
CCG Supertagging as Top-down Tree Generation

Jakob Prange Nathan Schneider
Georgetown University

{jp1724, nathan.schneider}@georgetown.edu

Vivek Srikumar
University of Utah

svivek@cs.utah.edu

Combinatory Categorial Grammar (CCG; Steed-
man, 2000) is a strongly-lexicalized grammar for-
malism, whose syntax-semantics interface has been
attractive for downstream tasks such as seman-
tic parsing and machine translation. Most CCG
parsers operate as a pipeline whose first task is ‘su-
pertagging’, i.e., sequence labeling with a large
search space of complex tags. Given these su-
pertags, all that remains to parsing is applying gen-
eral rules of (binary) combination between adjacent
constituents until the entire input is covered. Su-
pertagging thus represents the crux of the overall
parsing process.

A CCG supertag consists of atomic categories
like S and NP, which are related by slashes to (recur-
sively) form functional categories. By convention,
the infix-notation (S/NP)/NP is equivalent to the tree
in fig. 1a where the right child of any slash is the ar-
gument, and the left child is the result of combining
the category with its argument. Slash directionality
determines the linear order of combination. E.g.,
the transitive verb category (S/NP)/NP expects two
noun phrases (to the right and left) to form a clause
(S). But this flexibility leads to infinite possible
supertags; in practice, they follow a power law dis-
tribution. CCG treebanks contain numerous rare
supertags, including several that occur only in the
test sets. Still others can be expected to occur in
a much larger corpus. This long tail of the distri-
bution is particularly challenging for taggers, due
to its sparseness and relatively high complexity of
categories.

In most previous work, CCG supertaggers have
skirted this problem by treating categories as a fixed
set of opaque labels (fig. 1b) and ignoring those
occurring fewer than a certain threshold (following
Clark, 2002). Conversely, Kogkalidis et al. (2019)
and Bhargava and Penn (2020) have recently pro-
posed different methods of constructive supertag-
ging, where supertags are constructed as sequences

11

100 101

/

\ NP

S NP

wk

res
ult

resu
lt arg

arg

1

10

110 111

1000

∅

∅∅

∅

1001

∅

1010

∅

1011

... ...wk-1 wk+1

Encoder

res
ult arg

0

1

2

3

depth

(a)

Encoder

(S\NP)/NP

wk... ...wk-1 wk+1

(b)

/ \ S NP NP

wk... ...wk-1 wk+1

Encoder

... ...

(c)

Figure 1: Schematic of our tree-structured supertagger
(left) in contrast with unstructured (top right) and se-
quential (bottom right) models.

of minimal pieces and there is no constraint that
predicted supertags must be known (fig. 1c).

We take this idea one step further by introduc-
ing tree-structured constructive supertagging
(Prange et al., 2021):1 Given a sequence of words,
we generate each word’s supertag as a tree, from
the top down (fig. 1a). At the tth step, the model
greedily chooses the most likely node labels at
depth t, conditioned on the word encoding and the
ancestors predicted so far. The first decision (t = 0)
is either an atomic category, or the main functor.
In the latter case, the model then moves on to se-
lect the argument and result types, which may be
atomic categories or functors themselves. We are
thus guaranteed to always generate well-formed cat-
egories (as opposed to sequence generators, which
can learn to predict properly structured outputs but
are not guaranteed to always do so).

Modeling. All supertagging models we com-
pare consist of a sequence encoder (we fine-
tune RoBERTa-base, Liu et al., 2019), an output-
positional encoder, an attention layer over the se-
quence encoder, and a fully-connected 2-layer per-

1This abstract is a condensed version of Prange et al.
(2021). For more details on modeling, data, and analysis,
we refer to the full paper.

351
Proceedings of the Society for Computation in Linguistics (SCiL) 2021, pages 351-354.

Held on-line February 14-19, 2021



ceptron (MLP) with a final softmax layer which
maps hidden representations to output probability
distributions. We use the term (output) position to
refer to any atomic part of a category for which a
labeling decision has to be made. This could be, for
example, the positions of the S category in figs. 1a
and 1c, or the single output in fig. 1b. We experi-
ment with two alternative ways of deriving the hid-
den state hk,i for position i within the category of
word k: a tree-structured recursive neural network
(TreeRNN) and a deterministic addressing func-
tion that accesses each node directly (AddrMLP).
For the latter, each node in a category’s tree repre-
sentation is addressed by a sequence of bits corre-
sponding to a top-down traversal of the tree. E.g.,
in fig. 1a, the inner NP argument (the argument of
the top-level result) is addressed as 101. The se-
quence of slashes in a node’s ancestors ([/, /] for
the inner NP in fig. 1a) is mapped to a binary vector
in a similar way. We then use a single linear layer
to project these features into the encoder’s hidden
space before adding it to the word’s contextualized
encoding.

Data. A limitation of standard CCG evaluation
datasets is that they contain very few tokens of cat-
egories seen less than 10 times in training. Thus,
scores computed over these small samples may not
reliably estimate the models’ generalization capac-
ity. To correct for this, we investigate what happens
if the models are trained on sentences containing
exclusively the higher-frequency (≥10) categories,
and evaluated only on sentences with at least one
rare category. We split the (English) CCG Rebank
training set (WSJ sections 02–21; Honnibal et al.,
2010) in this way.

Baselines. We compare our TreeRNN and Addr-
MLP models to the following baselines: 1) Non-
constructive (MLP): We compute the output prob-
abilities for complete categories directly from the
encoder’s hidden state. 2) Sequential: Kogkalidis
et al. (2019) construct type-logical supertags by
generating for each sentence a single sequence
of atomic types and functors. We adapt their im-
plementation of the sequence-to-sequence Trans-
former model (Vaswani et al., 2017) to our problem
(“K+19”). We also implement a simplified version
of Bhargava and Penn’s (2020) tagger, where each
word’s supertag is generated separately by a GRU
(“RNN”).

Findings. Table 1 shows our results. The non-
constructive baseline performs well on frequent

All ≥100 10–99 1–9 0
Tokens n=53,765 n=50,754 n=989 n=292 n=1,730
Types N=1,351 N=188 N=240 N=118 N=805

Nonconstructive
MLP 88.79 92.87 55.61 19.29 –

Sequential
K+19 80.20 83.49 47.72 25.11 11.62
RNN 88.73 92.64 52.92 23.52 5.38

Tree-structured
TreeRNN 88.78 92.54 49.90 20.55 9.62
AddrMLP 89.01 92.70 54.03 26.48 10.96

Table 1: Accuracy on our redistributed Rebank evalu-
ation set (avg. over 3 runs). Scores are computed for
bins based on the order of magnitude of occurrences of
categories in training.

categories but suffers severely from sparsity on the
long tail and has no chance of generating unseen
tags. Constructive taggers are always required to
make multiple atomic decisions whenever assign-
ing a complex category, all of which need to be
correct in order for the full category to be counted
as correct. More complex categories tend to be
rarer and thus are more difficult than simple ones
in general, for all models.

Surprisingly however, it is not dramatically more
difficult for constructive systems to generate com-
plex categories than it is for nonconstructive sys-
tems to simply assign them. Both types of models
often only err in a single decision for an atomic
category or slash, rather than misinterpreting the
entire syntactic structure. And even the few cases
of structural divergences between prediction and
ground truth tend to be systematic and consistent
with other predictions in the same sentence.2

The sequence-to-sequence model by K+19 does
a lot better than the MLP on the tail and even re-
trieves some unseen categories, but at the cost of
frequent ones, most likely due to the lack of hard
alignments between words and tags. The tag-wise
recurrent and tree-recursive generators (RNN and
TreeRNN) come close to the nonconstructive clas-
sifiers, but do not convincingly improve over them.
The AddrMLP model, finally, performs competi-
tively across all frequency bands, proving its ro-
bustness in terms of overall accuracy. It is also the
computationally most lightweight model in that it
has the fewest parameters out of all the models,
and its inference speed is comparable to that of the
nonconstructive taggers.

2See appendix A for supporting figures and examples.

352



References

Aditya Bhargava and Gerald Penn. 2020. Su-
pertagging with CCG primitives. In Proc. of
RepL4NLP, pages 194–204, Online.

Stephen Clark. 2002. Supertagging for Combina-
tory Categorial Grammar. In Proc. of TAG+,
pages 19–24, Universitá di Venezia.

Matthew Honnibal, James R. Curran, and Johan
Bos. 2010. Rebanking CCGbank for improved
NP interpretation. In Proc. of ACL, pages 207–
215, Uppsala, Sweden.

Konstantinos Kogkalidis, Michael Moortgat, and
Tejaswini Deoskar. 2019. Constructive type-
logical supertagging with self-attention net-
works. In Proc. of RepL4NLP, pages 113–123,
Florence, Italy.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei
Du, Mandar Joshi, Danqi Chen, Omer Levy,
Mike Lewis, Luke Zettlemoyer, and Veselin
Stoyanov. 2019. RoBERTa: A robustly opti-
mized BERT pretraining approach. Preprint:
arXiv:1907.11692.

Jakob Prange, Nathan Schneider, and Vivek Sriku-
mar. 2021. Supertagging the long tail with
tree-structured decoding of complex categories.
TACL. Preprint: arXiv:2012.01285.

Mark Steedman. 2000. The Syntatic Process. MIT
Press, Cambridge, MA, USA.

Ashish Vaswani, Noam Shazeer, Niki Parmar,
Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Łukasz Kaiser, and Illia Polosukhin. 2017. At-
tention is all you need. In Proc. of NeurIPS,
pages 5998–6008, Long Beach, CA, USA.

A Extended Analysis and Examples

In Table 2 we quantify the structural and labeling er-
rors. A substantial portion of erroneous categories
actually do have the correct structure (✓struct).3

For these cases, we perform a detailed error analy-
sis, whose results we present in fig. 2. In fact, if
the structure is correct, the predicted category is
often only off by the direction of a single slash or
the attribute of a single atomic category. K+19 ad-
ditionally struggles with atomic decisions beyond
just differences in attributes.

By manually searching the corpus, we find that
even in the cases where a tagger assigns a category
with an incorrect structure, there are systematic
confusions such as between argument and adjunct
PPs and between fixed particle verbs and (aspec-
tual) adjunct particles. This is difficult to measure
at a large scale, but we present two examples in
Tables 3 and 4.

Incorrect

Model Correct ✓struct ✓formed ✗formed

MLP 47,552 1,401 4,811 –
K+19 43,120 2,706 7,812 127
RNN 47,704 1,395 4,661 5
TreeRNN 47,733 1,373 4,659 1
AddrMLP 47,851 1,352 4,562 1

Table 2: Analysis of predicted supertag structures in the
redistributed evaluation set. Incorrect predictions are
broken down in terms of having the correct structure
(✓struct: the same number and arrangement of slashes,
arguments, and results as the gold category), an incor-
rect but well-formed structure (✓formed: diverging ar-
rangement of arguments, but valid tree structure), or an
invalid structure (✗formed, e.g., missing arguments).

0 500 1000 1500 2000 2500 3000

MLP_10
MLP_1
K+19
RNN

TreeRNN
AddrMLP

All

0 50 100 150

K+19

RNN

TreeRNN

AddrMLP

Invented

more than 1 labeling error 1 atom error

1 slash error 1 attribute error

Figure 2: Fine-grained analysis of correctly-structured
but incorrectly labeled predictions (‘✓struct’ in Ta-
ble 2). ‘Attribute error’ means that the predicted atomic
category is correct except for a wrong or missing lin-
guistic attribute (e.g., S vs. S[dcl]); ‘atom error’
means that an entirely wrong atomic category has been
chosen (e.g., PP vs. NP); and ‘slash error’ means con-
fusing / and /.

3E.g., for “piling” in Table 4 the RNN predicts
(S[ng]/NP)/PP, which exhibits the correct structure (X/X)/X
with an incorrect atomic label (PP instead of PR).

353



garnered from 1984 to 1986
Gold (S[pss]\NP) (ADV/ADV)/NP
MLP ✓ ✓
K+19 ✓ ✓
RNN ✓ ✓
AddrMLP (S[pss]\NP)/PP (PP/ADV)/NP

Table 3: AddrMLP treats “garnered” as expecting a
PP argument (which would be correct for a source-
PP, e.g. “garnered information from the internet”, but
this is a different sense of “from”). The other models
correctly identify “garnered” as an intransitive passive
verb with “from” introducing an adverbial PP adjunct.
The gold category of “from” is so complicated because
it is correlated with “to”: First it expects an NP object
on the right (“1984”), then an adverbial adjunct on the
right (the to-PP), after which it produces an adjunct to a
VP.4 AddrMLP’s predictions for “garnered” and “from”
are consistent in treating the entire construction “from
1984 to 1986” as an argument of the verb.

orders began piling up
Gold (S[ng]\NP)/PR PR
MLP S[ng]\NP ADV
K+19 S[ng]\NP ADV
RNN (S[ng]\NP)/PP S[adj]\NP
AddrMLP ✓ ✓

Table 4: Here, the intended treatment of the particle
(PR) “up” is as an argument selected by the predicate.
Only AddrMLP gets this right. We assume this is
preferable over treating it as a VP adjunct (as the non-
constructive and K+19 taggers do) from a semantic per-
spective, because “pile up” is a fixed expression with a
meaning distinct from that of “(to) pile” or “pile in”.
The RNN categories are both wrong and inconsistent
(the “piling” category expects a PP and the “up” cate-
gory is predicative).

4ADV is not an actual atomic category. We use it to abbrevi-
ate the VP-adjunct category (S\NP)\(S\NP). PP is a conven-
tionalized atomic category for argument-PPs.

354


