the standard output.
The reference implementation has three main settings configurable in header/config.h.

MIN_LCS is the minimum La length which is printed to stdout and is by default 0 (all
comparison are printed). The THREAD_POOL_QUEUE_SIZE is the length of the queue and
should be fileamount · (fileamount− 1)/2. NUMTHREADS is the amount of threads which should
be equal to the amount of cores.

Verification of ground truth. To verify the correctness of our approximate longest
common substring, we compared the results against LCS for a subset of t5. In order to
solve this challenge, we implemented a parallelized LCS tool written in C. The output

1Note: result of Lr is rounded and thus 0.5 is equal to 1.
2http://www.dasec.h-da.de/staff/breitinger-frank/#downloads (last accessed 2014-03-13).
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is a summary file similar structured then our aLCS output: file1 | file2 | LCS. A
small ruby script is used to compare LCS-summary and aLCS-summary.
Our subset consists of 201 randomly selected files. We compared these files using aLCS

as well as LCS and finally compared both summaries. All 20100 comparisons yield a true
positive, i.e., 0 ≤ alcs ≤ lcs. We also consider the distribution of the differences between
the LCS and aLCS scores. Specifically, we define dr for files f1 and f2 as follows:

dr =

⌈
100× lcs(f1, f2)− alcs(f1, f2)

min(|f1|, |f2|)

⌉
, dr ∈ 0, 1, . . . , 100.

In other words, we consider the score difference relative to the size of the smaller of
the two files, and build the probability (pdf) and cumulative distribution function (cdf)
in Table 6.1. As we can see, upwards of 95% of the observed differences do not exceed
3% of the size of the smaller files – we consider this a reasonable starting point for our
purposes (further research may refine this). If anything, this should give tools a slight
boost as the available commonality would be underestimated.

Table 6.1.: Empirical pdf & cdf for dr.

X 0 1 2 3 4 5 10 15 20

Pr{dr = X} 0.8869 0.0449 0.0155 0.0040 0.0047 0.0116 0.0062 0.0001 0.0000
Pr{dr ≤ X} 0.8869 0.9318 0.9473 0.9513 0.9561 0.9677 0.9834 0.9992 0.9999

6.3. Testing results

The past sections explained the different test categories including their realization. Based
on these decisions, this section presents all test results. Sec. 6.3.1 shows the efficiency
results. In Sec. 6.3.2 we discuss the results for the sensitivity & robustness test. The
last section summarizes our findings for the precision & recall. All test are based on the
t5-corpus except the precision & recall on synthetic data.
The results are based on ssdeep 2.9 and sdhash 3.4 with their default settings. mrsh-v2

uses the default settings with a blocksize of 160. For mvhash we decided to change the
default settings to -t 7 -w 20 -e 1024. The reason is that we have to deal with a lot
of text based files and therefore we set -t 7. Files are rather small which means we can
reduce the neighborhood (-w 20) and the amount of groups per filter (-e 1024).

Definitions and terminology. We follow a fairly standard information retrieval frame-
work for evaluating the quality of the results produced by approximate matching tools.

Genuines: Two, or more files, defined to be similar.

synthetic data: In this case we know by default if the files are similar or not.

real data: In this case we use our ground truth as discussed in Sec. 6.2.3.

107



6. Testing bytewise approximate matching

Impostors: Two, or more files, defined to be non-similar.

Approximate matching score: S(f1, f2) is the result of comparing two files using an
approximate matching function.

Threshold (t) of significance: A score parameter, used in approximate matching to sep-
arate matches from non-matches.

Match: Two files, f1 and f2, are matched using approximate matching algorithm h ⇐⇒
S(f1, f2) > t.

True positive TP :

TrP (f1, f2, t) ≡ TrPalcs(f1, f2) = true ∧ S(f1, f2) > t

True negative TN :

TrP (f1, f2, t) ≡ TrNalcs(f1, f2) = true ∧ S(f1, f2) ≤ t

False positive FP :

TrP (f1, f2, t) ≡ TrNalcs(f1, f2) = true ∧ S(f1, f2) > t

False negative FN :

TrP (f1, f2, t) ≡ TrPalcs(f1, f2) = true ∧ S(f1, f2) ≤ t

Precision P , true positive rate TPR:

P =
TP

TP + FP

Recall R:
R =

TP

TP + FN

True negative rate TNR:

TNR =
TN

TN + FP

False positive rate FPR:

FPR =
FP

FP + TN

Negative predictive value NPV :

NPV =
TN

TN + FN

108



6.3. Testing results

Accuracy A:

A =
TP + TN

TP + TN + FP + FN

F-score Fβ:

Fβ = (1 + β2)× precision× recall
β2 × precision+ recall

The F -score is a generic measure combining precision and recall into a single num-
ber. We use three different versions based on the β parameter: F1, F2, F0.5. The
first one weights precision and recall equally, the second favors precision over recall,
and the last one favors recall over precision.

Matthews correlation coefficient MCC:

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
, MCC ∈ [−1, 1]

The MCC is a correlation coefficient between observed and predicted binary clas-
sifications; it is included here as it is considered a balanced measure even for classes
of substantially different sizes (as is our case). A result of +1 represents perfect pre-
diction, whereas −1 indicates perfect disagreement; 0 indicates that the classifier
offers no advantage over a random guess.

6.3.1. Efficiency

The test environment for the efficiency was a private laptop having the following bench-
mark data:

CPU : 4x Intel(R) Core(TM) i7-2620M CPU @ 2.70GHz (2 Cores, 4 Threads)
HDD : Mushkin Chronos SSD 120GB (SATA3)
RAM : 2x4GB DDR3 SODIMM 1333 MHz

Generation and comparison efficiency. The results for both tests are given in Ta-
ble 6.2. Total and fingerprint comparison measure the time for hashing all files and run
an all-against-all comparison, respectively. The last column shows the relationship of all
algorithms compared to SHA-1.
mvhash is the fastest algorithms followed by mrsh-v2 which results from the straight-

forward proceeding. The slowest algorithm is sdhash (-p 1 indicates a single thread)
but outperforms at least ssdeep when it is parallelized. Obviously all algorithms are
worse than SHA-1.
The fingerprint comparison shows that ssdeep and mvhash overcome both other al-

gorithms. This results from the pre-condition: both algorithms only compare similarity
digests in the same range. For instance, if the block sizes between two ssdeep similarity
digests differ too much, they are not compared.
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Table 6.2.: Runtime efficiency and fingerprint comparison.

Total Fingerprint algorithm
SHA−1comparison

sha1sum 5.128 s - 1.00
ssdeep -s 39.925 s 18.943 s 7.79
sdhash -p 1 67.733 s 289.077 s 13.21
sdhash 28.880 s 187.238 s 5.63
mrsh-v2 13.300 s 244.430 s 2.59
mvhash 9.219 s 31.502 s 1.80

Space efficiency. Table 6.3 shows the results for the compression test. The framework
outputs the average similarity digest length, average compression ratio in percent, the
maximum similarity digest including the corresponding file (not included in the table)
and the size of all digests.
For the ‘digest file size’ test we run the algorithm with the t5-corpus and store the

resulting similarity digests (including all further information) in a text file. The ‘avg.
digest length’ test also considers the digest representation and ignores additional infor-
mation like file name. For instance, ssdeep uses a Base64 encoding and always outputs
the file name.
To conclude, with respect to compression ssdeep outperforms all other algorithms

while sdhash produces the longest similarity digests.

Table 6.3.: Compression test overview.

Avg. digest length Digest file size compression ratio

ssdeep -s 63.4B 0.52MiB 0.015%
sdhash 10812.2B 61.28MiB 2.520%
mrsh-v2 3215.5B 27.45MiB 0.750%
mvhash 775.9B 4.55MiB 0.181%

6.3.2. Sensitivity & robustness

This section is divided into four paragraphs, based on the different tests: alignment ro-
bustness, fragment detection, single-common-block correlation and white-noise-resistance.
All tests within this category have a very comprehensive output as the tables consist of
10 or more columns. Therefore, we decided to pick out some selected columns which are
presented in the following.
‘Matches’ is the amount of valid scores, i.e., how many percent of all files were matched.

‘Avg. score’ is the averaged match score output by the algorithm. The last row is the
standard deviation of the match score.
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Alignment robustness. The results are Table 6.4 and Table 6.5 showing the impact of
percentage blocks and fixed blocks, respectively.
All algorithms perform well for small changes where small is either 4KiB or 50%.

With respect to larger alignments especially sdhash and mrsh-v2 perform almost perfect
having matches between 100.0% and 99.9%. Having a closer look at these two approaches,
it is eye-catching that the average match score is very similar for ‘percentage changes’
but goes up and down for ‘fixed blocks’. This behavior comes from the usage of Bloom
filters. If sdhash, for example, uses 16KiB to fill the Bloom filter, than an alignment of
8KiB reduces the match score to a minimum. Although mvhash also uses Bloom filter,
it behaves differently which comes from the run-length coding.
As mentioned in Sec. 3.1, ssdeep can by design only detect similarities between two

inputs if their size differs by less than 1/3 (with some exceptions). This is also the conclu-
sion from Table 6.4, ssdeep can hardly find similarities if the modification is too large.
For instance, the amount of matches reduces down to 22.7% if we add 200%. Similar to
ssdeep, mvhash has problems matching files that differ to much in size. Therefore, the
matches reduce for large changes like 200% or 64KiB.

Table 6.4.: Results of the alignment robustness test with percentage block sizes.

added block size (%)

10 25 50 75 100 200 400

ssdeep
Matches (%) 99.6 98.2 92.1 82.2 70.6 22.7 0.0
Avg. score 90.80 81.44 70.89 63.98 59.14 44.28 37.5
Std. deviation 6.48 9.75 11.09 11.03 10.94 10.64 5.5

sdhash
Matches (%) 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Avg. score 69.81 71.44 72.29 71.68 70.91 71.49 70.93
Std. deviation 20.53 20.57 21.00 21.26 20.81 21.05 21.39

mrsh-v2
Matches (%) 99.9 99.9 99.9 99.9 99.9 99.9 99.9
Avg. score 77.40 77.77 78.71 79.04 79.45 79.78 79.81
Std. deviation 20.88 20.44 20.65 20.62 20.27 20.26 20.25

mvhash
Matches (%) 96.5 91.0 83.2 77.5 73.0 59.1 43.7
Avg. score 75.70 67.14 59.98 56.77 53.92 48.13 46.82
Std. deviation 22.33 23.47 23.45 22.91 2.54 24.22 28.77

Fragment detection. Table 6.6 and Table 6.7 show the results for random cutting and
end side cutting, respectively. Actually each table comprises 23 columns containing the
results for all cuts 5%, 10%, 15%, . . . , 95%, 96%, 97%, 98%, 99%. We reduced this down
to 9 in order to provide a suitable overview. Note, there is a difference between the cut
size and fragment. If we cut 10%, then the fragment size is 90%.
As already mentioned in the alignment paragraph, ssdeep can by design only detect file

fragments between 50% and 25% (i.e., cut sizes 50% to 75%) which is also the conclusion
considering both tables. The algorithm works with a high precision until cuts of 60%
then the ‘matches’ reduce rapidly. Table 6.7 shows that ssdeep also uncovers 0.5% of
5%-fragments which is one of the mentioned special cases.
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Table 6.5.: Results of the alignment robustness test with fixed block sizes.

added block size (KiB)

1 2 3 4 8 16 32 64

ssdeep
Matches (%) 100.0 99.9 98.9 93.8 84.4 71.8 57.3 44.1
Avg. score 96.46 92.66 88.35 85.52 82.29 79.19 76.27 72.83
Std. deviation 3.87 8.04 12.20 14.07 16.28 17.71 18.61 19.28

sdhash
Matches (%) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Avg. score 86.82 63.15 59.97 91.67 89.98 56.58 89.55 84.91
Std. deviation 6.31 15.64 18.16 6.08 8.29 19.48 9.74 13.54

mrsh-v2
Matches (%) 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9
Avg. score 95.16 90.04 82.47 72.65 65.39 88.93 85.30 78.70
Std. deviation 3.56 6.34 12.24 20.21 25.88 9.79 13.66 19.08

mvhash
Matches (%) 99.3 98.8 98.5 98.2 96.9 93.5 85.8 71.9
Avg. score 96.44 93.4 90.38 87.6 78.4 64.8 44.8 33.1
Std. deviation 8.45 10.08 11.99 13.48 16.76 17.82 14.38 14.33

Table 6.6.: An extract of the fragmentation detection test using random cutting.

cut size (random)

10% 25% 50% 60% 70% 80% 90% 95% 99%

ssdeep
Matches (%) 99.9 99.1 91.2 70.2 37.7 8.6 0.3 0.0 (2) 0
Avg. score 83.25 80.19 65.82 58.59 51.03 45.95 43.94 48.5 0
Std. deviation 19.43 8.27 9.81 10.26 10.86 12.12 14.42 16.50 0

sdhash
Matches (%) 100.0 100.0 100.0 99.9 99.8 99.4 99.6 78.6 42.9
Avg. score 78.36 70.27 68.89 70.14 71.72 72.84 75.99 77.44 79.77
Std. deviation 22.5 22.28 22.55 22.86 23.07 22.92 22.44 22.21 22.29

mrsh-v2
Matches (%) 99.9 99.9 99.4 98.7 97.3 92.5 82.0 68.3 37.5
Avg. score 93.38 75.99 74.11 73.47 74.13 73.98 74.25 75.29 76.27
Std. deviation 5.97 20.65 20.28 20.39 19.5 19.21 18.62 18.09 17.14

mvhash
Matches (%) 96.3 86.7 71.8 53.1 29.7 15.4 3.2 0.6 0.0 (3)
Avg. score 77.46 60.27 37.21 31.63 35.21 34.85 24.26 21.12 52.0
Std. deviation 20.58 20.1 19.91 21.68 22.83 21.32 20.80 17.07 34.91

In contrast, sdhash outputs a very high rate also for 95%-cuts. In case of 99%-
cut sdhash has 42.9% matches which is still remarkable. mrsh-v2 is similar to sdhash
but receives consistently a few less matches. mvhash performs similar than ssdeep but
outperforms it when dealing with cuts of 80% or more.
Comparing both cutting modes, the results for ssdeep and mvhash are almost the

same. However, sdhash and mrsh-v2 show a different behavior which is again due to
the similarity digest representation using Bloom filters. End side cutting only influences
the last Bloom filters and thus, the beginning is equal which results in high scores with
only a little deviation. On the other hand random cutting also cuts the beginning which
shifts features to different Bloom filters and reduces the match score.
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Table 6.7.: An extract of the fragmentation detection test using end side cutting.

cut size (end)

10% 25% 50% 60% 70% 80% 90% 95% 99%

ssdeep
Matches (%) 99.9 99.8 93.1 74.6 44.1 14.2 1.7 0.5 0
Avg. score 95.90 88.87 71.70 64.38 58.03 55.32 56.55 55.95 0
Std. deviation 4.23 8.14 11.85 12.87 14.48 15.42 21.28 20.11 0

sdhash
Matches (%) 100.0 100.0 100.0 100.0 100.0 100.0 97.9 80.5 41.2
Avg. score 99.68 99.63 99.42 99.37 99.18 98.81 97.97 97.83 97.63
Std. deviation 1.09 1.22 1.38 1.55 1.87 2.60 4.184 4.275 3.54

mrsh-v2
Matches (%) 99.9 99.9 99.6 99.1 97.7 93.9 83.8 69.7 35.2
Avg. score 97.82 97.60 97.01 96.62 96.11 95.57 93.61 93.61 92.20
Std. deviation 1.93 2.33 2.98 3.49 4.04 4.46 5.16 5.98 6.06

mvhash
Matches (%) 97.9 93.22 81.3 65.0 45.2 29.9 9.8 3.2 0.5
Avg. score 90.17 78.23 57.11 54.78 57.39 51.89 44.48 45.46 63.32
Std. deviation 10.19 16.18 29.23 31.51 28.41 26.73 29.94 33.05 34.28

Single-common-block correlation. Although this test outputs three tables showing the
results for files of 512, 2048 and 8196KiB, we only included a summary for 2048KiB as
the results are very similar. We decided for a test scope of 100 files. The main conclusion
of Table 6.8 is that ssdeep outputs higher scores while the other approaches detect
smaller common blocks. Especially sdhash performs well as it obtains match rates of
100% for all blocks ≥ 3%.

Table 6.8.: An extract of the single-common-block correlation with a file size of 2048KiB.

single common block size

1% 2% 3% 4% 10% 20% 30% 40% 50%

ssdeep
Matches (%) 0 0 0 0 8 66 90 100 100
Avg. score 0 0 0 0 28.00 31.95 36.04 47.09 54.12
Std. deviation 0 0 0 0 2.55 5.56 6.35 8.00 6.74

sdhash
Matches (%) 44 97 100 100 100 100 100 100 100
Avg. score 1 1.26 1.76 2.24 6.16 12.39 18.08 23.66 29.55
Std. deviation 0 0.44 0.66 0.91 2.05 4.27 6.39 8.70 11.14

mrsh-v2
Matches (%) 0 35 73 93 100 100 100 100 100
Avg. score 0 1.00 1.32 1.81 5.06 11.11 17.24 23.94 28.11
Std. deviation 0 0 0.46 0.72 2.14 4.64 6.73 9.21 10.51

mvhash
Matches (%) 0 67 87 95 100 100 100 100 100
Avg. score 0 1.06 1.61 2.13 5.27 12.10 17.51 23.55 29.50
Std. deviation 0 0.21 0.61 0.91 1.76 3.97 5.63 7.60 10.06

White-noise-resistance. The result for the white-noise-resistance is presented by Ta-
ble 6.9. Recall, this test randomly changes bytes within an input.
The security analysis [4] showed that it is theoretically possible to produce a non-match
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by changing 7 bytes in an input. In Sec. 5.3 we showed that about 70 random changes are
sufficient to produce non-matches. Thus, it is not surprising that ssdeep performs worst.
Again, sdhash and mrsh-v2 show a very similar behavior with slight advantages for
sdhash. mvhash shows a better behavior than ssdeep for small modifications (< 1.00%)
but gets a bit worse for larger ones.

Table 6.9.: Results for the white-noise-resistance test.

modifications

0.10% 0.25% 0.50% 0.75% 1.00% 1.50% 2.00% 2.50%

ssdeep
Matches (%) 40.7 21.6 10.4 5.4 2.9 1.3 0.7 0.4
Avg. score 74.72 66.96 60.03 54.41 49.60 43.32 40.07 37.5
Std. deviation 12.42 12.06 11.01 10.46 9.81 9.68 9.07 9.19

sdhash
Matches (%) 100.0 100.0 100.0 99.9 99.7 74.6 6.7 1.5
Avg. score 82.70 65.69 44.57 28.50 16.2 3.20 3.14 2.63
Std. deviation 9.29 10.42 9.81 8.59 7.02 3.26 2.83 2.34

mrsh-v2
Matches (%) 99.9 99.6 94.1 37.1 7.7 0.7 0.2 0.0
Avg. score 65.61 37.26 12.23 5.03 4.648 4.13 3.56 2.75
Std. deviation 8.553 9.59 7.51 5.75 5.16 4.31 2.17 1.78

mvhash
Matches (%) 95.17 87.9 63.9 38.5 17.7 1.1 0.1 0.0 (2)
Avg. score 61.91 34.79 14.62 6.44 3.3 1.7 2.5 2
Std. deviation 15.88 14.74 9.98 5.54 2.88 1.25 2.06 0

6.3.3. Precision & recall on synthetic data

Our test examines the performance of the algorithms as a function of file size. For that
purpose we consider the behavior at six fixed file sizes – 1, 4, 16, 64, 256 and 1024KiB.
We decided for these size boundaries after analyzing the sizes of almost 1,000,000 files
in the govdoc-corpus3. As shown in Table 6.10, nearly 91% of all files are smaller than
1MiB.

Table 6.10.: File sizes distribution in the govdoc-corpus (min size is 1KB).

File size range (KiB) ≤ 4 ≤ 16 ≤ 64 ≤ 256 ≤ 1024

Amount (%) 5.40 20.71 52.54 75.82 90.60

To avoid library-level integration with the tools (which would facilitate efficiency but
introduce tight code dependencies) we found it necessary to use the command line inter-
face provided by the tool. Thus, even though each tool invocation completes in a fraction
of a second, there is considerable overhead that adds up on a large scale.

3“These documents were obtained by performing searches for words randomly chosen from the Unix
dictionary, numbers randomly chosen between 1 and 1 million, and randomized combinations of the
two, for documents of specified file types that resided on web servers in the .gov domain using the
Yahoo an Google search engines” (http://digitalcorpora.org/corpora/files).
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One challenge that may not be immediately obvious is the amount of computation
needed to complete the tests. For this test we did 10 different runs on 100 files (vs
100 modified versions) which results in 100,000 comparisons per option which ends up in
2,500,000 (25 options) comparisons per file size and algorithm. Due to 6 different file sizes,
we had 15 million comparisons per algorithm, which is in total 60 million comparisons.
The rest of this section is divided into three parts. First, we explain the representation

of our results followed by the average results over all file sizes and tests in the next
paragraph. As this is very general, we decided to present some more details about
specific options in the last paragraph.

Result presentation. A common way to visualize the precision & recall rates are score
histograms, error probability distributions, and detection error trade-off curves (DET
curves).

Score histograms show the frequency for each score value, i.e., how often a score occurs,
for both true and false positives. Ideally, scores for known impostors would be all zero,
while genuine scores would be positive. More precisely, we need impostor scores to be
generally lower than genuine scores and we could use the threshold parameter as means
to clearly separate them. The score histogram is a convenient means to identify suitable
threshold values.

Error probability distributions show the false positive rate (FPR) and false negative
rate (FNR) as a function of the chosen threshold value. More formally, let t be the
threshold where 0 ≤ t ≤ 100 and s denote the comparison score. Then:

• FPR(t) is the number of impostor comparisons with s ≥ t divided by the total
number of impostor comparisons.

• FNR(t) is the number of genuine comparisons with s < t divided by the total
number of genuine comparisons.

Detection error trade-off curve correlates the FPR (x-axis) and the FNR (y-axis).
Thus, we can answer the question if at most x% false matches shall be tolerated, how many
false non-matches must be expected?. Obviously, the more false matches are tolerated,
the less false non-matches can be expected and vice versa.

Averaged results over all file sizes. Recall, this test considers the behavior for the file
sizes 1, 4, 16, 64, 256 and 1024KiB. In a first step we decided to provide the average
results per algorithms for all sizes, options and tests. Thus, we have a single histogram,
error probability distribution and DET-curve for each algorithm.

The Score histograms for the algorithms are given in Fig. 6.1. In case of ssdeep
we do not have any impostors with a score above 0 (which is perfect). sdhash has 15
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impostors with a score up to 4 which is almost perfect. mrsh-v2 and mvhash have 8160
and 5,317,189, respectively, with scores up to 30 and thus perform worse.
With regards to the false negatives, sdhash (70,280) performs best followed followed

by mrsh-v2 (91,603). mvhash (121,060) and ssdeep (127,730) have a significantly higher
amount of false negatives.
Table 6.11 and 6.12 show the false positives and false negative, respectively, dependent

on the file size. Almost all algorithms do not produce false positives for files up to 16KiB.
For larger files, especially mvhash outputs huge amounts of false positives while mrsh-v2
also has a few thousands.

Table 6.11.: False positives with respect to the file size.

KiB 1 4 16 64 256 1024

ssdeep 0 0 0 0 0 0
sdhash 0 0 0 0 1 14
mrsh-v2 0 0 28 3,190 2,517 2,425
mvhash 0 0 0 1,673,762 2,272,710 1,370,717

Studying the false negatives in Table 6.12 shows that sdhash and mrsh-v2 have prob-
lems, especially to handle small files (≤ 16KiB) while they improve for larger files (e.g.,
≥ 64KiB). The amount of false negatives of ssdeep is rather constant and around 22,000
independent of the size. mvhash has problems to handle small files and large files but
show that it works better than ssdeep for 64 and 256KiB files.

Table 6.12.: False negatives with respect to the file size.

KiB 1 4 16 64 256 1024

ssdeep 26,531 21,221 22,020 22,050 21,956 22,023
sdhash 18,460 18,007 12,657 7,075 3,216 2,794
mrsh-v2 31,517 21,384 16,062 10,412 6,807 5,421
mvhash 29,436 27,943 25,273 10,736 8,627 19,045

The error probability distributions for the algorithms are given in Fig. 6.2. The false
positive rates (black lines) for t = 1 of ssdeep, sdhash and mrsh-v2 are 0, 10−7 and
10−4, respectively. Hence, these three algorithms perform pretty well. mvhash has a false
positive rate of 27% which gets zero for t ≥ 26.
With respect to false negatives (red lines), ssdeep and mvhash have an initial rate of

approximately 62% for (t = 1) while sdhash and mrsh-v2 perform better with a rate
of approximately 40%. As already discussed in the previous paragraph, these high false
negative rates mostly result from small files, e.g., sdhash drops the comparison if an
input has less than 512KiB.

The detection error trade-off curves are given in Fig. 6.3. Note, ssdeep and mvhash
use the regular scale while both others use a logarithmic scale for a better view. In case
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(a) Histogram for ssdeep.
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(b) Histogram for sdhash.
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(c) Histogram for mrsh-v2.
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Figure 6.1.: Histograms for different algorithms.
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(a) ssdeep.
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(b) sdhash.
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(c) mrsh-v2.
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(d) mvhash.

Figure 6.2.: Error probability distribution for different algorithms.

of ssdeep there are plenty false negatives but no false positives. Thus, the graph drops
straight to the x-axis. mvhash has a lot of false positives with a score ≤ 25 and then goes
down to zero. sdhash and mrsh-v2 have less false negatives then the aforementioned
algorithms. However, they have some false positives.

Detailed test results. In this section, we summarize the results for each of the four
types of data manipulation and for all file sizes (i.e., 1, 4, 16, 64, 256, and 1024KiB).
All details are given in Appendix B. In addition to the numerical scores, we discuss the
relationship between the observed behavior and the design of the algorithms.

Fragment detection. In this test, we evaluate the ability of the algorithms to find a piece
of target. Specifically, we compare a random test file f1 with a randomly sampled cut
which results in f2. The cut size is X of the original, where X = {50%, 60%, 70%, 80%,
90%, 95%, 97%, 99%}. Table 6.13 shows the results and lead to the following observations.
The behavior of ssdeep is consistent across all file sizes: above 0.97 for the 50%

case, 0.68 − 0.71 at 60%, and (near) zero in all other cases. Considering the algorithm,
these observations make sense. The algorithm produces a fixed size similarity digest,
which means that, in relative terms, it maintains the same resolution, so the minimum
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(b) sdhash.
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(c) mrsh-v2.
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(d) mvhash.

Figure 6.3.: Detection error trade-off for different algorithms.
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Table 6.13.: True positive rates as a function of file and cut size (random cutting).

50% 60% 70% 80% 90% 95% 97% 99%

ssdeep

1 0.98 0.68 0.04 0.02 0.00 0.00 0.00 0.00
4 0.98 0.69 0.04 0.02 0.00 0.00 0.00 0.00
16 0.98 0.71 0.03 0.01 0.00 0.00 0.00 0.00
64 0.98 0.69 0.03 0.02 0.00 0.00 0.00 0.00
256 0.97 0.68 0.04 0.02 0.00 0.00 0.00 0.00
1024 0.97 0.69 0.03 0.02 0.00 0.00 0.00 0.00

sdhash

1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 1.00 1.00 0.99 0.04 0.00 0.00 0.00 0.00
16 1.00 1.00 1.00 1.00 1.00 0.05 0.00 0.00
64 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00
256 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1024 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

mrsh-v2

1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 0.94 0.76 0.44 0.09 0.00 0.00 0.00 0.00
16 1.00 1.00 1.00 1.00 0.77 0.08 0.00 0.00
64 1.00 1.00 1.00 1.00 1.00 1.00 0.91 0.02
256 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1024 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

mvhash

1 0.34 0.08 0.01 0.00 0.00 0.00 0.00 0.00
4 0.79 0.17 0.00 0.00 0.00 0.00 0.00 0.00
16 1.00 0.56 0.00 0.00 0.00 0.00 0.00 0.00
64 1.00 1.00 0.62 0.00 0.00 0.00 0.00 0.00
256 1.00 1.00 1.00 0.65 0.48 0.00 0.00 0.00
1024 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

detectable fragment should be defined in relative terms; the tests clearly capture this
feature.
The behavior of sdhash and mrsh-v2 is more dynamic; they start with complete failure

at 1KiB but quickly improves as the file size grows: at 4KiB, sdhash needs a 30% sample
(a cut of 70%) for near-perfect detection, whereas at 256KiB and up, even a 1% sample
is detected perfectly. Overall, mrsh-v2 is bit less precise.
This behavior should be expected. The tools use a variable-sized digest so a fragment

of any size above the design minimum should be detectable, regardless of the size of
the source file. Considering (in absolute terms) the size of the fragment at which it
becomes perfectly detectable, we can see that it is approximately the same in all cases:
30%× 4KiB ≈ 10%× 16KiB ≈ 2%× 64KiB.
The behavior of mvhash looks random. It is not consistent across file sizes and only

improves until the 256KiB; then it fails completely. Considering the implementation,
this makes sense. mvhash can only compare similarity digests if the difference between
two similarity digests (i.e., Bloom filter sequences) is less than four which is the reason
for the failure at 1024KiB. On the other hand it works more precise then ssdeep for files
between 64-256KiB and almost equal for 16KiB.
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Single-common-block correlation. An extension of the fragment test, the single-common-
block test evaluates the ability of an approximate matching algorithm to correlate two
files, f1 and f2, that are known to have fragment in common. To simplify the analysis
and presentation, we choose the files of equal size and vary the amount of commonality
as a fraction X of the file size; X = {50%, 40%, 30%, 20%, 10%, 5%, 3%, 1%}. Table 6.14
shows the results and lead to the following observations.

Table 6.14.: True positive rates for as a function of file and common block size.

50% 40% 30% 20% 10% 5% 3% 1%

ssdeep

1 1.00 1.00 0.95 0.59 0.06 0.00 0.00 0.00
4 1.00 1.00 0.94 0.63 0.07 0.00 0.00 0.00
16 1.00 0.99 0.94 0.62 0.05 0.00 0.00 0.00
64 1.00 1.00 0.95 0.63 0.07 0.00 0.00 0.00
256 1.00 1.00 0.95 0.66 0.07 0.00 0.00 0.00
1024 1.00 1.00 0.93 0.64 0.07 0.00 0.00 0.00

sdhash

1 0.61 0.43 0.06 0.00 0.00 0.00 0.00 0.00
4 1.00 0.98 0.13 0.00 0.00 0.00 0.00 0.00
16 1.00 0.98 0.87 0.53 0.00 0.00 0.00 0.00
64 1.00 1.00 1.00 1.00 0.83 0.11 0.00 0.00
256 1.00 1.00 1.00 1.00 1.00 1.00 0.76 0.01
1024 1.00 1.00 0.93 0.64 1.00 1.00 1.00 0.32

mrsh-v2

1 0.09 0.04 0.01 0.00 0.00 0.00 0.00 0.00
4 0.95 0.72 0.28 0.02 0.00 0.00 0.00 0.00
16 1.00 0.95 0.25 0.00 0.00 0.00 0.00 0.00
64 1.00 0.96 0.84 0.61 0.05 0.04 0.04 0.00
256 1.00 1.00 1.00 1.00 0.86 0.24 0.03 0.01
1024 1.00 1.00 1.00 1.00 1.00 0.99 0.58 0.00

mvhash

1 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00
16 0.60 0.01 0.00 0.00 0.00 0.00 0.00 0.00
64 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
256 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1024 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

The behavior of the tools on this test is clearly correlated with their performance on
the prior test but the relationships are a bit more complex.
For ssdeep, we need at least 20% commonality to achieve a better-than-50% TPR,

and at least 30% to achieve reliable (93%+) detection. As with the fragment detection,
the results are consistent across file sizes and depend on the relative size of the common
fragment.
For sdhash and mrsh-v2, the usual problem at 1KiB persist and, just like in the

fragment case, the performance improves as the size of the source file grows. However,
considering the absolute size of the common fragment, the algorithms need a bigger
common block compared to the fragment test. This is likely due to alignment issues as
the similarity digests consist of a sequence of Bloom filters, such one representing (on
average) 9-10KiB (sdhash) or 25-26KiB (mrsh-v2) of the source data. Depending on the
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6. Testing bytewise approximate matching

location of the sample, the data could map to two, or three, separate filters and match
could be numerically diluted during comparison.
mvhash operates worse for 1-16KiB and perfect for files ≥ 64KiB at a first look. How-

ever, studying the detailed results (see Appendix B) actually shows that the algorithm
fails this test completely as the false positive rate (FPR) is also 100%. One reason might
be the chosen setting -t 7 which only considers 7 bits per byte4. Nevertheless, this
behavior needs a more detailed analysis.

Alignment. Recall that the alignment test is designed to evaluate the robustness of the
algorithm with respect to data alignment. To perform the test, we compare an original
file f1 to a file f2, which consists of the entirety of f1 prefixed by a random byte string
of length X = {25%, 50%, 100%, 200%}. Table 6.15 shows the results and lead to the
following observations.

Table 6.15.: True positive rates as a function of file size and the alignment.

25% 50% 100% 200%

ssdeep

1 1.00 1.00 0.96 0.92
4 1.00 1.00 0.97 0.93
16 1.00 1.00 0.98 0.93
64 1.00 1.00 0.97 0.93
256 1.00 1.00 0.98 0.94
1024 1.00 1.00 0.96 0.93

sdhash

1 0.86 0.87 0.89 0.90
4 1.00 1.00 1.00 1.00
16 1.00 1.00 1.00 1.00
64 1.00 1.00 1.00 1.00
256 1.00 1.00 1.00 1.00
1024 1.00 1.00 1.00 1.00

25% 50% 100% 200%

mrsh-v2

1 0.24 0.24 0.24 0.24
4 1.00 1.00 1.00 1.00
16 1.00 1.00 1.00 1.00
64 1.00 1.00 1.00 1.00
256 1.00 1.00 1.00 1.00
1024 1.00 1.00 1.00 1.00

mvhash

1 1.00 0.95 0.55 0.01
4 1.00 1.00 0.96 0.01
16 1.00 1.00 0.97 0.93
64 1.00 1.00 1.00 1.00
256 1.00 1.00 1.00 1.00
1024 0.96 0.00 0.00 0.00

ssdeep performs almost perfect up to a shift of 100% and a little bit less precise for
200%. The latter case means that the original file is 1/3 of the modified file which is
the limit of ssdeep. If the alignment increases further, the detection rate will decrease
further.
sdhash and mrsh-v2 deal perfect with all sizes except 1KiB where mrsh-v2 performs

worse than sdhash. This is an edge case for the tools, which are optimized for targets
with minimum size of about 1400 bytes (full network packet).
Again the problem with the high false positive rate of mvhash remains and therefore

we do not discuss it.

White-noise resistance. In the random-noise resistance test, we attempt to correlate
a file f1 and a randomly disturbed version of it – f2. In addition to file size, we vary

4In order to make all test results comparative, we must have the same configuration for all tests; -t 7
is needed for the real world assessment.
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the fraction X of bytes modified, where X = {0.5%, 1.0%, 1.5%, 2.0%, 2.5%} of f1’s size.
Table 6.16 shows the results and lead to the following observations.

Table 6.16.: True positive rates as a function of file size and the random noise.

0.5% 1.0% 1.5% 2.0% 2.5%

ssdeep

1 1.00 0.94 0.77 0.56 0.39
4 0.60 0.15 0.03 0.01 0.00
16 0.02 0.00 0.00 0.00 0.00
64 0.00 0.00 0.00 0.00 0.00
256 0.00 0.00 0.00 0.00 0.00
1024 0.00 0.00 0.00 0.00 0.00

sdhash

1 0.64 0.60 0.40 0.17 0.05
4 1.00 1.00 0.72 0.09 0.07
16 1.00 1.00 0.81 0.05 0.00
64 1.00 1.00 0.96 0.03 0.00
256 1.00 1.00 0.98 0.03 0.00
1024 1.00 1.00 0.89 0.00 0.00

mrsh-v2

1 0.20 0.12 0.05 0.02 0.01
4 0.92 0.27 0.03 0.01 0.00
16 0.99 0.04 0.00 0.00 0.00
64 1.00 0.14 0.03 0.01 0.01
256 1.00 0.06 0.01 0.00 0.00
1024 1.00 0.00 0.00 0.00 0.00

mvhash

1 0.10 0.01 0.00 0.00 0.00
4 0.06 0.00 0.00 0.00 0.00
16 0.25 0.00 0.00 0.00 0.00
64 1.00 1.00 1.00 1.00 1.00
256 1.00 1.00 1.00 1.00 1.00
1024 1.00 1.00 1.00 1.00 1.00

In prior work [4], we have shown that ssdeep’s noise resistance is a function of the
absolute number of changes made to the source data. The current results confirm this.
ssdeep performs well for small files and small percentage values. For instance, 0.5-1% of
1024 bytes leads to 5-10 changes; ssdeep can clearly tolerate the disturbance as evidenced
by the true positive rates of 100% and 94%. Somewhere around 20-22 modifications the
TPR drops below 50%, and around 80 it becomes effectively zero.
Apart from the always-problematic 1KiB case, sdhash deals well with random noise

of up 1.0% for all file sizes – the true positive rate is 100%. The 1.5% case triggers a
fluctuating detection rate between 72% (4KiB) and 98% (256KiB) and shows that the
tool is starting to fail. At 2.0% and up, the TPR crashes to zero indicating that the
tool’s ability to tolerate noise has been exhausted.
mrsh-v2 operates worse than sdhash as it only performs well for the 0.5% noise and

then rapidly goes down to a TPR of 0. This comes from the feature selection. While
mrsh-v2 divides an input into chunks (all bytes are represented in the similarity digest),
sdhash selects features of 64 bytes which may have gaps in between (not all bytes influence
the similarity digest).
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Again the problem with the high false positive rate of mvhash remains and therefore
we do not discuss it.

6.3.4. Precision & recall on real world data

This section presents the results from applying our test methodology from Sec. 6.2.3
to analyze the performance ssdeep, sdhash, mrsh-v2 and mvhash on the basis of the
t5-corpus.
One challenge that may not be immediately obvious is that a complete, all-pairs com-

parison run requires a non-trivial number of comparisons – a set of n files results in
n(n−1)

2 comparisons, which corresponds to 9, 930, 196 aLCS-comparisons for t5. Although
it takes only ≈ 425ms per comparison, such work would clearly be impractical without
parallel execution. Fortunately, such a workload is readily parallelizable and our imple-
mentation takes full advantage of that. In our tests, a 48-core, 2.6GHz AMD Opteron
server needed 1466min (≈ 24 hours) to generate and compare all aLCS-digests.
The rest of this section is divided into the following parts. First, we give a general

overview of the detection rates of the different approaches. The next three sections
discuss the false positives, false negatives and true positives, respectively. Finally, the
last section shows the differences in performance for the containment and resemblance
usage scenarios.
Note, the following results are for the relative case described in the testing methodology

in Sec. 6.2.3 on page 104. On page 129 we briefly discuss the baseline results for an
absolute alcs La.

Baseline results. First, we present the baseline case where t = 0. In other words, we
define any approximate matching score greater than zero as a positive result, and any
zero score as a negative result. This is the lowest barrier for matching algorithms to
jump over as they simply need to match the positive/negative behavior of the baseline
aLCS measure, with no additional expectations of the exact value of the score.
Using the definitions from the last paragraph, the observed statistics from the experi-

ments are shown in Table 6.17 and lead us to the following initial observations:

• Precision. In absolute terms, sdhash yields the largest number of true positives,
while mvhash is with the lowest number of false positives; mrsh-v2’s true positives
fall right in the middle but the false positives are much higher than the other
three. This results in reasonably high precision for ssdeep, sdhash and mvhash,
and a relatively low one for mrsh-v2.

• Recall. Due to the high number of false negatives across the board, the recall
rates are quite low. In relative terms, sdhash holds a considerable advantage over
ssdeep, mrsh-v2 and mvhash.

• TNR & Accuracy. Due to the very high ratio of negative to positive results, these
measures do not provide any meaningful differentiation among the tools.
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• F-scores. In these combined measures, sdhash holds a consistent 1.47 − 1.50×
performance advantage over mrsh-v2, 5.50− 5.75× over ssdeep and 8.85− 9.00×
over mvhash.

• MCC. The measure also puts sdhash’s performance ahead by a 2.25−4.5× margin;
interestingly, mrsh-v2 and ssdeep swap places suggesting that mrsh-v2’s lower
precision is having a bigger effect onMCC than on F -scores. mvhash is in between
ssdeep and mrsh-v2.

Table 6.17.: Baseline approximate matching results for t = 0.

ssdeep sdhash mrsh-v2 mvhash

TP 951 5,474 1,335 611
FP 15 790 9,011 11
TN 9,472,047 9,471,272 9,463,051 9,472,051
FN 457,183 452,660 456,799 457,523

Precision 0.98447 0.87388 0.12904 0.98232
Recall 0.00010 0.00058 0.00014 0.00006
TNR 1.00000 0.99992 0.99905 1.00000

Accuracy 0.95396 0.95434 0.95309 0.95392
F1 0.00020 0.00115 0.00028 0.00013
F2 0.00013 0.00072 0.00018 0.00008
F0.5 0.00050 0.00288 0.00070 0.00032

MCC 0.04412 0.09913 0.01276 0.03531

Analysis of false positives. Let us now consider the false positive behavior of the tested
tools in detail. Fig. 6.4 shows the empirical probability distribution of the approximate
matching scores Sh for which the respective tool has yielded a false positive. Both
mrsh-v2 and sdhash show a highly desirable behavior – the FP scores are heavily con-
centrated close to zero. Indeed, the cumulative probability for scores in the 1− 10 range
constitute 99.9% and 96.6% of all FP for mrsh-v2 and sdhash, respectively; ssdeep’s
results are uniformly distributed throughout the 32-85 range. The scores for the FP for
mvhash are all smaller than 17.

Analysis of false negatives. The breakdown of false negative results show virtually
identical distribution of Lr scores for all four tools. This is clearly due to the overwhelm-
ing number of negatives, which render any differences across tools insignificant. The good
news is that, although the false negatives are substantial in number, their Lr scores are
heavily clustered around zero. This means that we can put a relatively tight and useful
bound on what approximate matching tools might miss.
For example, assume that one of the tools, sdhash, returns a score of zero (Ssdhash = 0).

Given its negative predictive value NPV = TN/(FN + TN) = 0.954, the result will be TN
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Figure 6.4.: Empirical probability distribution of Sh scores for approximate matching
false positives.

in 95.4% of the time. Whenever it is not (4.6%), Figure 6.5 tells us that ∼ 98% of the
time the Lr score would not exceed 15. Put together, the two observations tell us that
Ssdhash = 0 implies 99.91%5 certainty that the Lr score does not exceed 15.
Since the NPV for all four tools are similar, we can conclude that negative results from

any of the tools are significant in that they allow us to bound the level of commonality
that we may be missing with a very high level of certainty.

Analysis of true positives. The next question we would like to explore is: what is
the correlation between true positive results (Sh) and the ground truth results (Lr)? To
understand this behavior, we build the empirical probability distribution of the difference
between the true score (as defined by Lr) and the similarity score; that is, Lr − Sh, for
h ∈ {ssdeep, sdhash,mrsh,mvhash} (see Fig. ??).
We can see that mrsh-v2’s comes closest to having a classical Gaussion distribution

that is symmetrical and fairly tight around the mean of zero; this implies that mrsh-v2’s
positive results have about equal chance of being smaller, or larger than ground truth.
Next, sdhash’s distribution also has a bell-like shape but has a ‘bulge’ and slight bias
to the right of zero, implying that sdhash scores are somewhat more likely to be smaller
than aLCS’s score. ssdeep’s distribution is massively skewed to the left of zero (89% of

5Out of the 4.6%, there are 98% under 15. Thus, 95.4% + 4.6% · 0.98 = 99.91%.

126



6.3. Testing results

1,	
  0,2128	
  

2,	
  0,3680	
  

3,	
  0,4770	
  

4,	
  0,5632	
  

5,	
  0,6374	
  

6,	
  0,7065	
  
7,	
  0,7589	
  

8,	
  0,8161	
  
9,	
  0,8595	
  

10,	
  0,8904	
  
15,	
  0,9814	
  

0,00	
  

0,10	
  

0,20	
  

0,30	
  

0,40	
  

0,50	
  

0,60	
  

0,70	
  

0,80	
  

0,90	
  

1,00	
  

1	
   2	
   3	
   4	
   5	
   6	
   7	
   8	
   9	
   10	
  11	
  12	
  13	
  14	
  15	
  16	
  17	
  18	
  19	
  20	
  21	
  22	
  23	
  24	
  25	
  26	
  27	
  28	
  29	
  30	
  

Em
pi
ric
al
	
  p
ro
ba

bi
lit
y	
  

Score	
  

ssdeep	
   sdhash	
   mrsh	
   mvhash	
   c.d.f.	
  

Figure 6.5.: Empirical probability distribution of Lr scores for approximate matching
false negatives.

the mass) and shows no particular characteristic shape; still, the graph it tells us that
we can view ssdeep’s score as an upper bound on the aLCS result. mvhash’s results are
distributed over the whole x-axis and also does not show a characteristic shape. Thus,
there is no correlation between the score and the aLCS.

Containment vs. resemblance. Having characterized the overall performance of the
tools, we consider their behavior under the two basic usage scenarios – resemblance and
containment. Following Broder’s ideas [28], we try to approximate the informal notions
of ‘roughly the same’ (resemblance) and ‘roughly contained inside’ (containment). For
example, comparing two executable files similar in size is likely a resemblance query,
whereas comparing a file against a RAM snapshot is clearly a containment query. How-
ever, we have no precise guidance as to where to draw the line between the two scenarios.
For this work, we chose a criterion based on the ratio of the file sizes. Namely, if the

size of the bigger file is at least two times the size of the smaller one, we define this as
a containment query; otherwise, it is a resemblance one. In other words, if more than
one non-overlapping copy of one file can fit in the other, we assume the main interest to
be containment. Evidently, if a similarity tool behaves the same way in both cases, we
expect the performance metrics to remain stable across the two scenarios.
To establish a baseline, we use our ground truth (gt) results; Table 6.18 provides a

summary. The first row (gt-con) provides the statistics for all containment cases (pairs
of files); the second row covers all resemblance cases; the last row combines the results.
The first column (TP) provides the number of true positives, followed by TPratio which
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Figure 6.6.: Empirical probability distributions of Lr − Sh, for h ∈ {ssdeep, sdhash,
mrsh, mvhash}.

gives the fraction of true positives for the particular case relative to the total number
of true positives. The TN and TNratio provide analogous numbers with respect to true
negatives; the last two columns provide totals. In simple terms, we see that about 78%
of the pairs fall into the containment and 22% into the resemblance cases.

Table 6.18.: Ground truth statistics for containment/resemblance cases

TP TPratio TN TNratio Total Totalratio

gt-con 354,914 0.775 7,382,141 0.779 7,737,055 0.779
gt-res 103,220 0.225 2,089,921 0.221 2,193,141 0.221
gt 458,134 1.000 9,472,062 1.000 9,930,196 1.000

Tables 6.19 and 6.20 present the statistics for the evaluated similarity tools. From the
former, we can see that ssdeep and mvhash have a notably different behavior from both
the baseline and the other two tools. Namely, about 92% of their matches come from
the resemblance case; this is a logical result of their design, which makes the resolution
of the similarity digest a function of file size. As file sizes draw apart, both tools simply
lose the ability to compare them. sdhash follows a containment/resemblance ratio that
is much closer to the baseline but is still tilted in favor of resemblance as the fraction of
resemblance TP results is some 36.6% higher than in the ground truth case. mrsh-v2 is
very balanced but also favors the resemblance case.
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Considering the information retrieval metrics in Table 6.20, one important observation
is that all four tools yield better results for resemblance over containment. For mrsh-v2
and sdhash the improvement is by 50-100%, while for ssdeep and mrsh-v2 it is up to 40
times. Among the tools, the relative performance ratios remain comparable to the ones
presented earlier in Table 6.17 with sdhash outperforming across the board.

Table 6.19.: Basic containment/resemblance statistics by approximate matching tool.

TP TPratio FP FPratio TN FN

ssdeep-con 74 0.078 5 0.333 7,382,136 354,840
ssdeep-res 877 0.922 10 0.667 2,089,911 102,343

ssdeep 951 1.000 15 1.000 9,472,047 457,183

sdhash-con 3,472 0.634 497 0.629 7,381,644 351,442
sdhash-res 2,002 0.366 293 0.371 2,089,628 101,218

sdhash 5,474 1.000 790 1.000 9,471,272 452,660

mrsh-con 576 0.431 3,940 0.437 7,378,201 354,338
mrsh-res 759 0.569 5,071 0.563 2,084,850 102,461

mrsh 1,335 1.000 9,011 1.000 9,463,051 456,799

mvhash-con 54 0.088 2 0.182 7,382,139 354,860
mvhash-res 557 0.912 9 0.818 2,089,912 102,663

mvhash 611 1.000 11 1.000 9,472,051 457,523

Baseline results absolute alcs. This paragraph presents the baseline case where t = 0
and La ≥ 2048 bytes. Thus, again, we define any approximate matching score greater
than zero as a positive result, and any zero score as a negative result. The observed
statistics from the experiments are shown in Table 6.21 and lead us to the following
initial observations:

• Precision. mrsh-v2 yields the largest number of true positives, while the amount
of true positives for the remaining algorithms decrease a little bit in contrast to the
relative case. mvhash has the lowest number of false positives followed by ssdeep
and mrsh-v2. This results in reasonably high precision for mvhash and mrsh-v2
and a lower precision for ssdeep and sdhash.

• Recall. Due to the high number of false negatives across the board, the recall
rates are quite low. In relative terms, mrsh-v2 hold a considerable advantage over
ssdeep, sdhash and mvhash.

• TNR & Accuracy. Due to the very high ratio of negative to positive results, these
measures do not provide any meaningful differentiation among the tools.

While the results for relative and absolute alcs scores are almost equal for ssdeep,
sdhash and mvhash, the rates are very different for mrsh-v2. To sum it up, the first
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Table 6.20.: Performance measures by scenario and approximate matching tool.

Precision Recall F1 F2 F0.5 MCC

ssdeep-con 0.93671 0.00001 0.00002 0.00001 0.00005 0.01361
ssdeep-res 0.98873 0.00042 0.00084 0.00052 0.00209 0.08944

ssdeep 0.98447 0.00010 0.00020 0.00013 0.00050 0.04412

sdhash-con 0.87478 0.00047 0.00094 0.00059 0.00235 0.08976
sdhash-res 0.87233 0.00096 0.00191 0.00120 0.00476 0.12612

sdhash 0.87388 0.00058 0.00115 0.00072 0.00288 0.09913

mrsh-con 0.12755 0.00008 0.00016 0.00010 0.00039 0.00943
mrsh-res 0.13019 0.00036 0.00073 0.00045 0.00180 0.02026

mrsh 0.12904 0.00014 0.00028 0.00018 0.00070 0.01276

mvhash-con 0.96429 0.00001 0.00001 0.00001 0.00004 0.01181
mvhash-res 0.98410 0.00027 0.00053 0.00033 0.00133 0.07109

mvhash 0.98232 0.00006 0.00013 0.00008 0.00032 0.03532

Table 6.21.: Baseline approximate matching results for La ≥ 2048 bytes and t = 0.

ssdeep sdhash mrsh-v2 mvhash

TP 787 4,989 9.564 594
FP 179 1275 782 28
TN 9,500,344 9,499,248 9,499.741 9,500,495
FN 428,883 424,681 420,106 429,079

Precision 0.81470 0.79646 0.92442 0.95498
Recall 0.00008 0.00052 0.00101 0.00006
TNR 0.99998 0.99987 0.99992 1.00000

Accuracy 0.95679 0.95710 0.95762 0.95679
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three algorithms work reliable for relative similarities and the latter one works better for
absolute similarities. Thus, the perfect algorithm depends on the needs of an investigator
and the working field.

6.4. Implementation details of the tests

The test results from the previous section were obtained by multiple scripts and imple-
mentations. More precisely, we can split the testing into three parts: efficiency, synthetic
data and real world data.
Note, the following is a brief description of FRASH v1.0 which is a collection of scripts.

We are currently working on a C++-framework that will include all tests and ease its
usage. Once FRASH v2.0 is published, it will be easier to use the different test.

Efficiency. Obtaining the overall benchmark data is the simplest test, as we can use
basic Linux commands. Thus, we measured the runtime efficiency by using the time-
command. For instance,

$ time mrsh t5/* > mrsh_digests
real 0m13.300s
user 0m12.980s
sys 0m0.310s .

To define the compression, we analyzed the digest files where we considered the digest
representation (e.g., Base64 vs binary) and removed unnecessary information like file
names or paths.

Sensitivity & robustness and precision & recall on synthetic data. Since these two
test categories are very similar, we combined them. Both tests use the same kind of
modifications (i.e.,, fragment, alignment, white-noise and single-common-block). The
main difference is that the sensitivity & robustness tests use the t5-corpus while the
precision & recall on synthetic data creates random files. To perform these tests, we
implemented a C++ tool which will be part of FRASH v2.0.
Before running the tests, the current version needs some configuration which can be

set in class TestConfig. First, one has to choose the paths for the original and modified
files. Next, one has to set the modification (e.g., fragment test) including all desired
options). If no files are available, this means the tool first has to generate the input and
therefore needs the ‘amount of random files’ and the ‘file size’.
Once the configuration is made, the actual testing consists of the following five steps:

1. Prepare files checks and generates files if necessary. For instance, if a set of original
files is available, we only have to generate the modifications of the set. If no files
are available, we have to create both. In the best case, we only have read in the
file names and do not have to create any files.
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2. Generate file pairs returns a list of necessary comparisons. The sensitivity & ro-
bustness test, for example, only compares the original file against its modified file
while the precision & recall test compares all-against-all.

3. Run comparison is the actual processing of the files. Thus, all file pairs are pro-
cessed (i.e., hashed and compared) using all desired algorithms and the final scores
are generated. In order to reduce the run time, we parallelized this phase.

4. Analyze results is done by the TestResultProcessor which processes/adminis-
trates the comparison results including the match scores. For instance, we generate
the histograms which are then used to create further statistics like true positive
rate, false positive rate and so on.

5. Print results print the results to the screen and write them into a file.

In the following we briefly describe the most important classes. To handle the different
parameters and outputs of the algorithms, each algorithm has its own class which is
inherited from the base class HashAlgorithm. Furthermore, all modifications have their
own classes to handle the different test cases and options.
The actual processing is solved by BaseTest which handles the comparison, folder

structure or storing results. Depending on the test scenario, SensitivityRobustnessTest
generates the genuine file pairs while PrecisionRecallTest generates all file pairs. In
order to distinguish between genuine and impostor, FilePair stores the filenames (two
genuies matches will have the same filename). Histogram has a list of all results, an-
alyzes the scores and write the histograms into files. Once the histograms are ready,
statistics computes additional values like matching rates.

Real world data. To study the behavior of approximate matching algorithms for real
world data, we implemented several bash scripts; one per algorithm and case. Thus,
there are three directories per algorithm, e.g., mvhash, mvhash-con and mvhash-res. The
first is the general case, followed by the containment and resemblance cases.
Next, we describe the procedure for mvhash. There is a shell-script (i.e., mvhash.sh)

in each directory, which requires the ground truth (i.e., the aLCS files from the alcs
directory) and the results from the evaluated algorithm, the gen comparison. As all
approximate matching algorithms produce a different output, we normalize it to a three
column format and sort it. Note, in order to test a new algorithm, the command for
‘reduce to three-column format’ must be adjusted in the mvhash.sh line 12.
Then, the starting point is the ordered mvhash.join file, which looks like this:

000001.doc-000006.doc 006
000001.doc-001855.doc 009
000001.doc-001867.doc 003
...
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In a second step, the aLCS file and the mvhash.join file are combined to a file called
alcs-mvhash.join, which looks like this (no action is required, the mvhash.sh script
does this itself):

000002.doc-000003.doc 044 38
000004.doc-000005.doc 037 2
000004.doc-000696.doc 042 4
...

where we have the file pairs in the beginning followed by the aLCS-score and the
mvhash match score, respectively. If both numbers are > 0, this is a true positive. If the
aLCS-score (column 2) is 0 and the match score is > 0, we have a false positive.
To analyze the negative matches, we studied the pairs that are unique in the ground

truth. All pairs in the ground truth with a score > 0 but not listed in the mvhash.join file
are false negatives. File pairs having an aLCS score of 0 and are not listed in mvhash.join
are true negatives. The final output of the script is therefore the pairs of TPs, FPs, TNs
and FNs including histograms.
Generating the containment and resemblance works similarly but instead of using

the general ground truth, there are two .join files that split the set into the ’con’ and
’res’ cases (alcs/alcs-con.join and alcs/alcs-res.join). Before running the case
script (e.g., mvhash-con.sh), one has to copy mvhash.join file from the original case,
to the mvhash-con folder and rename it to mvhash-all.join To split a specific file, like
alcs-mvhash.join, we did

join alcs-mvhash.join ../alcs/alcs-con.join
join alcs-mvhash.join ../alcs/alcs-res.join

Obviously, the /alcs/ output can be copied from the other cases. With respect to the
scripts, the variables in the beginning have to be adjusted.

6.5. Summary

In this chapter we took the challenge of automating the process of characterizing ap-
proximate matching algorithms’ behavior with respect to standard information retrieval
metrics, such as precision & recall, using synthetic and real world data. The results are
multiple scripts that form the open source testing framework FRASH v1.0.
Our framework currently includes three test classes called efficiency, sensitivity &

robustness and precision & recall. The efficiency test comprises generation efficiency,
comparison efficiency and space efficiency. Sensitivity & robustness is composed of four
sub-tests named fragment detection, single-common-block correlation, alignment robust-
ness, and white-noise-resistance and define the performance envelope of the algorithms.
Furthermore, we designed a set of precision & recall tests that are algorithm-neutral.
The main difficulty for precision & recall is establishing the ground truth by some

algorithmic means. Therefore, we decided to have two ground truths: synthetic data and
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real world data. In the later case, we propose the use of longest common substring (LCS)
as a useful measure of commonality between two files. The problem with using LCS,
is that its computation is relatively expensive and cannot be easily scaled to the degree
necessary – the digital forensics community needs a testing and evaluation framework that
can be routinely deployed by practitioners. Thus, we designed an efficient approximation
called approximate longest common substring (aLCS) that places a lower bound on the
size of the lowest common substring. The observed performance shows that aLCS is,
indeed, a practical approach estimating the size of LCS for real-world files.
We should note that further work is required to relate common substrings to human-

observable (and forensically relevant) artifacts. For example, we have not controlled for
long strings of sparse data (e.g., all zeros) that, more likely than not, are not of forensic
interest.
Our evaluation showed that each of the algorithms has a distinct operational range

and analysts must understand the relationships between input parameters and result
significance in order to operate the tools correctly. Therefore, having a rigorous testing
framework, such as FRASH, is critical to evaluating and calibrating various approximate
matching algorithms.
As a next step, we would like to integrate this different scripts into a single framework

FRASH v2.0.
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Towards signature based similarity detection in forensic

investigations

One of the biggest challenges in computer crime is coping with the huge amounts of data.
To handle all of this, the forensic community developed investigation models to assist
law enforcement [70] which mainly describe where agents should start their investigation.
For instance, in 2006 Rogers presented the computer forensics field triage process model
(CFFTPM) which is promoted to be “an on-site or field approach for providing the
identification, analysis and interpretation of digital evidence in a short time frame” [78].
While this model precisely describes how to approach a computer crime, the author
states that steps could be very time consuming due to the amount of data. Hence, it
is important to reduce the amount of data to be inspected manually, by automatically
distinguishing between relevant and non-relevant files. Thus, this chapter shows how
hashing and approximate matching can support investigations.
The first section of this chapter presents a framework to reduce the time for hashing

operations during forensic investigations using prefetching which was published in [20].
Instead of having several threads / cores hashing independently, we use one thread for
reading and all remaining threads for hashing. The framework could be easily applied
for all hashing algorithms or other approaches.
In Sec. 7.2 we compare the detection rates of the cryptographic hash function SHA-1

and the approximate matching algorithm ssdeep to demonstrate the benefits for in-
vestigations which was published in [26]. As expected, detection rates for ssdeep are
significantly higher.
The third part gives an overview of semantic approximate matching followed by a brief

comparison of algorithms (published in [19]). Besides a comparison of the same group
(bytewise and semantic), we also present a sketchy comparison across groups to clearly
demonstrate benefits and drawbacks.
Finally, we show a sample use case of how to integrate hashing and approximate match-

ing into existing investigation models in Sec. 7.5. The summary at the end concludes
this section.
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7.1. Reducing time cost in hashing operations

The bottleneck of hashing operations during digital investigations is caused by the file
handling. In order to improve this proceeding, we designed and implemented a mech-
anism called prefetching. The result is a parallel framework for hashing (PFH) which
speeds up the proceeding as it uses multiple threads for different tasks: one for reading
(I/O throughput) and the rest for processing. Compared to existing frameworks, we ob-
tained a much better throughput. The framework can be downloaded on our web-page1.

7.1.1. Framework overview or overview of multi-threading with
prefetching.

The parallel framework for hashing (PFH) is written in C++ and utilizes OpenMP 3.1
for multi-threading (see next subsection). In contrast to traditional approaches where
hash functions request and process a file, we implement a prefetching mechanism. A
sketch of the overall approach is shown in Fig. 7.1.

74 ADVANCES IN DIGITAL FORENSICS IX

Table 1. Runtime efficiency comparison of hash functions.

SHA-1 MD5 mrsh-v2 ssdeep 2.9 sdhash 2.0

Time 2.33 s 1.35 s 5.23 s 6.48 s 22.82 s
Algorithm

SHA-1 1.00 0.58 2.24 2.78 9.78

3. Parallelized File Hashing Framework

Our parallel framework for hashing (pfh) optimizes file handling dur-
ing hashing. It is written in C++ and uses OpenMP 3.1 for multithread-
ing; it is available at www.dasec.h-da.de/staff/breitinger-frank.

The framework is divided into two branches – simple multithreading
(SMT) and multithreading with prefetching (MTP). SMT is used for
comparison purposes and shows the benefits of the prefetcher.

Worker 1 Worker 2 Worker N-1

º

Result

º

Files

Prefetcher

Thread 1

RAM Table

º

Figure 1. Operations of the framework.

Unlike traditional approaches where hash functions request a file and
process it, the framework shown in Figure 1 includes a prefetching mech-
anism. The prefetcher handles file reading and is responsible for commu-
nications between the hard disk and RAM. The idea is that the critical
resource bottleneck, the hard disk, should “work” all the time. Thus,
the prefetcher produces an ongoing file request.

All the files are placed in RAM, which uses a RAM table to track the
available storage. All remaining threads are “workers” and process the
files from RAM using the hashing algorithms. After hashing the files,
the outputs are denoted by result.

Depending on the computational efficiency of the hashing algorithm,
there are two possibilities:

Figure 7.1.: Overview of the parallel hashing framework.

The main component is the prefetcher which handles the file reading and is responsible
for the communication between hard disk and RAM. The general idea is that the critical
resource, the hard disk, should ‘work’ all time. Thus, the prefetcher produces an ongoing
file request.
All files are placed within the RAM which limits the amount of storage. All remaining

threads are workers and proceed the files from the RAM using a pre-defined hashing
algorithms. After hashing the file, there are several opportunities which are denoted by
‘result’.

1https://www.dasec.h-da.de/staff/breitinger-frank/#downloads (last accessed 2014-03-17).
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Depending on the computational efficiency of the hashing algorithm, there are two
scenarios:

1. If the hashing algorithm is fast, the worker threads are faster than the prefetching
process and thus the workers have to idle. However, the hard disk is at its limit
and cannot process faster.

2. If the hashing algorithm is slow2, the RAM table becomes full and cannot store any
further files. Thus, the prefetcher starts to idle. In this case the prefetcher thread
could turn into a normal worker and help to process the files in RAM table3.

One might say that distributed systems may further increase the performance. As will
be demonstrated later, the limiting resource is the underlying device and not the com-
putational power of the modern system. Therefore, there will not be any improvement
using distributed systems.
Our implementation is divided into two branches – simple multi-threading (SMT) and

multi-threading with prefetching (MTP) – where our results focus on the latter approach.
SMT was added to show the benefits of prefetching when compared to MTP and thus is
only a side product.

Open MP. “The OpenMP Application Program Interface (API) supports multi-platform
shared-memory parallel programming in C/C++ and Fortran on all architectures, in-
cluding Unix platforms and Windows NT platforms. Jointly defined by a group of major
computer hardware and software vendors, OpenMP is a portable, scalable model that
gives shared-memory parallel programmers a simple and flexible interface for developing
parallel applications for platforms ranging from the desktop to the supercomputer”4.
Note, the framework also supports OpenMP 2.0, but with a decreased runtime effi-

ciency due to ‘capture clause’ which is only available in OpenMP 3.1. The capture clause
allows to copy a global variable into a local one and increment the global variable, in an
atomic operation. In OpenMP 2.0 capture clauses can be replaced with critical sections,
but this reduces runtime efficiency.

Command line parameters and operation modes. Before describing the details of
our framework, we briefly introduce the command line options which allow a rough
configuration. Let N denote the number of all processor cores of an architecture and let
P be the number of desired prefetchers where P < N ; default P = 1.

c - mode of framework operation [optional] (explained in the subsequent para-
graph).

d - directory to be hashed or file with digests [is required].
2Of course, all hashing algorithms are supposed to be fast. However, some approximate matching
algorithms like sdhash are multiple times slower than SHA-1 and thus we use the term slow.

3This functionality is future work. Currently the prefetcher never changes its role.
4http://openmp.org/wp/about-openmp/ (last accessed 2014-03-01).
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r - recursive mode for directory traversing [optional].

p - number of prefetching threads P [default is 1].

t - number of all threads [default is N ].

h - hashing algorithm [default is mrsh-v2].

m - size of used memory in megabytes [default is 20MB].

The default memory size of 20MB is based on the max file size in the t5-corpus where
the largest file is 16MB. Currently there is one drawback: all files larger than the RAM
table will be skipped. This issue will be fixed in an upcoming version.
In general the framework can operate in four different modes (c-option):

HASH: All files are hashed using the specified algorithm and the results are printed on
the standard output [default].

FULL: The framework does an all-against-all comparison of all files in directory.

<DIGEST>: All files within directory are hashed and compared against DIGEST which is
a single fingerprint.

If value of parameter -d is a fingerprint file, the framework will compare DIGEST
against all fingerprints with the file - skipping the hashing stage.

<FILENAME> <FILENAME>: needs to be replaced by a path to a file containing a list of
valid hash values. The framework hashes all files in directory and compares them
against the list. If the signature is found within the list, it is a valid result5. This
functionality is part of the framework, the implementation of the hash algorithm
need not have an option for doing it.

Sample execution of the framework. The following command will execute the frame-
work in the default mode, with a RAM table of size 256MB. The t5-directory will be
traversed recursively and all hashes are sent to the standard output. Since we did not
specify -t and -p, the program has P = 1 prefetching thread and N−P hashing threads.
Recall, N is the number of available processor cores in the system.

$ pfh -c hash -m 256 -d t5 -r

Proceeding. On starting, there is an initializing part where the framework creates its
4 building blocks: options, hashing interface, RAM table and mode of operation. Next,
the input parameters are parsed from the options class. In the following, the hashing
interface is pointed to the chosen hashing algorithm and variables are set. The RAM
table is created last, since it needs information from the hashing algorithm, to initialize
its file filters.

5This is equal to the -m option of ssdeep.
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The directory holding files is traversed and each file that passes the filter is added to
the files-to-be-hashed-list. Currently the filter system concerns itself with the file size
and access rights. For instance, files larger than the RAM table cannot be handled.
Furthermore, an algorithm may need a minimum file size.
Next, we transfer the list structure to an array for easier thread processing. Knowing

the amount of files that will be hashed, we initialize some of its internals to optimize
its performance. The last part of the framework initialization sets the mode interface.
Here, we point the comparison/result functions to the specified mode and set internal
variables, if any.
The actual framework processing can be broken into three stages 1) reading/hashing

files, 2) comparing hash values and 3) presenting results/scores, whereby only the first
and second stage are executed with multiple threads while the third stage is sequential.
Threads are created before the first stage and finalized at the end of the second stage.
This way no time is lost for thread management (fork/join) during framework operation.

1. Reading/hashing files.

• SMT branch. Each of the N threads put its file into the RAM table and
hashes it. All threads continue until there are no more files in the queue.

After being assigned to a role (reading or hashing), threads enter a ‘work loop’
for execution. Based on the return value, threads can change their role, e.g.,
if the RAM table is empty.

• MTP branch. First, there is a thread assignment where every thread receives
its role, i.e., we set P prefetchers. All N − P threads are hashing threads.
Currently all threads preserve their role over the whole runtime.

2. Comparing hash values. This phase is also executed in parallel using the
OpenMP ‘parallel for’ clause, in which threads work on chunks of the global com-
pare iterations. Scores from comparison are held in an array, because if threads
print to screen, they have to synchronize and the speedup of parallelism is lost.

3. Presenting results/scores. At the end the file-path, hash value and score (if
compare mode is used) are given to the standard output.

7.1.2. Implementation details

Besides the two branches SMT/MTP and the operation modes, the framework mainly
consists of two objects named RAM table and hashing interface as shown in Fig. 7.2. All
objects are explained in the following.

SMT and MTP. This paragraph describes how to switch between the two branches:
simple multi-threading (SMT) and multi-threading with prefetching (MTP). Although
we could not find any case where SMT outperforms MTP, we describe how to use it for
the sake of completeness.
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Figure 7.2.: Objects of the framework.

In order to change the branch, there is a configuration file called configure.ac. This
is a template which is used by the configuration script when automake is executed. There
are three options:

–without-prefetching disables prefetching of files and thus sets the branch to
SMT (default: no and thus MTP mode).

–with-timing enables timing (default: no). Supported times are total, compare,
hashing, accumulated time for waiting for RAM and file, reading from disk. It also
provides throughput for hashing (MB/s) and comparing (items/s).

–with-stats enables statistics (default: no). Currently only two state variables
are added, waiting for a file and waiting for space in ram table.

RAM Table. RAM_table is the class responsible for holding files and synchronizing
threads. Files are presented with the ram_file class, which provides functionality for
reading files from the hard disk and processing them using the hash algorithm inter-
face. ram_table uses two semaphores6 for realizing the producer/consumer model. One
semaphore is used for waiting for free space in RAM table and the other for waiting for
available/prefetched files in RAM table. POSIX and Windows semaphores are supported
through macros expanded during compilation.
The processing of the files in the table is based on two indicies called fi and pi. fi is

the amount of files within the table and set by the prefetcher, i.e., after every insertion fi
increases by one. pi is the index of the worker threads. Thus, every time a worker thread
fetches a new file from the table pi increases. As a consequence, if pi = fi, threads have
to wait for data.
To avoid race hazards, we use the OpenMP 3.1 capture clause. Thus, a thread can

take the current index and increase the global index in a single atomic operation. This
way threads work with RAM files without the need for locking or critical sections.

Interfaces. The framework accesses all algorithms and modes through self-made inter-
faces and therefore every developer can add own hashing algorithm with a few lines of

6http://en.wikipedia.org/wiki/Semaphore_(programming) (last accessed 2014-03-12).
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code. Realizations of interfaces are written in an own *.hpp file and included in the
interface implementation file.
The hashing interface hash_alg.cpp also provides two extensions for handling output:

one for algorithms with character output and the other for byte output. The difference
between these two are functions for printing and saving a digest buffer. For instance,
MD5 results in a buffer holding a byte array which needs to be converted to string.
Member variables of the class are:

Type of output - could either be hex or string.

Length of hash digest - is used to print the hash value.

Minimum file size - is necessary as some hashing algorithms have a minimum file
size requirement. For instance ssdeep requires 4096 bytes.

Listing 7.1 and Listing 7.2 show the necessary changes for adding the ssdeep algorithm.

1. All hashing algorithms are implemented in their own file with the name hash_alg_NAME.hpp.

1 class hash_alg_ssdeep: public hash_alg_char_output{
2 public:
3 int hash(uchar *in, uint inlen, uchar **out){
4 *out = get_out();
5 return (NULL == fuzzy_hash_buf_r((const uchar*)in, inlen, *out))
6 ? -1: FUZZY_MAX_RESULT;
7 };
8

9 int cmp(uchar *a, uchar *b, uint len){
10 return fuzzy_compare_r(a,b);
11 };
12

13 hash_alg_ssdeep(): hash_alg_char_output(){
14 type = HA_SSDEEP;
15 max_result_size =
16 hash_digest_size = FUZZY_MAX_RESULT;
17 min_file_size = SSDEEP_MIN_FILE_SIZE;
18 };
19 };

Listing 7.1: Framework extension for ssdeep.

2. Add new case in interface initialization function for ssdeep.

1 if( 0 == htype.compare(0, 6, "ssdeep")){
2 h = new hash_alg_ssdeep();
3 }

Listing 7.2: Initializing hashing interface for ssdeep.
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Currently the framework includes several cryptographic hash functions and three ap-
proximate matching algorithms. We included MD5, SHA1, SHA2, SHA3 and RIPEMD160
from the OpenSSL library and added ssdeep, sdhash and mrsh-v2 with source code.
The mode.h interface allows the framework to operate in different ways, after it’s

compiled. The interface itself consist of 3 virtual functions, that represent the 3 steps of
the framework: hashing of files, comparing digests and printing results/digests.

Coding optimizations. The following optimizations reduce the number of buffer allo-
cations during the execution and come with two advantages:

1. Pre-allocation of all digest buffers reduces execution time as there are less calls of
new[].

2. The Framework memory footprint is also reduced because all digest buffers are
grouped into one linear buffer. For instance, the GNU C library uses a header
(2 words - 8b/32bits and 16b/64bit systems) for each memory block. If we allo-
cate a digest for MD5 (16b), we will have another 16b (on 64 bit systems) of OS
administrative data (header)7.

Both optimizations are only available for hashing algorithms with a static hash value
length. In the case of mrsh-v2 and sdhash, which have a variable hash value length, we
can not allocate the linear digest buffer before hashing is done.

Future work. An improvement to the implementation will be the addition of a balancing
function. By balancing we mean changing the order of files, in which they are processed,
to reduce waiting for free table space and fragmentation (empty space in table). A simple
example is shown below.

A(8), B(4), C(3), D(2), E(4), F(5) #Files order
TBL(0/10) #Table of size 10 with 0 space used
-------------------------------------
T1:PREF(A) -> TBL(8/10)
T1:PREF(B) -> TBL(8/10) -> WAIT(4) #Wait because only space of 2 is available
T2:HASH(A) -> TBL(0/10)
-------------------------------------
A(8), D(2), B(4), F(5), C(3), E(4) #Files order after balancing

Listing 7.3: RAM table balancing example.

7.1.3. Experimental results

The assessment of our framework is based on the t5-corpus and ssdeep, sdhash and
mrsh-v2. All binaries were compiled using the same compiler and configuration options:
-g0 to disable debugging, -O2 to enable second level of optimization and -march=native
to allow usage of CPU specific instructions.

7Example is taken from http://lwn.net/Articles/257209/ at the end of Sec. 7.3; last accessed 2013-
05-09.
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The test environment was a server having the following benchmark data:
CPU: 2xIntel(R) Xeon(R) E5430 2.66GHz x 4 cores
HDD: Seagate ES Series 250GB(SATA2) 8MB Cache 7200RPM
RAM: 8x2GB DDR2 FB-DIMM 667 MHz
KERNEL: Linux 2.6.32-279.11.1.el6.x86_64
GCC: gcc-4.4.6-4.el6.x86_64

Since our framework improves the whole processing, we measured the real-time using
the Linux time-command.

Overall runtime efficiency. This paragraph demonstrates the general improvement of
using the framework where we compared the original implementation against MTP. Both
tests set -t 2 which indicates one prefetching thread and one working thread.
Test one (T1) analyzes ssdeep in detail. The results are listed in Table 7.1. Using

SMT improves the basic algorithms by approximately 17.5% which is in contrast to our
expectations that it halves the time. The MTP proceeding shows an improvement of
almost 40%. The lower speedup of SMT is due to the lack of data in RAM. Having two
threads means there will be two times more requests for file data, but still having the
same disk throughput. This way threads are being underfed and they have to idle. In
the case of MTP we have a linear system – one reader and one hasher – which reduces
the idle times of each thread.

Table 7.1.: T1: Runtime efficiency with ssdeep using standard output.

Time Difference Terminal command

original 83.67 s 100.00% $ ssdeep -r t5
SMT 69.05 s 82.52% $ pfh -d t5 -t 2 -h ssdeep
MTP 52.19 s 62.37% $ pfh -d t5 -t 2 -h ssdeep

Test two shows the improvement for different algorithms with the same configuration.
All output was sent to /dev/null to eliminate any execution time deviation caused by
printing. Table 7.2 shows the results.
The main result of T2 is that prefetching is very useful for approximate matching

algorithms which are computationally more expensive than cryptographic hash functions.
Using MTP we achieved similar runtimes for all algorithms expect sdhash. This shows
that the limiting factor in this case is the underlying hardware.

Table 7.2.: T2: Runtime efficiency of different hashing algorithms.

MD5 SHA-1 mrsh-v2 ssdeep sdhash

original 51.65 s 52.35 s 75.61 s 83.67 s 145.38 s
MTP 51.74 s 51.64 s 51.79 s 52.19 s 89.09 s

Table 7.3 presents the results for T3 which runs in FULL mode. Thus, besides the hash
value generation there is also an all-against-all comparison.
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In case of ssdeep which is described in rows 1 and 2 we obtained an improvement of
almost 45%. For sdhash (rows 3 and 4) the results are even better where we stopped
the all-against-all comparison after 69min (we assume that this was a bug of the used
version 2.3) and MTP mode only needed 186 s.

Table 7.3.: T3: Runtime efficiency with of FULL mode [default t=2].

Time Difference Terminal command8

ssdeep 119.21 s 100.00% $ ssdeep -d -r t5
MTP 68.34 s 57.33% $ pfh -c full -d t5 -t 8 -m 128
sdhash > 69min - $ sdhash -r -g -p 8 t5
MTP 186,56 s - $ pfh -c full -d t5 -t 8 -m 128

Impact of multiple cores. In the following we discuss the influence of multiple cores.
Thus, we invoke the framework by

$ pfh -h ALG -c hash -d t5 -m 256 -t XX > /dev/null

where XX is the amount of cores/threads and ALG the used algorithm.
Our test includes two runs denoted by R1 and R2 which are shown in Table 7.4 and

Table 7.5, respectively. The peculiarity is that we performed both runs in immediate
succession and thus the files where still cached in R2.
R1 demonstrates that multiple cores are especially important for slower algorithms

like sdhash. For fast algorithms, e.g., mrsh-v2, it does not scale well, as the underlying
hardware is too slow. R2 simulates fast hardware as all files are cached. Due to the fact
that all files are cached, the prefetcher thread is dispensable and thus SMT is faster.

Table 7.4.: R1: Runtime efficiency having different amount of threads.

t=2 t=4 t=8

mrsh-v2
SMT 64.03 s 66.39 s 67.14 s
MTP 51.79 s 51.81 s 52.02 s

sdhash
SMT 89.33 s 72.03 s 68.14 s
MTP 89.09 s 51.90 s 52.08 s

As a conclusion we can say that in the first case the underlying hardware is too slow.
More precisely, the hard disk is too slow, the prefetcher thread cannot fill the RAM table
and thus the worker threads have to idle. Having a SSD device or RAID system it should
scale better because of higher throughputs.

Impact of different memory sizes. This section shows the impact of different RAM
table sizes wherefore we invoke the framework by

8We removed the -h option from both pfh commands for a better readability.
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Table 7.5.: R2: Runtime efficiency having amount of threads and cached data.

t=2 t=4 t=8

mrsh-v2
SMT 10.15 s 5.30 s 2.92 s
MTP 17.68 s 6.23 s 2.90 s

sdhash
SMT 48.42 s 24.98 s 11.83 s
MTP 88.15 s 31.12 s 15.07 s

$ pfh -h mrsh -c hash -d t5 -m XX -t 4 > /dev/null

where XX is the amount of memory in megabytes for the RAM table. Table 7.6 shows
that the size of the RAM table does not influence the runtime efficiency which was also
discussed on page 137.

Table 7.6.: Runtime efficiency having different memory sizes.

m=128 m=256 m=512

SMT 66.36 s 66.39 s 66.20 s
MTP 51.62 s 51.81 s 51.72 s

Impact of multiple prefetchers. Although the number of prefetcher threads is ad-
justable, tests showed that the default setting of 1 is the best choice. Table 7.7 verifies
that having two prefetchers worsen the runtime by 15% due to more overhead.

Table 7.7.: Impact of two prefetching threads

Time Difference Terminal command

52.05 s 100.00% $ pfh -t 8 -c hash -d t5 -h md5
60.09 s 115.44% $ pfh -t 8 -c hash -d t5 -h md5 -p 2

Impact to a forensic investigation. In the following we analyze the improvement with
respect to real world scenarios. Therefore, we took two real life devices and used the
results from this section to do a projection. Based on our previous findings, we can
estimate the runtime written in Table 7.8.

7.1.4. Distinction to existing parallelization tools

There are a couple of tools which execute commands, scripts or programs in parallel.
Thus, we compared our framework against parallel9 and Parallel Processing Shell Script10

9http://www.gnu.org/software/parallel/ (last accessed 2014-03-03).
10http://code.google.com/p/ppss/ (last accessed 2014-03-03).
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Table 7.8.: Summary of applying PFH on comprehensive two disks.

Files Size Avg. size stand-alone SMT MTP

MacOS 322,531 100.92GB 328.08KB 99min 51 sec 73min 43 sec 56min 43 sec
Win7 139,303 36.55GB 275.13KB 36min 10 sec 26min 42 sec 20min 32 sec

(abbreviated ppss) as they were ranked highly by Google. Both of the tools work on local
cores (not distributed) with multi-threading and distribute the workload automatically
to different threads.
The main conclusion from the results in Table 7.9 is that MTP outperforms existing

tools/scripts. Both analyzed tools do a simple multi-threading and therefore we expect
results similar to SMT. This is true for parallel. In case of ppss the performance is worse
due to a lot of I/O operations. ppss saves its state to hard drive in text files.

Table 7.9.: Comparison of with different parallelization tools using ssdeep.

Time Difference Terminal command

original 83.67 s 100.00% $ ssdeep -r t5 > /dev/null
ppss 337.11 s 402.90% $ ppss -p 8 -d t5 -c ‘ssdeep’
parallel 69.81 s 83.43% $ parallel ssdeep – data/t5/*
SMT 67.55 s 80.73% $ pfh -t 8 -c hash -d t5 -h ssdeep
MTP 52.04 s 62.20% $ pfh -t 8 -c hash -d t5 -h ssdeep

We verified our assumption that the slowness of ppss is due to the I/O bound by hashing
16 large files each having 1.2GB. In this case there are only a few writing operations.
The results are given in Table 7.10 where the performance increased. However, it is still
slower than the original implementation which is due to hard disk reading operations.
Each thread reads the file whereas using ssdeep as stand-alone reads sequentially.

Table 7.10.: Comparisson of ppss and ssdeep with 16×t5.gz

Time Difference Terminal command

ssdeep 264 s 100% $ ssdeep -r t5.bz
ppss 342 s 129% $ ppss -p 8 -d t5.gz -c ‘ssdeep’

7.2. Reducing data for forensic investigations using
approximate matching

This section studies the quantitative results on identification rates of approximate match-
ing for complete disk images. While reference results are available for cryptographic hash-
ing (e.g., [103, 49]), approximate matching has not been evaluated on such a large scale
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before. Furthermore, we conduct an analysis of error rates for approximate matching
and establish practice-oriented thresholds for similarity scores based on this analysis.

7.2.1. Methodology and experimental Setup

All tests are performed on an Ubuntu 12.04 host using ssdeep which was installed from
the universe repository. A benefit of using a Linux system is the possibility of mounting
disk images directly in a read-only mode.
The images are based on Windows and Linux. It is indisputable that Windows is the

most commonly used system11 and hence our study analyzes Windows XP (Professional,
32 bit) and Windows 7 (Professional, 32 bit). Furthermore, we included the results for a
Linux Ubuntu (version 12.4, 32 bit) as we had access to a used image.

Testing methodology. In case of whitelisting an investigator is more interested in ex-
act duplicates because small changes might change a file from good to suspicious. Thus,
whitelisting should be done by cryptographic hashing. On the other hand approximate
matching is quite reasonable for blacklisting, i.e., identifying files that are similar to
suspicious files is helpful. However, neither are blacklist databases freely available nor
is there illicit data on our test devices. Moreover, we just want to quantify the differ-
ences of the detection rates between cryptographic hashing and approximate matching–
independently from the purpose of the underlying database.
Hence, we focus on the question: What are the differences of applying SHA-1 and

ssdeep for known file identification and is it reasonable to use approximate matching
for blacklisting?. Thus, we study the detection rates in a more general manner and use
self-made as well as freely available whitelist databases.
The proceeding is quite simple. We have different databases as well as disk images

at hand and analyze the detection rates with respect to true positive and false positives
for cryptographic hashing (SHA-1) as well as approximate matching (ssdeep). Our
assessment focuses on positives only. Note, if no evidence is found, an investigator needs
to analyze the device manually and will consider all negative matches.
In some cases we were not able to generate ssdeep hashes, e.g., for some (but not all)

large files. Since we use the algorithm as a blackbox, we treat these as bugs and did no
further investigation. For instance, we could not process the hyberfil.sys (Win XP)
or device files and named pipes (Ubuntu).
Overall the number of files for which no hash value could be generated is very low. In

the worst case, which is UbuntuU, we had to drop 0.12% of the files. If no digest could
be generated, the file is treated as if it did not exist.

System description and snapshots. For this study we analyzed two of our own live
systems (XP, Ubuntu). In addition, we set up a Windows 7 system and created some
traces of usage.
11http://www.netmarketshare.com/operating-system-market-share.aspx?qprid=10&qpcustomd=0

(last accessed 2014-03-04).
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In case of the Windows XP system, we possess two snapshots of an extensively used
system which were 14 and 27 months ‘old’ at the time of the snapshots (the age is the
time passed between system installation and snapshot generation). The XP system has
been used on a daily basis for office work, and it contains software installations, artifacts
of system and software updates, user created files, and many kinds of traces of software
usage. The Ubuntu system was about half a year old when we took the snapshot. This
snapshot also includes system updates as well as developing and web browsing artifacts.
Our Windows 7 system was only used for half a day. During that time we applied the
latest updates, created some files and visited a few web pages.
In order to have a trustful reference we created default installations of all systems

which remain untouched – without any updates, service packs or additional programs.
Table 7.11 provides a brief overview of all snapshots. WinXPU1 uses more disk space
than WinXPU2 because in the meantime, a 82GB image file was deleted to free up disk
space.

Table 7.11.: Snapshots of the operating systems.

Operating system File count Disk usage

WinXPD (Windows XP, default installation) 8,946 1.9GB
WinXPU1 (Windows XP SP3, 14 months old) 195,186 128.4GB
WinXPU2 (Windows XP SP3, 27 months old) 466,266 109.5GB
Win7D (Windows 7, default installation) 45,470 8.1GB
Win7U (Windows 7 SP1, used installation) 66,312 9.4GB
UbuntuD (v12.04, default installation) 185,468 3.3GB
UbuntuU (v12.04, used installation) 411,209 25.2GB

Reference database. To determine the identification rates for each image we used the
following reference databases:

NIST database. This is our term for the ssdeep dataset published by the NIST12. The
set is provided as a text file showing one SHA-1 hash and one ssdeep hash per
line. The SHA-1 hash is used to link the entry to the regular RDS from the NIST.
The NIST database corresponds to the RDS 2.27 from December 2009 and has over
eight million entries. We used both the ssdeep hashes and the SHA-1 hashes from
this database for our experiments.

Self-created reference databases. As the NIST database is only an outdated subset of
the current RDS 2.42 (from September 2013) and no newer ssdeep dataset is avail-
able, we decided to build our own reference sets based on the default installation
from each operating system. This is also the way NIST creates its database –
hashing default installations and installation media. This should simulate newer

12http://www.nsrl.nist.gov/ssdeep.htm (last accessed 2014-03-03).
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databases and, therefore, the reduction rates of having more up to date database.
This was done for both, ssdeep and SHA-1 hashes.

Quality of ssdeep matches. The matches reported by ssdeep correspond to the raw
amount of ‘positives’. In order to classify them into true positives and false positives,
we need possibilities to reduce them automatically – they are far too many for manual
inspection. It is obvious that the critical amount of files is the amount of all ssdeep
matches minus the SHA-1 matches since we rate SHA-1 matches as true positives with-
out further consideration.

Based on existing literature: In order to distinguish between similar and non-similar
files, a possibility is to set a threshold t. Thus, a comparison yielding a match score M
with M ≥ t indicates similar files (positive match). However, identifying an appropriate
t is a challenging as

• a low t increases the false positive rate, and

• a high t decrease the true positives rate.

Roussev studied the ratio between true and false positives [81, Sect. 4.2.1] based on
the comparison of 4,457 files (= 9,930,196 pairs) and published Fig. 7.3. Accordingly, we
set the thresholds to t = 60 and t = 40. While the former threshold has only a few false
positives, we rate the false positive rate of the latter as acceptable.

Figure 7.3.: Distribution of ssdeep scores according to Roussev [81].

Correlation by file name and path: The second classifier is based on the paths and
names of files where we have the following two categories:
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1. Identical path names (directory name and file name): Files with the same path
within different images are considered as similar files (high indication that there is
similarity).

2. Identical file names: An identical file name indicates similarity between two files
(medium-high indication that there is similarity).

7.2.2. Assessment and Results

The upcoming subsections present the results of our case study. First, we discuss the
difference between SHA-1 matches and ‘perfect’ ssdeep matches. Next, we show the
identification rates when comparing the images to different databases. The third section
presents the identification rates in correlation with file names and paths. The last section
analyzes the relation between identification rates and different file types.

Seemingly identical files. As will be shown in the later sections, there are minor dif-
ferences between a SHA-1 match and a ssdeep score of 100. It is a well known that a
SHA-1 match implies two identical files with extremely high certainty. In fact, no SHA-1
collision has been found until today. In contrast, a ssdeep score of 100 does not neces-
sarily presume two identical files. Additionally, identical ssdeep hashes may not get a
score of 100.
The reason for the problem is the similarity digest comparison method of ssdeep:

The algorithm for calculating the similarity requires that two digests have a common
substring of length 7 – otherwise the score is directly set to 013. Hence, identical files
have a similarity score of 0 if their fingerprints are too short. In particular, comparing
two empty files yields a score of 0 where SHA-1 matches them perfectly.
On the other hand, the ssdeep score can be 100 although the SHA-1 hashes are

different which is due to fingerprint collisions and the comparison procedure. Note, each
ssdeep digests consists of two fingerprints where it is sufficient to have one matching
pair for a score of 100. Thus, there are two types of collisions: In some cases the ssdeep
hashes match entirely, and in other cases only one pair of ssdeep fingerprints matches.
We consider the occurrence of a score 100 for non-identical files as false positive (at least
for the threshold of 100) because such a score pretends a perfect match.

Identification rates based on a given threshold. Based on the previous findings, we
decided to analyze the detection rates based on t = 40 and t = 60. Thus, this section
compares the detection rates using ssdeep and SHA-1 for automated file identification.
We used the following abbreviations in the upcoming sections.

• D denotes the analyzed system and |D| denotes the amount of files on the device.

• IA is the identification rate using algorithm A ∈ {ssdeep, SHA-1}. For instance,
assuming Issdeep = 10% means that we found 10% of all files from device D within

13This has already been observed by Baier and Breitinger [4].
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the database DB using ssdeep. Thus, the higher I is, the more files are identified
automatically.

Test-case 1 compares the default installations against the NIST database. The
results are shown in Table 7.12. The rates for the XP system are significantly higher
compared to the other operation systems which is due to the underlying database: it is
from December 2009 when XP was a prominent OS. Nevertheless, the trend is obvious,
irrespective of the operating system the identification rate is much higher using ssdeep,
e.g., nearly 10 times better for Win7 and setting t = 40.

Table 7.12.: TC1: Comparing default installations against the NIST database.

D |D| Issdeep
t = 40

Issdeep
t = 60

Issdeep
t = 100

ISHA-1

WinXPD 8,946 68.69% 63.85% 35.84% 35.24%
Win7D 45,470 16.59% 9.32% 1.73% 1.70%
UbuntuD 185,468 16.14% 9.54% 1.90% 1.95%

Test-case 2 compares the used installations against the NIST database. The
results from Table 7.13 are comparable to the previous test. Again, the XP systems
have the best identification rates because of the underlying database. However, the rate
is smaller than in the previous case due to the large amount of files on the devices.
For instance, the WinXPU2 has over 50 times more files as WinXPD. Nevertheless, the
identification rates are approximately 2 to 10 times higher using ssdeep with t = 60
compared to SHA-1.

Table 7.13.: TC2: Comparing used installations against the NIST database.

D |D| Issdeep
t = 40

Issdeep
t = 60

Issdeep
t = 100

ISHA-1

WinXPU1 195,186 17.79% 14.70% 7.69% 8.03%
WinXPU2 466,266 23.02% 17.39% 7.05% 7.30%
Win7U 66,312 17.88% 10.21% 1.45% 1.44%
UbuntuU 411,209 23.76% 17.11% 1.79% 1.82%

Test-case 3 compares the used installations against the default installations.
The main results are given in Table 7.14. The low rates for the Windows XP systems
are a consequence of the ‘small’ default installation. Recall that the default installation
only includes ≈ 9000 files. However, some files from the default installation are similar or
identical to many files in the used installation. Examples are desktop.ini files, DLLs,
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and file shortcuts (.lnk). Typical locations for such files in the default installation are
WINDOWS/system32/config/systemprofile, WINDOWS/pchealth/helpctr/System, and
WINDOWS/system32/dllcache. Hence, it is possible to identify more files in the used
system than present in the default system.
The high identification rates for the Windows 7 system reflect the fact that this system

has not been used much. But we can clearly see that the installed updates introduced
many files similar to files from the default system.

Table 7.14.: TC3: Comparing used against default installations.

D |D| Issdeep
t = 40

Issdeep
t = 60

Issdeep
t = 100

ISHA-1

WinXPU1 195,186 5.12% 4.71% 4.13% 4.14%
WinXPU2 466,266 2.27% 2.01% 1.72% 1.74%
Win7U 66,312 93.85% 90.19% 67.41% 67.72%
UbuntuU 411,209 55.67% 53.38% 47.74% 47.83%

Test-case 4 compares both used Windows XP snapshots against each other
where WinXPU1 emulates the database. The main results are given in Table 7.15. De-
spite a difference of 13 months we obtain identification rates between 24% for SHA-1 and
32% for ssdeep which is a difference of 8%. Although 8% sounds small, in the case of
466,266 files these are approximately 37,000.

Table 7.15.: TC4: Using WinXPU1 as database and comparing it against WinXPU2.

D |D| Issdeep
t = 40

Issdeep
t = 60

Issdeep
t = 100

ISHA-1

WinXPU2 466,266 31.98% 28.87% 24.04% 24.37%

Conclusion for TC1 to TC4. The tests confirmed (as expected) that the detection
rates for ssdeep are higher than for SHA-1 in all cases which is especially relevant for
blacklisting (similar files to suspicious ones might be evidence). The utilized thresholds
showed in a comprehensive survey from Roussev that they are reasonable and have an
acceptable false positive rate.

Identification rates in correlation with file name and path. This section analyzes the
reliability of the positive matches for the used thresholds. Recall, the uncertain matches
are the amount of total ssdeep matches minus exact matches due to SHA-1. An overview
of the results is given in Table 7.16. The first column describes the comparison, e.g.,,
WinXP U1 against U2. |D| is the number of files on the device. ssdeep hits is the amount
of matches with a score ≥ t. The fourth column shows the benefit of ssdeep; matches
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that are not identified by SHA-1 (relative to |D|). This is the ‘critical amount’ of files.
The last two columns are relative to without SHA-1.

Table 7.16.: Identification rates in correlation with file name and path for different images.

ssdeep without Path Name
D |D| hits SHA-1 matches matches

WinXP(U1 vs. U2) t=40 466,266 31.98% 7.97% 10.57% 37.09%
WinXP(U1 vs. U2) t=60 466,266 28.87% 4.86% 15.58% 50.68%
Win7(B vs U); t=40 66,312 93.85% 26.44% 1.51% 5.79%
Win7(B vs. U); t=60 66,312 90.19% 22.78% 1.51% 5.91%
Ubuntu(B vs. U); t=40 411,209 55.67% 7.99% 16.99% 71.37%
Ubuntu(B vs. U); t=60 411,209 53.38% 5.71% 22.91% 85.89%

For instance, let us consider the last row. That is, we studied the default Ubuntu
installation against the used one which contains 411,209 files. If t = 60, ssdeep detects
53.38% as similar. Reducing this by the amount of SHA-1 matches, there remain 5.71%
(i.e., 23,480 files). 22.91% of these files have the same path and 85.89% have the same
file name. Hence, we consider them to be true positives.
The remaining 100%− 85.89% = 14.11% are unclear. One the one hand, these might

be false positives; on the other hand, they could be moved and renamed files. However,
there are still 3313 files in total which needed to be analyzed manually for a final decision.

Identification rates for different file types. While approximate matching on the syn-
tactic level can be applied to any file, it is not equally useful for each file type. It strongly
depends on the file type and the supposed type of modifications: whether small modi-
fications preserve most of the binary content of a file or lead to a completely different
binary pattern. For example, plain text is favorable while compressed data causes prob-
lems. The reason for this is that small text modifications result in small changes in the
binary data of a plain text file, but typical compression algorithms create very different
byte sequences from similar inputs. Hence, approximate matching on the raw byte level
cannot identify the similarity in the latter case.
Here, we try to identify file types for which we gained an extraordinary improvement

compared to cryptographic hashing. To achieve this we consider ssdeep scores between
60 and 99 for the investigation of file types. Scores of 100 are ignored as they usually
belong to identical files.
Table 7.17 shows the ten most frequent file types in the score range 60 to 99 for each

analyzed operating system based on test-case 2. The numbers are percentages values
compared to all identified within this range. For instance, assuming 10% means that
10% of all detected files with a score between 60 and 99 are of file type X. File types
which can safely be identified as text files are marked with an asterisk in the table.
Apparently, this is the majority of the listed files. However, there are also file types for
binary code where we achieved high detection rates for similar items. The table shows
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DLL, and in the other test cases not shown here we also found EXE, PYC, and SO
among the top 10 file types. Note that files without name suffix are usually text files or
binary executables.

Table 7.17.: File types with high identification rates for non-identical files on basis of
test-case 2.

WinXPU2 Win7U UbuntuU

type amount type amount type amount

11.60% .mum* 40.05% .html* 60.62%
.html* 10.44% .inf* 10.09% .h* 19.40%
.h* 6.40% .dll 8.18% 10.63%
.yaml* 6.09% .png 6.06% .pm* 1.42%
.svn-base* 4.52% .mui 4.77% .gz 0.73%
.dll 4.15% .gpd* 4.42% .png 0.63%
.png 3.82% .fon 3.37% .py* 0.63%
.py* 2.53% .nls 3.30% .al 0.55%
.mf* 1.86% .ttf 2.48% .ent 0.44%
.htm* 1.69% .ini* 1.32% .ps 0.36%

7.3. Overview semantic approximate matching

Before discussing advantages and disadvantages of different approximate matching levels,
we first give a brief overview of semantic approaches. Recall, semantic approximate
matching is bound to a media type and hence we limit this section to images (in fact, a
main application of semantic approximate matching in digital forensics is the detection
of child pornographic images).
Semantic approximate image matching originates from content-based image retrieval

(CBIR). This term dates back to 1992 [55], while research in the field has an even longer
history. CBIR systems evaluate the similarity of images based on descriptors for color,
texture and shape [39]. A standardized set of image features for CBIR applications
has been defined in the MPEG-7 standard [66]. However, the calculation of multiple
image features is quite time consuming. The INACT software, which is based on MPEG-7
descriptors, and which has been developed for supporting forensic investigations, already
requires 10 s for processing a medium resolution image (640 × 320 pixels) [47]. This is
far too slow for usage in real-life conditions situations.
The analysis of maybe hundreds of thousands images in an investigation target and

having up to millions of images in the reference database requires very fast methods for
digest calculation and comparison. Hence, we focus on image features with the potential
for high efficiency:
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Histograms. Color histograms, lightness histograms etc. are very basic image features
with a long history [96]. They just count how many pixels correspond to each value
of the observed attribute. Robustness and compactness of the information can be in-
creased by extracting features from the histogram like its first three moments [95], Haar
wavelet coefficients (MPEG-7), or range selections [106]. However, the extent of images
considered as similar in histogram-based matching approaches is more than just different
versions of the same image, as the histograms do not consider any spacial information.
Thus, such approaches are not well suited for recognizing known images. They are more
appropriate for finding images from similar scenes and for clustering images according to
the depicted scene.

Low-frequency coefficients. While high-frequency parts of images get easily disturbed
or lost due to rescaling or lossy compression, low-frequency parts are quite robust. Ac-
cordingly, low-frequency Fourier coefficients, DCT coefficients [40], wavelet coefficients
[101], etc. can be used as robust image features. The same idea can be used for deriving a
key-dependent robust digest, by replacing the low-frequency basis functions of the afore-
mentioned transformations with “random smooth patterns generated from a secret key”
[40]. Typically, images are scaled to a fixed, low resolution before coefficient calculation
for reasons of efficiency.

Block bitmaps. Robust features can be obtained by dividing an image into a small,
fixed number of blocks and calculating one feature bit per block. The most simple
version of this approach scales the image down so that it has one pixel per block and sets
the bit according to whether the lightness of the pixel is above or below the median level
of light [108]. An improved variant called rHash considers the median of each quadrant
of the image separately and incorporates a flipping mechanism for robustness against
mirroring [93]. Another approach derives an edge map from the image. Such a map
can be obtained for example by thresholding the gradient magnitude calculated with the
Sobel operator [73, 107]. However, more sophisticated edge detection algorithms should
be avoided to keep the computing time low.

Projection-based. This class of approaches has been inspired by the Radon transfor-
mation, which calculates angle-dependent, one-dimensional projections of the image by
integrating the image along straight lines parallel to each projection direction. The hash-
ing algorithm RASH calculates the integral along one radial line for each direction [59].
The proposed improvement RADISH replaces the integral by the variance of the luminance
of the pixels on the line [92]. Furthermore, the low-frequency DCT coefficients of the
previously calculated angle-dependent function can be used as compact, robust digest of
an image [36].

Interest points are another kind of image features. Such points are corners and other
prominent points in the image, and various kinds of perceptual hashing based on interest
points have been proposed [5, 65]. Each interest point can be attached with descriptors
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in the locality of that point [60, 61]. However, the calculation of interest points is
computationally expensive – similar to sophisticated edge detection. Lv and Wang report
an average processing time of 3.91 s for an image with their default size of 256×342 pixels
[61].
For the evaluation we selected four algorithms which are potentially suitable for in-

vestigating huge amounts of images: DCT based hash [40], Marr-Hildreth filter based
hash [5], radial variance based hash [36] and block mean based hash rHash [94]. A similar
evaluation of the first three mentioned algorithms and a proof-of-concept implementation
of the block bitmap approach based on [108] has been done by Zauner et al. [109, 110].
In contrast to their evaluation on a relatively small number of high-resolution images,
we will show results for larger collections of images and different resolutions.

7.4. Benefits and drawbacks of approximate matching and
hashing for investigations

Within this assessment we focus on the cryptographic hash function SHA-1 and the
bytewise approximate matching algorithms ssdeep, sdhash and mrsh-v2 as they are the
most promising. Regarding semantic approximate matching, we run DCT based hash
(dct), Marr-Hildreth operator based hash (mh), radial variance based hash and block
mean value based rHash. The pHash C library14 offers implementations of the first three
functions. The implementation of rHash is based on the improved block mean value
based hash algorithm [94]. Our experiments consist of three test sets of images:

TS2000 is a set of 2197 low resolution images (400× 266 pixels) having 53.3MB.

TS1500 is a set of 1500 medium resolution images (1000× 800 pixels) having 603MB.

TS1000 is a set of 998 high resolution images (3000× 2250 pixels) having 719MB.

7.4.1. Efficiency

Space efficiency. The compression for all algorithms is shown in Table 7.18. In contrast
to bytewise approximate matching, the semantic approaches output fixed size digests
which is favored.

Table 7.18.: Digest length for different algorithms (compression).

dct mh radial rHash ssdeep sdhash mrsh-v2 SHA-1
64 bit 576 bit 320 bit 256 bit ∼ 600 bit ∼ 1.6–2.6% ∼ 1.0% 160 bit

Generation efficiency. The assessment of the runtime efficiency is based on all test sets.
The build -columns show the times to hash the original test set. For checking, the images
in each set are downscaled by 25% and compressed by JPEG 20%.
14http://phash.org (last accessed 2014-03-17).
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Table 7.19.: Time for Processing Test Sets (in seconds).

TS2000 TS1500 TS1000

Algorithm build check build check build check

mh 491.45 5.25 497.17 2.36 1003.59 1.05
radial 30.60 91.39 166.67 43.06 710.42 19.11

dct 53.50 0.07 287.11 0.06 1534.69 0.025
rHash 20.12 0.12 95.23 0.06 419.52 0.033

ssdeep 6.21 4.38 41.75 1.91 48.68 1.17
sdhash 9.18 2.88 52.28 26.58 52.93 90.18

mrsh-v2 3.18 3.01 13.81 28.31 18.66 93.53

SHA-1 0.84 – 2.35 – 2.81 –

As shown in Table 7.19, the cryptographic hash function is the fastest for all sets,
followed by bytewise approximate matching. Overall, SHA-1 is roughly one order of
magnitude faster than bytewise approximate matching. We neglect the exact check-time
for SHA-1 fingerprints (more details see next paragraph).
Regarding bytewise approximate matching only, mrsh-v2 shows the best generation

efficiency. However, ssdeep overcomes it when checking because the fingerprints are
shorter and faster comparable. In addition, the hash database generated by ssdeep
features a file size comparison which significantly speeds up the hash checking process
when comparing against files of different sizes. The reason why comparing fingerprints
is so slow, is the proportional length of the digests.
Among the four semantic algorithms, rHash has the best runtime for images of any

resolution. The DCT based hash is very fast for low resolution images but becomes the
slowest one while hashing high resolution images, where it takes about 4 times longer
than rHash. Comparing with other perceptual hashes, mh is not efficient for low resolution
images, but its speed is comparable with radial when coming to large images. Regarding
the checking process, dct is fastest as it has the shortest binary fingerprint. radial is
far slower than others, which indicates that peak of cross correlation is not so efficient as
hamming distance for hash comparison.

Comparison efficiency. Equal to bytewise approximate matching, semantic approaches
digests cannot be order and therefore have a quadratic lookup complexity (it is not
possible to sort or index the similarity digests). First experimental results using locally
sensitive hashing and binary trees have shown that minor improvements are possible [44].
However, this is ongoing work and final results are unclear.
To conclude, besides cryptographic hash functions only ssdeep offers a possibility to

reduce the comparison against large databases down to a practical time.
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7.4.2. Robustness and discriminability for semantic approaches

Semantic approximate matching has two essential properties: robustness and discrim-
inability. Robustness refers to the ability to resist content-preserving processing and
distortions, while discriminability is the ability to differentiate contents, i.e., to avoid
collisions [102].

Robustness. Content-preserving processing includes the manipulations that only mod-
ify the digital representation of the image content and that apply insignificant perceptual
changes on the image content. To evaluate the robustness the following manipulations
are applied:

- mirroring: flipped horizontally. - blurring: Gaussian filter with 20 px radius.
- resizing: 61% downscaling. - color modification: red and blue plus 100.
- cropping: remove outer 10-15% - compression: JPEG with 5% quality.
- rotation: 90 degree clockwise. - stretching: horizontally 20% downscaling.

To test the robustness of semantic approximate matching, ten images are randomly
selected out of TS1000 and compose a new test set TS10. For easier comparison, the
matching scores of all algorithms are represented by a normalized score varying from 0
to 100.
The score of each algorithm after resizing and blurring is always above 95 except mh

which produces scores between 90 and 95. The color modification yields similar scores
but both mh and dct produce slightly lower scores (90-95) than the others (95-100).
The results of the remaining five manipulations vary enormously and are presented in

Fig. 7.4. For rotation and mirroring, the scores of all algorithms are around 50 except that
rHash performs very well for mirroring. Cropping is a challenging manipulation, where
radial performs best, followed by dct; mh and rHash are not robust. Both radial
and rHash are very robust to compression, where dct and mh are inferior. Regarding
stretching, all algorithms deliver scores around 98 except radial which is only at 55.

 
Fig. 1. Average scores for five perceptual manipulations on TS10. 

 
As mentioned in Sec. 3.3, the false positive rate (FPR) and the false negative rate 

(FNR) can be used to measure the discriminability. Hence, we further evaluate the recall 
precision of different algorithms using TS2000 as the known image set and a new test set 
consisting of another 2197 similar images, called TS2000U, as the unknown image set. 
The 4394 images in TS2000 and TS2000U contain similar scenes of cheerleaders.  

First, each algorithm builds a hash database out of TS2000. Then, all images in the 
known image set, TS2000, are downscaled by 20% followed by JPEG compression with 
a quality factor of 20. This manipulation combines the two most common image 
processing methods: scaling and compression. Finally, digest matching is performed on 
the modified TS2000 and TS2000U respectively. 

The results are plotted in Fig. 2. The x-axis denotes FPR while the y-axis FNR. All 
algorithms obtain fairly good results except dct. Among the four algorithms, only rhash 
achieves zero FPR together with zero FNR. Under the requirement of zero FPR, dct has 
the worst result, whose FNR is as high as 0.245, while mh and radial obtain a FNR of 
0.027 and 0.0045 respectively. For dct algorithm, the best tradeoff is to achieve a FPR of 
0.0009 with a FNR of 0.0396. 

To conclude, all algorithms show good robustness in case of format conversion, 
blurring, color modification, resizing, compression and stretching (except radial), but are 
not robust against rotation, cropping (except radial) and mirroring (except rhash). 
Furthermore, under combined manipulation of downscaling and compression, all 
algorithms (except dct) achieve good discriminability between known images and 
unknown images. 
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Figure 7.4.: Average scores for five most influencing perceptual changes on TS10.

158



7.4. Benefits and drawbacks of approximate matching and hashing for investigations

Discriminability. The false positive rate (FPR) and the false negative rate (FNR) are
used to measure the discriminability. Therefore, TS2000 is the known image set and
compared against a new set consisting of 2197 similar images, called TS2000U (the un-
known image set). The 4394 images in TS2000 and TS2000U contain similar scenes of
cheerleaders.
First, each algorithm builds a hash database out of TS2000. Then, all images of the

known image set TS2000 are downscaled by 25% followed by JPEG compression with a
quality factor of 20. Finally, digest matching is performed on the modified TS2000 and
TS2000U, respectively.
The results are plotted in Fig. 7.5. The x-axis denotes FPR and the y-axis FNR. All

algorithms obtain fairly good results except dct. Among the four algorithms, only rHash
achieves zero FPR together with zero FNR. Under the requirement of zero FPR, dct
has the worst result, whose FNR reaches as high as 0.245, while mh and radial obtain
a FNR of 0.027 and 0.0045. For dct algorithm, the best trade-off is to achieve a FPR of
0.0009 with a FNR of 0.0396.

a quality factor of 20. Finally, digest matching is performed on the modified TS2000 and 
TS2000U respectively. 

The results are plotted in Fig. 2. The x-axis denotes FPR and the y-axis FNR. All 
algorithms obtain fairly good results except dct. Among the four algorithms, only rhash 
achieves zero FPR together with zero FNR. Under the requirement of zero FPR, dct has 
the worst result, whose FNR reaches as high as 0.245, while mh and radial obtain a FNR 
of 0.027 and 0.0045. For dct algorithm, the best tradeoff is to achieve a FPR of 0.0009 
with a FNR of 0.0396. 

To conclude, all algorithms show good robustness in case of format conversion, 
blurring, color modification, resizing, compression and stretching (except radial), but are 
not robust against rotation, cropping (except radial) and mirroring (except rhash). 
Furthermore, under combined manipulation of downscaling and compression, all 
algorithms (except dct) achieve good discriminability between known images and 
unknown images. 
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  (c) radial         (d) rhash 

 
Fig. 2. FNR/FPR of perceptual hashes on TS2000. 
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Figure 7.5.: FNR/FPR of perceptual hashes on TS2000.

To conclude, all algorithms show good robustness in the case of format conversion,
blurring, color modification, resizing, compression and stretching (except radial), but
are not robust against rotation, cropping (except radial) and mirroring (except rHash).
Furthermore, under combined manipulation of downscaling and compression, all algo-
rithms (except dct) achieve good discriminability between known images and unknown
images.
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Byte level changes for semantic approximate matching. This paragraph analyzes the
behavior of semantic approximate matching for byte level changes which corrupt the files.
Therefore, we applied the following byte level modifications:

- broken data: randomly manipulates 10 bytes all in the file body.
- broken/missing header: deletes the first 128 bytes of the image file.
- missing content: deletes 128 bytes in the middle of the image file.
- missing end: deletes the last 128 bytes of the image file.
- inserting data: inserts 128 bytes from a random image file in the middle.

Real life scenarios where these manipulations could happen are: transmitting errors,
defect hard disk sectors, RAM analysis or deleted / fragmented files analysis.
‘Missing end’ does not influence the score and all algorithms output a score of 100.

Considering ‘missing content’ and ‘broken data’ the scores were still high at round about
90. The lowest scores were returned by ‘inserting data’ lying between 72 and 82. In
all cases the algorithms warn about corrupt JPG data. Regarding ‘broken/header’ all
algorithms failed to produce meaningful results, either by aborting, crashing or delivering
out of range errors.

7.4.3. Wrap-up of experimental results

All approximate matching algorithms have a good to very good compression. Most of
them produce a fixed length output or have a upper limit expect sdhash and mrsh-v2
which have a proportional length.
As shown in Table 7.19 on page 157 the crypto hash SHA-1 is the fastest algorithm fol-

lowed by the bytewise approximate matching algorithm. Regarding semantic approaches,
there are huge differences in the processing time where rHash is by far the fastest.
Considering the comparison efficiency, it is obvious that the lookup complexity of O(1)

per hash for crypto hash functions is best followed by ssdeep. In Sec. 5.4 on page 69
we presented a lookup concept for bytewise approximate matching algorithm that use
Bloom filters, however, this is early stage. The semantic approaches do not have any
efficient lookup strategy and hence they are the worst for now.
The robustness is hard to decide. On the one hand we have the semantic algorithms

which are very robust against domain specific attacks. However, they fail in fragment
detection (e.g., the header is missing) or embedded object detection (e.g., JPG in a
Word document) which are the benefits of bytewise approximate matching. In addition,
semantic approximate matching is file domain bound and thus each domain needs its
own algorithm, e.g., images, movies or music.

7.5. Sample use case: analyzing a USB hard disk drive

In this section we present a reasonable utilization of the three different hash function
families on base of the use case allegation of production and ownership of child abuse
pictures. During a house search the police and IT forensic special agents find besides
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different computers and DVDs, a USB hard disk drive of size 40GB (presumably an old
backup device).
Following Marcus Roger’s process model CFFTPM “time is of the essence” and the

search for evidence should start at the crime scene [78]. His key argument is that accused
persons tend to be more cooperative within the first hours of an investigation.
During the planning phase of the CFFTPM the forensic investigator chooses hardware

(e.g., a forensic workstation equipped with a hardware write blocker for USB devices)
and software (implementation of at least one hash function of each family together with
respective databases of incriminated pictures) to examine a device onsite for pictures of
child abuse. The identification software is configured to run silently in the background
and notify the investigator, if potential evidence is found or if the software terminates.
An overview of our sample process model for the use case at hand is given in Fig. 7.6.
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Figure 7.6.: Process model in case of onsite search for pictures of child abuse.

In our sample use case the investigator decides that an analysis of a 40GB volume is
feasible at scene. He mounts the USB HDD read-only into the file system of his forensic
workstation and starts the automatic identification of evidence.
Due to their superior efficiency with regard to generation efficiency, compression and

fingerprint comparison, the identification software first applies a blacklist of crypto hashes
(e.g., PERKEO15) to all files on the USB HDD. If there is a match the identification
software notifies the investigator, who manually inspects the potential evidence. If it
turns out to be a picture of child abuse, he seizes the USB HDD and informs the police
to confront the accused person with the evidence.
If the blacklist crypto hashes do not yield a trace or if the alert turns out to be a false

positive, the identification software turns to semantic approximate matching. We favor
semantic approximate matching, because we expect a higher recall in this specific use
case. However, this claim has yet to be confirmed. The investigator and the software
operate analogously in the case of a true positive and false positive, respectively.
15http://perkeo.com (last accessed 2014-03-01).
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Finally, if after the second step no evidence is found, the software performs file carving
on the USB HDD and applies bytewise approximate matching to all extracted files /
fragments. Please note that in contrast to semantic approximate matching, the final
bytewise approximate matching may find fragments or embedded pictures of non-image
data files (e.g., PDF, DOC). If after all no evidence is found, the investigator decides
about a seizure of the device and the further processing, e.g., in the lab.

7.6. Summary

In the previous sections we first explained a method to speed up the overall procedure
of automated file identification. Currently hashing a whole file system is very time con-
suming and done single threaded. We improved this for forensic purposes and provided a
reusable framework. The results show an improvement of over 40% for an all-against-all
comparison compared to the standard ssdeep algorithm. The design of the framework
allows to add any other generic algorithm. Additionally, we showed that in a real world
scenario the investigation time could be improved a lot, e.g., from 1h 39min to 56min
without acquiring any extra hardware.
Secondly, we have presented the very first evaluation of approximate matching on

large test cases, i.e., on complete disk images and large reference databases. The results
show that of course approximate matching provides a substantial benefit compared to
cryptographic hashing. Approximate matching significantly increases the amount of files
that can be identified as known files. In particular, all kinds of plain text files as well as
files containing binary code can be filtered effectively with approximate matching on the
syntactic level. However, we also saw that the reference database must be up to date to
achieve the best identification rates.
Thirdly, we provided a rough overview of semantic approximate matching and studied

the impact of different hashing technologies for forensic investigations. We discussed all
three families of crypto hashes, semantic approximate matching algorithms and bytewise
approximate matching functions and highlighted their strengths and weaknesses.
Semantic approximate matching has proven to be most powerful in the area of content

identification. Compared to cryptographic hashing or approximate matching, they offer
significantly higher detection quality in the areas of image (or other media) copyright
violations or illegal material such as child pornography. However, they are bound to their
file domain and it is therefore necessary to run perceptual hashing for multiple domains,
e.g., images and movies – additional processing time. In addition, these approaches are
by default slower than there bytewise opponents.
The key strength of bytewise approximate matching is the ability to detect embedded

objects, e.g., detect a JPG within a Word document. In addition, it allows fragment
detection which is especially important when dealing with network traffic or defect file
systems, e.g., one may analyze the hard disk on the sector or block level.
Cryptographic hash functions are superior to their competitors with respect to effi-

ciency. They are the most recognized in court (so far) and NIST provides a compre-
hensive database containing approximately 115 million hash values. In addition, they
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do not err, i.e., their security properties allow to identify equal files with nearly 100%
probability, which is very important for whitelisting.
Fourthly, we presented a sample order of applying the hash function families within a

sample use case of investigating a USB HDD at crime scene. However, an actual process
model to optimize the operation of hash functions and its validation is still missing.
A next step could be to identify typical use cases and propose a reasonable order of
application of hash functions.
Finally we think that it is also necessary to consider the defendants where we see two

possibilities. On the one hand the defendant is the ‘regular user’ and not very familiar
with personal computers. Thus, the files reside somewhere unencrypted on the device.
Maybe they are processed with a tool to all have the same size. On the other hand the
defendant is an ‘expert’ and files might be encrypted. Hence, investigators can try to
find fragments in the RAM16 or in unallocated HDD sectors.

16Live response.
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8
Excursus - Bloom filter in iris recognition

One goal of this dissertation was to demonstrate the feasibility of using techniques from
approximate matching in the research area of biometrics which is published in [76, 77].
The main contribution was to identify and develop a technique for using approximate
matching for biometric template protection, biometric data compression and efficient
biometric identification.

8.1. Motivation

Iris biometric recognition is field-proven as a robust and reliable biometric technology and
is used in diverse application scenarios, such as border control, forensic investigations, as
well as cryptosystems. Daugman’s algorithm [35] forms the basis of the vast majority of
today’s iris recognition systems, which report (true positive) identification rates above
99% and equal error rates less than 1%: (1) at enrollment an image of a subject’s eye
is acquired; (2) in the pre-processing step the boundaries of the pupil and the outer iris
are detected and the iris (in the approximated form of a ring) is ‘un-rolled’ to obtain a
normalized rectangular iris texture; (3) feature extraction is applied in order to generate a
highly discriminative binary feature vector, i.e., iris-code; a typical processing chain of an
iris biometric recognition system is depicted in Fig. 8.1. (4) at the time of authentication
pairs of iris-codes are efficiently compared by calculating the Hamming distance between
them, where template alignment is performed within a single dimension, applying a
circular shift of iris-codes, to compensate for head tilts of a certain degree.
Technologies of iris recognition are already deployed on national-sized databases, e.g.,

the Unique Identification Authority of India, which aims at registering all 1.2 billion
Indian citizens, is enrolling 1 million subjects on a daily basis. Resistance to false matches
and comparison speed are vital for any large-scale biometric deployments.
From a privacy perspective most concerns about the common use of biometrics arise

from the storage and misuse of biometric data as well as the permanent tracking and
observation of activities. In accordance with the ISO/IEC IS 24745 [52] on biometric
information protection, technologies of biometric template protection which are catego-
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(a) Acquisition (b) Detection

(c) Iris texture

(d) Pre-processed iris texture

(e) Iris-code 1-D Log-Gabor filter

(f) Iris-code Ma et al.

Figure 8.1.: Preprocessing and applied feature extraction algorithms1.

rized as biometric cryptosystems and cancelable biometrics, meet the two major require-
ments: irreversibility and unlinkability (avoid cross-matching). The idea of cancelable
biometrics is to apply intentional, repeatable distortions of biometric signals based on
transformations that provide a comparison of biometric templates in the transformed do-
main. However, the majority of approaches to cancelable biometrics report a significant
decrease in biometric performance, which is caused by the fact that local neighborhoods
of feature elements are often obscured and the transformed enrollment templates are not
‘seen’ at the time of authentication, i.e., alignment cannot be performed properly.

8.2. Contribution

The contribution was the proposal of a generic approach to obtain a cancelable rotation-
invariant representation of iris-codes based on adaptive Bloom filters. Recall, a Bloom
filter [6] is a space-efficient probabilistic data structure representing a set in order to sup-
port membership queries. In addition, they provide efficient storage and rapid processing
of queries. We show how to do Bloom filter-based transformations to tackle all of the
following issues regarding (iris) biometrics:

1. Template protection: the successive mapping of parts of a binary biometric template
1Image taken from CASIAv3-Interval iris database: http://www.idealtest.org.
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to Bloom filters represents an irreversible transformation achieving alignment-free
protected biometric templates.

2. Biometric data compression: the proposed Bloom filter-based transformation can
be parameterized to obtain a desired template size, operating a trade-off between
compression and biometric performance.

3. Efficient identification: a compact alignment-free representation of iris-codes en-
ables a computaionally efficient biometric identification reducing the overall re-
sponse time of the system.

According to these benefits, the proposed approach represents a secure template pro-
tection scheme which can be efficiently applied within an iris identification system.

8.3. Combining Bloom filters and iris recognition

As described in Sec. 2.5, a Bloom filter bf is a simple bit array of length m, where
initially all bits are set to 0. In order to represent a set S = {s0, s1, ..., sn} a Bloom filter
traditionally utilizes k independent hash functions h0, h1, ..., hk−1 with range [0,m− 1].
For each element s ∈ S, bits hi(s) of Bloom filter bf are set to 1, for 0 ≤ i ≤ k − 1.
The original concept is adapted in different ways. Given a Bloom filter bf of length m

we restrict to inserting exactly l elements, where l ≤ m. In case of uniformly distributed
data the probability that a certain bit is set to 1 during the insertion of an element is
1/m, i.e., the probability that a bit is still 0 is 1− 1/m. For inserting a total of l elements
1− (1− 1/m)l bits are expected to be set to 1. For m = l · c and c ∈ N, i.e., m represents
a multiple of l, limm→∞(1 − 1/m)l = 1/e

l/m. In addition, a trivial transformation Y is
applied to each element x ∈ S instead of multiple hash functions. Since feature elements
are expected to be small the application of any hash function would not be resistant to
brute force attacks.
In the following subsections the alignment-free adaptive Bloom filter-based system,

which is illustrated in Fig. 8.2, and its properties with respect to template protection,
biometric data compression and computationally efficient identification are described in
detail.

8.3.1. Adaptive Bloom filter-based transformation

Iris-codes typically represent two-dimensional binary feature vectors of width W and
height H (see Fig. 8.1 (e)-(f)). In the proposed scheme W × H iris-codes are divided
into K blocks of equal size, where each column consists of w ≤ H bits. In case w < H
(e.g., for the purpose of compression), columns consist of the w upper most bits, i.e., fea-
tures originating from outer iris bands, which are expected to contain less discriminitave
information, are ignored. Subsequently, the entire sequence of columns of each block is
successively transformed to according locations within adaptive Bloom filters, that is, a
total number of K separate adaptive Bloom filters of length n = 2w form the template
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Figure 8.2.: Operation mode of the proposed rotation-invariant biometric templates ap-
plying Bloom filter-based transformations to feature vector columns. The
highlighted codewords change in Bloom filter b2 the element at index 39
(decimal representation of 100111) and also index 40 (decimal representa-
tion of 101000) to 1.

of size K · 2w. The transformation is implemented by mapping each column within the
2D iris-code to the index of its decimal value, which is shown for two different codewords
(=columns) as part of Fig. 8.2, for each column x ∈ {0, 1}w, the mapping is defined as,

bf [Y (x)] = 1, with Y (x) =
w−1∑
j=0

xj · 2j . (8.1)

The very essence of the proposed transformation is that it is alignment-free, i.e., gen-
erated templates (= sets of Bloom filters) do not need to be aligned at the time of
comparison. Equal columns within certain blocks (= codewords) are mapped to iden-
tical indexes within adaptive Bloom filters, i.e., self-propagating errors caused by an
inappropriate alignment of iris-codes are eliminated (radial neighborhoods persist). The
rotation-compensating property of the proposed system comes at the cost of location
information of iris-code columns. At block boundaries miss-alignment of iris-codes will
distribute a certain amount of potentially matching codewords among different blocks,
which would be mapped to neighbored Bloom filters.

8.3.2. Comparison in transformed domain

The comparison in the transformed domain is basically based on the Jaccard index [53]
which is a metric for calculating the similarity/dissimilarity of sample sets. Let |bf |
denote the amount of bits within a Bloom filter bf , which are set to 1. Then the
dissimilarity DS between two Bloom filters bfi and bfj is defined as,

DS (bfi, bfj) =
HD(bfi, bfj)

|bfi|+ |bfj |
, where |bfi| 6= 0, |bfj | 6= 0. (8.2)
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Figure 8.3.: Amount of possible sequences (per block) for different block sizes and pro-
portions of re-mapped codewords.

Obviously, DS is computed as efficient as HD while DS does not have to be computed
at numerous shifting positions. In order to incorporate masking bits obtained at the time
of pre-processing, columns of iris-codes which are mostly affected by occlusions must not
be mapped to adaptive Bloom filters, i.e., a seperate storage of bit masks is not required.

8.3.3. Template protection

The Bloom filter-based transformation conceals the original positions of codewords, i.e.,
given a Bloom filter bf it is not clear from which column a distinct 1-bit in the gener-
ated protected template originated. In addition, it is most likely that diverse columns
are mapped to a single index and the occurrence of distinct codewords cannot be estab-
lished from the stored template, i.e., the proposed transformation achieves irreversible
alignment-free templates, implementing cancelable biometrics. In order to provide un-
linkability between multiple cancelable templates of a single subject an application spe-
cific secret T in form of a bit vector of length w, T ∈ {0, 1}w, is incorporated. Each
codeword is transformed applying this secret vector (of same length) by XORing prior
to mapping it to a Bloom filter. It is important to note that this secret is application-
specific (and potentially subject specific) and is only incorporated as parameter in order
to suffice the property of unlinkability.
High correlation between codewords, especially neighboring ones, is expected. Conse-

quently, a significant amount of codewords are mapped to identical positions in Bloom
filters even for small values of l. Assume |bf | bits are set to 1 within a Bloom filter after
inserting l codewords, i.e., |bf | different codewords occur in a block of length l. Hence,
the amount of re-mapped bits is 1 − |bf |/l. For a potential attacker the reconstruction
of the original iris-code block involves an arranging of |bf | codewords to l positions (K-
times for the entire iris-code). For |bf | ≤ l the theoretical amount of possible sequences
is recursively defined by the function f(|bf |, l) where each of the |bf | codewords have to
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appear at least once within l columns,

f(|b|, l) =


1, if |b| = 1,

|bf |l −
|bf |−1∑
i=1

(|bf |
i

)
· f(i, l) otherwise.

(8.3)

In other words, all sequences where less than |bf | codewords appear are subtracted
from the number of all possible sequences, |bf |l. Fig. 8.3 illustrates the rapid increase
of possible sequences even for small values of |bf | (note the logarithmic scales on both
axes). Peaks are located around 3l/4, in case of l = |bf | we get f(l, l) = l! and f(1, l) = 1.
For instance, for l = 4 and |bf | = 2 we get f(2, 4) = 24 −

(
2
1

)
· f(1, 4) = 16 − 2 · 1 = 14

possible sequences, for l = 4 and |bf | = 3 we get f(3, 4) = 34 −
(

3
1

)
· f(1, 4) −

(
3
2

)
·

f(2, 4) = 81 − 3 · 1 − 3 · 14 = 36 possible sequences and for l = 4 and |bf | = 4 we get
f(4, 4) = 4! = 24 possible sequences and so forth. In our paper [77] we demonstrated
that for randomly generated bit vectors it is unfeasible for potential attackers to cross-
match pairs of protected templates extracted from a single subject and that biometric
performance is maintained at a high security level.

8.3.4. Biometric data compression

The original template size isW ×H bits. In the proposed scheme the template is divided
into W/l = K blocks of length l resulting in a template size of 2w ·K = 2w · W/l where
w ≤ H. If we set l = 2q a compression is achieved if,

W/l · 2w < W ·H ⇔ 2w−q/H < 1 (8.4)

applies, which is most likely the case as we will demonstrate in experiments. For instance,
for an iris-code of size 2048 with W = 256 and H = 8, and the setting l = 64 and
w = 8 we get 256/64 · 28 = 1024 < 2048, i.e., a compression down to 50% of the original
size is achieved (28−6/8 = 0.5). Sizes of transformed templates are operated by setting
parameters l and w. Both, increasing l and decreasing w reduces the overall size of
the resulting template, see Eq. 8.4. Our results show that biometric performance is
maintained for a compression of down to 20% of original template size.

8.3.5. Adaptive Bloom filter-based identification

Despite indexing techniques, original iris-codes have been combined with compressed
and rotation-invariant templates in serial combination scenarios in order to obtain a
pre-selection of potential candidate templates. For both types of attempts, compressed
templates and alignment-free feature extractors have been found to exhibit unpractical
biometric performance, requiring the application of a more sophisticated algorithm within
a second stage. In contrast, as it is shown in the paper, the proposed Bloom filter-
based transformation generates rotation-invariant cancelable templates which maintain
biometric performance.
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If a biometric comparator is required to perform ±s bit shifts in each direction in
order to compensate for head tilts the overall amount of bit comparisons increases to
W · H · (2s + 1). This means for the proposed approach the number of required bit
comparisons is reduced to,

100 · 2w−q(
H · (2s+ 1)

)% . (8.5)

For example, if a comparator performs ±6 bit shifts and the proposed transforma-
tion retains the template size (no compression) a reduction of bit comparisons down to
1/(12 + 1) ' 7.7% is obtained, while no second algorithm is required. Again, the proposed
system takes major advantage of its rotation-compensating property.
In the paper we demonstrated that a reduction of bit-comparisons to less than 5% led

to a substantial speed-up of the biometric system in identification mode.

8.4. Summary

The wide use of (iris) biometrics raises the need for privacy protection. Technologies
of cancelable biometrics are designed to permanently secure biometric data, preventing
from identity fraud and privacy violation. In addition, while a binary representation of
biometric features enable a rapid comparison, computational limits are reached deploying
national-sized biometric databases in identification mode and public deployments of iris
recognition are still based on a brute force exhaustive search through a database. While
the majority of approaches to biometric database indexing suffer from a significant de-
crease in biometric performance, indexing protected biometric templates represents an
even greater challenge.
We presented an alignment-free cancelable iris biometric template based on adaptive

Bloom filters. The generic adaptive Bloom filter-based transformation which is applied
to binary feature vectors of different iris recognition algorithms enables (1) template
protection, (2) a compression of biometric data, and (3) computational efficient biometric
identification. Existing approaches to iris biometric template protection suffer from low
biometric performance or utilize rather insecure alignment-preserving transformations.
In contrast, the proposed rotation-invariant Bloom filter-based transformation provides a
high level of security while recognition accuracy is maintained. In addition, the presented
scheme can be parameterized in order to highly compress biometric templates (down to
10% of original size). Furthermore, since bit-shifting is obsolete at the time of biometric
comparison (in transformed domain) a substantial speed-up of biometric identification
is achieved. Finally, it is important to note that the proposed approach can be utilized
in order to generate a fixed-length protected template based on a variable-length binary
biometric feature vector which may be the case for other biometric characteristics, e.g.,
fingerprints. To the authors’ knowledge the proposed approach represents the very first
template protection scheme which enables compression and computationally efficient
identification.
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Conclusion & future work

The contribution of this dissertation is the development, assessment and establishment
of (new) approaches and concepts of approximate matching. The main research question
to answer was: What is the utility of bytewise approximate matching and how can we
establish it in the computer science community?
To answer this question, we studied approximate matching from scratch and came up

with a definition which comprises of common terminology, use cases and requirements.
Next, we analyzed both existing approaches, presented improvements and released three
new algorithms to extend the range. In order to ease the evaluation process of new
algorithms in the future, we implemented the testing framework FRASH which is currently
in a re-implementation phase. Furthermore, we discussed the application possibilities for
approximate matching (byteweise and semantic) for digital forensic investigations. We
demonstrated that besides investigations, approximate matching can also be applied to
other working fields, such as network traffic analysis or iris template protection.

9.1. Answers to research questions

Based on all our findings, it is possible to answer the research questions given in the
introduction:

Research question 1: What is a possible definition for approximate matching? The
first step to establish approximate matching in the computer science community was to
come up with a common definition and terminology. Basically approximate matching
is a generic term describing any technique designed to identify similarities between two
digital artifacts. In this context, an artifact (or an object) is defined as an arbitrary
byte sequence, such as a file, which has some meaningful interpretation. Depending on
the methods, it may operate at different levels of abstraction: bytewise–, syntactic– or
semantic approximate matching.
Besides the actual properties that are required, we extended this description by use

cases, e.g., object similarity detection, cross correlation, embedded object detection and
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fragment detection.

Research question 2: Do the existing implementations have any strengths/weak-
nesses (by design) and is it possible to improve them? Our review and evaluation of
the existing implementations demonstrated that both algorithms have different strengths
and weaknesses. For instance, we improved the runtime efficiency of ssdeep by 55%, how-
ever, an active adversary still can overcome this approach. With respect to sdhash, we
identified that the algorithm is a lot more robust but had a few bugs that impair the
original idea. Nevertheless, it is hard to exploit this approach.
With respect to multi-resolution similarity hashing, we improved the runtime efficiency

and published a new implementation called mrsh-v2. As a highlight we demonstrated
a new comparison function that has two modes: fragment detection and similar file
detection.

Research question 3: Can we develop new approaches based on well established
proceedings from computer science? In this dissertation we introduced three new
algorithms called bbHash, mvhash and saHash which are based on well-known concepts
from different areas of computer science.
bbHash utilizes ideas from data deduplication and eigenfaces. It tries to rebuild a file

as accurately as possible, based on a given set of building blocks. It is the first approach
that uses an external structure to create its digests. mvhash leans on majority voting in
conjunction with run length encoding to compress the input data and uses Bloom filters
to represent the similarity digest. As a result of these simple techniques, it is almost as
fast as SHA-1. saHash uses four independent sub-hash functions which extract statistical
peculiarities of a byte sequence. The digests allow to estimate the similarity on the basis
of the well-known Levensthein distance, which is a unique feature of that approach.

Research question 4: How can we improve the quadratic lookup complexity of simi-
larity digests? We presented and evaluated a procedure of how to speed up the lookup
process for Bloom filter similarity digests. Depending on the use case, we present two
different possibilities. The ‘file-against-set’ comparison allows us to answer the question
of whether or not a (similar) file is present in the set by answering yes and no. In con-
trast, the ‘file-against-file’ comparison allows to identify all files that are similar to a
given similarity digest. While originally both queries had a complexity of O(z) (where
z is the amount of digests in the database), we reduced them to O(1)) and O(log2(z)),
respectively.

Research question 5: What is a reasonable methodology to test and evaluate byte-
wise approximate matching? To test and evaluate approximate matching, we presented
a framework called FRASH that combines four different test categories. The efficiency-
test focuses on the elemental properties of hashing algorithms like ease of computation,
compression and fingerprint comparison. Sensitivity & robustness analyzes the behavior
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of implementations with respect to different challenges like fragment detection or single-
common-block correlation. In addition, we included precision & recall on synthetic data
as well as real world data. In the latter case, we presented a new procedure called ‘ap-
proximate longest common subsequence’ to create the ground truth. The output is an
extensive survey how the algorithms managed different tests.

Research question 6: How can approximate matching improve and support the cur-
rent forensic investigation process? The experiments demonstrated the benefits of
approximate matching compared to cryptographic hash functions. Due to the current
processing power (CPU power), there are no remarkable disadvantages when processing
huge amounts of data with approximate matching (the bottleneck is the speed of the
hard drive). Studying the detection rates exposed that approximate matching does not
work perfectly but adds substantial benefits depending on the case. Combining differ-
ent approaches (i.e., crypto hashes, semantic– and bytewise approximate matching) may
provide enormous amounts of support for investigators.

Research question 7: Are there further applications/concepts for approximate match-
ing besides automated file identification in death system analysis? Besides the tradi-
tional approach for hashing and approximate matching, we demonstrated the feasibility
of being able to apply these algorithms on network traffic. Once the database of ‘pro-
tected files’ is built, the procedure is quite simple: hash the network packet and compare
it against the database. Although a false alert rate around 10−5 is too high for practical
use, there are ways to improve this which will be future work.

Research question 8: Is it possible to adapt concepts from byte approximate match-
ing to improve existing biometric template protection schemes? We demonstrated
the feasibility of using techniques from approximate matching in the research area of
biometrics by presenting an alignment-free cancelable iris biometric template based on
adaptive Bloom filters. The procedure is applied to binary feature vectors of different iris
recognition algorithms and enables (1) template protection, (2) a compression of biomet-
ric data, and (3) computational efficient biometric identification. In contrast to existing
approaches, the proposed rotation-invariant Bloom filter-based transformation provides
a high level of security while recognition accuracy is maintained.

9.2. Future work

One limitation are the detection rates of the algorithms as evaluated in Sec. 6.3.4 – all
algorithms have a high false negative rate which needs to be improved. In addition,
we have to consider if the longest common subsequence is a reasonable measure for the
ground truth. Therefore, we have to work on the algorithm to increase their precision.
Besides that, we would like to study the possibilities of machine learning for approximate
matching and clustering files.
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Our test framework FRASH currently consists of multiple scripts implemented in Ruby,
C++ and shell scripts. Hence, we are currently working on a C++-implementation that
includes all tests, has a comprehensive manual and will be published on github.
We demonstrated that approximate matching can be used for network traffic analysis,

where we identified sequences that overcome our current filtering methods which are the
basis for good detection rates. Hence, we should aim at improving the filtering techniques.
One idea is to provide a list of sequences which are very common and should be ignored.
In order to create such a list, one may study each file format intensively or use counting
Bloom filters which is the focus at the moment. Another possibility would be to extend
mrsh-net by learning phase based on a file set so that common sequences are ignored.
A second idea is the consideration of more than one packet. This requires a connection
table containing the information that user A has a connection to user B. Then, we easily
can count the amount of database hits and react, e.g., the connection is interrupted if
three hits appear.
Besides the usage of approximate matching on network traffic, we would like to apply

this technology to further working fields where especially malware and RAM analysis
would be interesting starting points. According to an antivirus vendor, the reason of
ignoring approximate matching for their needs was the slow database lookup. Now this
challenge is solved and approximate matching algorithms operate with practical speed
and may become relevant for them.
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A. Evaluation of sdhash implementation

This part is a detailed analysis of the sdhash version 1.2 code. In a first step this section
compares the specification with the implementation – both have to coincide. As we treat
the specification as ‘correct’, we show some discrepancies. The impact of a deviating
implementation is an unexpected behavior of the sdhash program. Furthermore we
discuss three bugs which are mainly shortcomings by design during the comparison of
Bloom filters.

A.1. Popularity Rank Computation Bug

While inspecting the code from sdhash, we discovered two important bugs when com-
puting the popularity rank Rpop:

1. A bug concerning the window size used to compute Rpop avoids the correct iden-
tification of the minimal Rprec value in the current window. We call this bug the
window size bug in what follows.

2. An inconsistency between the description of the algorithm in [80] and its imple-
mentation yields unexpected results for Rpop. The inconsistency is related to the
property of the algorithm in [80] to consider the leftmost minimal value of Rprec in
a window. We therefore denote this bug as leftmost bug.

These two bugs lead to false results of Rpop and thus to an unexpected behaviour of the
whole algorithm. The discussion in this section is with respect to the code of the file
sdbf_score.c of sdhash version 1.2 shown in Listing A.1. However, the same bugs are
found in the current version 1.3, where the file is now called sdbf_core.c (we are not
aware of any reason of the renaming).
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Before explaining the bugs in sdbf_score.c we first give an example of unexpected
values for Rpop. In Sec. 3.3 we explained the computation of Rpop as presented in [80].
We point to a key property of the popularity rank: Let Rpop(i) denote the popularity
rank at position i. If Rpop(i) = k (1 ≤ k ≤ 64), then Rpop(i+ n) ≤ n for all 1 ≤ n < k.
However, the following listing shows some unexpected values of Rpop. The listing is

similar to Fig. 3.3 and it is an abridgment of the Rprec and its corresponding Rpop for
file 000110.jpg.

Pos: 76 77 78 79 80 81 82 83
R_prec: 432 353 333 333 325 396 432 472
R_pop: 0 0 1 63 2 1 1 1
[removed]
Pos: 603 604 605 606 607 608 609 610
R_prec: 372 364 335 335 391 416 443 445
R_pop: 1 1 25 40 1 1 1 1

The first line shows the position i of Rprec in 000110.jpg, i.e., the offset of the first
byte of the underlying feature of Rprec.
To recall [80, p.212] says that after a window Win has slided, the Rpop of leftmost

lowest Rprec in Win is increased, which is in contrast to the above listing. For instance,
for i = 78 the 1-neighborhood (positions 77 and 79) should have at most a Rpop of 1. In
fact we would expect an output like:

Pos: 76 77 78 79 80 81 82 83
R_prec: 432 353 333 333 325 396 432 472
R_pop: 0 0 2 0 63 1 1 1
[removed]
Pos: 603 604 605 606 607 608 609 610
R_prec: 372 364 335 335 391 416 443 445
R_pop: 1 1 64 1 1 1 1 1

As an explanation we imagine a windowWin of size 64 ending at position 78. In order
for Rpop = 1 to hold at position 78, Win must contain 63 values Rprec > 333 to the left
of position 78. We then slide Win by one to position 79. The new incoming Rprec is also
333 and thus the Rpop at position 78 should increase again as it is still the leftmost lowest
Rprec in Win. Sliding one step further there is even a lower Rprec = 325, wherefore Rpop
at position 80 should be increased.
We now explain the location of the window size bug using Listing A.1 and show that

the false value Rpop = 63 at position 79 is due to this bug. The window size bug means
that two different window sizesW are used in the code to compute Rpop. In line 92 of the
listing the current window Win starts at position i and uses a window size W . However,
the positions i until i + W comprise W + 1 positions and therefore a −1 needs to be
added. On the other side, at line 101 of Listing A.1 the correct window size W is used
to find the minimal value in Win1.

1Actually also W is used, but the condition uses a < instead of ≤.

ii



A. Evaluation of sdhash implementation

86 UINT min_pos = 0;
87 UINT min_rank = ranks[min_pos];
88 for( i=0; i<sdbf_sys.file_size-sdbf_sys.pop_win_size; i++) {
89 // try sliding on the cheap
90 if( i>0 && min_rank) {
91 UINT ix=0;
92 while( ranks[i+sdbf_sys.pop_win_size] >= min_rank && i<min_pos && i<sdbf_sys.

file_size-sdbf_sys.pop_win_size+1) {
93 if( ranks[i+sdbf_sys.pop_win_size] == min_rank)
94 min_pos = i+sdbf_sys.pop_win_size;
95 pop_scores[min_pos]++;
96 i++;
97 }
98 }
99 min_pos = i;

100 min_rank = ranks[min_pos];
101 for( j=i+1; j<i+sdbf_sys.pop_win_size; j++) {
102 if( ranks[j] < min_rank && ranks[j]) {
103 min_rank = ranks[j];
104 min_pos = j;
105 } else if( min_pos == j-1 && ranks[j] == min_rank) {
106 min_pos = j;
107 }
108 }
109 if( ranks[min_pos] > 0) {
110 pop_scores[min_pos]++;
111 }
112 }
113 free( ranks);
114 fclose( in);
115 return pop_scores;
116 }

Listing A.1: Abridgment of sdbf_score.c from sdhash 1.2.

We shortly discuss the implications of this bug. Due to the window size W + 1 in
line 92 the while-loop is always one Rprec ahead. Thus when the while-loop in line 92
processes position 80, it reads in Rpop = 325 where the first condition does not hold and
we jump to line 99. However, the implementation now checks in line 101 for a window of
size W which ends at position 79 and therefore computes a minimal value Rpop = 333.
Additionally the leftmost bug in lines 93 and 94 chooses for the rightmost position if

the righmost Rpop is equal to the previous minimal value (a similar bug is implemented
in lines 105 and 106).
To resolve these two bugs we propose the following changes to the source code:

1. Replace the first condition in line 92 by

ranks[i+sdbf_sys.pop_win_size-1]
>= min_rank

to resize the window to its correct length of 64.
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2. Remove lines 93, 94, 105− 107 to correct the leftmost bug.

A.2. Design errors within the comparison class

The comparison function of a similarity digest algorithm is crucial for detecting related
files. However, when reviewing the code of the matching part of sdhash, we discovered
some shortcomings by design:

• In case that one of the files has at most 63 features, the comparison functions yields
two different results depending on the order of the two files. If the file containing
at most 63 features is invoked as the second argument it results in the similarity
score −1, a not comparable. We denote this bug by not-comparable bug.

• A self-comparison of a file may result in a similarity score significantly smaller than
100 (a lower bound is 50). We denote this bug by self-comparison bug.

• It is possible that two different files yield a 100 match by design (and not at
random). We denote this bug by collision bug.

Responsible for the first two bugs is the misplaced if-condition if(s2 < 64) in the file
sdbf_score.c in line 198 where s2 denotes the amount of features within a Bloom filter.
Roughly speaking this if-condition skips the comparison of partially filled Bloom filters,
if the threshold of 63 features is not exceeded.
Not-comparable bug: This bug can arise while comparing two files where at least

one has at most 63 features and thus results in only one Bloom filter. Listing A.2 shows
the comparison of a 48-feature-file against a 84-feature-file and vice-versa.
As a result we obtain a match score of 100 or a −1 (not-comparable) depending on

the ordering. Both results are not reasonable. The supposed perfect match is due to the
collision bug as explained below. The not-comparable result is due to the aforementioned
if-condition: The comparison is skipped if the second input file does not have enough
(≥ 64) features.

1 $ sdhash -g 48.ftrs 84.ftrs
2 48.ftrs 84.ftrs 100
3

4 $ sdhash -g 84.ftrs 48.ftrs
5 84.ftrs 48.ftrs -01

Listing A.2: Wrong order comparison yields a not comparable.

A possible solution is given at the end of ‘self-comparison bug’.
Self-comparison bug: Let SD = {bf1, bf2} be the similarity digest of the input for

the self-comparison, where bf1 = 128 and bf2 < 64 (i.e., the first Bloom filter contains
the maximum amount of 128 features and the second one is below the self-comparison
threshold of 64 features as defined by the if-condition from above).
To receive the similarity score there is an all-against-all comparison of Bloom filters as

defined by Eq. 3.10 of the two similarity digests. In our sample case, SD is compared
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against itself. Thus SFscore(bf1, bf1) results in a 100 match and is therefore the best
match. But due to the if-condition it is not allowed to compute SFscore(bf2, bf2) as
the if-condition requires at least 64 features for the second Bloom filter bf2. Therefore
SFscore(bf2, bf1) is used. However, we have 0 ≤ SFscore(bf2, bf1) ≤ 100, which yields a
lower bound of 50 for the self-comparison similarity score.

1 $ sdhash t5/000256.doc
2 t5/000256.doc sdbf:sha1:256:5:7ff:128:2:18: IiYTAaVQMQRUUlEFbL0BDKUQAIkE0JEDMEEAgPIoiAi

gDQNYAdsADCEdEGBAC9wBYiEA4AFARGYJdMASZEJABS [removed]
AAAAAQECAAAAAAAAAAEEAgAQAACIAAAAEBAAA=

3

4 $ 1.2/sdhash -g t5/000256.doc t5/000256.doc
5 t5/000256.doc t5/000256.doc 055

Listing A.3: A file compared to itself with a match score of only 55.

Let us look at an example from the t5-corpus given in Listing A.3. First, we print the
similarity digest for 00256.doc. Row 2 shows some basics about the digest itself, e.g.,
sdhash uses SHA-1, has Bloom filters of 256 bytes each with 128 features, overall there
are 2 Bloom filters and the last one contains 18 features. Due to the second Bloom filter
with only 18 features the self-comparison in rows 4 and 5 yield an overall similarity score
of 55. Eq. 3.10 yields the similarity score SFscore(bf2, bf1):

100 + SFscore(bf2, bf1)

2
= 55 ,

hence SFscore(bf2, bf1) = 10.
To generalize, if the similarity score of a file is built up of r Bloom filters and the last

one contains less than 64 features, it is not trustful. If such a file is compared to itself a
lower bound of its similarity score is therefore (r−1)·100+0

r = 100− 100
r .

To avoid the bugs, all thresholds need to be adjusted where we recommend an upper
bound of 6. In order not to reject the last Bloom filter if it contains less than 6 features,
there should be an extension where we allow more than 128 elements within the last
filter. Thus in case the last Bloom filter would be skipped due to too less features we
merge the last two filters. As a consequence the last Bloom filter could have at most 133
features.

B. All results of the precision & recall test for synthetic data
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Opt TP TN FP FN TPR TNR FPR FNR Precision
mrsh Alignment 1k 25 236 99000 0 764 0,24 1,00 0,00 0,76 1,00
mrsh Alignment 1k 50 237 99000 0 763 0,24 1,00 0,00 0,76 1,00
mrsh Alignment 1k 100 237 99000 0 763 0,24 1,00 0,00 0,76 1,00
mrsh Alignment 1k 200 237 99000 0 763 0,24 1,00 0,00 0,76 1,00
mrsh FragmentEnd 1k 50 4 99000 0 996 0,00 1,00 0,00 1,00 1,00
mrsh FragmentEnd 1k 60 1 99000 0 999 0,00 1,00 0,00 1,00 1,00
mrsh FragmentEnd 1k 70 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
mrsh FragmentEnd 1k 80 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
mrsh FragmentEnd 1k 90 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
mrsh FragmentEnd 1k 95 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
mrsh FragmentEnd 1k 97 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
mrsh FragmentEnd 1k 99 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
mrsh FragmentRandom1k 50 2 99000 0 998 0,00 1,00 0,00 1,00 1,00
mrsh FragmentRandom1k 60 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
mrsh FragmentRandom1k 70 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
mrsh FragmentRandom1k 80 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
mrsh FragmentRandom1k 90 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
mrsh FragmentRandom1k 95 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
mrsh FragmentRandom1k 97 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
mrsh FragmentRandom1k 99 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
mrsh Noise 1k 0,5 199 99000 0 801 0,20 1,00 0,00 0,80 1,00
mrsh Noise 1k 1 117 99000 0 883 0,12 1,00 0,00 0,88 1,00
mrsh Noise 1k 1,5 52 99000 0 948 0,05 1,00 0,00 0,95 1,00
mrsh Noise 1k 2 19 99000 0 981 0,02 1,00 0,00 0,98 1,00
mrsh Noise 1k 2,5 6 99000 0 994 0,01 1,00 0,00 0,99 1,00
mrsh SingleCommonBlock1k 1 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
mrsh SingleCommonBlock1k 3 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
mrsh SingleCommonBlock1k 5 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
mrsh SingleCommonBlock1k 10 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
mrsh SingleCommonBlock1k 20 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
mrsh SingleCommonBlock1k 30 11 99000 0 989 0,01 1,00 0,00 0,99 1,00
mrsh SingleCommonBlock1k 40 39 99000 0 961 0,04 1,00 0,00 0,96 1,00
mrsh SingleCommonBlock1k 50 86 99000 0 914 0,09 1,00 0,00 0,91 1,00
mvHash Alignment 1k 25 996 99000 0 4 1,00 1,00 0,00 0,00 1,00
mvHash Alignment 1k 50 946 99000 0 54 0,95 1,00 0,00 0,05 1,00
mvHash Alignment 1k 100 547 99000 0 453 0,55 1,00 0,00 0,45 1,00
mvHash Alignment 1k 200 14 99000 0 986 0,01 1,00 0,00 0,99 1,00
mvHash FragmentEnd 1k 50 374 99000 0 626 0,37 1,00 0,00 0,63 1,00
mvHash FragmentEnd 1k 60 103 99000 0 897 0,10 1,00 0,00 0,90 1,00
mvHash FragmentEnd 1k 70 16 99000 0 984 0,02 1,00 0,00 0,98 1,00
mvHash FragmentEnd 1k 80 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
mvHash FragmentEnd 1k 90 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
mvHash FragmentEnd 1k 95 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
mvHash FragmentEnd 1k 97 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
mvHash FragmentEnd 1k 99 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00



Opt TP TN FP FN TPR TNR FPR FNR Precision
mvHash FragmentRandom1k 50 340 99000 0 660 0,34 1,00 0,00 0,66 1,00
mvHash FragmentRandom1k 60 84 99000 0 916 0,08 1,00 0,00 0,92 1,00
mvHash FragmentRandom1k 70 10 99000 0 990 0,01 1,00 0,00 0,99 1,00
mvHash FragmentRandom1k 80 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
mvHash FragmentRandom1k 90 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
mvHash FragmentRandom1k 95 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
mvHash FragmentRandom1k 97 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
mvHash FragmentRandom1k 99 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
mvHash Noise 1k 0,5 99 99000 0 901 0,10 1,00 0,00 0,90 1,00
mvHash Noise 1k 1 9 99000 0 991 0,01 1,00 0,00 0,99 1,00
mvHash Noise 1k 1,5 1 99000 0 999 0,00 1,00 0,00 1,00 1,00
mvHash Noise 1k 2 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
mvHash Noise 1k 2,5 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
mvHash SingleCommonBlock1k 1 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
mvHash SingleCommonBlock1k 3 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
mvHash SingleCommonBlock1k 5 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
mvHash SingleCommonBlock1k 10 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
mvHash SingleCommonBlock1k 20 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
mvHash SingleCommonBlock1k 30 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
mvHash SingleCommonBlock1k 40 1 99000 0 999 0,00 1,00 0,00 1,00 1,00
mvHash SingleCommonBlock1k 50 24 99000 0 976 0,02 1,00 0,00 0,98 1,00
sdhash Alignment 1k 25 860 99000 0 140 0,86 1,00 0,00 0,14 1,00
sdhash Alignment 1k 50 865 99000 0 135 0,87 1,00 0,00 0,14 1,00
sdhash Alignment 1k 100 890 99000 0 110 0,89 1,00 0,00 0,11 1,00
sdhash Alignment 1k 200 897 99000 0 103 0,90 1,00 0,00 0,10 1,00
sdhash FragmentEnd 1k 50 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
sdhash FragmentEnd 1k 60 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
sdhash FragmentEnd 1k 70 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
sdhash FragmentEnd 1k 80 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
sdhash FragmentEnd 1k 90 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
sdhash FragmentEnd 1k 95 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
sdhash FragmentEnd 1k 97 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
sdhash FragmentEnd 1k 99 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
sdhash FragmentRandom1k 50 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
sdhash FragmentRandom1k 60 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
sdhash FragmentRandom1k 70 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
sdhash FragmentRandom1k 80 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
sdhash FragmentRandom1k 90 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
sdhash FragmentRandom1k 95 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
sdhash FragmentRandom1k 97 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
sdhash FragmentRandom1k 99 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
sdhash Noise 1k 0,5 639 99000 0 361 0,64 1,00 0,00 0,36 1,00
sdhash Noise 1k 1 600 99000 0 400 0,60 1,00 0,00 0,40 1,00
sdhash Noise 1k 1,5 396 99000 0 604 0,40 1,00 0,00 0,60 1,00
sdhash Noise 1k 2 172 99000 0 828 0,17 1,00 0,00 0,83 1,00



Opt TP TN FP FN TPR TNR FPR FNR Precision
sdhash Noise 1k 2,5 52 99000 0 948 0,05 1,00 0,00 0,95 1,00
sdhash SingleCommonBlock1k 1 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
sdhash SingleCommonBlock1k 3 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
sdhash SingleCommonBlock1k 5 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
sdhash SingleCommonBlock1k 10 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
sdhash SingleCommonBlock1k 20 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
sdhash SingleCommonBlock1k 30 64 99000 0 936 0,06 1,00 0,00 0,94 1,00
sdhash SingleCommonBlock1k 40 425 99000 0 575 0,43 1,00 0,00 0,58 1,00
sdhash SingleCommonBlock1k 50 609 99000 0 391 0,61 1,00 0,00 0,39 1,00
ssdeep Alignment 1k 25 1000 99000 0 0 1,00 1,00 0,00 0,00 1,00
ssdeep Alignment 1k 50 1000 99000 0 0 1,00 1,00 0,00 0,00 1,00
ssdeep Alignment 1k 100 964 99000 0 36 0,96 1,00 0,00 0,04 1,00
ssdeep Alignment 1k 200 922 99000 0 78 0,92 1,00 0,00 0,08 1,00
ssdeep FragmentEnd 1k 50 971 99000 0 29 0,97 1,00 0,00 0,03 1,00
ssdeep FragmentEnd 1k 60 678 99000 0 322 0,68 1,00 0,00 0,32 1,00
ssdeep FragmentEnd 1k 70 30 99000 0 970 0,03 1,00 0,00 0,97 1,00
ssdeep FragmentEnd 1k 80 17 99000 0 983 0,02 1,00 0,00 0,98 1,00
ssdeep FragmentEnd 1k 90 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
ssdeep FragmentEnd 1k 95 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
ssdeep FragmentEnd 1k 97 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
ssdeep FragmentEnd 1k 99 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
ssdeep FragmentRandom1k 50 975 99000 0 25 0,98 1,00 0,00 0,03 1,00
ssdeep FragmentRandom1k 60 679 99000 0 321 0,68 1,00 0,00 0,32 1,00
ssdeep FragmentRandom1k 70 35 99000 0 965 0,04 1,00 0,00 0,97 1,00
ssdeep FragmentRandom1k 80 18 99000 0 982 0,02 1,00 0,00 0,98 1,00
ssdeep FragmentRandom1k 90 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
ssdeep FragmentRandom1k 95 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
ssdeep FragmentRandom1k 97 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
ssdeep FragmentRandom1k 99 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
ssdeep Noise 1k 0,5 998 99000 0 2 1,00 1,00 0,00 0,00 1,00
ssdeep Noise 1k 1 944 99000 0 56 0,94 1,00 0,00 0,06 1,00
ssdeep Noise 1k 1,5 767 99000 0 233 0,77 1,00 0,00 0,23 1,00
ssdeep Noise 1k 2 564 99000 0 436 0,56 1,00 0,00 0,44 1,00
ssdeep Noise 1k 2,5 388 99000 0 612 0,39 1,00 0,00 0,61 1,00
ssdeep SingleCommonBlock1k 1 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
ssdeep SingleCommonBlock1k 3 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
ssdeep SingleCommonBlock1k 5 2 99000 0 998 0,00 1,00 0,00 1,00 1,00
ssdeep SingleCommonBlock1k 10 55 99000 0 945 0,06 1,00 0,00 0,95 1,00
ssdeep SingleCommonBlock1k 20 587 99000 0 413 0,59 1,00 0,00 0,41 1,00
ssdeep SingleCommonBlock1k 30 951 99000 0 49 0,95 1,00 0,00 0,05 1,00
ssdeep SingleCommonBlock1k 40 995 99000 0 5 1,00 1,00 0,00 0,01 1,00
ssdeep SingleCommonBlock1k 50 1000 99000 0 0 1,00 1,00 0,00 0,00 1,00
mrsh Alignment 4k 25 1000 99000 0 0 1,00 1,00 0,00 0,00 1,00
mrsh Alignment 4k 50 1000 99000 0 0 1,00 1,00 0,00 0,00 1,00
mrsh Alignment 4k 100 1000 99000 0 0 1,00 1,00 0,00 0,00 1,00



Opt TP TN FP FN TPR TNR FPR FNR Precision
mrsh Alignment 4k 200 1000 99000 0 0 1,00 1,00 0,00 0,00 1,00
mrsh FragmentEnd 4k 50 926 99000 0 74 0,93 1,00 0,00 0,07 1,00
mrsh FragmentEnd 4k 60 763 99000 0 237 0,76 1,00 0,00 0,24 1,00
mrsh FragmentEnd 4k 70 415 99000 0 585 0,42 1,00 0,00 0,59 1,00
mrsh FragmentEnd 4k 80 71 99000 0 929 0,07 1,00 0,00 0,93 1,00
mrsh FragmentEnd 4k 90 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
mrsh FragmentEnd 4k 95 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
mrsh FragmentEnd 4k 97 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
mrsh FragmentEnd 4k 99 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
mrsh FragmentRandom4k 50 942 99000 0 58 0,94 1,00 0,00 0,06 1,00
mrsh FragmentRandom4k 60 763 99000 0 237 0,76 1,00 0,00 0,24 1,00
mrsh FragmentRandom4k 70 437 99000 0 563 0,44 1,00 0,00 0,56 1,00
mrsh FragmentRandom4k 80 89 99000 0 911 0,09 1,00 0,00 0,91 1,00
mrsh FragmentRandom4k 90 1 99000 0 999 0,00 1,00 0,00 1,00 1,00
mrsh FragmentRandom4k 95 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
mrsh FragmentRandom4k 97 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
mrsh FragmentRandom4k 99 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
mrsh Noise 4k 0,5 921 99000 0 79 0,92 1,00 0,00 0,08 1,00
mrsh Noise 4k 1 269 99000 0 731 0,27 1,00 0,00 0,73 1,00
mrsh Noise 4k 1,5 33 99000 0 967 0,03 1,00 0,00 0,97 1,00
mrsh Noise 4k 2 7 99000 0 993 0,01 1,00 0,00 0,99 1,00
mrsh Noise 4k 2,5 1 99000 0 999 0,00 1,00 0,00 1,00 1,00
mrsh SingleCommonBlock4k 1 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
mrsh SingleCommonBlock4k 3 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
mrsh SingleCommonBlock4k 5 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
mrsh SingleCommonBlock4k 10 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
mrsh SingleCommonBlock4k 20 22 99000 0 978 0,02 1,00 0,00 0,98 1,00
mrsh SingleCommonBlock4k 30 283 99000 0 717 0,28 1,00 0,00 0,72 1,00
mrsh SingleCommonBlock4k 40 719 99000 0 281 0,72 1,00 0,00 0,28 1,00
mrsh SingleCommonBlock4k 50 954 99000 0 46 0,95 1,00 0,00 0,05 1,00
mvHash Alignment 4k 25 1000 99000 0 0 1,00 1,00 0,00 0,00 1,00
mvHash Alignment 4k 50 1000 99000 0 0 1,00 1,00 0,00 0,00 1,00
mvHash Alignment 4k 100 958 99000 0 42 0,96 1,00 0,00 0,04 1,00
mvHash Alignment 4k 200 11 99000 0 989 0,01 1,00 0,00 0,99 1,00
mvHash FragmentEnd 4k 50 810 99000 0 190 0,81 1,00 0,00 0,19 1,00
mvHash FragmentEnd 4k 60 210 99000 0 790 0,21 1,00 0,00 0,79 1,00
mvHash FragmentEnd 4k 70 4 99000 0 996 0,00 1,00 0,00 1,00 1,00
mvHash FragmentEnd 4k 80 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
mvHash FragmentEnd 4k 90 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
mvHash FragmentEnd 4k 95 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
mvHash FragmentEnd 4k 97 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
mvHash FragmentEnd 4k 99 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
mvHash FragmentRandom4k 50 790 99000 0 210 0,79 1,00 0,00 0,21 1,00
mvHash FragmentRandom4k 60 172 99000 0 828 0,17 1,00 0,00 0,83 1,00
mvHash FragmentRandom4k 70 2 99000 0 998 0,00 1,00 0,00 1,00 1,00



Opt TP TN FP FN TPR TNR FPR FNR Precision
mvHash FragmentRandom4k 80 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
mvHash FragmentRandom4k 90 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
mvHash FragmentRandom4k 95 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
mvHash FragmentRandom4k 97 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
mvHash FragmentRandom4k 99 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
mvHash Noise 4k 0,5 64 99000 0 936 0,06 1,00 0,00 0,94 1,00
mvHash Noise 4k 1 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
mvHash Noise 4k 1,5 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
mvHash Noise 4k 2 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
mvHash Noise 4k 2,5 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
mvHash SingleCommonBlock4k 1 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
mvHash SingleCommonBlock4k 3 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
mvHash SingleCommonBlock4k 5 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
mvHash SingleCommonBlock4k 10 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
mvHash SingleCommonBlock4k 20 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
mvHash SingleCommonBlock4k 30 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
mvHash SingleCommonBlock4k 40 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
mvHash SingleCommonBlock4k 50 36 99000 0 964 0,04 1,00 0,00 0,96 1,00
sdhash Alignment 4k 25 1000 99000 0 0 1,00 1,00 0,00 0,00 1,00
sdhash Alignment 4k 50 1000 99000 0 0 1,00 1,00 0,00 0,00 1,00
sdhash Alignment 4k 100 1000 99000 0 0 1,00 1,00 0,00 0,00 1,00
sdhash Alignment 4k 200 1000 99000 0 0 1,00 1,00 0,00 0,00 1,00
sdhash FragmentEnd 4k 50 1000 99000 0 0 1,00 1,00 0,00 0,00 1,00
sdhash FragmentEnd 4k 60 1000 99000 0 0 1,00 1,00 0,00 0,00 1,00
sdhash FragmentEnd 4k 70 990 99000 0 10 0,99 1,00 0,00 0,01 1,00
sdhash FragmentEnd 4k 80 41 99000 0 959 0,04 1,00 0,00 0,96 1,00
sdhash FragmentEnd 4k 90 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
sdhash FragmentEnd 4k 95 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
sdhash FragmentEnd 4k 97 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
sdhash FragmentEnd 4k 99 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
sdhash FragmentRandom4k 50 1000 99000 0 0 1,00 1,00 0,00 0,00 1,00
sdhash FragmentRandom4k 60 1000 99000 0 0 1,00 1,00 0,00 0,00 1,00
sdhash FragmentRandom4k 70 994 99000 0 6 0,99 1,00 0,00 0,01 1,00
sdhash FragmentRandom4k 80 40 99000 0 960 0,04 1,00 0,00 0,96 1,00
sdhash FragmentRandom4k 90 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
sdhash FragmentRandom4k 95 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
sdhash FragmentRandom4k 97 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
sdhash FragmentRandom4k 99 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
sdhash Noise 4k 0,5 1000 99000 0 0 1,00 1,00 0,00 0,00 1,00
sdhash Noise 4k 1 998 99000 0 2 1,00 1,00 0,00 0,00 1,00
sdhash Noise 4k 1,5 720 99000 0 280 0,72 1,00 0,00 0,28 1,00
sdhash Noise 4k 2 94 99000 0 906 0,09 1,00 0,00 0,91 1,00
sdhash Noise 4k 2,5 4 99000 0 996 0,00 1,00 0,00 1,00 1,00
sdhash SingleCommonBlock4k 1 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
sdhash SingleCommonBlock4k 3 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00



Opt TP TN FP FN TPR TNR FPR FNR Precision
sdhash SingleCommonBlock4k 5 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
sdhash SingleCommonBlock4k 10 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
sdhash SingleCommonBlock4k 20 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
sdhash SingleCommonBlock4k 30 134 99000 0 866 0,13 1,00 0,00 0,87 1,00
sdhash SingleCommonBlock4k 40 982 99000 0 18 0,98 1,00 0,00 0,02 1,00
sdhash SingleCommonBlock4k 50 996 99000 0 4 1,00 1,00 0,00 0,00 1,00
ssdeep Alignment 4k 25 1000 99000 0 0 1,00 1,00 0,00 0,00 1,00
ssdeep Alignment 4k 50 1000 99000 0 0 1,00 1,00 0,00 0,00 1,00
ssdeep Alignment 4k 100 965 99000 0 35 0,97 1,00 0,00 0,04 1,00
ssdeep Alignment 4k 200 928 99000 0 72 0,93 1,00 0,00 0,07 1,00
ssdeep FragmentEnd 4k 50 962 99000 0 38 0,96 1,00 0,00 0,04 1,00
ssdeep FragmentEnd 4k 60 700 99000 0 300 0,70 1,00 0,00 0,30 1,00
ssdeep FragmentEnd 4k 70 38 99000 0 962 0,04 1,00 0,00 0,96 1,00
ssdeep FragmentEnd 4k 80 20 99000 0 980 0,02 1,00 0,00 0,98 1,00
ssdeep FragmentEnd 4k 90 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
ssdeep FragmentEnd 4k 95 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
ssdeep FragmentEnd 4k 97 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
ssdeep FragmentEnd 4k 99 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
ssdeep FragmentRandom4k 50 978 99000 0 22 0,98 1,00 0,00 0,02 1,00
ssdeep FragmentRandom4k 60 691 99000 0 309 0,69 1,00 0,00 0,31 1,00
ssdeep FragmentRandom4k 70 41 99000 0 959 0,04 1,00 0,00 0,96 1,00
ssdeep FragmentRandom4k 80 19 99000 0 981 0,02 1,00 0,00 0,98 1,00
ssdeep FragmentRandom4k 90 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
ssdeep FragmentRandom4k 95 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
ssdeep FragmentRandom4k 97 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
ssdeep FragmentRandom4k 99 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
ssdeep Noise 4k 0,5 601 99000 0 399 0,60 1,00 0,00 0,40 1,00
ssdeep Noise 4k 1 154 99000 0 846 0,15 1,00 0,00 0,85 1,00
ssdeep Noise 4k 1,5 34 99000 0 966 0,03 1,00 0,00 0,97 1,00
ssdeep Noise 4k 2 13 99000 0 987 0,01 1,00 0,00 0,99 1,00
ssdeep Noise 4k 2,5 2 99000 0 998 0,00 1,00 0,00 1,00 1,00
ssdeep SingleCommonBlock4k 1 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
ssdeep SingleCommonBlock4k 3 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
ssdeep SingleCommonBlock4k 5 1 99000 0 999 0,00 1,00 0,00 1,00 1,00
ssdeep SingleCommonBlock4k 10 65 99000 0 935 0,07 1,00 0,00 0,94 1,00
ssdeep SingleCommonBlock4k 20 632 99000 0 368 0,63 1,00 0,00 0,37 1,00
ssdeep SingleCommonBlock4k 30 939 99000 0 61 0,94 1,00 0,00 0,06 1,00
ssdeep SingleCommonBlock4k 40 996 99000 0 4 1,00 1,00 0,00 0,00 1,00
ssdeep SingleCommonBlock4k 50 1000 99000 0 0 1,00 1,00 0,00 0,00 1,00
mrsh Alignment 16k 25 1000 99000 0 0 1,00 1,00 0,00 0,00 1,00
mrsh Alignment 16k 50 1000 99000 0 0 1,00 1,00 0,00 0,00 1,00
mrsh Alignment 16k 100 1000 98998 2 0 1,00 1,00 0,00 0,00 1,00
mrsh Alignment 16k 200 1000 99000 0 0 1,00 1,00 0,00 0,00 1,00
mrsh FragmentEnd 16k 50 1000 99000 0 0 1,00 1,00 0,00 0,00 1,00
mrsh FragmentEnd 16k 60 1000 99000 0 0 1,00 1,00 0,00 0,00 1,00



Opt TP TN FP FN TPR TNR FPR FNR Precision
mrsh FragmentEnd 16k 70 1000 99000 0 0 1,00 1,00 0,00 0,00 1,00
mrsh FragmentEnd 16k 80 1000 98997 3 0 1,00 1,00 0,00 0,00 1,00
mrsh FragmentEnd 16k 90 778 98993 7 222 0,78 1,00 0,00 0,22 0,99
mrsh FragmentEnd 16k 95 85 98998 2 915 0,09 1,00 0,00 0,92 0,98
mrsh FragmentEnd 16k 97 2 99000 0 998 0,00 1,00 0,00 1,00 1,00
mrsh FragmentEnd 16k 99 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
mrsh FragmentRandom16k 50 1000 99000 0 0 1,00 1,00 0,00 0,00 1,00
mrsh FragmentRandom16k 60 1000 99000 0 0 1,00 1,00 0,00 0,00 1,00
mrsh FragmentRandom16k 70 1000 99000 0 0 1,00 1,00 0,00 0,00 1,00
mrsh FragmentRandom16k 80 1000 99000 0 0 1,00 1,00 0,00 0,00 1,00
mrsh FragmentRandom16k 90 765 98989 11 235 0,77 1,00 0,00 0,24 0,99
mrsh FragmentRandom16k 95 80 98997 3 920 0,08 1,00 0,00 0,92 0,96
mrsh FragmentRandom16k 97 1 99000 0 999 0,00 1,00 0,00 1,00 1,00
mrsh FragmentRandom16k 99 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
mrsh Noise 16k 0,5 989 99000 0 11 0,99 1,00 0,00 0,01 1,00
mrsh Noise 16k 1 37 99000 0 963 0,04 1,00 0,00 0,96 1,00
mrsh Noise 16k 1,5 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
mrsh Noise 16k 2 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
mrsh Noise 16k 2,5 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
mrsh SingleCommonBlock16k 1 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
mrsh SingleCommonBlock16k 3 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
mrsh SingleCommonBlock16k 5 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
mrsh SingleCommonBlock16k 10 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
mrsh SingleCommonBlock16k 20 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
mrsh SingleCommonBlock16k 30 252 99000 0 748 0,25 1,00 0,00 0,75 1,00
mrsh SingleCommonBlock16k 40 949 99000 0 51 0,95 1,00 0,00 0,05 1,00
mrsh SingleCommonBlock16k 50 1000 99000 0 0 1,00 1,00 0,00 0,00 1,00
mvHash Alignment 16k 25 1000 99000 0 0 1,00 1,00 0,00 0,00 1,00
mvHash Alignment 16k 50 1000 99000 0 0 1,00 1,00 0,00 0,00 1,00
mvHash Alignment 16k 100 1000 99000 0 0 1,00 1,00 0,00 0,00 1,00
mvHash Alignment 16k 200 725 99000 0 275 0,73 1,00 0,00 0,28 1,00
mvHash FragmentEnd 16k 50 999 99000 0 1 1,00 1,00 0,00 0,00 1,00
mvHash FragmentEnd 16k 60 585 99000 0 415 0,59 1,00 0,00 0,42 1,00
mvHash FragmentEnd 16k 70 1 99000 0 999 0,00 1,00 0,00 1,00 1,00
mvHash FragmentEnd 16k 80 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
mvHash FragmentEnd 16k 90 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
mvHash FragmentEnd 16k 95 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
mvHash FragmentEnd 16k 97 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
mvHash FragmentEnd 16k 99 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
mvHash FragmentRandom16k 50 999 99000 0 1 1,00 1,00 0,00 0,00 1,00
mvHash FragmentRandom16k 60 555 99000 0 445 0,56 1,00 0,00 0,45 1,00
mvHash FragmentRandom16k 70 1 99000 0 999 0,00 1,00 0,00 1,00 1,00
mvHash FragmentRandom16k 80 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
mvHash FragmentRandom16k 90 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
mvHash FragmentRandom16k 95 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00



Opt TP TN FP FN TPR TNR FPR FNR Precision
mvHash FragmentRandom16k 97 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
mvHash FragmentRandom16k 99 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
mvHash Noise 16k 0,5 248 99000 0 752 0,25 1,00 0,00 0,75 1,00
mvHash Noise 16k 1 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
mvHash Noise 16k 1,5 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
mvHash Noise 16k 2 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
mvHash Noise 16k 2,5 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
mvHash SingleCommonBlock16k 1 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
mvHash SingleCommonBlock16k 3 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
mvHash SingleCommonBlock16k 5 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
mvHash SingleCommonBlock16k 10 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
mvHash SingleCommonBlock16k 20 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
mvHash SingleCommonBlock16k 30 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
mvHash SingleCommonBlock16k 40 10 99000 0 990 0,01 1,00 0,00 0,99 1,00
mvHash SingleCommonBlock16k 50 604 99000 0 396 0,60 1,00 0,00 0,40 1,00
sdhash Alignment 16k 25 1000 99000 0 0 1,00 1,00 0,00 0,00 1,00
sdhash Alignment 16k 50 1000 99000 0 0 1,00 1,00 0,00 0,00 1,00
sdhash Alignment 16k 100 1000 99000 0 0 1,00 1,00 0,00 0,00 1,00
sdhash Alignment 16k 200 1000 99000 0 0 1,00 1,00 0,00 0,00 1,00
sdhash FragmentEnd 16k 50 1000 99000 0 0 1,00 1,00 0,00 0,00 1,00
sdhash FragmentEnd 16k 60 1000 99000 0 0 1,00 1,00 0,00 0,00 1,00
sdhash FragmentEnd 16k 70 1000 99000 0 0 1,00 1,00 0,00 0,00 1,00
sdhash FragmentEnd 16k 80 1000 99000 0 0 1,00 1,00 0,00 0,00 1,00
sdhash FragmentEnd 16k 90 1000 99000 0 0 1,00 1,00 0,00 0,00 1,00
sdhash FragmentEnd 16k 95 50 99000 0 950 0,05 1,00 0,00 0,95 1,00
sdhash FragmentEnd 16k 97 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
sdhash FragmentEnd 16k 99 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
sdhash FragmentRandom16k 50 1000 99000 0 0 1,00 1,00 0,00 0,00 1,00
sdhash FragmentRandom16k 60 1000 99000 0 0 1,00 1,00 0,00 0,00 1,00
sdhash FragmentRandom16k 70 1000 99000 0 0 1,00 1,00 0,00 0,00 1,00
sdhash FragmentRandom16k 80 1000 99000 0 0 1,00 1,00 0,00 0,00 1,00
sdhash FragmentRandom16k 90 1000 99000 0 0 1,00 1,00 0,00 0,00 1,00
sdhash FragmentRandom16k 95 48 99000 0 952 0,05 1,00 0,00 0,95 1,00
sdhash FragmentRandom16k 97 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
sdhash FragmentRandom16k 99 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
sdhash Noise 16k 0,5 1000 99000 0 0 1,00 1,00 0,00 0,00 1,00
sdhash Noise 16k 1 1000 99000 0 0 1,00 1,00 0,00 0,00 1,00
sdhash Noise 16k 1,5 814 99000 0 186 0,81 1,00 0,00 0,19 1,00
sdhash Noise 16k 2 52 99000 0 948 0,05 1,00 0,00 0,95 1,00
sdhash Noise 16k 2,5 1 99000 0 999 0,00 1,00 0,00 1,00 1,00
sdhash SingleCommonBlock16k 1 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
sdhash SingleCommonBlock16k 3 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
sdhash SingleCommonBlock16k 5 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
sdhash SingleCommonBlock16k 10 2 99000 0 998 0,00 1,00 0,00 1,00 1,00
sdhash SingleCommonBlock16k 20 534 99000 0 466 0,53 1,00 0,00 0,47 1,00



Opt TP TN FP FN TPR TNR FPR FNR Precision
sdhash SingleCommonBlock16k 30 866 99000 0 134 0,87 1,00 0,00 0,13 1,00
sdhash SingleCommonBlock16k 40 976 99000 0 24 0,98 1,00 0,00 0,02 1,00
sdhash SingleCommonBlock16k 50 1000 99000 0 0 1,00 1,00 0,00 0,00 1,00
ssdeep Alignment 16k 25 1000 99000 0 0 1,00 1,00 0,00 0,00 1,00
ssdeep Alignment 16k 50 1000 99000 0 0 1,00 1,00 0,00 0,00 1,00
ssdeep Alignment 16k 100 975 99000 0 25 0,98 1,00 0,00 0,03 1,00
ssdeep Alignment 16k 200 933 99000 0 67 0,93 1,00 0,00 0,07 1,00
ssdeep FragmentEnd 16k 50 962 99000 0 38 0,96 1,00 0,00 0,04 1,00
ssdeep FragmentEnd 16k 60 692 99000 0 308 0,69 1,00 0,00 0,31 1,00
ssdeep FragmentEnd 16k 70 48 99000 0 952 0,05 1,00 0,00 0,95 1,00
ssdeep FragmentEnd 16k 80 21 99000 0 979 0,02 1,00 0,00 0,98 1,00
ssdeep FragmentEnd 16k 90 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
ssdeep FragmentEnd 16k 95 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
ssdeep FragmentEnd 16k 97 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
ssdeep FragmentEnd 16k 99 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
ssdeep FragmentRandom16k 50 976 99000 0 24 0,98 1,00 0,00 0,02 1,00
ssdeep FragmentRandom16k 60 709 99000 0 291 0,71 1,00 0,00 0,29 1,00
ssdeep FragmentRandom16k 70 32 99000 0 968 0,03 1,00 0,00 0,97 1,00
ssdeep FragmentRandom16k 80 12 99000 0 988 0,01 1,00 0,00 0,99 1,00
ssdeep FragmentRandom16k 90 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
ssdeep FragmentRandom16k 95 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
ssdeep FragmentRandom16k 97 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
ssdeep FragmentRandom16k 99 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
ssdeep Noise 16k 0,5 18 99000 0 982 0,02 1,00 0,00 0,98 1,00
ssdeep Noise 16k 1 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
ssdeep Noise 16k 1,5 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
ssdeep Noise 16k 2 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
ssdeep Noise 16k 2,5 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
ssdeep SingleCommonBlock16k 1 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
ssdeep SingleCommonBlock16k 3 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
ssdeep SingleCommonBlock16k 5 1 99000 0 999 0,00 1,00 0,00 1,00 1,00
ssdeep SingleCommonBlock16k 10 46 99000 0 954 0,05 1,00 0,00 0,95 1,00
ssdeep SingleCommonBlock16k 20 624 99000 0 376 0,62 1,00 0,00 0,38 1,00
ssdeep SingleCommonBlock16k 30 939 99000 0 61 0,94 1,00 0,00 0,06 1,00
ssdeep SingleCommonBlock16k 40 992 99000 0 8 0,99 1,00 0,00 0,01 1,00
ssdeep SingleCommonBlock16k 50 1000 99000 0 0 1,00 1,00 0,00 0,00 1,00
mrsh Alignment 64k 25 1000 98933 67 0 1,00 1,00 0,00 0,00 0,94
mrsh Alignment 64k 50 1000 98853 147 0 1,00 1,00 0,00 0,00 0,87
mrsh Alignment 64k 100 1000 98814 186 0 1,00 1,00 0,00 0,00 0,84
mrsh Alignment 64k 200 1000 98754 246 0 1,00 1,00 0,00 0,00 0,80
mrsh FragmentEnd 64k 50 1000 98908 92 0 1,00 1,00 0,00 0,00 0,92
mrsh FragmentEnd 64k 60 1000 98987 13 0 1,00 1,00 0,00 0,00 0,99
mrsh FragmentEnd 64k 70 1000 98997 3 0 1,00 1,00 0,00 0,00 1,00
mrsh FragmentEnd 64k 80 1000 99000 0 0 1,00 1,00 0,00 0,00 1,00
mrsh FragmentEnd 64k 90 1000 99000 0 0 1,00 1,00 0,00 0,00 1,00



Opt TP TN FP FN TPR TNR FPR FNR Precision
mrsh FragmentEnd 64k 95 1000 98977 23 0 1,00 1,00 0,00 0,00 0,98
mrsh FragmentEnd 64k 97 925 98723 277 75 0,93 1,00 0,00 0,08 0,77
mrsh FragmentEnd 64k 99 19 98980 20 981 0,02 1,00 0,00 0,98 0,49
mrsh FragmentRandom64k 50 1000 98884 116 0 1,00 1,00 0,00 0,00 0,90
mrsh FragmentRandom64k 60 1000 98983 17 0 1,00 1,00 0,00 0,00 0,98
mrsh FragmentRandom64k 70 1000 98998 2 0 1,00 1,00 0,00 0,00 1,00
mrsh FragmentRandom64k 80 1000 98999 1 0 1,00 1,00 0,00 0,00 1,00
mrsh FragmentRandom64k 90 1000 99000 0 0 1,00 1,00 0,00 0,00 1,00
mrsh FragmentRandom64k 95 1000 98966 34 0 1,00 1,00 0,00 0,00 0,97
mrsh FragmentRandom64k 97 911 98720 280 89 0,91 1,00 0,00 0,09 0,76
mrsh FragmentRandom64k 99 17 98982 18 983 0,02 1,00 0,00 0,98 0,49
mrsh Noise 64k 0,5 1000 98876 124 0 1,00 1,00 0,00 0,00 0,89
mrsh Noise 64k 1 144 98885 115 856 0,14 1,00 0,00 0,86 0,56
mrsh Noise 64k 1,5 26 98887 113 974 0,03 1,00 0,00 0,97 0,19
mrsh Noise 64k 2 12 98892 108 988 0,01 1,00 0,00 0,99 0,10
mrsh Noise 64k 2,5 7 98864 136 993 0,01 1,00 0,00 0,99 0,05
mrsh SingleCommonBlock64k 1 3 98896 104 997 0,00 1,00 0,00 1,00 0,03
mrsh SingleCommonBlock64k 3 36 98877 123 964 0,04 1,00 0,00 0,96 0,23
mrsh SingleCommonBlock64k 5 38 98870 130 962 0,04 1,00 0,00 0,96 0,23
mrsh SingleCommonBlock64k 10 47 98876 124 953 0,05 1,00 0,00 0,95 0,27
mrsh SingleCommonBlock64k 20 611 98870 130 389 0,61 1,00 0,00 0,39 0,82
mrsh SingleCommonBlock64k 30 837 98839 161 163 0,84 1,00 0,00 0,16 0,84
mrsh SingleCommonBlock64k 40 959 98861 139 41 0,96 1,00 0,00 0,04 0,87
mrsh SingleCommonBlock64k 50 996 98859 141 4 1,00 1,00 0,00 0,00 0,88
mvHash Alignment 64k 25 1000 368 98632 0 1,00 0,00 1,00 0,00 0,01
mvHash Alignment 64k 50 1000 385 98615 0 1,00 0,00 1,00 0,00 0,01
mvHash Alignment 64k 100 1000 21 98979 0 1,00 0,00 1,00 0,00 0,01
mvHash Alignment 64k 200 1000 1 98999 0 1,00 0,00 1,00 0,00 0,01
mvHash FragmentEnd 64k 50 1000 99000 0 0 1,00 1,00 0,00 0,00 1,00
mvHash FragmentEnd 64k 60 1000 99000 0 0 1,00 1,00 0,00 0,00 1,00
mvHash FragmentEnd 64k 70 641 99000 0 359 0,64 1,00 0,00 0,36 1,00
mvHash FragmentEnd 64k 80 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
mvHash FragmentEnd 64k 90 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
mvHash FragmentEnd 64k 95 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
mvHash FragmentEnd 64k 97 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
mvHash FragmentEnd 64k 99 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
mvHash FragmentRandom64k 50 1000 99000 0 0 1,00 1,00 0,00 0,00 1,00
mvHash FragmentRandom64k 60 1000 99000 0 0 1,00 1,00 0,00 0,00 1,00
mvHash FragmentRandom64k 70 624 99000 0 376 0,62 1,00 0,00 0,38 1,00
mvHash FragmentRandom64k 80 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
mvHash FragmentRandom64k 90 2 99000 0 998 0,00 1,00 0,00 1,00 1,00
mvHash FragmentRandom64k 95 2 99000 0 998 0,00 1,00 0,00 1,00 1,00
mvHash FragmentRandom64k 97 2 99000 0 998 0,00 1,00 0,00 1,00 1,00
mvHash FragmentRandom64k 99 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
mvHash Noise 64k 0,5 1000 685 98315 0 1,00 0,01 0,99 0,00 0,01



Opt TP TN FP FN TPR TNR FPR FNR Precision
mvHash Noise 64k 1 1000 721 98279 0 1,00 0,01 0,99 0,00 0,01
mvHash Noise 64k 1,5 1000 733 98267 0 1,00 0,01 0,99 0,00 0,01
mvHash Noise 64k 2 999 683 98317 1 1,00 0,01 0,99 0,00 0,01
mvHash Noise 64k 2,5 1000 684 98316 0 1,00 0,01 0,99 0,00 0,01
mvHash SingleCommonBlock64k 1 995 661 98339 5 1,00 0,01 0,99 0,01 0,01
mvHash SingleCommonBlock64k 3 1000 574 98426 0 1,00 0,01 0,99 0,00 0,01
mvHash SingleCommonBlock64k 5 999 624 98376 1 1,00 0,01 0,99 0,00 0,01
mvHash SingleCommonBlock64k 10 1000 668 98332 0 1,00 0,01 0,99 0,00 0,01
mvHash SingleCommonBlock64k 20 1000 700 98300 0 1,00 0,01 0,99 0,00 0,01
mvHash SingleCommonBlock64k 30 1000 563 98437 0 1,00 0,01 0,99 0,00 0,01
mvHash SingleCommonBlock64k 40 1000 601 98399 0 1,00 0,01 0,99 0,00 0,01
mvHash SingleCommonBlock64k 50 1000 566 98434 0 1,00 0,01 0,99 0,00 0,01
sdhash Alignment 64k 25 1000 99000 0 0 1,00 1,00 0,00 0,00 1,00
sdhash Alignment 64k 50 1000 99000 0 0 1,00 1,00 0,00 0,00 1,00
sdhash Alignment 64k 100 1000 99000 0 0 1,00 1,00 0,00 0,00 1,00
sdhash Alignment 64k 200 1000 99000 0 0 1,00 1,00 0,00 0,00 1,00
sdhash FragmentEnd 64k 50 1000 99000 0 0 1,00 1,00 0,00 0,00 1,00
sdhash FragmentEnd 64k 60 1000 99000 0 0 1,00 1,00 0,00 0,00 1,00
sdhash FragmentEnd 64k 70 1000 99000 0 0 1,00 1,00 0,00 0,00 1,00
sdhash FragmentEnd 64k 80 1000 99000 0 0 1,00 1,00 0,00 0,00 1,00
sdhash FragmentEnd 64k 90 1000 99000 0 0 1,00 1,00 0,00 0,00 1,00
sdhash FragmentEnd 64k 95 1000 99000 0 0 1,00 1,00 0,00 0,00 1,00
sdhash FragmentEnd 64k 97 1000 99000 0 0 1,00 1,00 0,00 0,00 1,00
sdhash FragmentEnd 64k 99 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
sdhash FragmentRandom64k 50 1000 99000 0 0 1,00 1,00 0,00 0,00 1,00
sdhash FragmentRandom64k 60 1000 99000 0 0 1,00 1,00 0,00 0,00 1,00
sdhash FragmentRandom64k 70 1000 99000 0 0 1,00 1,00 0,00 0,00 1,00
sdhash FragmentRandom64k 80 1000 99000 0 0 1,00 1,00 0,00 0,00 1,00
sdhash FragmentRandom64k 90 1000 99000 0 0 1,00 1,00 0,00 0,00 1,00
sdhash FragmentRandom64k 95 1000 99000 0 0 1,00 1,00 0,00 0,00 1,00
sdhash FragmentRandom64k 97 1000 99000 0 0 1,00 1,00 0,00 0,00 1,00
sdhash FragmentRandom64k 99 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
sdhash Noise 64k 0,5 1000 99000 0 0 1,00 1,00 0,00 0,00 1,00
sdhash Noise 64k 1 1000 99000 0 0 1,00 1,00 0,00 0,00 1,00
sdhash Noise 64k 1,5 958 99000 0 42 0,96 1,00 0,00 0,04 1,00
sdhash Noise 64k 2 25 99000 0 975 0,03 1,00 0,00 0,98 1,00
sdhash Noise 64k 2,5 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
sdhash SingleCommonBlock64k 1 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
sdhash SingleCommonBlock64k 3 2 99000 0 998 0,00 1,00 0,00 1,00 1,00
sdhash SingleCommonBlock64k 5 114 99000 0 886 0,11 1,00 0,00 0,89 1,00
sdhash SingleCommonBlock64k 10 826 99000 0 174 0,83 1,00 0,00 0,17 1,00
sdhash SingleCommonBlock64k 20 1000 99000 0 0 1,00 1,00 0,00 0,00 1,00
sdhash SingleCommonBlock64k 30 1000 99000 0 0 1,00 1,00 0,00 0,00 1,00
sdhash SingleCommonBlock64k 40 1000 99000 0 0 1,00 1,00 0,00 0,00 1,00
sdhash SingleCommonBlock64k 50 1000 99000 0 0 1,00 1,00 0,00 0,00 1,00



Opt TP TN FP FN TPR TNR FPR FNR Precision
ssdeep Alignment 64k 25 1000 99000 0 0 1,00 1,00 0,00 0,00 1,00
ssdeep Alignment 64k 50 1000 99000 0 0 1,00 1,00 0,00 0,00 1,00
ssdeep Alignment 64k 100 968 99000 0 32 0,97 1,00 0,00 0,03 1,00
ssdeep Alignment 64k 200 933 99000 0 67 0,93 1,00 0,00 0,07 1,00
ssdeep FragmentEnd 64k 50 950 99000 0 50 0,95 1,00 0,00 0,05 1,00
ssdeep FragmentEnd 64k 60 680 99000 0 320 0,68 1,00 0,00 0,32 1,00
ssdeep FragmentEnd 64k 70 42 99000 0 958 0,04 1,00 0,00 0,96 1,00
ssdeep FragmentEnd 64k 80 17 99000 0 983 0,02 1,00 0,00 0,98 1,00
ssdeep FragmentEnd 64k 90 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
ssdeep FragmentEnd 64k 95 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
ssdeep FragmentEnd 64k 97 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
ssdeep FragmentEnd 64k 99 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
ssdeep FragmentRandom64k 50 975 99000 0 25 0,98 1,00 0,00 0,03 1,00
ssdeep FragmentRandom64k 60 694 99000 0 306 0,69 1,00 0,00 0,31 1,00
ssdeep FragmentRandom64k 70 34 99000 0 966 0,03 1,00 0,00 0,97 1,00
ssdeep FragmentRandom64k 80 17 99000 0 983 0,02 1,00 0,00 0,98 1,00
ssdeep FragmentRandom64k 90 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
ssdeep FragmentRandom64k 95 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
ssdeep FragmentRandom64k 97 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
ssdeep FragmentRandom64k 99 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
ssdeep Noise 64k 0,5 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
ssdeep Noise 64k 1 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
ssdeep Noise 64k 1,5 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
ssdeep Noise 64k 2 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
ssdeep Noise 64k 2,5 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
ssdeep SingleCommonBlock64k 1 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
ssdeep SingleCommonBlock64k 3 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
ssdeep SingleCommonBlock64k 5 2 99000 0 998 0,00 1,00 0,00 1,00 1,00
ssdeep SingleCommonBlock64k 10 70 99000 0 930 0,07 1,00 0,00 0,93 1,00
ssdeep SingleCommonBlock64k 20 625 99000 0 375 0,63 1,00 0,00 0,38 1,00
ssdeep SingleCommonBlock64k 30 946 99000 0 54 0,95 1,00 0,00 0,05 1,00
ssdeep SingleCommonBlock64k 40 997 99000 0 3 1,00 1,00 0,00 0,00 1,00
ssdeep SingleCommonBlock64k 50 1000 99000 0 0 1,00 1,00 0,00 0,00 1,00
mrsh Alignment 256k 25 1000 98951 49 0 1,00 1,00 0,00 0,00 0,95
mrsh Alignment 256k 50 1000 98935 65 0 1,00 1,00 0,00 0,00 0,94
mrsh Alignment 256k 100 1000 98935 65 0 1,00 1,00 0,00 0,00 0,94
mrsh Alignment 256k 200 1000 98918 82 0 1,00 1,00 0,00 0,00 0,92
mrsh FragmentEnd 256k 50 1000 98814 186 0 1,00 1,00 0,00 0,00 0,84
mrsh FragmentEnd 256k 60 1000 98933 67 0 1,00 1,00 0,00 0,00 0,94
mrsh FragmentEnd 256k 70 1000 98964 36 0 1,00 1,00 0,00 0,00 0,97
mrsh FragmentEnd 256k 80 1000 98983 17 0 1,00 1,00 0,00 0,00 0,98
mrsh FragmentEnd 256k 90 1000 98989 11 0 1,00 1,00 0,00 0,00 0,99
mrsh FragmentEnd 256k 95 1000 99000 0 0 1,00 1,00 0,00 0,00 1,00
mrsh FragmentEnd 256k 97 1000 99000 0 0 1,00 1,00 0,00 0,00 1,00
mrsh FragmentEnd 256k 99 996 98539 461 4 1,00 1,00 0,00 0,00 0,68



Opt TP TN FP FN TPR TNR FPR FNR Precision
mrsh FragmentRandom256k 50 1000 98856 144 0 1,00 1,00 0,00 0,00 0,87
mrsh FragmentRandom256k 60 1000 98957 43 0 1,00 1,00 0,00 0,00 0,96
mrsh FragmentRandom256k 70 1000 98984 16 0 1,00 1,00 0,00 0,00 0,98
mrsh FragmentRandom256k 80 1000 98988 12 0 1,00 1,00 0,00 0,00 0,99
mrsh FragmentRandom256k 90 1000 98990 10 0 1,00 1,00 0,00 0,00 0,99
mrsh FragmentRandom256k 95 1000 99000 0 0 1,00 1,00 0,00 0,00 1,00
mrsh FragmentRandom256k 97 1000 99000 0 0 1,00 1,00 0,00 0,00 1,00
mrsh FragmentRandom256k 99 995 98529 471 5 1,00 1,00 0,00 0,01 0,68
mrsh Noise 256k 0,5 1000 98940 60 0 1,00 1,00 0,00 0,00 0,94
mrsh Noise 256k 1 62 98938 62 938 0,06 1,00 0,00 0,94 0,50
mrsh Noise 256k 1,5 10 98944 56 990 0,01 1,00 0,00 0,99 0,15
mrsh Noise 256k 2 3 98931 69 997 0,00 1,00 0,00 1,00 0,04
mrsh Noise 256k 2,5 1 98944 56 999 0,00 1,00 0,00 1,00 0,02
mrsh SingleCommonBlock256k 1 5 98939 61 995 0,01 1,00 0,00 1,00 0,08
mrsh SingleCommonBlock256k 3 30 98947 53 970 0,03 1,00 0,00 0,97 0,36
mrsh SingleCommonBlock256k 5 236 98930 70 764 0,24 1,00 0,00 0,76 0,77
mrsh SingleCommonBlock256k 10 855 98945 55 145 0,86 1,00 0,00 0,15 0,94
mrsh SingleCommonBlock256k 20 1000 98925 75 0 1,00 1,00 0,00 0,00 0,93
mrsh SingleCommonBlock256k 30 1000 98945 55 0 1,00 1,00 0,00 0,00 0,95
mrsh SingleCommonBlock256k 40 1000 98949 51 0 1,00 1,00 0,00 0,00 0,95
mrsh SingleCommonBlock256k 50 1000 98941 59 0 1,00 1,00 0,00 0,00 0,94
mvHash Alignment 256k 25 1000 0 99000 0 1,00 0,00 1,00 0,00 0,01
mvHash Alignment 256k 50 1000 0 99000 0 1,00 0,00 1,00 0,00 0,01
mvHash Alignment 256k 100 909 19746 79254 91 0,91 0,20 0,80 0,09 0,01
mvHash Alignment 256k 200 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
mvHash FragmentEnd 256k 50 1000 0 99000 0 1,00 0,00 1,00 0,00 0,01
mvHash FragmentEnd 256k 60 1000 0 99000 0 1,00 0,00 1,00 0,00 0,01
mvHash FragmentEnd 256k 70 1000 0 99000 0 1,00 0,00 1,00 0,00 0,01
mvHash FragmentEnd 256k 80 663 41589 57411 337 0,66 0,42 0,58 0,34 0,01
mvHash FragmentEnd 256k 90 663 99000 0 337 0,66 1,00 0,00 0,34 1,00
mvHash FragmentEnd 256k 95 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
mvHash FragmentEnd 256k 97 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
mvHash FragmentEnd 256k 99 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
mvHash FragmentRandom256k 50 1000 0 99000 0 1,00 0,00 1,00 0,00 0,01
mvHash FragmentRandom256k 60 1000 0 99000 0 1,00 0,00 1,00 0,00 0,01
mvHash FragmentRandom256k 70 1000 0 99000 0 1,00 0,00 1,00 0,00 0,01
mvHash FragmentRandom256k 80 654 41955 57045 346 0,65 0,42 0,58 0,35 0,01
mvHash FragmentRandom256k 90 484 99000 0 516 0,48 1,00 0,00 0,52 1,00
mvHash FragmentRandom256k 95 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
mvHash FragmentRandom256k 97 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
mvHash FragmentRandom256k 99 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
mvHash Noise 256k 0,5 1000 0 99000 0 1,00 0,00 1,00 0,00 0,01
mvHash Noise 256k 1 1000 0 99000 0 1,00 0,00 1,00 0,00 0,01
mvHash Noise 256k 1,5 1000 0 99000 0 1,00 0,00 1,00 0,00 0,01
mvHash Noise 256k 2 1000 0 99000 0 1,00 0,00 1,00 0,00 0,01



Opt TP TN FP FN TPR TNR FPR FNR Precision
mvHash SingleCommonBlock256k 1 1000 0 99000 0 1,00 0,00 1,00 0,00 0,01
mvHash SingleCommonBlock256k 3 1000 0 99000 0 1,00 0,00 1,00 0,00 0,01
mvHash SingleCommonBlock256k 5 1000 0 99000 0 1,00 0,00 1,00 0,00 0,01
mvHash SingleCommonBlock256k 10 1000 0 99000 0 1,00 0,00 1,00 0,00 0,01
mvHash SingleCommonBlock256k 20 1000 0 99000 0 1,00 0,00 1,00 0,00 0,01
mvHash SingleCommonBlock256k 30 1000 0 99000 0 1,00 0,00 1,00 0,00 0,01
mvHash SingleCommonBlock256k 40 1000 0 99000 0 1,00 0,00 1,00 0,00 0,01
mvHash SingleCommonBlock256k 50 1000 0 99000 0 1,00 0,00 1,00 0,00 0,01
sdhash Alignment 256k 25 1000 99000 0 0 1,00 1,00 0,00 0,00 1,00
sdhash Alignment 256k 50 1000 99000 0 0 1,00 1,00 0,00 0,00 1,00
sdhash Alignment 256k 100 1000 99000 0 0 1,00 1,00 0,00 0,00 1,00
sdhash Alignment 256k 200 1000 99000 0 0 1,00 1,00 0,00 0,00 1,00
sdhash FragmentEnd 256k 50 1000 99000 0 0 1,00 1,00 0,00 0,00 1,00
sdhash FragmentEnd 256k 60 1000 99000 0 0 1,00 1,00 0,00 0,00 1,00
sdhash FragmentEnd 256k 70 1000 99000 0 0 1,00 1,00 0,00 0,00 1,00
sdhash FragmentEnd 256k 80 1000 99000 0 0 1,00 1,00 0,00 0,00 1,00
sdhash FragmentEnd 256k 90 1000 99000 0 0 1,00 1,00 0,00 0,00 1,00
sdhash FragmentEnd 256k 95 1000 99000 0 0 1,00 1,00 0,00 0,00 1,00
sdhash FragmentEnd 256k 97 1000 99000 0 0 1,00 1,00 0,00 0,00 1,00
sdhash FragmentEnd 256k 99 1000 99000 0 0 1,00 1,00 0,00 0,00 1,00
sdhash FragmentRandom256k 50 1000 99000 0 0 1,00 1,00 0,00 0,00 1,00
sdhash FragmentRandom256k 60 1000 99000 0 0 1,00 1,00 0,00 0,00 1,00
sdhash FragmentRandom256k 70 1000 98999 1 0 1,00 1,00 0,00 0,00 1,00
sdhash FragmentRandom256k 80 1000 99000 0 0 1,00 1,00 0,00 0,00 1,00
sdhash FragmentRandom256k 90 1000 99000 0 0 1,00 1,00 0,00 0,00 1,00
sdhash FragmentRandom256k 95 1000 99000 0 0 1,00 1,00 0,00 0,00 1,00
sdhash FragmentRandom256k 97 1000 99000 0 0 1,00 1,00 0,00 0,00 1,00
sdhash FragmentRandom256k 99 1000 99000 0 0 1,00 1,00 0,00 0,00 1,00
sdhash Noise 256k 0,5 1000 99000 0 0 1,00 1,00 0,00 0,00 1,00
sdhash Noise 256k 1 1000 99000 0 0 1,00 1,00 0,00 0,00 1,00
sdhash Noise 256k 1,5 981 99000 0 19 0,98 1,00 0,00 0,02 1,00
sdhash Noise 256k 2 26 99000 0 974 0,03 1,00 0,00 0,97 1,00
sdhash Noise 256k 2,5 1 99000 0 999 0,00 1,00 0,00 1,00 1,00
sdhash SingleCommonBlock256k 1 14 99000 0 986 0,01 1,00 0,00 0,99 1,00
sdhash SingleCommonBlock256k 3 762 99000 0 238 0,76 1,00 0,00 0,24 1,00
sdhash SingleCommonBlock256k 5 1000 99000 0 0 1,00 1,00 0,00 0,00 1,00
sdhash SingleCommonBlock256k 10 1000 99000 0 0 1,00 1,00 0,00 0,00 1,00
sdhash SingleCommonBlock256k 20 1000 99000 0 0 1,00 1,00 0,00 0,00 1,00
sdhash SingleCommonBlock256k 30 1000 99000 0 0 1,00 1,00 0,00 0,00 1,00
sdhash SingleCommonBlock256k 40 1000 99000 0 0 1,00 1,00 0,00 0,00 1,00
sdhash SingleCommonBlock256k 50 1000 99000 0 0 1,00 1,00 0,00 0,00 1,00
ssdeep Alignment 256k 25 1000 99000 0 0 1,00 1,00 0,00 0,00 1,00
ssdeep Alignment 256k 50 1000 99000 0 0 1,00 1,00 0,00 0,00 1,00
ssdeep Alignment 256k 100 976 99000 0 24 0,98 1,00 0,00 0,02 1,00
ssdeep Alignment 256k 200 937 99000 0 63 0,94 1,00 0,00 0,06 1,00



Opt TP TN FP FN TPR TNR FPR FNR Precision
ssdeep FragmentEnd 256k 50 972 99000 0 28 0,97 1,00 0,00 0,03 1,00
ssdeep FragmentEnd 256k 60 698 99000 0 302 0,70 1,00 0,00 0,30 1,00
ssdeep FragmentEnd 256k 70 39 99000 0 961 0,04 1,00 0,00 0,96 1,00
ssdeep FragmentEnd 256k 80 21 99000 0 979 0,02 1,00 0,00 0,98 1,00
ssdeep FragmentEnd 256k 90 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
ssdeep FragmentEnd 256k 95 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
ssdeep FragmentEnd 256k 97 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
ssdeep FragmentEnd 256k 99 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
ssdeep FragmentRandom256k 50 968 99000 0 32 0,97 1,00 0,00 0,03 1,00
ssdeep FragmentRandom256k 60 682 99000 0 318 0,68 1,00 0,00 0,32 1,00
ssdeep FragmentRandom256k 70 43 99000 0 957 0,04 1,00 0,00 0,96 1,00
ssdeep FragmentRandom256k 80 24 99000 0 976 0,02 1,00 0,00 0,98 1,00
ssdeep FragmentRandom256k 90 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
ssdeep FragmentRandom256k 95 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
ssdeep FragmentRandom256k 97 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
ssdeep FragmentRandom256k 99 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
ssdeep Noise 256k 0,5 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
ssdeep Noise 256k 1 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
ssdeep Noise 256k 1,5 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
ssdeep Noise 256k 2 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
ssdeep Noise 256k 2,5 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
ssdeep SingleCommonBlock256k 1 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
ssdeep SingleCommonBlock256k 3 0 99000 0 1000 0,00 1,00 0,00 1,00 1,00
ssdeep SingleCommonBlock256k 5 1 99000 0 999 0,00 1,00 0,00 1,00 1,00
ssdeep SingleCommonBlock256k 10 72 99000 0 928 0,07 1,00 0,00 0,93 1,00
ssdeep SingleCommonBlock256k 20 658 99000 0 342 0,66 1,00 0,00 0,34 1,00
ssdeep SingleCommonBlock256k 30 954 99000 0 46 0,95 1,00 0,00 0,05 1,00
ssdeep SingleCommonBlock256k 40 999 99000 0 1 1,00 1,00 0,00 0,00 1,00
ssdeep SingleCommonBlock256k 50 1000 99000 0 0 1,00 1,00 0,00 0,00 1,00
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