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Abstract: Cryptographic hash functions are very sensitive – even if only one bit of
the input is changed the output behaves pseudo randomly. Thus the similarity between
two inputs cannot be identified. In 2010 Roussev presented a new similarity preserving
fingerprinting technique based on statistical chosen features (the most unique ones)
called sdhash. However, his proposal lacks a thorough implementation and security
analysis.

This paper concludes after a thorough analysis that sdhash has the potential to
be a robust similarity preserving digest algorithm. However, we present some incon-
sistencies between the specification of sdhash and its implementation, which leads
to unexpected results of sdhash. Furthermore, we uncovered design errors within
the fingerprint generation and its comparison. The security part shows that given a
file it is easily possible to tamper the file with to come down to a similarity score of
approximately 28, but that it is hard to overcome the matching algorithm completely.

1 Introduction

The crucial task during a computer forensic acquisition is to distinguish relevant from non-
relevant files. As the amount of data an investigator has to deal with is growing rapidly,
it is not possible to look at each file by hand. An automated pre-processing tries to filter
out known-to-be-good and known-to-be-bad files by using cryptographic hash functions.
The proceeding is quite simple: the investigator computes hash values of all files which he
finds on a storage medium and performs look ups in a database, e.g., National Software
Reference Library (NSRL, (NIS12)).

Cryptographic hash functions meet several security requirements and thus the hash value
of a cryptographic hash function behaves pseudo-randomly if the input changes, i.e., if the
input changes (e.g. by one bit), approximately 50% of the output bits change. Comparing
the similarity of files using cryptographic hash functions is therefore not possible. This
could be easily exploited by an active adversary.

(Rou10) came up with a new idea called Similarity Digests Hashing including a prototype
called sdhash. Although this tool becomes very popular, e.g., NIST includes it into its
NSRL, a thorough analysis with respect to correct implementation and security properties
is missing. Thus, this paper is an analysis of sdhash 1.2 and focuses on the specifica-



tion and its implementation. We do not address any questions about the underlying design
or the chosen parameters.

1.1 Contributions and Organization of this Paper

Our main contribution is to show that sdhash is a robust approach, but an active adversary
can beat down the similarity score to approximately 28 while preserving the perceptual
behaviour of a file (e.g., an image keeps it visual outcome to its observer). Furthermore we
uncovered some implementation and design errors which lead to an inconsistency between
the implementation and the description of the algorithm. For all cases we provide some
solutions to improve sdhash.

The rest of the paper is organized as follows: In the subsequent Sec. 1.2 we introduce
notation and terms, which we use throughout this paper. Then, in Sec. 2 we sketch the state
of the art and discuss relevant literature. Next, we show in Sec. 3 the foundations of the
similarity digest fingerprint sdhash, which is necessary to understand our improvements
and attacks. The core of our paper is given in Sec. 4 and Sec. 5, where we analyze the
implementation and present the security aspects, respectively. Sec. 6 concludes our paper.

1.2 Notation and Terms used in this Paper

In this paper, we make use of the the following notation and terms, which will be intro-
duced and explained in the subsequent sections:

• h denotes a cryptographic hash function (e.g., SHA-1, MD5, RIPEMD-160).

• IN is a byte string of length L, IN = B0B1B2 . . . BL−1 called input.

• fk is a sub byte string in IN starting at offset k with a length of l. We call f a
feature. The implementation uses l = 64.

• Hnorm denotes the normalized entropy score.

• Rprec is the precedence rank which has been obtained by preliminary statistical
analysis.

• Rpop denotes the popularity score of a feature.

• F is a specific feature f whose Rpop is higher-equal than a given threshold. The
implementation uses a threshold of 16.

• bf is a Bloom filter of 256 bytes containing a maximum of 128 features.

• |bf | denotes the amount of bits set to one within bf .

• bf denotes the amount of features within bf .



2 Related Work

According to (MOV97) hash functions have two basic properties, compression and ease
of computation. In this case compression means that regardless the length of the input,
the output has a fixed length. This is why the term Fuzzy Hashing might be a little bit
confusing and similarity digest is more appropriate. But as most of the similarity preserv-
ing algorithms do not output a fixed sized hash value, we use similarity digest, fuzzy hash
function and similarity preserving hash function as synonyms.

A first algorithm for fuzzy hashing was introduced by (Kor06). He came up with context
triggered piecewise hashing, abbreviated as CTPH, which is based on a spam detection
algorithm of (Tri02). The main idea is to compute cryptographic hashes not over the
whole file, but over parts of the file, which are called chunks. The end of each chunk is
determined by a pseudo-random function that is based on a current context of 7 bytes.
Since then several papers had been published which examined this approach carefully.
For instance, improvements with respect to efficiency and security had been presented by
(BB11b; RRM07; CW08; SLC+09) whereas a security analysis is presented by (BB11a;
Bre11). All in all this approach cannot withstand an active adversary with respect to
blacklisting and whitelisting.

Based on some previous work named md5bloom (RCBR06), (Rou09; Rou10) came up
with a new idea called Similarity Digests Hashing including a prototype called sdhash
in 2010. The main idea is to identify “statistically-improbable features” using an entropy
calculation for each 64 byte sequence. Once a “characteristic” feature is identified it is
hashed using a cryptographic hash function (e.g., (Riv92; SHS95)) and inserted into a
Bloom filter (Blo70). Hence, files are similar if they have common features. More details
are given in Sec. 3.

(Rou11) provides a comparison of ssdeep and sdhash and shows that the latter “ap-
proach significantly outperforms in terms of recall and precision in all tested scenarios and
demonstrates robust and scalable behaviour”.

3 Foundations of sdhash

We introduce the main concepts of the similarity digest algorithm (sdhash 1.2) as
proposed by (Rou10) in what follows. As the parallelized sdhash 2.0 presented by
(Rou12) was not available when doing our research, we only work on the older version.
We argue that the updated algorithm is roughly the same and therefore working on version
1.2 is sufficient. In the following we summarize the main properties of Roussev’s approach
that are relevant for the remainder of this paper.

Let IN be a byte sequence B0, B1 . . . BL−1 of length L called input. Then a feature fk is



Figure 1: Example for the Rpop calculation from (Rou10).

a sub byte sequence of length l in IN starting at Bk with 0 ≤ k ≤ L− l, i.e.,

f0 = B0, B1 . . . B63

f1 = B1, B2 . . . B64

. . .

fL−l = BL−l, BL−l+1 . . . BL−1

For every feature fk the following two steps are required:

• First, the normalized Shannon entropy score Hnorm is calculated on base of the
empirical entropy H of fk

H = −
255∑
i=0

P (Xi) · log2 (P (Xi)) , (1)

where P (Xi) is the empirical probability (i.e., the relative frequency) of encounter-
ing ASCII code i in fk. Then H is scaled to a value in the integer range [0, 1000]
using

Hnorm = b1000 ·H/ log2 lc . (2)

• Second, (Rou09) states “we associate a precedence rank [(abbreviated Rprec)] with
each entropy measure value that is proportional to the probability that it will be
encountered. In other words the least likely features measured by its entropy score
gets the lowest rank.” The result is a sequence of Rprec values.

Next is the identification of the popular features which is done using a sliding window
Win of a fixed size W (sdhash uses W = 64) going through all Rprec values. At each
position sdhash increments theRpop score for the leftmost feature with the lowestRprec

within Win.

An example is given in Fig. 1 where the size of the window is set to W = 8. Let Rprec(i)
and Rpop(i) denote the precedence and popularity rank of fi, respectively. In Fig. 1 we
have Rprec(0) = 882, Rprec(1) = 866, . . . . As Rprec(3) = 834 has the leftmost lowest
Rprec within Win, Rpop(3) is incremented and the window slides. Within the second
iteration Rprec(3) is still the leftmost lowest Rprec in Win and Rpop(3) is incremented
again, and so on. All features whose Rpop score are higher-equal than a given threshold



(sdhash uses 16) are part of the fingerprint. We denote these features F0, F1, . . . Fp

(capital F ).

As the threshold is 16, the minimum byte distance between neighboring features Fi and
Fi+1 is 16. For instance, let E be the last element within the window and also having the
lowest Rprec. As E is the last element, the Rpop could be at most one. When sliding the
window there are two possibilities, the Rprec of the new element

1. is higher-equal, than Rpop of E is increased.

2. is lower, than the Rpop of the new element is increased.

A more general argumentation shows that if Rpop(i) = k (1 ≤ k ≤ 64), then Rpop(i +
n) ≤ n for all 1 ≤ n < k.

In order to generate the similarity digest, the byte string of each corresponding feature
F0, F1, . . . Fp is hashed using SHA-1 and the resulting 160 bit hash value is split into five
sub hashes of 32 bit length. As Roussev’s Bloom filters consist of 256 bytes = 2048 bits
= 211 bits, he uses 11 bits from each sub hash to set the corresponding bit in the Bloom
filter.

Roussev decides for a maximum of 128 features per Bloom filter which results in a maxi-
mum of 128 features · 5 bits

feature = 640 bits per Bloom filter. If an input has more features,
a new Bloom filter is created.

To define the similarity of two Bloom filters, we have to make some assumptions of the
minimum and maximum overlapping bits by chance wherefore Roussev introduces a cutoff
point C. Let |bf | denote the number of bits set to one within a Bloom filter. If |bf ∩bf ′| ≤
C, then the similarity score is set to zero.

C is determined as follows

C = α · (Emax − Emin) + Emin (3)

where α is set to 0.3, Emin is the minimum number of overlapping bits due to chance and
Emax the maximum number of possible overlapping bits. Thus Emax is defined as

Emax = min(|bf |, |bf ′|). (4)

Let j be the number of sub hashes (=5 within sdhash), bf the amount of features1 within
a Bloom filter,m the size of a Bloom filter in bits (=2048) and p = 1−1/m the probability
that a certain bit is not set to one when inserting a bit. Thus

Emin = m · (1− pj·bf − pj·bf ′
+ pj·(bf+bf ′)) (5)

is an estimation of the amount of expected common bits set to one in the two Bloom filters
bf, bf ′ by chance.

1Except for the last Bloom filter this value is always 128 for an input.



Let SD1 = {bf1, bf2, . . . bfs} and SD2 = {bf ′1, bf ′2, . . . bf ′r} the similarity digests of two
inputs and s ≤ r. If bf1 < 6 or bf ′1 < 6 then the original input does not contain enough
features and the similarity score is −1, not comparable. Otherwise the similarity score is
the mean value of the best matches of an all-against-all comparison of the Bloom filters,
formally defined as

SDscore(SD1, SD2) =
1

s

s∑
i=1

max
1≤j≤r

SFscore(bfi, bf
′
j) (6)

where SFscore is the similarity score of two Bloom filters

SFscore(bf, bf
′) =

{
0, if e ≤ C
[100 e−C

Emax−C ], otherwise
(7)

with e = |bf ∩ bf ′|.

4 Evaluation of Implementation

In a first step this section compares the specification with the implementation – both have
to coincide. As we treat the specification as ‘correct’, we show some discrepancies in
Sec. 4.1 and Sec. 4.2. The impact of a deviating implementation is an unexpected be-
haviour of the sdhash programme. Furthermore we discuss three bugs which are mainly
shortcomings by design during the comparison of Bloom filters.

Remark: To evaluate our results we used the t5-corpus from (Rou11, Sec. 4.1.) which is a
collection of 4457 files (1.8 GB)2 from 4 KB up to 16.4 MB.

4.1 Popularity Rank Computation Bug

While inspecting the code from sdhash, we discovered two important bugs when com-
puting the popularity rank Rpop:

1. A bug concerning the window size used to compute Rpop avoids the correct iden-
tification of the minimal Rprec value in the current window. We call this bug the
window size bug in what follows.

2. An inconsistency between the description of the algorithm in (Rou10) and its im-
plementation yields unexpected results for Rpop. The inconsistency is related to
the property of the algorithm in (Rou10) to consider the leftmost minimal value of
Rprec in a window. We therefore denote this bug as leftmost bug.

2http://roussev.net/t5/t5-corpus.zip; visited 02.01.2011

http://roussev.net/t5/t5-corpus.zip


These two bugs lead to false results of Rpop and thus to an unexpected behaviour of the
whole algorithm. The discussion in this section is with respect to the code of the file
sdbf_score.c of sdhash version 1.2 shown in Listing 1. However, the same bugs
are found in the current version 1.3, where the file is now called sdbf_core.c (we are
not aware of any reason of the renaming).

Before explaining the bugs in sdbf_score.c we first give an example of unexpected
values for Rpop. In Sec. 3 we explained the computation of Rpop as presented in (Rou10).
We point to a key property of the popularity rank: Let Rpop(i) denote the popularity rank
at position i. If Rpop(i) = k (1 ≤ k ≤ 64), then Rpop(i+ n) ≤ n for all 1 ≤ n < k.

However, the following listing shows some unexpected values of Rpop. The listing is
similar to Fig. 1 and it is an abridgment of the Rprec and its corresponding Rpop for file
000110.jpg.

Pos: 76 77 78 79 80 81 82 83
R_prec: 432 353 333 333 325 396 432 472
R_pop: 0 0 1 63 2 1 1 1
[removed]
Pos: 603 604 605 606 607 608 609 610
R_prec: 372 364 335 335 391 416 443 445
R_pop: 1 1 25 40 1 1 1 1

The first line shows the position i of Rprec in 000110.jpg, i.e., the offset of the first
byte of the underlying feature of Rprec.

To recall (Rou10, p.212) says that after a window Win has slided, the Rpop of leftmost
lowest Rprec in Win is increased, which is in contrast to the above listing. For instance,
for i = 78 the 1-neighborhood (positions 77 and 79) should have at most a Rpop of 1. In
fact we would expect an output like:

Pos: 76 77 78 79 80 81 82 83
R_prec: 432 353 333 333 325 396 432 472
R_pop: 0 0 2 0 63 1 1 1
[removed]
Pos: 603 604 605 606 607 608 609 610
R_prec: 372 364 335 335 391 416 443 445
R_pop: 1 1 64 1 1 1 1 1

As an explanation we imagine a window Win of size 64 ending at position 78. In order
for Rpop = 1 to hold at position 78, Win must contain 63 values Rprec > 333 to the left
of position 78. We then slide Win by one to position 79. The new incoming Rprec is also
333 and thus the Rpop at position 78 should increase again as it is still the leftmost lowest
Rprec in Win. Sliding one step further there is even a lower Rprec = 325, wherefore
Rpop at position 80 should be increased.

We now explain the location of the window size bug using Listing 1 and show that the
false value Rpop = 63 at position 79 is due to this bug. The window size bug means that



two different window sizes W are used in the code to compute Rpop. In line 92 of the
listing the current window Win starts at position i and uses a window size W . However,
the positions i until i+W compriseW+1 positions and therefore a−1 needs to be added.
On the other side, at line 101 of Listing 1 the correct window size W is used to find the
minimal value in Win3.

86 UINT min_pos = 0;
87 UINT min_rank = ranks[min_pos];
88 for( i=0; i<sdbf_sys.file_size-sdbf_sys.pop_win_size; i++) {
89 // try sliding on the cheap
90 if( i>0 && min_rank) {
91 UINT ix=0;
92 while( ranks[i+sdbf_sys.pop_win_size] >= min_rank && i<min_pos && i<

sdbf_sys.file_size-sdbf_sys.pop_win_size+1) {
93 if( ranks[i+sdbf_sys.pop_win_size] == min_rank)
94 min_pos = i+sdbf_sys.pop_win_size;
95 pop_scores[min_pos]++;
96 i++;
97 }
98 }
99 min_pos = i;

100 min_rank = ranks[min_pos];
101 for( j=i+1; j<i+sdbf_sys.pop_win_size; j++) {
102 if( ranks[j] < min_rank && ranks[j]) {
103 min_rank = ranks[j];
104 min_pos = j;
105 } else if( min_pos == j-1 && ranks[j] == min_rank) {
106 min_pos = j;
107 }
108 }
109 if( ranks[min_pos] > 0) {
110 pop_scores[min_pos]++;
111 }
112 }
113 free( ranks);
114 fclose( in);
115 return pop_scores;
116 }

Listing 1: Abridgment of sdbf_score.c from sdhash 1.2.

We shortly discuss the implications of this bug. Due to the window size W + 1 in line
92 the while-loop is always one Rprec ahead. Thus when the while-loop in line 92
processes position 80, it reads in Rpop = 325 where the first condition does not hold and
we jump to line 99. However, the implementation now checks in line 101 for a window of
size W which ends at position 79 and therefore computes a minimal value Rpop = 333.

Additionally the leftmost bug in lines 93 and 94 chooses for the rightmost position if the
righmost Rpop is equal to the previous minimal value (a similar bug is implemented in
lines 105 and 106).

To resolve these two bugs we propose the following changes to the source code:

3Actually also W is used, but the condition uses a < instead of ≤.



1. Replace the first condition in line 92 by

ranks[i+sdbf_sys.pop_win_size-1]
>= min_rank

to resize the window to its correct length of 64.

2. Remove lines 93, 94, 105− 107 to correct the leftmost bug.

4.2 Unnoted Footer Features

Unnoted Footer Features means that we may have features at the end of a file, which are
ignored by sdhash for the similarity digest computation. This behaviour results in two
different effects besides the fact that it is not mentioned in (Rou10). On the one side it is
possible to do manipulations at the end of a file which will not be discovered and on the
other side it is possible to append information.

We shortly explain the Unnoted Footer Features and refer to (BB12) for further details.
Let r denote the amount of Bloom filters of the similarity digest of an input. Based on
(Rou10) there is only one restriction: If r = 1 and bfr < 6 the generation process stops
and prints an error message. In fact this is different to the actual implementation where a
second condition is present: If r ≥ 2 and bfr < 16 then bfr is skipped (sdbf_api.c
line 163). This means that we may append up to 15 features without being noticed if the
similarity digest of the input file comprises 128 · r features, r ≥ 1.

4.3 Design Errors within the Comparison Class

The comparison function of a similarity digest algorithm is crucial for detecting related
files. However, when reviewing the code of the matching part of sdhash, we discovered
some shortcomings by design:

• In case that one of the files has at most 63 features, the comparison functions yields
two different results depending on the order of the two files. If the file containing at
most 63 features is invoked as the second argument it results in the similarity score
−1, a not comparable. We denote this bug by not-comparable bug.

• A self-comparison of a file may result in a similarity score significantly smaller than
100 (a lower bound is 50). We denote this bug by self-comparison bug.

• It is possible that two different files yield a 100 match by design (and not at random).
We denote this bug by collision bug.

Responsible for the first two bugs is the misplaced if-condition if(s2 < 64) in the file
sdbf_score.c in line 198 where s2 denotes the amount of features within a Bloom



filter. Roughly speaking this if-condition skips the comparison of partially filled Bloom
filters, if the threshold of 63 features is not exceeded.

Not-comparable bug: This bug can arise while comparing two files where at least one
has at most 63 features and thus results in only one Bloom filter. Listing 2 shows the
comparison of a 48-feature-file against a 84-feature-file and vice-versa.

As a result we obtain a match score of 100 or a −1 (not-comparable) depending on the
ordering. Both results are not reasonable. The supposed perfect match is due to the col-
lision bug as explained below. The not-comparable result is due to the aforementioned
if-condition: The comparison is skipped if the second input file does not have enough
(≥ 64) features.

1 $ sdhash -g 48.ftrs 84.ftrs
2 48.ftrs 84.ftrs 100
3

4 $ sdhash -g 84.ftrs 48.ftrs
5 84.ftrs 48.ftrs -01

Listing 2: Wrong order comparison yields a not comparable.

A possible solution is given at the end of ‘self-comparison bug’.

Self-comparison bug: Let SD = {bf1, bf2} be the similarity digest of the input for the
self-comparison, where bf1 = 128 and bf2 < 64 (i.e., the first Bloom filter contains
the maximum amount of 128 features and the second one is below the self-comparison
threshold of 64 features as defined by the if-condition from above).

To receive the similarity score there is an all-against-all comparison of Bloom filters as
defined by Eq. (6) of the two similarity digests. In our sample case, SD is compared
against itself. Thus SFscore(bf1, bf1) results in a 100 match and is therefore the best
match. But due to the if-condition it is not allowed to compute SFscore(bf2, bf2) as
the if-condition requires at least 64 features for the second Bloom filter bf2. Therefore
SFscore(bf2, bf1) is used. However, we have 0 ≤ SFscore(bf2, bf1) ≤ 100, which yields
a lower bound of 50 for the self-comparison similarity score.

1 $ sdhash t5/000256.doc
2 t5/000256.doc sdbf:sha1:256:5:7ff:128:2:18:

IiYTAaVQMQRUUlEFbL0BDKUQAIkE0JEDMEEAgPIoiAi
gDQNYAdsADCEdEGBAC9wBYiEA4AFARGYJdMASZEJABS [removed]
AAAAAQECAAAAAAAAAAEEAgAQAACIAAAAEBAAA=

3

4 $ 1.2/sdhash -g t5/000256.doc t5/000256.doc
5 t5/000256.doc t5/000256.doc 055

Listing 3: A file compared to itself with a match score of only 55.

Let us look at an example from the t5-corpus given in Listing 3. First, we print the sim-
ilarity digest for 00256.doc. Row 2 shows some basics about the digest itself, e.g.,
sdhash uses SHA-1, has Bloom filters of 256 bytes each with 128 features, overall there
are 2 Bloom filters and the last one contains 18 features. Due to the second Bloom filter



with only 18 features the self-comparison in rows 4 and 5 yield an overall similarity score
of 55. Eq. (6) yields the similarity score SFscore(bf2, bf1):

100 + SFscore(bf2, bf1)

2
= 55 ,

hence SFscore(bf2, bf1) = 10.

To generalize, if the similarity score of a file is built up of r Bloom filters and the last one
contains less than 64 features, it is not trustful. If such a file is compared to itself a lower
bound of its similarity score is therefore (r−1)·100+0

r = 100− 100
r .

To avoid the two aforementioned bugs and Unnoted Footer Features from Sec. 4.2, all
thresholds need to be adjusted where we recommend an upper bound of 6. In order not
to reject the last Bloom filter if it contains less than 6 features, there should be an exten-
sion where we allow more than 128 elements within the last filter. Thus in case the last
Bloom filter would be skipped due to too less features we merge the last two filters. As a
consequence the last Bloom filter could have at most 133 features.

5 Security Aspects

In the following we address the security aspects of sdhash. Section 5.1 describes a
possibility to make undiscovered changes within a file – the match score of the modified
file to the original one remains 100. Then Sec. 5.2 discusses the relevance of the cutoff
point C and analyzes the minimum amount of features that need to be manipulated for a
complete non-match of two Bloom filters (i.e. a match score of 0). Next, the most obvious
attack is described in Sec. 5.3 where we manipulate as much features until the similarity
score is zero. Finally, Sec. 5.4 addresses further security considerations concerning an idea
to reduce the similarity score of two files by inserting self-made features and the preimage
resistance of sdhash.

5.1 Undiscovered Modifications

In Sec. 4.2 we’ve already discussed the possibility to make undiscovered modifications.
Besides this special case, most of the input files allow to do modifications that won’t be
discovered which is discussed in this section.

By design the first 15 bytes will never influence the fingerprint as there have to be 16 slides
of the window to obtain a popularity score of at least 16. An example where we exploited
this issue is given in Listing 4. We used 00220.text from the t5-corpus, copied it
and compared them using flag -g. Next we edited the first 15 bytes within the file and
compared them again using sdhash and diff.

Another possibility is based on the findings from Sec. 5.4.3 where it is shown that approx-
imately 20% of the input bytes do not influence the similarity digest. Thus it is possible to



do undiscovered modifications within gaps.

As a solution we propose to create the SHA-1 hash value over the whole input and treat it
as a feature, i.e., insert it as first/last element into a Bloom filter.

1 $ cp 000220.text 000220.text.edt
2 $ 1.2/sdhash -g 000220.text 000220.text.edt
3 000220.text 000220.text.edt 100
4

5 $ vim 000220.text.edt
6 [modify first 15 bytes]
7

8 $ 1.2/sdhash -g 000220.text 000220.text.edt
9 000220.text 000220.text.edt 100

10

11 $ diff 000220.text 000220.text.edt
12 1c1
13 < WWL DATA POINT ANALYSIS
14 ---
15 > PASSWORD dfgjT ANALYSIS

Listing 4: A match score of 100 despite some changes.

5.2 Bloom Filter Resistance

Let IN, IN’ be two identical inputs yielding one full Bloom filter as similarity digest. Then
this section addresses the question, how many features do we have to change in IN’ to
obtain a full non-match with IN. As explained in Sec. 3, if e, the number of bits in common
of two Bloom filters, is lower-equal than a given cutoff point C, their similarity is set to 0
(see Eq. (7)).

The average amount of bits set to one within a full Bloom filter bf of size m = 2048 with
j = 5 sub hash functions by chance is

Eavg = m ·
(
1− (1− 1

m
)j·bf

)
= 2048 · (1− 0.999511725·128) = 549.77.

As both filters approximately contain 550 bits, Emax is equal to Eavg .

On the other side the minimum overlapping bits by chance is given in Eq. (5) where bf =
bf ′ = 128 as we concentrate on full Bloom filters. If we set j = 5 then

Emin = 147.433.

Based on this key data the cutoff point is C = 0.3 · (549.77−147.43)+147.43 = 268.13.

After defining the underlying conditions, we estimate how many bits change when we
manipulate one feature. The probability that one bit is set to zero in a full Bloom filter is



0.999511725·128 = 0.7315598. Thus the manipulation of one feature will approximately
change 0.7315598 · 5 = 3.65779898 bits within a Bloom filter. We successfully verified
this value through an empirical test where we used 10,000 random files having exactly 128
features, manipulated the first one and analyzed the amount of varying bits.

According to Eq. (7), if e ≤ C the Bloom filters are treated as a non-match and thus we
need to change e − C bits. Two identical full Bloom filters have approximately 550 bits
in common and a cutoff point C of 268 which result in 550 − 268 = 282 bits. Due to
the pseudo-randomness of SHA-1 we do a linear approximation. Thus by changing one
feature we approximately change 3.66 bits wherefore we have to manipulate 282

3.66 = 77.05
features in IN’.

A further test on real-world data showed that approximately 83.37 changes are necessary
to receive a non-match which might be because of the reoccurring features. Thus each
feature changes 282

83.37 = 3.383 bits within a Bloom filter.

We consider the amount of manipulations that needs to be done for a non-match as high
and we therefore rate sdhash as a very robust approach for fuzzy hashing.

5.3 Feature Modification

The most obvious idea to obtain a non-match is to manipulate the features as the similarity
digest is based on the hashed features. Due to the use of a cryptographic hash function,
one changed bit is enough to change the hash value.

Sec. 5.2 showed that it is sufficient to change 83.37 features per Bloom filter to reduce the
similarity score of two Bloom filters to zero. As it is enough to change one bit per feature,
we need to flip 83.37 bits. Furthermore a full Bloom filter represents 128 · 64 = 8192
bytes of the input file. From Sec. 5.4.3 we know that a lot features are overlapping which
reduces the amount of needed changes.

As a consequence, within each chunk of 8192 bytes we have to change approximately
83.37 · 0.6 = 50.02 bits. This results in a lot of changes all over the file which is only
feasible for locally non-sensitive file types, e.g., bmp, txt but only hardly for locally
sensitive file types, e.g., jpg, pdf.

5.4 Further Security Considerations

This section addresses two further security aspects of sdhash: First, in Sec. 5.4.1 we
refer to (BB12), where a method called Bloom filter shifts is discussed to reduce the
similarity score of initially identical files to approximately 28 in constant time. Second,
Sec. 5.4.2 discusses an improvement of the preimage resistance property of sdhash. Fi-
nally, Sec. 5.4.3 deals with the coverage of sdhash. The result is that not all input bytes
influence the fingerprint.



5.4.1 Generating False Non-Matches

(BB12) discusses the issue of generating a false non-match by decreasing the match score
to approximately 28. The idea is as follows: Given an input IN, insert at the beginning of
IN a (fixed) sequence of bytes, which contains 64 features F0, · · · , F63. As a consequence,
the subsequent features of the original byte sequence IN are shifted by 64 places. As a full
Bloom filter contains 128 features, the overlap of common features within Bloom filters
is minimal and thus the expected similarity score of the original and manipulated byte
sequence. (BB12) propose two different such feature sequences, which may be used to
generate false non-matches.

5.4.2 Preimage Resistance

Our second security consideration in this section is a short discussion of the preimage
resistance property of sdhash. Although sdhash uses the 160 bit cryptographic hash
function SHA-1, its preimage resistance only relies on 55 bits. In what follows we show
how to improve this minor security issue.

Recall, after sdhash identified a feature, it is hashed using SHA-1 and divided into 5 · 32
bit sub hashes. Afterwards only 11 out of 32 bits are used to derive the bit within the
Bloom filter. Hence, sdhash only uses 55 bits of the SHA-1 hash value which enables
one attack vector – brute force.

To exarcerbate a preimage attack we suggest to first pad one bit at each sub hash, divide
then the padded 33 bit string into 3 blocks of 11 bits, and finally XOR all three blocks.
Then all 32 bits of the sub hash are used to determine its bit position in the Bloom filter.
A sample is given in the following equation where sHnew is the new sub hash and sHint

the original padded one.

sHnew = sHint ⊕ (sHint >> 11)⊕ (sHint >> 22)

sHnew = sHnew & 0x7FF

As these are only low level operations this will not influence the performance of sdhash
but increases the security.

5.4.3 Coverage

We summarize important results from (BB12) concerning the coverage of sdhash. In
general hash functions are designed so that each bit influences the hash value, otherwise
it might be possible that a modification is not discovered. (BB12) shows that only ∼ 80%
of all bits influence the similarity digest. A more detailed analysis of (BB12) reveals that
there are a lot of overlaps / gaps between two consecutive features, i.e. a byte of the input
stream either influences multiple features or none. However, both cases are undesirable.



6 Conclusion

We did an implementation evaluation and discussed some security issues of sdhash as
proposed by Roussev. The implementation lacks through inconsistencies between algo-
rithm and description and shows different design errors wherefore we proposed possible
solutions. Concerning the security aspects, it is possible to beat down the similarity score
to approximately 28 with a time complexity O(1).

Besides the design errors we discovered some further weaknesses and proposed improve-
ments to make sdhash more secure and reliable.

All in all sdhash is much more robust than ssdeep but in order to eliminate the Bloom
Filter Shifting issue, the comparison function should be adapted.
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