Available online at www.sciencedirect.com

ScienceDirect PrOCQdiCI

Computer Science

CrossMark

Procedia Computer Science 217 (2023) 306-315

www.elsevier.com/locate/procedia
4th International Conference on Industry 4.0 and Smart Manufacturing

Artificial Intelligence Task Planning of Cooperating Low-Cost
Mobile Manipulators: A Case Study on a Fully Autonomous
Manufacturing Application

Stefan-Octavian Bezrucav®*, Nils Mandischer?, Burkhard Corves?®

4Institute of Mechanism Theory, Machine Dynamics and Robotics, RWTH Aachen University, Eilfschornsteinstr. 18, 52064 Aachen, Germany

Abstract

Through the highly innovative processes introduced by the movement Industry 4.0, application of fully autonomous working pro-
cesses is ready to be integrated into real-world manufacturing applications. While many tasks still require the human to handle
particular parts or perform certain steps in the production chain, partial assembly may be performed by cooperating mobile ma-
nipulators in the near future. However, many smaller companies already fail to adapt to the new trends, as Industry 4.0, in spite
of its beneficial aspects, is costly to implement, particularly in still low-automated sectors. In this work, we show how artificial
intelligence task planning may be integrated with computer vision systems to achieve a fully autonomous manufacturing process.
We also show how low-cost robots are adapted to process demands on diverse system levels.

© 2022 The Authors. Published by Elsevier B.V.

This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)

Peer-review under responsibility of the scientific committee of the 4th International Conference on Industry 4.0 and Smart
Manufacturing

Keywords: task planning; computer vision; autonomous manufacturing; artificial intelligence; screw detection; low-cost robotics

1. Introduction

Industry 4.0 targets the full and flexible automation of logistics and manufacturing task. In such tasks, mobile
manipulators play a major role. However, cooperating robots, whether with each other or with humans, are not yet
fully integrated into Industry 4.0 processes. Automating a manufacturing tasks requires the integration and interaction
of many systems: sensors, machines, logistics station, and robots alike. Hence, the overall complexity of automating
such tasks is demanding on hardware, software, and costs of implementation, particularly for small and medium-
sized enterprises (SMEs) and companies in still low-automated sectors. One example of such low-automated process
is the assembly of rotary tables at the Goizper Group, which was handled during the SHAREWORK EU-project
(https://sharework-project.eu/). At the beginning of the project, all tasks were performed exclusively by humans.

* Corresponding author. Tel.: +492418099789 ; fax: +492418092263.
E-mail address: bezrucav@igmr.rwth-aachen.de

1877-0509 © 2022 The Authors. Published by Elsevier B.V.

This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-ne-nd/4.0)
Peer-review under responsibility of the scientific committee of the 4th International Conference on Industry 4.0 and Smart
Manufacturing

10.1016/j.procs.2022.12.226


http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2022.12.226&domain=pdf

Stefan-Octavian Bezrucav et al. / Procedia Computer Science 217 (2023) 306-315 307

SHAREWORK solutions enable in-between Human-Robot Collaboration (HRC) in parts handling. In these processes,
cooperating mobile manipulators support the humans.

In SHAREWORK project, a software suite of 15 modules is developed that enables HRC in industrial scenarios
without requiring the delimitation by spatially dividing safety measures, such as fences. These modules range from
environment cognition [1], to automated task and trajectory planning [2], safety, and sociological and ethical factors.
This work focuses on two of the SHAREWORK modules: environment cognition and automated task planning. The
environment cognition module supervises the work process. In this paper, a camera system detects (a) screws that
have been inserted into the rotary table for further assembly steps and (b) if the correct parts have been delivered to
the logistics stations (by the human or other agents). The automated task planning acts as a high-level control loop,
determining and managing the actions of the autonomous and human agents.

In this work, we introduce a fully integrated automation solution for a simple, but comprehensive, manufacturing
process. The focus is not set on the development of new environment cognition or task planning methodologies. State-
of-the-art algorithms are implemented and deployed in the proposed system. The novelty comes from the integration
of these modules in a high-level, easily-configurable control system that enables an autonomous, highly-flexible ap-
plication. In this application, cooperating mobile manipulators pick screws from logistics stations and place them
into a rotary table, while dealing with noisy sensors or unpredictable human behaviours. Afterwards, the screws are
fastened by a serial manipulator mounted directly to the work station (which is not covered in this paper). The partial
process step of item delivery will still be performed by the human once SHAREWORK ends. By applying our work,
the process may be fully automated in the near future. To further cope with the issue of Industry 4.0 being expensive,
we decide to integrate the process only using low-cost technologies. This includes sensors and robotic hardware. As
a consequence, all system components are subject to noise, for which strategies will be proposed in the course of this
paper.

The paper is structured as follows: Firstly, we discuss related work (Section 2) before describing the deployed
methodologies for automated, artificial intelligence task planning (Section 3) and screw detection (Section 4). Sec-
ondly, we verify the feasibility of the combined methodology in a lab scenario (Section 5) and, finally, conclude with
an outlook on future research and application of the proposed methods in industrial applications (Section 6).

2. Related Work

Robotic systems have been enhanced in the last years with even more complex cognitive capabilities [3] that allow
their tight integration in processes currently executed exclusively by humans [4]. Theses cognitive enhancements
usually come in form of software modules that simplify customization and integration. Two of these modules are
particularly relevant for this work, namely task planning and items detection. This section discusses related work for
these modules.

2.1. Task Planning

In industrial applications, task scheduling and task planning modules sustain production processes by dynamically
allocating tasks to the agents depending on the actual state of the system. In the works proposed by Cesta et al. [5]
and Umbrico et al. [6], knowledge representation and reasoning is used by an Artificial Intelligence (AI) task planner
to dynamically distribute the tasks to a team containing a human and a serial robot. Another Al planning paradigm
is used in [7] to compute the tasks for a mixed team of one human and one mobile manipulator. The two agents
share their working areas as part of an assembly scenario. The robot agent from this work has more elaborate skills
(e.g., can navigate and execute trajectories with its arm) that increase the complexity of the tasks computation and
allocation processes. Fiasch et al. [8] propose an different job allocation method. Their algorithm takes the capabilities,
skills, knowledge, and the preferences of the worker into account, and solves a non-linear optimization problem to
determine the jobs allocation. Other task allocation methods for industrial logistics and production environments
that also consider agents’ skills and capabilities are proposed in Pedersen and Kriiger [9] and Ranz, Hummel, and
Sihn [10].



308 Stefan-Octavian Bezrucav et al. / Procedia Computer Science 217 (2023) 306-315

2.2. Screw Detection

Computer vision is a key requirement to Industry 4.0. For the proposed scenario, artificial scene understanding
is utilized in the form of screw detection. Such methods are usually split into two sub-problems: Firstly, segment
screw candidates, and, secondly, classify the screw candidates into screw or non-screw classes. Ramana, Choi, and
Cha [11] and Wegener et al. [12] both propose classifiers based on adaptive boosting (AdaBoost) to detect screws on
2D images. Cruz-Ramirez et al. [13] propose a multi template matching classifier. However, their approach fails to
adapt to new types of screws. Li, Wei, and Xing [14] apply a similar method for feature detection and embed it into
a Support Vector Machine (SVM) for classification. Tellaeche, Maurtua, and Ibarguren [15] improve on the template
matching by using 3D CAD data for template generation. While template matching and SVMs are common for screw
detection, tree-based methods are not applied outside the AdaBoost approaches proposed by [11] and [12]. While the
priory mentioned methods use conventional learning approaches, Yildiz and Worgétter [16] apply the Hough Circle
Transform to find screw candidates and classify them using neural networks. Martinez, Ahmad, and Al-Hussein [17]
improve on the method by applying an ellipse fitting algorithm to compensate for different view angles. However,
while neural networks achieve good results, they cannot be adjusted by untrained personnel. In case of transporting
digitization to low-automated sectors, this is a hurdle not solvable in industrial practice. Therefore, we focus on more
traditional learning methods.

3. Automated Task Planning

This section briefly introduces automated planning methods and focuses on the planning model formulated for the
targeted scenario.

3.1. Background

Automated task planning or Al task planning methods compute the actions that must be executed in a system to
bring this system to a desired goal state. In contrast to scheduling methods, which just arrange a set of predefined
actions to determine a plan, Al task planning methods perform two steps. In a first step, these methods select and
instantiate actions from a set of abstractly defined ones. The selected and instantiated actions are those that can
bring the considered system from an initial state to a given goal state. The solving process is a search process that
traverses several states from a planning state space. The search is guided by heuristics functions that determine the
effort required to reach a goal state from one of the expanded states. Further, each state of the state-space encodes
several pieces of information about the targeted application, while each transition between two states correspond to
the execution of one action. In this setup, an action can be executed in a state only if a set of requirements are met.
For example, a grasp action can be executed only when the agent is at a location where the object to be grasped is
present. In a second step, Al task planning methods optimize the plan with respect to a set of criteria (e.g., time).
These methods adapt the start times and order of the planned actions, without violating the dependencies between
them, to obtain a plan with minimal makespan (execution time). As input, Al task planning methods require only the
abstractly-defined actions, an initial planning state, and a set of goals that must hold in a goal state. [18]

Considering these characteristics, Al task planning methods can be used as high-level control strategies in dynamic
scenarios with robots and humans. These methods are able to generate new plans for many planning instances, for
example, when new orders arrive. For each new planning instance, only the initial and the goal states must be re-set,
while the remaining definitions and the planning process itself must not be further adapted. Two Al task planning
approaches, namely classical planning and temporal planning, were already successfully deployed in several of such
dynamic applications [7, 19, 20]. The temporal planning approach is a planning method that works with durative
actions a; € A. A durative action g; is an action with a set of conditions cond(a;), a set of effects ef f(a;), and a specific
duration A(a;). Action a; can be executed in a state s only if its conditions hold in that state. In addition, by executing
action a;, its effects are applied to the system which is transformed to a new state.

As mentioned above, each action g; is defined in a generic way. For example, a navigate action can be executed
by an agent, from a pose_from, to a pose_to. The planning process implies, among others, the instantiation of these



Stefan-Octavian Bezrucav et al. / Procedia Computer Science 217 (2023) 306-315 309

actions to specific values (e.g., navigate robot posel pose2). The instantiation process is correlated with the ordering
of the actions, such that all dependencies between actions conditions and effects hold. The result is a plan

T=<dg,...,dy, > (1)

that contains n actions. By executing all actions of m, the initial state of the system s is repetitively changed to
intermediate states s, as described by the instantiated effects of these actions, until a goal state s, is reached where the
defined goals g hold.

Planning Domain Definition Language (PDDL) is the standard language automated planning problems are formu-
lated in [21]. Each planning problem is described in a PDDL domain and a PDDL problem file. The PDDL domain
file contains the definition of the types, the predicates, and the generic definition of the actions. During the planning
process, objects of the defined types are created. The predicates are boolean functions with any number of parameters
(of the previously defined types). Each action definition contains a set of parameters, the at start, at end, and overall
conditions, as well as the at start and at end effects. The complete formulation of a planning problem further requires
the initialization of the objects and the setup of the initial state and the goals. The elements that are not described
in the PDDL domain file are integrated in the PDDL problem file. With these two files, temporal planners such as
optic [22] can be deployed to compute a plan.

3.2. Planning Model

The planning problems for the targeted use-case are described with a PDDL domain file containing three actions:
navigate, grasp, and discard.

(:durative—action navigate

:parameters (?agent - agent ?from ?to - agentpose)
:duration (= ?duration 10)

:condition (and (at start (at ?agent ?from))

(at start (not_acting ?agent))

(at start (free ?to))

(at start (navigate_allowed ?agent)))

ceffect (and (at start (not (at ?agent ?from)))
9 (at start (not (free ?to)))

10 (at start (free ?from))

11 (at start (not (not_acting ?agent)))

12 (at start (not (navigate_allowed ?agent)))

13 (at end (at ?agent ?7to))

14 (at end (not_acting ?agent))))

W W N =

[c IR o)

Fig. 1. Excerpt of the PDDL domain file with the definition of the navigate action.

Figure 1 depicts the PDDL formulation of the navigate action. Such an action can be introduced in a plan if the
agent is at the from pose (line 4), the to pose is free (line 6), the agent is not acting (line 5), and it may navigate (line
7). The not_acting and navigate_allowed predicates impose a sequential execution of actions for each agent and the
execution of another action between each two navigate actions, respectively. A more detailed explanation of these two
predicates is given in [23]. Once the execution of a navigate action is started, the at start effects are set: the agent is not
at the start pose anymore (line 8), the from pose is marked as free (line 10), and the to pose as not free anymore (line
9). Further, the not_acting predicate is negated (line 11). This implies that the agent is acting during the execution, fact
that is deleted at the end of the execution (line 13). By the end of the execution, the agent should have reached the o
pose (line 12) and it is not allowed to immediately execute a further navigate action (line 14).

The grasp and discard action are implemented in a similar way. They start with a set of parameters and a duration
value. They also contain a list of conditions that must hold before the action can be planed. For example, for a grasp
action, the agent and the thing to be grasped must be at the same location and the agent must have its gripper free. If




310 Stefan-Octavian Bezrucav et al. / Procedia Computer Science 217 (2023) 306-315

the action is planned, a set of effects are set. The most relevant ones model the swapping of the positions for the thing,
between the position on a table and the position in the gripper of the agent.

1 (:objects

2 robot_one - robot

3 robot_one_thingposel - thingpose

4 1in_pose table_pose_left table_pose_right - agentpose
5 in_pose_thingposel ... - thingpose

6 table_pose_thingposel table_pose_thingpose2 ... - thingpose
7 screwl screw2 ... - element

8 mnothing - no_thing)

9 (:init
10 (at robot_one_thingposel robot_one)
11 (at in_pose_thingposel in_pose)

12 (at table_pose_thingposel table_pose_left)
13 (thing_moveable screwl)

14 (thing_placeable screwl table_pose_left)
15 (thing_for_agent screwl robot_one)

16 (at robot_one table_pose_left)

17 (free in_pose)

18 (at screwl in_pose_thingposel)

19 (at nothing robot_one_thingposel) ...)
20 (:goal (and
21 (process_step_done screwl stepl) ... )

Fig. 2. Excerpt of the PDDL problem file with the definition of objects, the initial state, and the goals.

Figure 2 depicts the PDDL problem file for the targeted scenario. First, one robot, agentposes, and thingposes
are initialized (lines 2-6). Afterwards, five screws and the nothing construct are created (lines 7-8). With the defined
objects and the corresponding predicates from the domain file, the initial state s is set up. First, fixed relations between
the thingposes and the agents and agentposes are described (lines 10-12). Afterwards, the characteristics of the screws
are set up (lines 13-15), before the actual distribution of the agents and of the screws in the world is presented (lines
16-19). Last, the goals are defined (line 21). The plan generated for the given planning problem is depicted in Figure 3.

Il navigate turtlebot_one table_pose_left in_pose
Igrasp turtlebot_one in_pose screwl nothing in_pose_thingpose1l turtlebot_one_thingposel
Il navigate turtlebot_one in_pose table_pose_left
discard_element turtlebot_one table_pose_left screwl nothing turtlebot_one_thingposel stepl
Il navigate turtlebot_one table_pose_left in_pose
|grasp turtlebot_one in_pose screw2 nothing in_pose_thingpose2 turtlebot_one_thingposel
Il navigate turtlebot_one in_pose table_pose_left
discard_element turtlebot_one table_pose_left screw2 nothing turtlebot_one_thingposel stepl
Il navigate turtlebot_one table_pose_left in_pose
Igrasp turtlebot_one in_pose screw3 nothing in_pose_thingpose3 turtlebot_one_thingposel
Il navigate turtlebot_one in_pose table_pose_left
discard_element turtlebot_one table_pose_left screw3 nothing turtlebot_one_thingposel stepl
Il navigate turtlebot_one table_pose_left in_pose

Fig. 3. Section of plan 7 obtained for the Goizper planning problem.

3.3. Al Task Planning Framework

The generated actions must be executed in the real scenario. Hence, the planning process is integrated in an ex-
tended version of the ROSPlan framework [7] (based on [24]) that acts as a high-level control loop. ROSPIlan contains
a knowledge base in which the values of the predicates are saved and which tracks their evolution as they change
during the actions’ execution. ROSPlan also integrates four other modules; the most important ones being those that
generate a planning problem from the information saved in the knowledge base, call a planner, parse the obtained
plan, and dispatch the planned actions.




Stefan-Octavian Bezrucav et al. / Procedia Computer Science 217 (2023) 306-315 311

Each planned action (e.g., from the plan depicted in Figure 3) is initially described in an abstract way. Therefore,
it must be translated to another data structure that implements its sub-steps and that is connected to the modules that
allow the execution in the real world. The new data structure is a finite state machine (FSM). For each such action, an
executor finite state machine (EFSM) is implemented. The discard action has the most relevant EFSM as it integrates
calls to the modules of the agent, the environments, and the automated screw detection.

Fig. 4. Executor finite state machine implementing the grasp action.
Figure 4 presents the discard-EFSM. It contains § states and implies the following sequential execution:

Call to the screw detection module to get an empty hole where the screw carried by the robot should be placed,
Call to the funnel system to move the funnel over the corresponding hole,

Call to the robot arm to execute a trajectory to a fixed pose over the funnel,

Call to the robot gripper to open the gripper and release the screw,

Call to the robot gripper to close the gripper,

Call to the arm to retract to its home pose.

AR L=

All calls are connected to Robot Operating System (ROS) service servers that are running on the robot or on
distributed systems in the environment (e.g., the funnel system). Similar EFSMs are modelled also for the navigate
and grasp actions.

The planning problem integrated in the extended ROSPlan framework and the description of the EFSMs for all
planning actions enable the autonomous execution of the screw fitting processes from the real use-case. Further,
independent of the number of screws to be inserted and of the screws that may be inserted by a human worker, the
system can adapt autonomously and finalize the assembly process.

4. Screw Detection

To extend the state of research, we propose to use a tree-based learning approach for distinguishing holes and
screws. In the described application, it is more important to detect empty holes than to distinguish screws from
background. The two classes problem has not been covered profoundly in literature. In recent research, we observed
good generalization of Random Forest classifiers [25] for applications with low training sample sizes. To allow lenient
application of the methodology for untrained personnel, we propose following pipeline: Firstly, images are captured
with a camera mounted parallel to the rotary table. The images are then segmented into screw candidates and manually
sorted into screw and hole classes for classifier training. The segmentation of images is performed autonomous and
the user is only presented with the cropped images. Lastly, the classifier is trained and may be applied directly to the
manufacturing task.

4.1. Method

For segmenting screw candidates, we exploit some geometrical features of the rotary table that is to be assembled.
The screws are located on a ring segment of a concentric and circular counter-plate (rotary disk). Hence, we first
define a region of interest (ROI) defined by a ring segment of particular width, relative to the outer contour of the
rotary disk. As the camera is placed over the center of gravity of the rotary disk, Hough Circle Transform (HCT) [26]
may be well utilized to get the outer contour of the assembly. From the outer ring, the ROI is moved inwards based on
the geometric measures. Hence, the ROI is embodied by a thin ring element around the screws and holes. Afterwards,
HCT is applied onto the ring segment to segment the screw candidates. The screw candidates are then evaluated with a



312 Stefan-Octavian Bezrucav et al. / Procedia Computer Science 217 (2023) 306-315

Random Forest classier. To make the classifier better understandable for the human operator, we choose to only apply
five features that are directly derived from real-world observation:

1. Brightness intensity of the candidate’s center area (25% diameter); this is the reflection of the workshop lights in
the screw head

2. Average brightness intensity of candidate area

3. Brightness intensity of outer ring (50-100% diameter); this is the reflection of the workshop lights on the coun-
tersunk shoulder in the hole

4. Number of local brightness maxima

5. Number of pixels of brighter intensity than average on the candidates main axis.

An exemplary detection result after training is depicted in Figure 5.

Contours ~ Raw Image

Detector

Fig. 5. Screw detection module with raw image (right), detected outer contour (green ring) and ROI (blue ring segment), and detected screws
(bottom-left; screws: green, holes: red).

4.2. User Interface and Application with Noise

To train the classifier, the user is guided through a command line-based user interface. First, the user needs to
take images with the camera in the desired setup. Afterwards, the images are cropped and presented to the user. This
process is based on the same HCT segmentation approach as discussed in the prior section. The user then decides if
the cropped image shows a screw, a hole, or background. The cropped images are then sorted internally and stored for
training. Once the user has classified all training samples, the classifier is automatically trained.

A machine learning classifier on real data is never fully accurate as environmental conditions and placing of parts
may change over the course of runtime. Therefore, additional measures have to be taken to deal with the uncertainty
in (a) the localization of screw candidates and (b) the classification. First, all holes’ known positions are referenced
in the middle point of the rotary disk, which is supplied with a coordinate frame relative to the main rotational axis.
By this, all potential screw positions are fully known independently of the rotary disk’s orientation. When receiving
a screw candidate, they are matched onto the known positions using a spatial threshold. After classification, the class
decision is stored as vote on the specific location. A maximum of ten votes is stored per location and old votes are
discarded if the maximum is exceeded. Once the task planner requests empty holes, the votes are consulted. If the
certainty of the votes towards the hole class exceeds 60%, the candidate is declared a hole and the ID is returned to
the task planner.



Stefan-Octavian Bezrucav et al. / Procedia Computer Science 217 (2023) 306-315 313

We validate the classifier with a total of 1000 cropped training samples in the setup discussed in Section 5. The
end-to-end classification approach reaches an accuracy (correctly classified samples over all samples) of 87.3%. By
this, the threshold of 60% for determining the vote is valid, as it is lower than the expected certainty of the vote. Note
that end-to-end classification also incorporates errors in the HCT and localization of screw candidates.

5. Verification in a real industrial application with low-cost robots

Figure 6 depicts the adapted SHAREWORK Goizper-scenario. The test scenario is a recreated industrial environ-
ment delimited by walls from the rest of the laboratory. Inside the working area, different tables and locations are
given. The ones relevant for this scenario are the input table where the screws are gathered and the table on which
the rotatory table is located. The rotatory table is enhanced with a funnel system that compensates the errors in the
localization and navigation of the low-cost mobile base and enables the exact placing of screws in the corresponding
holes. Note that without further measures a precision of lmm would be required to perform the insertion of screws
in the corresponding holes. Above the rotatory table, the camera system (https://www.stereolabs.com/zed-2/) used to
recognize the screws is installed. As agents, one mobile manipulator and a human are involved.

Fig. 6. Overview of the scenario with the involved mobile manipulator, the rotatory table with screws, and the funnel system.

At start, the robot is located anywhere in the environment and no screws are placed into the rotatory table. In the
goal state, two screws must be inserted into holes from the right and two screws from the left side of the rotatory
table. The automated task planning module computes a plan with navigate, grasp, and discard actions for the mobile
manipulator. The navigate actions are carried out between the in pose and two other poses: left and right of the
rotatory table. The grasp action is executed at the in pose where the human is required to hand over a screw to the
mobile manipulator. The discard action is carried out at the rotatory table and involves the robot, the camera system,
and the funnel system. During execution of the plan, the human may intervene at any time and place new screws into
any hole of the rotary table.

The combined system containing the task planning framework and the screw detection module is integrated and
validated. The system is able to automatically recognize the situation and adapt the plan execution accordingly. We
explicitly tested and verified:

e Execution of initial plan without external disruptions,

o Disruption by the human walking in the delimited area,

¢ Disruption by the human not handing over desired items,

¢ Disruption by changing the insertion state of screws in the rotary table.



314 Stefan-Octavian Bezrucav et al. / Procedia Computer Science 217 (2023) 306-315

All scenarios are executed successfully. A demonstration of the real experiment is available as a video
(https:www.youtube.com/watch?v=olxrgpY-KuS§).

6. Conclusion and Future Work

In this paper, we show how a typical manufacturing task may be fully automated with low-cost robots in a combined
effort of task planning, computer vision, and task execution. First, we show how the task of assembling a rotary table
at the Goizper Group is modelled using PDDL. Then, we embed the methodology into an Al planning framework that
is enhanced with an Al screw-detection module. The screw detection module is based on Random Forest classification
of holes and screws. Finally, we show how the model and system components are composed into a fully autonomous
demonstration of the use-case.

The deployment of low-cost robotics reduces the financial effort for small and medium-size companies that want
to automatize processes. However, cheaper software and hardware solutions imply further integration efforts, for
example, when high-positioning accuracy is required and the deployed sensors are too noisy. These integration efforts
are related to new hardware components or new software modules. In our case, the funnel system had to also be
integrated in the use-case, because the mobile base of the agent is not able to achieve the required positioning accuracy.
Robotic agents with more performant hardware and software might reduce this integration effort. Independent of
the types of robots involved in the targeted application and their software and hardware capabilities, the proposed
framework can still be deployed. Our framework combining task planning and environment cognition must only be
configured and finely-tuned when used with different robots or in new applications. No new modelling from scratch
is required. The adaptability and the flexibility of the framework are the most important advantages that characterizes
our novel solution.

In future integration efforts, several SHAREWORK parts of the system will be integrated at the Goizper Group’s
facilities. During integration, we will collect data to analyze further improvements of the framework and underlying
methodologies. One possible improvement is the extension towards more dynamic and non-deterministic tasks that
will require an additional management of noise statistics.

Acknowledgements

This work has been partially funded by the European Union’s Horizon 2020 project SHAREWORK (grant agree-
ment No. 820807). In addition, we like to thank the Goizper Group and STAM S.p.A. for their support with integrating
our methodologies in the use-case demonstrator at Goizper in Antzuola.

References

[1] Mandischer, Nils, Huhn, Tobias, Huesing, Mathias and Corves, Burkhard (2021) “Efficient and consumer-centered item detection and classifi-
cation with a multicamera network at high ranges”, in Sensors, vol. 21, no. 14, 2021.

[2] Faroni, Marco, Beschi, Manuel, Ghidini, Stefano, Pedrocchi, Nicola, Umbrico, Alessandro, Orlandini, Andrea and Cesta, Amedeo (2020) “A
Layered Control Approach to Human-Aware Task and Motion Planning for Human-Robot Collaboration”, in 2020 29th IEEE International
Conference on Robot and Human Interactive Communication (RO-MAN), 1204-1210, doi: 10.1109/RO-MAN47096.2020.9223483

[3] Ingrand, Félix, Ghallab, Malik (2017), “Deliberation for autonomous robots: A survey”, in Artificial Intelligence 247: 10-44. DOIL:
10.1016/j.artint.2014.11.003

[4] Wang, Lihui, Liu, Sichao, Liu, Hongyi, and Wang, Xi Vincent, (2020) “Overview of Human-Robot Collaboration in Manufacturing”, In Wang,
L., Majstorovic, V., Mourtzis, D., Carpanzano, E., Moroni, G., Galantucci, L. (eds) Proceedings of 5th International Conference on the Industry
4.0 Model for Advanced Manufacturing, Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-46212-
32

[5] Cesta, Amedeo, Orlandini, Andrea, Bernardi, Giulio, Umbrico, Alessandro, “Towards a planning-based framework for symbiotic human-
robot collaboration”, in IEEE 2Ist International Conference on Emerging Technologies and Factory Automation (ETFA), 1-8, doi:
10.1109/ETFA.2016.7733585

[6] Umbrico, Alessandro, Orlandini, Andrea, Cesta, Amedeo, Koukas, Spyros, Zalonis, Andreas, Fourtakas, Nick, Andronas, Dionisis, Apos-
tolopoulos, George, Makris, Sotiris (2021) “Towards user-awareness in human-robot collaboration for future cyber-physical systems”, in 26th
IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), 1—S8.



(71

(8]

[9]

[10]
[11]
[12]
[13]

[14]

[15]
[16]
[17]
[18]
[19]

[20]

[21]

[22]

[23]

[24]

[25]
[26]

Stefan-Octavian Bezrucav et al. / Procedia Computer Science 217 (2023) 306-315 315

Bezrucav, Stefan-Octavian, and Corves, Burkhard (2020), “Improved Al Planning for Cooperating Teams of Humans and Robots”, in Michael
Cashmore, Andrea Orlandini, Alberto Finzi (Eds.): Workshop on Planning and Robotics (PlanRob) at International Conference on Automated
Planning. International Conference on Automated Planning and Scheduling (ICAPS).

Fiasché, Maurizio, Pinzone, Marta, Fantini, Paola, Alexandru, Ana and Taisch, Marco (2016) “Human-centric factories 4.0: A mathematical
model for job allocation”, in IEEE 2nd International Forum on Research and Technologies for Society and Industry Leveraging a better
tomorrow (RTSI), 1-4, doi: 10.1109/RTSI.2016.7740613

Pedersen, Mikkel Rath, Kriiger, Volker (2015) “Automated Planning of Industrial Logistics on a Skill-equipped Robot”, in Workshop on Task
Planning for Intelligent Robots in Service and Manufacturing, IEEE International Conference on Intelligent Robots and Systems. Proceedings
Hamburg, 2015.

Ranz, Fabian, Hummel, Vera, Sihn, Wilfried (2017) “Capability-based Task Allocation in Human-robot Collaboration”, in Procedia Manufac-
turing, 9:182-189, doi: 10.1016/j.promfg.2017.04.011.

Ramana, Lovedeep, Choi, Wooram, Cha, Young-Jin (2019) “Fully automated vision-based loosened bolt detection using the Viola-—Jones
algorithm”, in Structural Health Monitoring, 18:422-434, doi: 10.1177/1475921718757459.

Wegener, Kathrin, Chen, Wei Hua, Dietrich, Franz, Droder, Klaus, Kara, Sami (2015) “Robot Assisted Disassembly for the Recycling of
Electric Vehicle Batteries”, in Procedia CIRP, 29:716-721, doi: 10.1016/j.procir.2015.02.051.

Cruz-Ramirez, S. R., Mae, Yasushi, Takubo, Tomohito, Arai, Tatsuo (2008) “Detection of screws on metal-ceiling structures for dismantling
tasks in buildings”, in International Conference on Intelligent Robots and Systems, IEEE, pp. 4123-4129, doi: 10.1109/IROS.2008.4650975.
Li, Caiqin, Wei, Zhenzhong, Xing, Jing (2016) “Online inspection system for the automatic detection of bolt defects on a freight
train”, in Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 230:1213-1226, doi:
10.1177/0954409715588119.

Tellaeche, Alberto, Maurtua, Inaki, Ibarguren, Aitor (2016) “Use of machine vision in collaborative robotics: An industrial case”, in 21st
International Conference on Emerging Technologies and Factory Automation, IEEE, pp. 1-6, doi: 10.1109/ETFA.2016.7733689.

Yildiz, EErenus, Worgotter, Florentin (2019) “DCNN-Based Screw Detection for Automated Disassembly Processes”, in International Con-
ference on Signal-Image Technology & Internet-Based Systems, IEEE, pp. 187-192, doi: 10.1109/SITIS.2019.00040.

Martinez, Pablo, Ahmad, Rafiq, Al-Hussein, Mohamed (2019) “Real-time visual detection and correction of automatic screw operations in
dimpled lightgauge steel framing with pre-drilled pilot holes”, in Procedia Manufacturings, 34:798--803, doi: 10.1016/j.promfg.2019.06.204.
Ghallab, Malik, Nau, Dana S. and Traverso, Paolo (2016) “Automated planning and acting”, Cambridge University Press, New York.
Cashmore, Michael, Coles, Andrew, Cserna, Bence, Karpas, Erez, Magazzeni, Daniele; Ruml, Wheeler (2019) “Replanning for Situated
Robots”. In J. Benton, Nir Lipovetzky, Eva Onaindia, David E. Smith, Siddharth Srivastava (Eds.): Proceedings of the Twenty-Ninth Inter-
national Conference on Automated Planning and Scheduling. ICAPS. Berkeley, California USA, 11-15 July 2019: AAAI Press, pp. 665-673.
Buksz, Dorian, Cashmore, Michael, Krarup, Benjamin, Magazzeni, Daniele, and Ridder, Bram (2018) “Strategic-Tactical Planning for Au-
tonomous Underwater Vehicles over Long Horizons” in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
Madrid, 01.10.2018 - 05.10.2018: IEEE, pp. 3565-3572.

Fox, Maria and Long, Derek (2003), “PDDL2.1: An Extension to PDDL for Expressing Temporal Planning Domains”, in Journal of Artificial
Intelligence Research (JAIR), 20: 61-124.

Benton, J., Coles, Amanda, Coles, Andrew (2012), “Temporal Planning with Preferences and Time-Dependent Continuous Costs”. In Lee Mc-
Cluskey, Brian Williams, José Reinaldo Silva, Blai Bonet (Eds.): Proceedings of the Twenty-Second International Conference on International
Conference on Automated Planning and Scheduling, AAAI Press (ICAPS’12), 2-10.

Bezrucav, Stefan-Octavian; Corves, Burkhard (2022) “Modelling Automated Planning Problems for Teams of Mobile Manipulators in a
Generic Industrial Scenario”. Appl. Sci., 12, 2319. https://doi.org/10.3390/app12052319

Cashmore, Michael, Fox, Maria, Long, Derek, Magazzeni, Daniele, Ridder, Bram, Carrera, Arnau et al. (2015), “ROSPlan: Planning in the
Robot Operating System”. In Ronen Brafman (Ed.) Proceedings of the Twenty-Fifth International Conference on Automated Planning and
Scheduling, Held 7 - 11 June 2015 in Jerusalem, Israel. Palo Alto, Calif.: AAAI Press, 333--341.

Breiman, Leo (2001) “Random Forests”, in Machine Learning, Springer, 45:5-—32, doi: 10.1023/A:1010933404324.

Illingworth, J., Kittler, J. (1987) “The Adaptive Hough Transform”, in Transactions on Pattern Analysis and Machine Intelligence, 1IEEE,
5:690-—698, doi: 10.1109/TPAMI.1987.4767964.



