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Abstract

Leg tracking is an established field in mobile robotics and machine vision in general.

These algorithms, however, only distinguish the scene between leg and nonleg

detections. In application fields like firefighting, where people tend to choose

squatting or crouching over standing postures, those methods will inevitably fail.

Further, tracking based on a single sensor system may reduce the overall reliability if

brought to outdoor or complex environments with limited vision on the target

objectives. Therefore, we extend our recent work to a multiposture detection

system based on laser and radar sensors, that are fused to allow for maximal

reliability and accuracy in scenarios as complex as indoor firefighting with vastly

limited vision. The proposed tracking pipeline is trained and extensively validated on

a new data set. We show that the radar tracker reaches state‐of‐the‐art

performance, and that laser and fusion tracker outperform recent methods.
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1 | INTRODUCTION

Firefighting is a demanding task for the human rescue operator. In

recent efforts, mobile robots and drones are deployed to reduce the

risk and improve the efficiency of a firefighting mission (Kruijff‐

Korbayova et al., 2016). However, autonomous robots are not yet

enabled to interact directly with the rescue operators in indoor

firefighting missions. This is due to a lack of (a) acceptance and (b)

reliability of the overall sensor and actuator system. Our effort is to

bring autonomous and self‐sufficient robots to indoor firefighting

that understand their environment and improve reliability through

redundancy and robustness.

Our vision is to deploy rescue robots that can operate close to

the firefighters' squad in a human–robot collaboration approach

(see Figure 1). The robot follows and interacts with the firefighters

directly. However, as optical, auditory, and telecommunication is

expected to be mostly impaired, we cannot rely on control

interfaces operated by a squad member or the mission control.

Hence, the robot needs to interpret human behavior, reason on it,

and deduct its own actions accordingly. By this, the robot becomes

a collaborative rescue robot. The first step towards achieving this

goal is to detect, where firefighters are located relative to the

robot. This article proposes a novel leg tracker that can deal with

the complex environmental influences and varying postures applied

in a firefighting mission. The main contributions of our research

presented in this article are:

• Developed a novel multiposture leg tracker based on Random

Forests and Kalman Filters (KFs), which incorporates three classes

of postures: Standing, Squatting, and Background.
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• Adapted the multiposture leg tracker for radar and laser sensors,

with special emphasize on feature extraction, data association, and

track management.

• Generated novel annotated data set containing multiposture radar

and laser data in three environments. The data set is available via

Zenodo (Mandischer & Hou, 2023).

• Implemented trackers with track‐level fusion. Code (in C++) and

trained trees are available at GitHub (https://github.com/

nilsmandischer/multi_posture_leg_tracker).

While leg trackers are commonly used to identify people walking,

they are not made to detect other body and leg postures. In

firefighting, the rescue operators often choose a squatting over a

standing posture, hence, common approaches are impaired. We

counteract this by extending the usual binary classifier (leg vs. nonleg)

to a three class problem, incorporating classes Standing,

Squatting, and Background. Likewise, the environmental

influences are much higher in firefighting, as vision restrictions must

be accounted for. We deploy radar sensors to deal with vision

restricted scenes and fuse in laser data in a track‐level fusion

approach to improve the radar tracker in case of unrestricted vision.

By this, the tracker becomes robust against diverse environmental

influences while maintaining a common consensus through the radar

tracks. As there is no purely planar approach to multiposture leg

tracking in the state of the art, we record a new data set

incorporating radar and LiDAR sensor data to train and evaluate

our proposed tracking pipelines. All data, and implemented and

trained trackers are available open source (see above).

The article first discusses the state of the art in laser‐ and radar‐

based leg tracking, including a brief overview of multisensor fusion

(Section 2), and the methodological background of the article

(Section 3). Afterwards, Sections 4, 5, and 6 present the proposed

methods in laser and radar leg tracking, and their track‐level fusion,

respectively. Section 7 discusses the data set used for classifier

training before Section 8 presents the validation of the proposed

methodology. Finally, Section 9 summarizes the article and gives an

outlook towards future developments.

2 | RELATED WORK

Leg tracking is an established field in mobile robotics, and particularly

social and service robotics. Approaches differ in methodology and

pipeline architecture. Usually, tracking consists of three steps: (1)

detection, (2) tracking, and (3) track management. Detection divides

the scan set into potential leg clusters and establishes a consensus

over each cluster's class (leg and nonleg). The tracking step updates

tracks with the incoming leg detections and predicts further motion.

Finally, track management initializes and deletes tracks based on a set

of rules. While the methodology may differ, the overall pipeline is

similar for radar and laser leg tracking. Our leg tracker is designed for

robotic systems without dedicated graphics accelerators. Therefore,

this section majorly focuses on traditional learning and heuristic

approaches rather than deep learning. In fact, more explainable

artificial intelligence may benefit acceptance and trust (Shin, 2021).

We still give a brief overview over recent developments in this field

of deep learning‐based leg tracking to account for recent trends.

2.1 | Laser‐based leg tracking

This section covers laser‐based leg and dynamic object tracking

methods. Lindstrom and Eklundh (2001) find moving objects by

observing the environment for “violations”, that is, scan points that

violate prior observations incorporating the robot motion model.

Kluge et al. (2001) detect moving objects by convexity and track

them based on Object Flow. Fod et al. (2002) use Blob Analysis to

find candidates and track moving objects by distance threshold.

However, none of these methods is capable to distinguish legs from

other dynamic objects.

Scheutz et al. (2004) use the same approach as Fod et al. (2002)

but detect legs based on human walking patterns. Cui et al. (2008)

extend these approaches towards leg tracking. Both methods only

work with a sequence of scans and not on static frames. Fritsch et al.

(2003) define five typical features—including point count, mean, and

standard deviations—to identify legs by applying fixed thresholds.

F IGURE 1 Firefighters traversing a building as
collaborative squad with a collaborative rescue
robot.
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Xavier et al. (2005) improve on the methodology by applying

geometric features, namely, lines and circles. Liu et al. (2022) modify

the HDBSCAN algorithm (Campello et al., 2013) to extract leg

clusters. However, according to Chung et al. (2012) assuming a fixed

shape is not sufficient as clothing may alter the appearance of leg

clusters.

Arras et al. (2007) are the first to apply ensemble classifiers. They

define 14 features and use Adaptive Boosting (AdaBoost) to identify

legs. Consequently, their method provides an improved performance

compared with the prior heuristic approaches. Spinello and Siegwart

(2008) extend the method by merging clusters to compensate for

oversegmentation. They define a 50‐dimensional feature vector and

apply a Support Vector Machine (SVM) as leg detector. Fotiadis et al.

(2013) point out that distance‐based features may impact the

adaptability towards new—in particular outdoor—environments, and

propose a new distance‐independent feature set. Sharif (2020) uses

an SVM‐based detector to distinguish movers, that is, cars or

pedestrians, in autonomous driving. He combines the detector with a

particle filter and the Hungarian (Kuhn, 1955) algorithm for track

association. Linder et al. (2016) propose a multimodal detection and

tracking framework, and compare classifier methods. They observe

that a Random Forest classifier performs best for leg detection. Leigh

et al. (2015) define 15 features based on the work of Arras et al.

(2007) and detect legs with a Random Forest classifier, followed by

the application of a KF for tracking. Bellotto and Hu (2010) focus on

tracking, and compare Bayesian filters. They further apply a

Mahalanobis gating procedure and Greedy Nearest Neighbor (GrNN)

for track association. Linder et al. (2015) compare data association

methods, namely, Nearest Neighbor (NN), Global Nearest Neighbor

(GNN), Greedy NN, and a multihypothesis tracker. They emphasize

the importance of the management logic to run a sophisticated NN‐

based tracker system.

In recent years, deep learning gained significance, hence, these

methods were also applied to leg tracking. Guerrero‐Higueras et al.

(2019) propose the PeTra detection and tracking network based on

the U‐Net architecture (Ronneberger et al., 2015). They further

propose an extension in Álvarez‐Aparicio et al. (2019). PeTra is better

understood as a static background filter, which is applied to extract

leg clusters. Efstathiou et al. (2021) propose the LTGADnet network

for leg detection based on the popular YOLO architecture (Redmon

et al., 2016). However, measures are rather weak (accuracy 71%, f1‐

score 70%) which prevents a widespread use. Kohara and Nakazawa

(2019) propose a PointNET AutoEncoder for leg detection based on

the PointNET architecture (Charles et al., 2017). The approach

reaches good classification scores for one‐class leg‐detection but is

expensive in computational resources. Indeed, deep learning‐based

trackers, while showing potential in leg tracking, currently require

intensive hardware usage.

Jia et al. (2020) propose the Distance Robust Spatial‐Attention

and Autoregressive Model (DR‐SPAAM) for people detection. The

algorithm is based on the DROW detector (Beyer et al., 2018), but

reaches better robustness and accuracy, while using less computa-

tional resources. Jia et al. (2021) improve on the detector using a self‐

supervised label generation through an additional camera sensor.

Hence, DR‐SPAAM overcomes the hardware limitation of deep

learning in embedded systems, but average precision is still lower

than some ensemble classifiers, for example, in Linder et al. (2015). In

addition, firmer typically lack explainability, which prevents usage in

safety‐critical applications like firefighting. As features in ensemble

classifiers are usually hand‐crafted, they mitigate this challenge.

2.2 | Radar‐based leg tracking

This section covers radar‐based leg and dynamic object tracking

methods. Radar is particularly suited for dynamic object detection as

frequency modulation (“Doppler effect”) allows one to detect the

relative velocity of target objects. Therefore, many human tracking

methods utilize this modulation. Exemplary, Narayanan et al. (2014)

show that micro‐Doppler signatures may be used to detect certain

body motions, including breathing.

Zhang et al. (2007) and Ahtiainen et al. (2010) both detect legs by

identifying walking patterns in micro‐Doppler signatures. Similarly,

Rohling et al. (2010) distinguish pedestrians and vehicles. Held et al.

(2022) use a kinematics‐informed motion model to detect leg and

upper body motion based on micro‐Doppler signatures. They track

legs using an Extended Kalman Filter (EKF). Fang et al. (2022) use a

combination of KT‐constant false alarm ratio and MUSIC algorithm to

detect the human's pose and embed it into a particle filter. They

emphasize the usage of radar in degrading conditions, particularly in

rain. Zhang et al. (2022) propose a sequential Monte Carlo‐based

track‐before‐detection method and analyze the effects in similar

conditions as in Fang et al. (2022). Both publications confirm that

radar is not affected by degrading environmental conditions. Qian

et al. (2020) use Joint Probabilistic Data Association on ultra‐

wideband (UWB) sensors for people tracking with noise suppression.

UWB sensors have also been shown to be well applicable in

firefighting (Tiemann et al., 2020).

Bartsch et al. (2012) emphasize that human gait modeling

approaches, like in Ahtiainen et al. (2010), Rohling et al. (2010) or Held

et al. (2022), always require a sequence of scans rather than a single

frame to be analyzed. Therefore, they heuristically identify people by

applying five features based on geometry and Doppler velocity.

Castanheira et al. (2020) first segment the scan with DBSCAN (Ester

et al., 1996) and label detections using a Random Forest classifier. Majer

et al. (2019) define a 62‐dimensional feature vector, including geometry,

velocity, and intensity features, and apply an SVM classifier.

In some scenarios, Doppler Modulation may not be a feasible

source, for example, when using low bandwidth interfaces or pivoting

sensors with unknown or low precision self‐locomotion, that is, cases,

in which complex relative motions occur. Zhai et al. (2018)

concentrate on tracking and apply the Sage‐Husa Adaptive Kalman

Filter (SHAKF) to track people with drones. Zhao et al. (2019) apply

DBSCAN combined with a standard KF. Lately, we proposed a

method to track people based on a Random Forest classifier with 21

features (without velocity) and a SHAKF (Mandischer et al., 2021).
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2.3 | Multisensor tracking and fusion

This section covers sensor‐fusion approaches to people tracking using

either or both of laser or radar sensors. In literature, many approaches

use not only a single sensor source, but also combine multiple with the

aim to achieve a more reliable representation of the environment as

pointed out by Hackett and Shah (1990). Many fused object tracking

approaches originate from driver assistant systems. Möbus and Kolbe

(2004) fuse infrared and radar dynamic object trackers at track level.

Chavez‐Garcia et al. (2014) fuse LiDAR, radar, and camera data at

detection‐level for dynamic object detection and tracking. Further,

Chavez‐Garcia and Aycard (2016) improve the framework with

uncertainty management and show the potential in a real‐world

application. Scheutz et al. (2004) fuse vision, laser, and sonar data,

whereas each sensor has different objectives in the detection and only

laser is used for leg tracking. Linder et al. (2016, 2015) track legs with

laser and fuse people detection from RGB‐D and monocular vision to get

more robust people tracks. They fuse both information on the detection‐

level. Majer et al. (2019) use a separate LiDAR and radar leg tracker, but

use the laser information to improve the radar detector in a lifelong‐

learning approach. They fuse all information on the track level.

Linder et al. (2021) compare different individual human trackers,

based on 2D/3D laser and RGB‐D, and cross‐validate their usability

in multimodal tracking systems. All trackers are fused on the

detection‐level. They observe that the fused trackers achieve better

recall scores while reducing the precision. In their individual domain,

2D laser, RGB‐D, and 3D LiDAR, DR‐SPAAM (Jia et al., 2020), RGB‐D

YOLO (Linder et al., 2020), and SECOND‐DV (Zhou et al., 2019)

taught by RGB‐D YOLO reach the best scores, respectively.

3 | FOUNDATIONS OF MULTIPOSTURE
LEG TRACKING

The question may arise: Why do we need a multiposture leg tracker? On

the one hand, adding additional classes adds redundancy. In fact,

squatting leg detection compensates for those cases in which the

detector is not able to identify a leg properly due to a lack of adaptability

of the underlying classifier. On the other hand, in emergency rescue,

squatting postures are far more common and mandatory to be

detectable if a continuous track shall be established. Our multiposture

tracker is designed with firefighting in mind, but also contributes to civil

applications like autonomous driving or service robotics. We define three

types of squat: Deep Squat, Partial Kneel, and Full Kneel.

The postures are depicted in Figure 2.

Squatting is defined as a posture in which the legs are bent in a

certain angle. In Deep Squat, both legs enclose an angle of

approximately ∘90 or lower, while neither shin is touching the ground.

The angular description is vague, as there is a continuous transition from

Standing to Squatting. In Full Kneel, both shins are

positioned parallel to the ground plane. Finally, Partial Kneel

describes the intermediate posture, where one shin is in the air and the

other is touching the ground. Both kneeling postures can only be

reached by passing a state of Deep Squat (see Figure 3). Therefore, it

is reasonable to combine these postures into a single class Squat or

Squatting.

The proposed system is composed of multiple components that

are mostly interchangeable for both sensor types. However,

especially the descriptors are specific for the individual sensor. We

F IGURE 2 Types of leg posture covered by the methodology. From left: Standing, Deep Squat, Partial Kneel (leg
interchangeable), and Full Kneel.

F IGURE 3 Transition graph between Squat‐related postures
and Standing.
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design the tracker system with the tracking‐by‐detection paradigm:

Once a scan arrives, the data are segmented into clusters that

potentially depict legs. Afterwards, these candidates are labeled using

a Random Forest classifier with three classes: Standing, Squat-

ting, and Background. The results are then gated and forwarded

to the tracker which uses some type of KF. The following sections

discuss the methods used in both tracker subsystems (laser and

radar), which are mostly adaptations of established methods and

approaches from the state of the art.

3.1 | Candidate legs

In our prior work, we showed that Nearest Neighbor Clustering

(NNC) outperforms other clustering algorithms, when it comes to leg

extraction with radar (Mandischer et al., 2021). However, this

method is also prominently used by other works for laser leg

tracking, for example, Leigh et al. (2015). In NNC, every point p in an

exclusive cluster Ω holds a Euclidean distance dNN from any point in

another cluster, that is,

∈ ∈d dp p p pmin ( , ) ≥ , Ω , Ω .i j NN i i j j (1)

While the underlying algorithm is simple and fast (Konstantinova

et al., 2003), the threshold dNN significantly influences the size of the

cluster objects. Therefore, dNN needs to be determined carefully in

experiments; the results of which are presented in Sections 4 and 5.

3.2 | Ensemble classifier

Usually, mobile robots lack computational power and graphics

accelerators in particular. Therefore, deep learning techniques cannot

be applied on a broad scale. For a more robust tracker, we choose an

ensemble classifier. These classifiers suffer less from data bias or

statistical variance compared with, for example, SVMs or Bayesian

Learning (Dietterich, 2002). All classifiers in this work utilize a

Random Forest (Breiman, 2001). This classifier trains many trees of

specified depth, whereas each tree node carries a single feature

decision. The individual features are chosen from a subset of

features, which is randomly generated per tree. The trees are built

and trained according to the Classification and Regression Trees

(CART) methodology to maximize information gain on each node. As

the Random Forest follows the rule of large numbers

(Kolmogorov, 1956), a high accuracy is expected at the disadvantage

of slower computational time compared with other traditional

learning approaches.

3.3 | Tracking and motion model

In our previous work (Mandischer et al., 2021), we compared

different kinds of KFs and a multihypothesis filter for tracking human

legs with radar. We concluded that the SHAKF (Sage & Husa, 1969)

performs best for radar leg tracking within the given restrictions. Like

the original KF, the SHAKF uses a linear motion model, but

establishes a more accurate noise estimator. This property provides

robustness in applications with high noise.

We formulate the discrete linear system as

x F x q= + ,k k k k−1 −1 (2a)

z H x r= + ,k k k k (2b)

where xk is the state and zk the observation at time step k . Fk andHk

are system matrices. Further, qk and rk are process and measurement

noise, respectively, modeled as Gaussian distributions with zero mean

and known covariances Qk and Rk . The SHAKF models the

measurement noise covariance as

( )d dR R v v H P H= (1 − ) + − ,k k k k k k
T

k k k
T

−1
− (3)

with the fading memory index

d
b

b
=

1 −

1 −
.k k

(4)

Hereby, ∈b [0.95, 0.99] is the forgetting factor. Further, vk is the

prediction error, defined by

v z H x= − ˆ .k k k k
− (5)

Hereby, x̂k
− is the prior state estimate with covariance Pk

−, given

by

x F xˆ = ˆ ,k k k
−

−1 (6a)

P F P F Q= + .k k k k
T

k
−

−1 −1 (6b)

Hereby, x̂k is the corrected state estimate with covariance Pk .

Using the Kalman Gain

( )K P H H P H R= + ,k k k
T

k k k
T

k
− −

−1
(7)

the corrected state estimate is given by

x x K vˆ = ˆ + ,k k k k
− (8a)

P I K H P= ( − ) ,k k k k
− (8b)

where I is a unit matrix.

3.4 | Data association and gating

In this work, we use two data association techniques. GNN estab-

lishes optimal track associations by minimizing a cost function using a

linear assignment function. Here, the Mahalanobis distance between

tracks and detections is chosen. To accelerate computation, we apply

infinite costs if a pair exceeds a given gating test (compare

1624 | MANDISCHER ET AL.
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Mandischer et al., 2021). For minimization, we utilize the Hungarian

method (Kuhn, 1955). This method provides optimal matching in

which the sum of costs of all unique detection‐to‐track pairs is

minimal. Second, GrNN uses similar mechanisms as GNN, but

allocates pairs on a greedy basis, that is, instead of minimizing the

whole candidate space, every iteration finds and keeps the pair with

the smallest cost. Therefore, only a suboptimal assignment is

established. However, the computation is accelerated compared with

GNN (Linder et al., 2015).

4 | LASER SUBSYSTEM

Detecting squatting people in laser scans is a challenging task as the

shape varies significantly depending on the exact posture and

orientation of a person towards the sensor. Figure 4 shows some

possible configurations of leg clusters. What makes the Squatting

posture challenging is that different body parts (e.g., arms, legs, shins,

stomach, and back) can be partially or fully covered by the scan,

which also depends on the height the sensor is mounted at. Arms in

particular induce random noise to the clusters as they can be

positioned almost everywhere in the clusters, while other body parts

follow specific rules as to where they may appear.

4.1 | Feature extraction

Leg clusters are determined with NNC and a threshold of

d = 0.2NN m. To cover the large bandwidth of leg appearances, we

extend the features proposed by Leigh et al. (2015) and Linder et al.

(2016). Overall we describe 30 laser features fi as depicted inTable 1.

Features f9–f11 and f14–f16 are extensions of the linearity and

circularity features, respectively. In addition, f21 is the mean of angles

∠ p p p( )i n1 Ω inscribed by the first, last, and any intermediate point

∈p Ωi , where ∈i n{2, − 1}Ω . Further, feature f23 is the ratio of

maximal to minimal standard deviation σ in either the x or y direction,

F IGURE 4 Laser clusters of a person in different postures. (a) Standing legs, (b) Deep Squat frontal, (c) Deep Squat sideways, (d)
Deep Squat backwards, (e) Partial Kneel frontal, and (f) Full Kneel frontal.

TABLE 1 Laser features fi.

1. Size of cluster 11. Ratio of f9 to f10 21. Inscribed angular variance

2. Standard deviation 12. Circularity 22. Standard deviation of inscribed angles

3. Mean deviation from median 13. Radius of best‐fit circle 23. Aspect ratio

4. Width 14. Minimum circularity error 24. Kurtosis

5. Minimum distance between points 15. Maximum circularity error 25. Polygon area

6. Maximum distance between points 16. Ratio of f14 to f15 26. Right side occluded

7. Ratio of f5 to f6 17. Boundary length 27. Left side occluded

8. Linearity 18. Boundary regularity 28. Number of local minima ranges

9. Minimum linearity error 19. Mean curvature 29. Difference of maximum and minimum range

10. Maximum linearity error 20. Mean angular difference 30. Ratio of minimum to maximum range

MANDISCHER ET AL. | 1625
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that is, σ σ σ σmax( , )∕min( , )x y x y . The Kurtosis measures the outliers in

a statistical distribution, therefore f24 correlates with heavy outliers

and establishes knowledge of the noise level.

The feature vector is further extended using the normalization

techniques proposed by Fotiadis et al. (2013). As leg clusters may

vary depending on their distance from the sensor and the overall scan

size (especially in radar scans), normalization is required to achieve a

robust and scene‐independent classifier. Explicitly, the final 148‐

dimensional feature vector contains

• the original features f1–f30,

• f1–f30 divided by distance from sensor,

• f1–f30 multiplied by distance from sensor,

• f2–f30 divided by f1, and

• f2–f30 multiplied by f1.

4.2 | Tracking

The laser subsystem utilizes a standard KF with a constant velocity

model. The usage of a the constant velocity model was experimen-

tally verified. We observed that the update frequencies and the

motion velocities applied allow one to linearize local motion, that is, a

linear motion model is sufficient to approximate motion locally. We

also tested other models for the laser subsystem, but they only

allowed minor improvements while impacting the complexity. Hence,

the constant velocity model was chosen. The transition matrix of the

motion model is defined by













δt
δt

F =

1 0 0
0 1 0
0 0 1 0
0 0 0 1

,k (9)

where δt is the time increment between steps k − 1 and k . Its

covariance matrix is defined by σQ I=k p
2
4. As the measurement

vector x yz = [ , ]k
T only contains position information, the transition

matrix is defined by







H =

1 0 0 0
0 1 0 0

.k (10)

The measurement noise covariance is given by σR I=k m
2

2, with

σ σ<m p as the laser scans are usually reliable and precise.

4.3 | Data association

In track management, we distinguish between person tracks and

tentative tracks. Latter are such that may belong to humans or

arbitrary objects, that is, where no final class decision has been made.

Person tracks are both, Standing and Squatting people. In

track association, initially all person tracks are duplicated, such that

they may be associated with two detections simultaneously. This is

needed, as two legs or a single leg and any other body part (lower

body, arm, etc.) may belong to the same tracked person. Tracks and

detections are associated with a gate test using the GNN algorithm.

The association step is performed twice. First, the detections are

associated with the person tracks and their duplicates. Afterwards,

the leftover detections are matched with tentative tracks. This

procedure prevents that person tracks may lose detections due to

association with tentative tracks, and may consequently be deleted.

From all leftover detections after association, a grid map is generated,

which is used to prevent malformed track initialization in later

iterations. Therefore, the leftover detections are treated as occupied

space, or background.

After association, tracks are updated by the associated detec-

tions using the KF. Further, the confidence of the track is updated

according to the classification result of the detection. For person

tracks, the update step varies in two cases:

• If a person track and its duplicate are associated with detections,

but only one is labeled Squatting, the track is updated with the

Squatting detection, such that the track follows the torso

(instead of a potential arm detection).

• If only one of person track or duplicate is associated with a

detection, the track is updated with either the position of the

Squatting detection or the mean position of Standing

detection and predicted track.

In all other cases, the person tracks are updated with the mean

position of all associated detections. Afterwards, duplicates

are deleted and unmatched detections become new tentative

tracks.

4.4 | Track management

The initialization logic differs for person tracks labeled Standing or

Squatting. It is to be noted that the following criteria require the

tracks to be referenced in a static reference frame, for example, the

map frame. A Standing person track is confirmed, that is, a pair of

tentative tracks becomes a person track, under following conditions

(all parameters optimized in parameter studies):

1. The confidence of both tracks exceeds 30%.

2. Both tracks are in free space (local grid map).

3. Both tracks move over 0.5 m without separation.

In contrast, a Squatting person track is confirmed from a tentative

track if it fulfills following additional conditions, and replacing the

separation criterion (3):

3. Total traveled distance is greater than 0.5 m.

4. The track was associated with only Squatting detections in

four consecutive frames.

5. The track has moved more than 0.3 m from the initial position.

6. The velocity of the track is between 0.2 and 2m/s.
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7. The distance traveled in the current frame is between 0.02

and 0.2 m.

A person track can only be initialized if no other person track is

located nearby to avoid creating duplicates of the same person. After

initializing a person track, the according tentative tracks are deleted.

Further, a tentative track may be deleted over time if it fulfills the

deletion criteria in Section 5.5.

If a person track has been associated with more than 150

detections, it is regarded mature, while other tracks are declared

young. For track deletion, we define a static and dynamic case, which

refers to the motion state of the sensors. A track is deleted under

following conditions (all parameters optimized in parameter studies):

1. The covariance exceeds 0.81.

2. The track is not matched for ζdel consecutive frames.

3. The track travels incorrectly for χdel consecutive frames.

We define ζ = {30, 45, 15, 30}del and χ = {20, 45, 10, 30}del (dynamic‐

mature, static‐mature, dynamic‐young, and static‐young).

5 | RADAR SUBSYSTEM

Leg detections are vastly different in appearance in radar than in laser

scans (compare Figures 4 and 5). While laser scans mostly show two

separate leg clusters in case of Standing, Deep Squad, or

Partial Kneel, radar only shows blobs of different geometrical

shape and intensity. While, in theory reflection intensity may be used

in both sensors, radar relies more on this information as geometric

features become less significant. It is to be noted that the indurad

iSDR‐C radar sensors used in this work output a normalized intensity

distribution.

5.1 | Radar prefiltering

In prior work (Mandischer et al., 2019), we observed that the high

level of noise in radar scans deployed in indoor environments may be

lowered by applying an adaptive threshold. Therefore, the radar scan

is initially thresholded using the approach proposed by Otsu (1979).

In Otsu Thresholding, a histogram is split into two classes, while the

intra‐class variance is minimized and the inter‐class variance is

maximized. We use the histogram of intensities and declare two

classes: foreground and background. Hereby, the less intense

background class contains objects that are mostly noise or located

behind multiple other objects. The threshold thOtsu is determined by

maximizing the Otsu gradient λ, defined by

λ
ω μ μ ω μ μ

ω σ ω σ
=

( − ) + ( − )

+
,

A A B B

A A B B

2 2

2 2 (11)

with two classes A and B and their mean μ, probability distribution ω,

and variance σ (no index refers to whole scan), defined by

∑σ
M

i μ m=
1

( − ) ,A
i τ

th

A i
=

2

min

Otsu

(12a)

∑σ
M

i μ m=
1

( − ) .B
i th

τ

B i
= +1

2

Otsu

max

(12b)

Hereby, τ is the discrete (and integer) intensity class, mi the

number of elements in each class, and M the overall scan size. We

then use Stochastic Hill Climbing to solve the maximization problem.

By this procedure not only the background to detection ratio but also

the overall scan size is lowered, which improves computational

efficiency of later steps.

5.2 | Feature extraction

As radar clusters are less precise, the NNC threshold is raised to

d = 0.3NN m and clusters with less than five points are neglected.

As depicted in Figure 5, patterns are not easily found in radar

clusters. However, Squatting clusters usually contain more

points and produce more eccentric geometrical shapes. For

feature extraction, we use a similar feature set as in Section 4.1.

Within, some geometric features are exchanged for intensity‐

based features. Further, since less knowledge can be gained from

enclosed points, some features describe properties exclusively on

the cluster's boundary (g g g g g, , , ,2 15 16 23 29). The feature set is

depicted in Table 2. Again, the set is normalized which results in

a 143‐dimensional feature vector. To emphasize the difficulty in

finding a good feature description in radar scans and consequently

making good estimates, Figure 6 shows a comparison of radar and

laser detections.

F IGURE 5 Radar clusters of a person in different postures. Colors (from red/low to green/high) indicate reflection intensities. (a) Standing

person cluster and (b) Squatting person cluster.
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TABLE 2 Radar features gi.

1. Size of cluster 11. Radius of best‐fit circle 21. Aspect ratio

2. Number of points on contour 12. Minimum circularity error 22. Kurtosis

3. Standard deviation 13. Maximum circularity error 23. Polygon area

4. Mean deviation from median 14. Ratio of g12 to g13 24. Mean intensity

5. Width 15. Boundary length 25. Median intensity

6. Linearity 16. Boundary regularity 26. Standard deviation of intensity

7. Minimum linearity error 17. Mean curvature 27. Minimum intensity

8. Maximum linearity error 18. Mean angular difference 28. Maximum intensity

9. Ratio of g7 to g8 19. Inscribed angular variance 29. Average intensity on contour

10. Circularity 20. Standard deviation of inscribed angle

F IGURE 6 Classification results compared in laser and radar scans. Shown are Standing (blue sphere), Squatting (blue box), and
Background (black cylinder) detections; both images are excerpts of the entire scene. (a) Laser detections after classification. Clusters are
connected by green lines. (b) Radar detections after classification. The blue frame encloses True Positives and the red frames enclose False
Positives (compare Section 8.1). Clusters are enclosed by black lines.

5.3 | Tracking

To accommodate for higher noise in the radar scan, the

KF is exchanged with the SHAKF described in Section 3.3 and

which we already successfully applied in Mandischer et al. (2021).

We choose a forgetting factor of b = 0.95, which puts much

higher weight on more recent scans. Due to the lower

update frequencies, the process noise covariance matrix Qk

also needs to account for acceleration, and is consequently

defined by
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











δt

δt

Q =

0 0

0 0

0 0

0 0

.k

δt δt

δt δt

δt

δt

4 2

4 2

2
2

2
2

4 3

4 3

3

3

(13)

5.4 | Data association

As radar produces many more clusters than laser, GrNN is

used for data association. As the detections are way less precise, cover

the same object with multiple data points, and are subject to noise, it is

not directly possible to create a local grid map similar to the laser

subsystem. In Mandischer et al. (2019), we used the prefilter

(Section 5.1) to further reduce the point set to a single point per cluster.

However, in experiments we observed that this method may become

unstable when applied to the volatile radar tracks. To counteract this

instability and to save computational resources, we renounce the usage

of a local grid map for the radar subsystem. To cope with the challenges

induced by renouncing the local grid map, that is, missing discrimination

from static map objects, person tracks are still duplicated, but the data

association step is only performed once. Consequently, the detections

are more likely to get matched with high certainty person tracks.

5.5 | Track management

Track initialization and deletion uses the same logic as presented in

Section 4.4, but with different thresholds. Further, the logic used to

initialize Squatting laser tracks from tentative tracks is applied to both

Standing and Squatting track initialization in the radar subsystem.

In addition, we also distinguish between the static and dynamic case on

initialization. A track is initialized under following conditions (static/

dynamic; all parameters optimized in parameter studies):

1. The confidence exceeds 30/50%.

2. Total traveled distance is greater than 0.7/1m.

3. The track has moved more than 0.5/0.8 m from the initial position.

4. The track's velocity is between 0.1/0.3 and 2m/s.

5. The distance traveled in the current frame is between 0.05/0.08

and 0.5/0.4 m.

6. The track is matched in two/eight consecutive frames.

Initialized tracks use the same convention for maturity as in the laser

subsystem (Section 4.4). A track is deleted under following conditions

(all parameters optimized in parameter studies):

1. The confidence is lower than ψdel.

2. The track is not matched for ζdel consecutive frames.

3. The track travels incorrectly for χdel consecutive frames.

Here, ψ ζ= {0.2, 0.2, 0.3, 0.3}, = {10, 20, 8, 15}del del , and χ = {7, 15,del

4, 10} (dynamic‐mature, static‐mature, dynamic‐young, and static‐young).

After initialization, radar tentative tracks are not directly deleted. Instead,

they follow a similar deletion logic as the mature or young tracks but with

different thresholds. They are deleted if criterion (2) is met with ζ = 8del ,

or if the track moved more than 0.6m between two consecutive frames.

6 | TRACKING LEVEL FUSION

The aim of sensor fusion is to utilize the benefits of both tracking

subsystems, while balancing their downsides. The laser tracker is precise

in classification and positional accuracy, but is majorly impacted by

weather or in vision degrading environments. In contrast, the radar

tracker is not impacted by environmental conditions and also allows one

to detect objects behind thin obstacles, but only reaches average

accuracy. Hence, sensor fusion makes the system robust against

degrading factors, while maintaining a reasonable accuracy.

The fusion method is based on Bayesian filtering as proposed by

Bellotto and Hu (2010). Bellotto et al. (2015) provide a library for the

lenient implementation of different Bayesian filter networks (https://

github.com/LCAS/bayestracking). The fusion uses an EKF with a constant

velocity model for tracking. The track association is then performed using

the GrNN variant. However, in contrast to the individual trackers, each

person is only represented by at most one input track, that is, detection,

as legs are already merged in the subsystems. Tracks are initialized if a set

of unmatched detections exists in a certain spatial and temporal space. At

least five tracks from radar within 1.5 s or five tracks from a laser within

0.5 s need to be observed, before a track is initialized. Track deletion is

performed based on a covariance threshold (sum of squared individual

covariances exceeds 1.5). The full system is depicted in Figure 7. The final

outputs of the track fusion are in the form of person tracks.

7 | DATA SET

Training and testing data sets share the same environments and setups.

We make sure to strictly separate training and testing data in the later

evaluation. The total data set consists of 31,300 laser and 9600 radar

samples split into three classes Standing, Squatting, and Back-

ground. The composition of the data set and the split into training and

testing sets are listed inTable 3. All data are collected using a Summit XL

Steel mobile robot by Robotnik equipped with an indurad iSDR‐C pivoting

radar sensor and a SICK S300 Professional LiDAR. Both sensors provide

planar 2D measurements of approximately 0.33m (LiDAR) and 0.43m

(radar) off ground level. The full setup is depicted in Figure 8. The radar

sensor by indurad is special in that it provides full ∘360 planer scans of the

environment. Commonly, radar sensors are restricted in their angular

range or 1D sensors are used, for example, in driver assistance systems. In

addition, radar usually suffers from low angular resolution in the presence

of multiple targets (Rasshofer & Gresser, 2005). The sensor used in this

work, has a much higher angular resolution, even in close proximity. This

comes with the downsides, that the maximal range is reduced to 16m

and that the sensor offers no Doppler or phase measures. However, the

sensor provides standard data otherwise, hence, the transferability of the

results to other sensors is given.
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The following sections describe the reference environments.

These are essentially the same as those used in our prior work

(Mandischer et al., 2021). The data recorded is available at

Mandischer and Hou (2023).

7.1 | Indoor environment

The lab at IGMR (IGMR Lab, Figure 9a) is used as an indoor reference

environment. Within, many metallic objects induce noise to the radar

readings and are, therefore, partially covered by wooden boards. The

environment is cluttered and complex for both sensors. People move

in direct visibility range of the robot's sensors, but are eventually

occluded by a machine bed (Figure 9a, right side). Due to space

limitation, a maximum of two people may walk around the robot.

7.2 | Outdoor environments

Outdoor data are generated in two different environments, which mainly

differ in their controllability. The first is a walkway between two buildings

(Buildings, Figure 9b). This environment allows for tests with only

controlled influences. However, the lamp posts to the side and the

metallic coating of one building induce false leg detections to both

subsystems, and noise to the radar sensor in particular. As the walkway is

particularly long, higher distances may be realized compared with all

other environments. The Buildings environment fits up to five people.

The second environment is a walkway along a road (Road, Figure 9c). The

buildings alongside are mostly made of stone and have low noise

induction potential. However, cars parking along or passing by on the

road may induce noise. This environment is only traversed with a moving

robot, while both other incorporate static and moving robot states.

Therefore, this environment is only used for testing rather than training,

but establishes the most realistic use‐case.

8 | RESULTS

In this section, we evaluate the proposed system on the classifier and

tracking level. We, further, compare the results to the state of the art,

conclude with a discussion of the results, and show the potential and

usability for vision‐degraded environments. All tests use reference

hardware (AMD Ryzen 7 5800H, NVIDIA GeForce RTX 3060 Laptop

GPU, 16 GB RAM) and software (Ubuntu 18.04, ROS Melodic,

openCV 3.4). All modules are implemented in C++.

8.1 | Classifier evaluation

For classifier evaluation, we consider every correctly labeled

detection that overlaps with a real object as True Positive (TP).

Along this definition, we define True Negatives (TNs), False Positives

F IGURE 7 Individual and fusion pipeline from
sensor input to person tracks. EKF, Extended
Kalman Filter; GNN, Global Nearest
Neighbor; GrNN, Greedy Nearest Neighbor; KF,
Kalman Filter; NNC, Nearest Neighbor
Clustering; SHAKF, Sage‐Husa Adaptive Kalman
Filter.

TABLE 3 Composition of data sets for classifier training and testing.

Sensor Set Standing Squatting Background

Laser Train 7763 5410 9148

Test 3273 2479 3282

Radar Train 2085 2195 2719

Test 1720 1142 1814
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(FPs), and False Negatives (FNs). As the proposed system is a

multiclass tracker we use macromeasures and accuracy for evalua-

tion. Macro refers to the classes being evaluated individually and

then combined into an average value. The measures precision pr ,

recall re, and f1‐score f1 are defined by

∑pr
K

TP

TP FP
=

1

+
,

k

K
k

k k=1

(14a)

∑re
K

TP

TP FN
=

1

+
,

k

K
k

k k=1

(14b)

∑f
K

TP

TP FP FN
1 =

1 2

2 + +
,

k

K
k

k k k=1

(14c)

where K is the number of classes (here K = 3). Further, the accuracy

ac is defined over all correct classifications (microaccuracy) by

ac
TP TN

TP TN FP FN
=

∑ +

∑ + + +
.

k
K

k k

k
K

k k k k

=1

=1

(15)

To evaluate the influence of certain features on the class

decision, Figures 10 and 11 depict the importance of radar and

laser features, when no normalization is applied. In laser

classification, most important features are width, left‐sided

occlusion, and circularity error. Cluster width is important to

discriminate Standing and Squatting people, as clusters

tend to be wider in Squatting posture. Occlusion, however, is

atypical in leg detection. In our training set, the majority of

occlusion comes from Background samples (9090 Back-

ground, 495 Standing, and 114 Squatting) as the

pedestrians are usually in free sight of the robot and may only

be occluded due to other pedestrians passing by. Therefore, the

occlusion state is important to distinguish Background from

other detections. The difference in left‐ and right‐sided occlusion

comes from a minor data set bias towards counter‐clockwise

motion as trial participants were free to choose the direction of

movement. In radar classification, the overall features are more

streamlined. The distance from the sensor is of major importance,

as the ability to distinguish targets close to each other deterio-

rates at larger distances, hence, candidates are more likely to be

detected in closer areas. This is due to the angular resolution of

the radar sensor, which particularly takes effect in farther areas.

However, the importance of the distance features is lower in the

final feature set, as the distance from the sensor is used for

F IGURE 8 Hardware used in data generation
and evaluation. The 3D camera Orbbec Astra is
used for reference videos in the data sets.

F IGURE 9 Reference environments used for data generation and evaluation. Despite the conditions seen in the images, all outside data was
taken in dry weather. (a) IGMR Lab (Mandischer et al., 2021), (b) Buildings, and (c) Road.
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normalization. Note that the radar sensor used for data genera-

tion has a lower maximal range (18 m) than the laser sensor

(30 m). Other important features are similar to the laser

subsystem.

The performance of the classifiers is measured with Equations 14

and 15. Table 4 depicts the overall scores, while Tables 5 and 6 show

the individual confusion matrices. The laser classifier discriminates

well between all classes as indicated by the high values on the main

diagonal. The radar subsystem reaches good results when discrimi-

nating Squatting from Background, but fails to well discrimi-

nate postures. However, in a collaborative firefighting scenario with

limited vision, the system should track people robustly. Therefore,

our objective is less to have a system that can discriminate

Squatting from Standing, but rather identify people against

Background. Hence, the radar tracker is well suited for this task.

On the contrary, subpar discrimination of Squatting from

Standing may limit the usage for high‐level reasoning algorithms,

for example, to identify the human task performed, which probably

requires a human posture estimate, besides other features. The

overall scores of the classifiers are impacted by the lack of

discrimination between Squatting and Standing in the

radar case.

8.2 | Tracker evaluation

To measure the tracker performance, we use the CLEARMOT (Bernardin

& Stiefelhagen, 2008) metrics Multiple Object Tracking Accuracy (MOTA)

and Multiple Object Tracking Precision (MOTP), defined by

F IGURE 10 Ten most important laser features in class discrimination without normalization.

F IGURE 11 Ten most important radar features in class discrimination without normalization.

TABLE 4 Scores of each classifier trained on indoor and outdoor
data (runtime refers to average).

Sensor ac(%) pr(%) re(%) f1(%) Runtime (ms)

Laser 97.17 97.20 97.09 97.14 4.44

Radar 78.40 79.78 74.62 75.07 24.84

TABLE 5 Confusion matrix of laser classifier (absolute and
relative distributions).

GT \ Detected Standing Squatting Background

Standing 3174 96.98% 40 1.22% 59 1.80%

Squatting 31 1.25% 2407 97.10% 41 1.65%

Background 54 1.65% 59 1.80% 3169 96.56%

Abbreviation: GT, ground truth.
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FP MIS IDS
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= 1 −

∑ ( + + )

∑
,

k k k k
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(16a)
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=
∑ ∑

∑
,

k i
n

i k

k k

=1 ,
k

(16b)

whereMIS is the number of missed detections (also referred to as FN)

and IDS is the number of ID switches. We also count the case in

which a known person reappears in the line of sight of the sensor and

gets assigned a new ID as ID switch. Further, GTTk is the number of

ground truth tracks in the current frame k . In MOTP, d is the distance

between track and GT track, and nk is the number of matches. A

person is labeled visible if that person generates a cluster of at least

three points in the laser scan (compare Leigh et al., 2015), or five

points in the radar reading, respectively.

For the feasibility tests, we use a static robot in the Buildings

environment with 4–5 people. The pedestrians switch from Stand-

ing to Squatting posture arbitrarily and may move out or into

the area covered by the sensors. Table 7 compares the tracker

performances with varying people count. Within, cycle times are

represented as the individual time taken to evaluate the subsystem

from input to output. However, as the fused track may be generated

from radar and/or laser tracks, its cycle time represents a mean of

these subsystems based on the ratio of incoming radar and laser

tracks, that is,

t t t t= max( , ) +fusion total laser radar fusion individual, , (17)

per cycle. The laser tracker reaches a high MOTA in all cases with low

impact from increasing the people count. However, the cycle time is

higher as in the other subsystems due to the update of the grid map.

The radar tracker loses almost 10% in MOTA between tests. The

MOTP is sufficient for all test cases. The fused tracker shows good

potential to increase the inaccuracies of the radar subsystem.

However, due to the delays induced by the low update rate of the

radar sensor, synchronizing both tracks spatially is challenging, hence

the impaired MOTP.

It is notable that the fused tracker has lower overall scores than

the laser‐only tracker, which indicates that using the latter may

improve tracking performance. However, we use radar as the main

sensor. This is as radar is available in both, restricted and unrestricted,

visual conditions. Therefore, we do not need to observe the visual

conditions and can rely on that the radar tracker builds a congruent

baseline to the generated human tracks. From the perspective of

radar tracking, fusing in laser information increases the MOTA

significantly in scenes without vision restriction. However, if tracking

strategies are to be adapted depending on the observed visual

conditions, the tests indicate that a shift from radar‐only to laser‐only

tracking would be beneficial instead of using the fusion approach.

AsTable 7 only includes short‐term tests, we define a second test

case to show the long‐term potential of the proposed methodology.

Within, two people walk around a static robot for ten minutes, while

arbitrarily choosing Standing or Squatting postures. Two or

three people is the standard use‐case for firefighting squads in

Germany, whereas two is more common in general Ausschuss

Feuerwehrangelegenheiten, Katastrophenschutz und zivile Verteidi-

gung (2008). The test results are depicted inTable 8. Comparably, the

method is not impacted by raising the test length. In fact, all trackers

slightly increase in MOTA.

After showing the good performance of the proposed method in

the static case, we test the system in motion, that is, robot moving at

0.5m/s. The velocity is typical for firefighting applications, as

firefighters choose similar or lower velocities. Beforehand, we

conducted a video analysis on professional indoor firefighting, which

resulted in mean velocities of 0.5 m/s (Standing) and 0.3 m/s

(Squatting). Due to limited data samples of moving firefighters in

smoke, the values are nonsignificant, but may be used as a rough

estimate.

TABLE 6 Confusion matrix of radar classifier (absolute and
relative distributions).

GT \ Detected Standing Squatting Background

Standing 1490 86.63% 190 11.05% 40 2.33%

Squatting 544 47.64% 597 52.28% 1 0.09%

Background 168 9.26% 0 0.00% 1646 90.74%

Abbreviation: GT, ground truth.

TABLE 7 Tracker performances with one and many people present.

Sensor People Frames FP MIS IDS MOTA (%) MOTP (m) Runtime (ms)

Laser 2 1520 0 147 4 94.37 0.07 24.45

5 1521 5 659 12 88.51 0.07 23.20

Radar 2 598 40 100 8 82.99 0.06 6.27

5 598 70 263 23 79.94 0.05 9.07

Fusion 2 2118 27 283 5 91.14 0.16 11.04

5 2119 22 1006 13 86.40 0.16 12.79

Note: Data captured in Buildings. Tests cover similar durations. Runtime refers to the average of the individual system.

Abbreviations: FP, False Positive; IDS, number of ID switches; MIS, number of missed detections; MOTA, Multiple Object Tracking Accuracy; MOTP,
Multiple Object Tracking Precision.
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As our use‐case is to follow single targets, we design the final test

such that the robot follows a single person (manually controlled to

mitigate input errors), while others pass by arbitrarily. Only the target

person may choose the Squatting posture. Table 9 shows the results

in environments Buildings and Road. While moving, the scores are

impaired compared with the static case. This is due to the altered

management logic. In addition, pedestrians walking by are only briefly in

the field of view of the sensors. Therefore, they may be completely

missed due to restricted track initialization criteria, which is depicted in

the high number of MIS. However, in both tracks, the target person is

tracked continuously without impairment; the major impairments come

from other pedestrians. The resulting measures are on par with the state

of the art (see Table 10) in the moving robot case, and exceeding the

state of the art in the static case. Thus, we conclude that the tracking

system is suitable for the defined application.

8.3 | Discussion

As presented in the prior sections, the overall tracker performance is

good compared with the state of the art. Including a Squatting

TABLE 8 Long‐term performance with two people in
environment Buildings.

Sensor Frames FP MIS IDS MOTA (%) MOTP (m)

Laser 7615 6 677 15 94.62 0.07

Radar 2984 202 408 42 84.33 0.05

Fusion 10,599 105 1176 14 92.44 0.13

Abbreviations: FP, False Positive; IDS, number of ID switches; MIS,
number of missed detections; MOTA, Multiple Object Tracking Accuracy;
MOTP, Multiple Object Tracking Precision.

TABLE 9 Performance with moving robot.

Sensor Environment Frames FP MIS IDS MOTA (%) MOTP (m)

Laser Buildings 3043 560 141 11 87.65 0.06

Road 3044 628 1164 11 71.17 0.05

Radar Buildings 1198 184 286 12 77.07 0.06

Road 1198 327 478 7 53.99 0.05

Fusion Buildings 4241 658 490 2 85.38 0.12

Road 4242 649 1817 13 69.08 0.13

Abbreviations: FP, False Positive; IDS, number of ID switches; MIS, number of missed detections; MOTA, MultiObject Tracking Accuracy; MOTP,
MultiObject Tracking Precision.

TABLE 10 MOTA and MOTP measures of state‐of‐the‐art one‐class detectors as indicated by their respective publications.

Source Sensor type(s) Classifier MOTA (%) MOTP (m)

Efstathiou et al. (2021) Laser Deep learning 70.81* 0.032**

Mandischer et al. (2021) Radar Ensemble 81.19 n.a.

Castanheira et al. (2020) Radar Ensemble 97.80*,*** n.a.

Kohara and Nakazawa (2019) Laser Deep learning 90.74* n.a.

Majer et al. (2019) Laser, radar Ensemble n.a. 0.106

Zhao et al. (2019) Radar Ensemble n.a. 0.160

Álvarez‐Aparicio et al. (2019) Laser Ensemble n.a. 0.390**,***

Guerrero‐Higueras et al. (2019) Laser Ensemble n.a. 0.180**,***

Linder et al. (2016) Laser, RGB‐D Ensemble 89.40 n.a.

Leigh et al. (2015) Laser Ensemble 33.20 0.160

Linder et al. (2015) Laser, RGB‐D Ensemble 82.20 n.a.

Bartsch et al. (2012) Radar Heuristic 95.30* n.a.

Bellotto and Hu (2010) Laser Ensemble n.a. 0.138**

Abbreviations: MOTA, Multiple Object Tracking Accuracy; MOTP, Multiple Object Tracking Precision; n.a., not available.

*Accuracy instead of MOTA.

**Mean error instead of MOTP.

***Best indicated score.
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posture improves the tracking performance, in particular in the radar

case when discriminating people from Background. Further, a fusion

of laser and radar on the track level can compensate for the downsides

of the radar subsystem and will improve the tracking accuracy in visually

unrestricted environments. However, tests have shown that the system

performs better with static sensors. We assume that more tweaks in the

initialization logic will make the system more robust in the general use‐

case. However, this is not what we desire. The use‐case for the system is

firefighting in which the robot follows a single target person with one or

two other people present and usually occluded by the target person due

to the formation of lines. Within, long‐term feasibility is of particular

interest. When the leg track is lost during a limited vision scene, in which

the vision sensors tasked with specific person identification are impaired,

and in which the system fully relies on the leg track, the re‐detection of

the target person may no longer be possible; the system consequently

fails. The long‐term test supports a good usability in such applications.

Further, in this scenario it is more important to establish a robust track

than to initialize tracks faster (which would be the more general case). In

prior work (Mandischer et al., 2019), we have indicated that radar has no

impairments by smoke or dust (see also Fang et al., 2022; Zhang

et al., 2022), therefore, we assume that the results are similar to the

firefighting use‐case. However, future tests will need to support this

assumption.

On the contrary, the data—while well suited for the general case—

only depict a limited number of participants and clothing. In contrast to

our latest work (Mandischer et al., 2021), no female pedestrians are

covered, which results in a lack of diversity. Further, only casual clothing

is included. The first tests (see Figure 12) show that the tracker trained

with the data set also works well with firefighters' clothing, but further

evaluation is pending. However, the presented results and the outlook

towards firefighting supports the general feasibility in the use‐case.

9 | CONCLUSION

In this article, we proposed a novel pipeline for multiposture leg

tracking incorporating Standing and Squatting postures. We

first introduced a definition of the postures and showed how to

identify leg candidates and track them using KFs. We proposed two

novel tracker pipelines for laser and radar sensors, including new

feature descriptors and track management logic. Both trackers

generate leg candidates using NNC. The laser tracker is based on a

combination of GNN data association and a KF with a constant

velocity model. The radar tracker is based on Otsu Filtering

(Mandischer et al., 2019), GrNN data association, and the SHAKF.

Both, trackers are fused on the track level using the Bayesian fusion

framework proposed by Bellotto et al. (2015). We evaluated the

system profoundly. First, we defined a new data set with 40,000 data

samples (Mandischer & Hou, 2023), which is used for classifier

training and testing. We evaluated the performance of the classifier

and tracker individually, showing good results in all test cases. Finally,

we discussed the results and gave an outlook towards real firefighting

applications.
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F IGURE 12 Tracked path (left; including orientations; from start “S1” to goal position “E1”) of Tauchertechnik (Aschenbrenner, 1999) (freely
translated: “Diving Search”) with firefighter's clothing (right). Tracked entirely in Squatting posture, in a new environment, and with a person
not included in any data set wearing full personal protective equipment.
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