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Abstract

Climate observations are crucial for societies around the globe to adapt to natural hazards

in a changing climate. However, large parts of the world, especially developing countries,

do not have sufficient access to climate information. Rainfall is the major driver of hydro-

logical processes that cause flooding or droughts which are responsible for the majority of

natural disasters. Precipitation is especially hard to estimate and forecast due to its high

spatial and temporal variability. There is also a large heterogeneity in the abundance of

conventional rainfall sensors such as rain gauges and weather radars and their setup is cost

and maintenance-intensive. To close the observational gap for rainfall sensors commercial

microwave links (CMLs) to measure path-averaged rainfall are a promising alternative

since more than 90% of the global population lives in areas where they are deployed.

However, due to their opportunistic nature and indirect measurement, they are prone

to systematic and random errors that require quantification, attribution to causes, and

correction in order to provide high-quality quantitative precipitation estimates (QPE).

The same holds for systematic errors in weather radar QPE. The objective of this the-

sis is the improvement of CML and weather radar QPE by mitigating systematic errors.

The main innovation is the application of deep learning techniques which have proven to

provide high-performing solutions to model atmospheric processes. Convolutional neural

networks (CNNs) are applied to improve the detection of rain events in commercial mi-

crowave link data in order to reduce the impact of attenuation falsely attributed to rainfall

by more than 50%. Another application is the simultaneous increase of the temporal res-

olution, ground-adjustment, and advection-correction of radar QPE to reduce biases by

20% and mitigate a sampling error. Additional studies to investigate and disentangle the

complex error structure of commercial microwave links have been conducted: First, the

performance of state-of-the-art CML processing techniques and the resulting CML QPE

were compared using one year of country-wide rainfall observations identifying processing

steps with the highest impact on QPE quality. Second, missing rainfall extremes due to a

complete loss of signal in heavy rain (blackouts) have been investigated showing that they

occur more frequently than radar-derived climatology suggests. Third, signal fluctuations

that are not due to rainfall (anomalies) have been detected using manual data flagging

and their impact on CML QPE has been investigated. While there was ambiguity in the

flagging, removing anomalies significantly improved the quality of rainfall estimates. In

summary, the presented results show that systematic errors in CML and weather radar

QPE can be quantified and corrected using a data-driven approach, but attribution to

causes remains difficult. Trained artificial neural networks prove to be a robust tool to

provide high-quality QPE that can be easily transferred to new locations and future time

periods within the same climatic region. CML QPE is shown to have a remarkably high

quality when compared to gauge-adjusted weather radar QPE and the results presented

will foster a successful deployment of CMLs to close the observational gap in climate

science.
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Zusammenfassung

Klimabeobachtungen sind von großer Bedeutung, damit sich menschliche Gesellschaften

an Naturgefahren in einem sich verändernden Klima anpassen können. Große Teile der

Welt, insbesondere Entwicklungsländer, haben jedoch keinen ausreichenden Zugang zu Kli-

mainformationen. Besonders Niederschlag ist, als Hauptfaktor hydrologischer Prozesse, für

einen Großteil der auftretenden Naturkatastrophen, wie Überschwemmungen oder Dürren,

verantwortlich und deshalb als Variable für Klimaanpassungsstrategien unerlässlich. Auf-

grund seiner hohen räumlichen und zeitlichen Variabilität ist es zudem besonders schwierig

Niederschlag präzise zu messen und vorherzusagen, weshalb ein besonders dichtes Netz an

Observationen nötig ist. Die globale Verteilung herkömmlicher Niederschlagssensoren,

wie Regenmesser oder Wetterradare, ist jedoch sehr inhomogen und ihr Betrieb ist sehr

kosten- und wartungsintensiv. Um die Lücken in der Verfügbarkeit präziser Niederschlag-

sobservationen zeitnah zu schließen ist deshalb die Nutzung bestehender Infrastruktur

besonders vielversprechend. Kommerzielle Richtfunkstrecken (CMLs), die zur Messung

des pfadgemittelten Niederschlags verwendet werden können sind eine vielversprechende

Alternative zu herkömmlichen Messnetzen, da mehr als 90% der Weltbevölkerung in Ge-

bieten mit Mobilfunknetzwerken lebt, in denen CMLs betrieben werden. Aufgrund der

opportunisten Nutzung von CML Daten und der indirekten Messung sind CMLs jedoch

anfällig für systematische und zufällige Messfehler. Diese müssen quantifiziert, möglichen

Ursachen zugeordnet und anschließend korrigiert werden, um hochwertige quantitative

Niederschlagsmessungen (QPE) zu liefern. Das Gleiche gilt für systematische Fehler

in Wetterradarmessungen. Das Ziel dieser Arbeit ist die Verbesserung von CML und

Wetterradar QPE durch die Kompensation von systematischen Fehlern. Die wichtigste

Neuerung in dieser Dissertation ist die Anwendung von Deep-Learning-Techniken, die

geeignete Lösungen für die Modellierung von Niederschlagsprozessen bieten. Im speziellen

werden in der vorgestellten Arbeit Convolutional Neural Networks (CNNs) eingesetzt,

um die Detektion von Regenereignissen in Daten kommerzieller Richtfunkstrecken zu

verbessern und den Beitrag von fälschlicherweise dem Regen zugeschriebener Dämpfung

um mehr als 50% zu reduzieren. Eine weitere Anwendung von CNNs bestand in der

gleichzeitigen Erhöhung der zeitlichen Auflösung, einer Anpassung an bodennahe Messun-

gen und einer Advektionskorrektur von Radarniederschlagsmessungen. Dies erlaubte die

Reduktion des mittleren Fehlers um 20% und die deutliche Abmilderung von Sampling-

Fehlern. Um die Korrektur von Messfehlern zu unterstützen wurden weitere Unter-

suchungen durchgeführt, um das Verständnis über die komplexe Fehlerstruktur kom-

merzieller Richtfunkstrecken zu verbessern. Zuerst wurde die Effektivität im Forschungs-

feld etablierter CML-Datenverarbeitungstechniken und die daraus resultierende CML-

QPE anhand eines Jahres landesweiter Messungen verglichen. Anschließend wurden fehlen-

de Niederschlagsextreme aufgrund eines vollständigen Signalausfalls bei Starkregen (Black-

outs) untersucht, wobei sich herausstellte, dass diese häufiger auftreten, als eine von

Wetterradarmessungen abgeleitete Klimatologie vermuten lies. Zusätzlich wurden Sig-
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nalschwankungen, die nicht auf Regenfälle zurückzuführen sind (Anomalien), durch manuel-

le Qualitätskontrolle der Daten identifiziert und ihre Auswirkungen auf die CML-QPE un-

tersucht. Trotz Mehrdeutigkeiten bei der Kennzeichnung konnte durch die Entfernung der

Anomalien die Qualität der Niederschlagsschätzungen deutlich verbessert werden. Zusam-

menfassend zeigen die Ergebnisse dieser Dissertation, dass systematische Fehler in CML

undWetterradardaten mit einem datengetriebenen Ansatz quantifiziert und korrigiert wer-

den können, wobei eine Zuordnung zu potentiellen Ursachen schwierig bleibt. Trainierte

künstliche neuronale Netze erweisen sich als robustes Instrument zur Bereitstellung qual-

itativ hochwertiger QPE, die leicht auf neue Standorte und künftige Zeiträume innerhalb

derselben Klimaregion übertragen werden können. Es konnte außerdem gezeigt werden,

dass CML-QPE eine bemerkenswert hohe Qualität im Vergleich mit stationsangeeichten

Wetteradardaten aufweist. Die präsentierten Ergebnisse sind ein wichtiger Schritt hin zur

Operationalisierung von CML Niederschlagsmessungen und damit einer Verbesserung der

globalen Verfügbarkeit von wichtigen Klimainformationen.

ix





Chapter 1

Introduction

1.1 Motivation

The Observational Gap in Climate Science

Climate change mitigation and adaptation are among the most important challenges hu-

manity is facing today (IPCC, 2022a,b). A large proportion of the earth’s population is

experiencing limited freshwater supply, a development which has been known for decades

and which will be an increasing issue due to population growth and climate change (Wat-

son et al., 1996; Vörösmarty et al., 2000). At the same time, the International Federation

of Red Cross and Red Crescent Societies (IFRC) reports that 83% of all-natural disas-

ters in the 2010s were caused by weather and climate extremes killing more than 410,000

people (IFRC, 2021). Rainfall is the major driver of the hydrologic cycle and its spatial

and temporal distribution strongly affects human societies with at least half of all natu-

ral disasters caused by rainfall, like floods and landslides (IFRC, 2021). Climate model

simulations and observations support the physical theory that, globally, both mean and

extreme precipitation increase with higher average temperatures (Lenderink et al., 2011;

Berg et al., 2013; IPCC, 2021). Some studies even suggest a potential underestimation of

this relative increase in climate projections (Allan and Soden, 2008). At the same time,

the contrast between wet and dry periods will likely increase and lead to more intense

droughts with a faster onset (Trenberth et al., 2014). Due to this development, the rele-

vance of finding measures to mitigate the impact of natural disasters is extremely high.

Systematic observations of the earth’s climate help mitigate losses caused by climate ex-

tremes. Both, drought monitoring and flood forecasting rely on accurate initial conditions

provided by rainfall observations. Novel early warning systems build their strengths on

underlying seamless prediction pipelines that combine observations, nowcasting, and nu-

merical weather prediction to provide optimal forecasts as potentially hazardous events

approach (Trömel et al., 2021). The assimilation of observations has become a key in-

gredient for accurate short to medium-range forecasting models (Potthast et al., 2022).

Additionally, accurate reference data is beneficial for earth system model development.

Yet, climate observations remain sparse and are not homogeneously distributed around

the globe. According to the United Nations Framework Convention on Climate Change,

1



Chapter 1. Introduction

”one third of the world, including sixty percent of Africa, does not have access to early

warning and climate information services” (UNFCCC, 2022). They particularly empha-

size ”the need to address existing gaps in the global climate observing system, particularly

in developing countries”. To close this large observational gap in due time not only the

time and cost-intensive installation of conventional sensors should be considered. The

opportunistic usage of available infrastructure is a promising alternative.

Rainfall Remote Sensing

This thesis focuses on rainfall. It is especially challenging to estimate and predict, since

it is characterized by high spatial and temporal variability, exhibiting fluctuations on

almost all spatial and temporal scales (Berg et al., 2013). Accurate quantitative precip-

itation estimation (QPE), therefore, needs dense observation networks. Weather radars

provide rainfall observations with high spatial representativeness and country-wide cover-

age. Gauge-adjusted weather radar QPE is considered to have the highest accuracy among

rainfall measurement techniques. However, the lack of climate information in parts of the

globe also applies to rainfall sensors. For example, the World Meteorological Organization

does not report on any operational weather radars in West Africa (WMO). Additionally,

precipitation estimates from rain gauges only observe at most 1% of the earth’s surface

using the strong assumption of spatial representativeness of the measurement in a 5 km

radius around each rain gauge (Kidd et al., 2017).

To improve coverage, one of the most promising existing infrastructures to use is Com-

mercial Microwave Links (CML). Used as backhaul of mobile networks they use one-way

microwave transmitters and receivers to pass information over distances of hundreds of me-

ters to several kilometers. Due to the transmission frequency in the range of 1 to 100GHz

their signal is attenuated by raindrops which makes them suitable rainfall sensors (Atlas

and Ulbrich, 1977; Messer et al., 2006; Leijnse et al., 2007).

The potential for observing rainfall with CMLs is huge, since, according to the Groupe

Speciale Mobile (GSM) Association, 94% of the human population already lived in re-

gions with broadband telecommunication access in 2021 (Gsma, 2022). This means that

the largest part of the earth’s population lives in areas where CMLs are deployed. Unfor-

tunately, CML data access is still sparse and challenging (Chwala and Kunstmann, 2019).

CML rainfall estimation is an active research field on the verge of operational application

(Uijlenhoet et al., 2018). CML data has been acquired for research purposes in a number

of countries including the Netherlands (Overeem et al., 2016b), Germany (Chwala et al.,

2016), Israel (Goldshtein et al., 2009), Burkina Faso (Doumounia et al., 2014), Sri Lanka

(Overeem et al., 2021) and Sweden (Andersson et al., 2022).

Successful applications of CML QPE include river runoff simulations in a pre-alpine catch-

ment in Germany (Smiatek et al., 2017) or urban drainage modeling in the Czech Republic

(Pastorek et al., 2019). CMLs have also been used to estimate other observables like at-

mospheric water vapor (Rubin et al., 2022; Fencl et al., 2021) or atmospheric temperature

inversion (David and Gao, 2016).
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1.1. Motivation

The physical foundations of relating specific attenuation to rainfall rate are well under-

stood. The challenge lies in the attribution of total path loss to rainfall since multiple

other atmospheric factors contribute to signal fluctuations (van Leth et al., 2018). Quality

control and data processing are still the most important challenges to be solved (Chwala

and Kunstmann, 2019). Even if vast amounts of CML data were available today, process-

ing it would not be straightforward due to the heterogeneous data quality.

The Need for Automated Quality Control

In the 21st century the term ”Big Data” has become prevalent. Yet, its definition remains

vague. It not only refers to the amount of data but also to the diversity and complexity

(Agapiou, 2017). With an increasing amount of climate observations from different types

of sensors the demand for robust data quality control and flexible frameworks for merging

observations is rising. A common approach to data quality control is manual data flagging

by experts which is both too labor-intensive to scale with the amount of data and too

subjective due to human decisions without objective rules. Standard statistical tests need

parameterization and due to failing simple rules, this also amounts to labor-intensive man-

ual tasks. Considering the vast amount of data that can not be checked by a human, but

only through automated algorithms, a new way of tackling quality assurance and knowl-

edge discovery in climate observations is needed. This especially holds for CML data, but

also for weather radars (Chwala and Kunstmann, 2019; Villarini and Krajewski, 2010).

Deep Learning for High-Dimensional Physical Problems

Bronstein et al. (2021) argue that ”modern data analysis is synonymous with high di-

mensional learning.” Indeed, geoscientific data often poses extremely high dimensional

problems, e.g. asking for river runoff at a single gauge given a time-evolving rainfall field

over the catchment. In its most general form, the solution to such a problem is a func-

tion in a space as high dimensional as the number of cells on a grid times the number of

time steps. The so-called curse of dimensionality hampers finding approximate solutions

to high dimensional problems (Bellman, 1984; Zimek et al., 2012). Ways to reduce the

dimensionality of the problem, i.e. finding a lower dimensional embedding of the data,

can help, but requires knowledge about the structure of the data. The most radical and

often applied solution to the runoff example is to integrate over time and space (i.e. the

upstream catchment of the gauge) which assumes that the problem is invariant to the

spatial and temporal disaggregation of the input data. On the one hand, it is easily seen

that such an assumption can not hold given the spatiotemporal dynamics of rainfall and

runoff in complex terrain. On the other hand, the assumption leads to an easy solution

that approximates the problem surprisingly well in some cases.

In general, physical problems present structured data that underlie principles of sym-

metry, i.e. there is a certain invariance to transformations of the data. Transforma-

tions that reduce the dimensionality of a problem ideally drop redundant information and

achieve a compressed representation of the important information. Deep learning delivers

3



Chapter 1. Introduction

a blueprint for exploiting symmetries when dealing with high dimensional learning prob-

lems (Bronstein et al., 2021). However, deep learning methods were initially developed for

language processing and image recognition tasks, where a clear understanding of the world

and the processes generating the data is present. The geosciences underlie clear rules as

well, yet the processes are more complex and less understood, which is why they are inter-

esting objects of study in the first place. This is both a challenge and an opportunity for

state-of-the-art machine learning models that can be used to find hidden representations

of processes generating data (Reichstein et al., 2019).

Deep learning has already proven to yield flexible high-performance solutions for many

geoscientific problems. Famous applications are the modeling of rainfall-runoff using long

short-term memory networks (Kratzert et al., 2018), precipitation nowcasting and down-

scaling using generative adversarial networks (Ravuri et al., 2021; Leinonen et al., 2021)

or improving medium-range weather forecasts and seasonal predictions (Lam et al., 2022;

Schneider et al., 2022). Another benefit of neural networks is that, once they are trained,

they can process data at low latency and high energy efficiency. For example, Pathak et al.

(2022) demonstrate that a neural network approach can produce forecasts comparable to

the high-resolution Integrated Forecasting System (IFS) model of the European Center

for Medium-Range Weather Forecasting (ECMWF) at 0.008% of its energy consumption

and 4.5 · 105 times faster. Today, all these achievements seem like beacons illuminating

parts of the vast space of possible geoscientific applications of deep learning. However, the

true potential is still only being discovered. It is a well-known phenomenon that theory

and application foster each other’s development. The adaptation of existing algorithms

to new problems yields new knowledge about the methods themselves. Thus both fields,

the computer- and geosciences, are advancing while highly interdisciplinary research is

conducted.

Thesis Objective

This thesis strives to explore deep learning approaches for the improvement of CML and

weather radar-derived precipitation information. Facing the climate observation gap re-

quires new approaches for assuring the quality of opportunistic and conventional rainfall

sensors. By an application of deep neural networks for rainfall estimation we1 hope to gain

knowledge about the specific challenges that arise and to improve the quality of rainfall

estimates.

1Note that the first person plural will be used in the theoretical introduction of this thesis to emphasize
the participatory nature of the scientific endeavor. Adapting this active style of writing from modern
mathematics is a personal choice of the author. In the main chapters, it is used to refer to the shared effort
and consensus among the co-authors of the respective works.
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1.2. Rainfall Estimation

1.2 Rainfall Estimation

1.2.1 A Definition of Rainfall

Precipitation is a term describing hydrometeors formed by condensation or deposition of

atmospheric water vapor that are large enough to fall to the earth’s surface which also

includes frozen particles like snow or hail (Ams, 2021b). Rain is precipitation in the form

of liquid water droplets with a diameter larger than 0.5mm (Ams, 2021a). In the litera-

ture, the term rainfall is often found to be either synonymous with precipitation or with

rain. This work is mostly concerned with rain and we will refer to rainfall as liquid pre-

cipitation. The cause for precipitation is condensation as a consequence of the saturation

of air with water vapor either by processes cooling the air mass (e.g. adiabatic cooling of

ascending and expanding air parcels) or by processes increasing the amount of water vapor

(e.g. evaporation) (Wallace and Hobbs, 2006). The temperature where saturation occurs

while cooling the air is called the dew point. It depends on the humidity and air pressure.

The condensation of water droplets to form larger raindrops is strongly dependent on the

presence of condensation nuclei.

Quantitative precipitation estimation (QPE) describes all means of measuring precipita-

tion that falls to the earth’s surface. The unit for QPE is millimeters (mm) of accumulated

liquid water. A rainfall rate or intensity is measured in mm per time interval and the unit

is mmh−1. For non-liquid precipitation, the liquid water equivalent is used. Falling rain

is characterized by the frequency distribution of drop sizes in a given volume called the

drop-size distribution (DSD). As Fig. 1.1 illustrates, the shape and the resulting dielectric

properties of water droplets depend on their size (Ekelund et al., 2020).

Figure 1.1: The dielectric properties of individual drops depend on their shape, which can

be modeled as a function of drop diameter (Figure adapted from Ekelund et al. (2020))

5



Chapter 1. Introduction

The DSD uniquely defines the rain rate R in mmh−1 as an integral of the number of drops

N(D) with diameter D in cm multiplied by their volume 6 · 10−3πD3 and fall speed ν(D)

in m s−1 over the drop diameter (Ekelund et al., 2020):

R = 6 · 10−3π

∫ ∞

0
N(D)ν(D)D3dD (1.1)

The fall speed power law description ν(D) = 1767D0.67 holds for drop sizes between

0.05cm and 0.5cm. Equation 1.1 assumes that no influences like vertical winds affect the

fall speed and that the DSD does not change while raindrops are falling.

However, falling hydrometeors are affected by a number of physical processes including

horizontal and vertical advection, melting and freezing processes, evaporation, condensa-

tion, collision, and coalescence. Rainfall estimation techniques are usually defined using

the idealized Eq. 1.1. Therefore, the above-mentioned effects can create random as well

as systematic measurement errors.

Rainfall has a high spatial and temporal variability with fluctuations across scales (Berg

et al., 2013). The extreme value distribution of rainfall is heavily skewed and highly in-

termittent. For example, in Germany, it is, on average, not raining for more than 95% of

the time (Adler et al., 2001). These characteristics make the estimation of rainfall very

difficult because there are large differences between point and area measurements. In the

next section, we will describe the rainfall estimation techniques considered in this thesis.

1.2.2 Measurement Techniques

There are a number of devices designed for quantitative precipitation estimation. In the

following, we will describe the most important measurement techniques that are considered

in this thesis as well as the main sources of systematic and random measurement errors.

Systematic measurement errors are deviations from a ground truth that do not occur

randomly. Compared to random errors, they provide an opportunity for correction with

respect to the ground truth if their cause is known and if individual occurrences can be

detected.

1.2.2.1 Rain gauges

Rain gauges are the oldest device to estimate rainfall with known references dating back

to 400 BC (Strangeways, 2010). In the 17th century, rainfall began to be measured in

a scientific manner and the modern description of rainfall estimates in millimeters (mm)

originates from the use of rain gauges.

The simplest form of rain gauge is an accumulation gauge, i.e. a vessel with an orifice

at the top which is used to collect falling raindrops (see Fig. 1.2). Considering a vessel

where the volume in liters increases linearly with the water level in millimeters within the

vessel the rainfall intensity R can be directly measured as an increase of liters or mm per

time interval. Today, more advanced and automatic devices like weighing, tipping bucket,

capacitance, or optical gauges are used (Nystuen et al., 1996).

6



1.2. Rainfall Estimation

Figure 1.2: The accumulation gauge is a simple form of rain gauge with an orifice at the

top which is used to collect falling raindrops.

The main source of systematic errors that affects all types of rain gauges is the influence

of wind at the gauge orifice that causes turbulent airflow (Ciach, 2003). There is a po-

tential undercatch of precipitation extremes when using tipping bucket rain gauges since

the tipping mechanics usually have an upper detection limit or loose precision in heavy

rainfall. Additional sources of error are wetting, evaporation, and splashing as pointed out

in Chen et al. (2008) as well as a series of errors for solid or mixed-phase precipitation.

Despite a high local accuracy around the small surface area that is used to collect rainfall,

rain gauges lack spatial representativeness when compared to area covering precipitation

remote sensing techniques such as weather radars or satellites. A single rain gauge mea-

surement has to be considered point-like and can only represent average areal rain rates

in a small radius, less than a few kilometers (Kidd et al., 2017). Spatial representativeness

also depends on the temporal accumulation interval as shown by Villarini et al. (2008).

They investigated how many rain gauges are needed to estimate spatial averages for vary-

ing grid spacing with a given error margin. For example, when hourly rainfall estimates

are compared to satellite rainfall products with a grid cell area of 200km2 around 25 rain

gauges are needed to achieve a normalized mean absolute error below 20%. However, rain

gauges are sparsely distributed with, for example, one rain gauge per 330km2 in Germany.

Globally, the density of rain gauge observations is very heterogeneous and the number of

maintained weather stations is declining in many regions (Lorenz and Kunstmann, 2012).

Random errors in rain gauge measurements mainly occur only due to the quantization

of the rain gauge measurement and can be considered as a uniformly distributed random

error (Ciach, 2003). In this thesis, rain gauges are used for the validation of improved

CML and weather radar QPE.

7



Chapter 1. Introduction

1.2.2.2 Disdrometers

Disdrometers are measurement devices designed to measure the size, count, and velocity

of falling rain drops which are used to describe the rain rate (Eq. 1.1). Early efforts to

quantify the size and count used dying filter paper in a tedious manual process (Marshall

et al., 1947). The Joss-Waldvogel disdrometer was the first automated measurement de-

vice of its kind. It measures the momentum of raindrops that impact a membrane (Joss

and Waldvogel, 1967). This type of measurement has the drawback that fall speed and

drop size can not be measured separately and that a fixed fall speed law ν(D) has to be

assumed.

Particle Size Velocity (PARSIVEL) type disdrometers are laser-optical devices that mea-

sure the energy reduction caused by extinction when raindrops fall through a horizontal

band of light (Löffler-Mang and Joss, 2000). By using both, a model of the size and

shape of falling raindrops and the time that drops need to pass through the light band

it is possible to separately estimate fall speed and drop size. It would be beneficial to

always estimate the size, count, and velocity of falling raindrops, however, disdrometers

are cost and maintenance-intensive devices that are mostly used for the calibration of more

cost-effective measurement techniques, such as weather radars. Disdrometer data is not

directly used in this thesis, but important since the attenuation-rain rate (Eq. 1.3 below)

and reflectivity-rain rate (Eq. 1.7 below) relationships rely on DSD data.

1.2.2.3 Microwave links

Attenuation of microwave radiation through atmospheric phenomena like rainfall has been

discovered long ago (Ryde, 1946). In a series of publications Atlas and Ulbrich (1977)

derive the physical foundations and practical configurations for measuring path-integrated

attenuation and deriving its relation to rainfall intensity. They show that there is a close-

to-linear relationship between attenuation and rainfall rate at frequencies around 30GHz.

The reason for this is demonstrated in their initial work from 1977:

The physical descriptions of rainfall rateR in mmh−1 (see Eq. 1.1) and specific attenuation

k, in dBkm−1, through a medium of scatterers are very similar, since

k = 0.4343

∫ ∞

0
N(D)σext(D)dD, (1.2)

where σext(D) is the total extinction cross section in cm2. Using the power law description

σext(D) = aDb, we get a linear relationship between R (see Eq. 1.1) and k if we find a

frequency, where b = 3.67. It turns out that a close to linear relationship holds for fre-

quencies close 30GHz where scatterer diameter and wavelength have the same magnitude

(Olsen et al., 1978). Comparing Eq. 1.1 and Eq. 1.2 then yields the coefficients α = 0.24

and β = 1.0 of the power law relation

k = αRβ. (1.3)
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Figure 1.3: Commercial microwave link with a transmitting (left) and receiving (right)

antenna. The falling raindrops affect the total path loss (TL) of the CML by scattering

and absorption of microwave radiation. The amount of specific attenuation depends on

the drop size distribution, frequency, and polarization.

The close to linear relationship is important because non-linearity introduces an error when

aggregating attenuation which is, for example, the case when comparing path-integrated

attenuation and path-averaged rainfall intensity. Additionally, the relation is mostly in-

sensitive to the drop size distribution and the temperature dependence is negligible. Based

on scattering simulations the International Telecommunication Union (ITU) recommends

k-R power law coefficients α and β for vertical or horizontal polarization and frequencies

f from 1 to 1000 GHz (ITU-R, 2005).

Atlas and Ulbrich (1977) concluded that, to derive path-integrated attenuation, directional

one-way transmission using a focused beam was most suitable which is equivalent to the

setup of microwave links (see Fig. 1.3). Microwave transmission near the ground needs

to avoid obstacles in the transmission path. Not only the line-of-sight connection, but a

larger ellipsoidal region called the Fresnel zone needs to be free of obstacles. Partial or

complete beam blockage will lead to significant interference in the received signal level.

Although the foundation of rainfall estimation with microwave links was established al-

ready in the 1970s the concept was not applied broadly until Commercial Microwave Links

(CMLs) were widely deployed as backhaul for telecommunication networks. While rainfall-

induced attenuation remained a disturbance for network providers and was studied as such

(Hogg, 1968), the true potential for rainfall estimation was finally discovered in the early

2000s (Messer et al., 2006; Leijnse et al., 2007). The main advantage of CMLs is that no

additional infrastructure is needed to be able to use them for rainfall estimation. Uijlen-

hoet et al. (2018) estimate that, based on numbers provided by the GSMA, the global

amount of CMLs in 2017 was 4 million and still continues to increase. The typical length

ranges from hundreds of meters to several kilometers. Transmission frequencies can range

from 1GHz to 100GHz but are most common between 15GHz and 40GHz (IEEE Ku-,

K- and Ka-band) which is useful for rainfall estimation or between 71GHz and 86GHz

(E-band), where the sensitivity to water vapor is increased (Fencl et al., 2020, 2021).
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Higher frequency CMLs provide a larger bandwidth but are also more sensitive to rainfall

(i.e. higher specific attenuation) (Chwala and Kunstmann, 2019). To avoid high path-

integrated attenuation, lower frequencies are used with increasing CML length.

The main challenge in acquiring CML data for research purposes is that a formal agree-

ment with network providers, who typically operate on a regional to country-wide level, is

necessary. Network operators usually do not archive signal level recordings which they use

for monitoring the network performance. Chwala et al. (2016) demonstrate how a data

acquisition system can be used for both real-time and long-term observation of signal levels.

The sampling strategy and signal quantization of transmitted (TSL) and received (RSL)

signal levels (in dB) of a CML are defined by the data acquisition. The signal level sam-

pling on the hardware level is typically instantaneous and quantized and it is technically

feasible to sample at a rate of several Hertz. A potential limit for the sampling rate is

the required bandwidth within the CML network and the data acquisition. Two common

sampling strategies for archiving the data that emerged are either an instantaneous sam-

pling of signal levels at a lower rate, e.g. 1 minute (Chwala et al., 2016), or the acquisition

of a 15-minute minimum and maximum of signal levels sampled at a higher rate of several

Hz. An instantaneous sampling at a high sampling rate would be optimal for rainfall

estimation but has to be negotiated with network providers.

Due to the opportunistic nature, that is, using the devices for purposes that were un-

intended during construction, of CML rainfall estimation, dedicated data processing is

necessary. A commonly used processing routine to derive path-averaged rainfall estimates

from TSL and RSL is as follows:

The total loss (TL), formerly also called transmitted minus received signal level (TRSL),

is computed as a difference of raw RSL and TSL. Depending on the data acquisition, de-

fault values or missing time steps can occur and have to be treated. TL is assumed to be a

compound quantity since it is a sum of the baseline attenuation (Ab) due to slow-evolving

properties of the atmosphere unrelated to rainfall, such as gas concentration and water

vapor, attenuation due to rainfall (AR), excess attenuation due to the wet antenna effect

(Aw) (Moroder et al., 2019), other, unknown, sources of attenuation (Au) and finally a

random error (ϵ) due to the signal quantization of the transmitter and receiver which is

in the range of 0.1dB to 1dB (Zinevich et al., 2010).

TL = Ab +AR +Aw +Au + ϵ (1.4)

Rain event detection, the temporal separation of rainy (wet) and non-rainy (dry) periods

in the time-series, is used to attribute attenuation to rainfall. It is one of the most impor-

tant processing steps. A static signal level baseline to derive rainfall-induced attenuation

from TL has quickly proven to be ineffective due to daily or annual cycles and unexpected

jumps in the time-series (see Fig. 1.4). To be able to estimate a baseline attenuation of

the given atmospheric condition, the onset of rain events needs to be known.
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Figure 1.4: Total loss (TL) time series of an 18.2GHz CML with a path length of 12.1km
from 1st to 4th of March 2019. The signal pattern shows a rain event followed by a temper-
ature drop and wet snow that accumulates and freezes on the antenna until it eventually
drops under melting conditions. The event illustrates the complexity of compound events
that cause fluctuations in the CML signal level.

Schleiss and Berne (2010) established a dynamic detection method based on the rolling

standard deviation (RSD) of the time-series. The assumption used to justify the algorithm

was that fluctuations of a significant magnitude are only due to attenuation caused by

rainfall. However, even during dry periods signal fluctuations of a similar magnitude can

occur (see Fig. 1.4 or van Leth et al. (2018)). It is therefore unclear if the RSD method is

suitable for country-wide rainfall estimation using a large CML dataset with heterogeneous

data quality (see research question SQ2 below).

Once a rain event is detected, the baseline attenuation Ab is estimated by an average of

the TL of the preceding dry period which is assumed to be an accurate estimate of the

atmospheric loss. The baseline is often assumed to be constant during rain events.

Additional wet antenna attenuation Aw is estimated using either a constant or a dynamical

time or rain rate dependent model (Schleiss et al., 2013; Leijnse et al., 2008; Valtr et al.,

2019). More details about the compensation of Aw are given in Chapter 2.

Assuming that Au = 0 during rain events, AR can be estimated up to the random error

ϵ by subtracting Ab and Aw from TL. To estimate a path-averaged rain rate, the k-R

relation for specific attenuation at the CML frequency and polarization is used:

AR = kL = αRβL ⇔ R =
1

αL
A

1
β

R , (1.5)

where L is the length of the CML in km.

More details about state-of-the-art CML processing routines are given in Chapters 2 and

3. CML rainfall estimates are path averages and, therefore, hard to interpret for example

for stakeholders in disaster management or agriculture. Therefore, spatial interpolation

as a standalone sensor solution or merging with other sources of rainfall information to

obtain a gridded product is necessary (Blettner et al., 2022).
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The systematic and random errors of CML measurements are as follows: As the k-R

power law is based on DSD calculations, the DSD dataset needs to reflect the local rain-

fall climatology. Thus, systematic errors due to inadequate DSD data are possible and

random errors of the power law fit are given (Chwala and Kunstmann, 2019).

A crucial aspect besides DSD uncertainties is the correct attribution of attenuation to rain-

fall. The assumption of Schleiss and Berne (2010) that all significant signal fluctuations

are due to rainfall has proven to be too simplistic for commercially deployed microwave

links. Signal anomalies, that is, fluctuations not caused by rainfall, can occur during dry

periods (see Fig. 1.4). A false classification of such events as wet can lead to a large over-

estimation. A number of case studies have been conducted to learn about the behavior of

CMLs in a real-world setting by either placing added instrumentation such as rain gauges

or disdrometers along the link path (Špačková et al., 2021) or by setting up research mi-

crowave link experiments with the benefit of added observables such as phase shift or dual

polarization (Chwala et al., 2014; van Leth et al., 2018; Moroder et al., 2019). However,

the detection and attribution of signal anomalies without added instrumentation or the

use of research microwave links remains an open question. Even if rain events are detected

correctly, anomalies that occur during rain events are a problem that is not sufficiently

treated in state-of-the-art processing routines of CML signal levels (see specific research

question SQ4 and Chapter 5).

A limited transmission power in combination with a detection limit of the receiver of CMLs

certainly limits the maximum measurable rainfall intensity. If strong attenuation leads to

a complete loss of signal (blackout) no RSL reading is available and the total loss can not

be computed. It is unclear to what extent this affects the correct estimation of rainfall

extremes (see specific research question SQ3 and Chapter 4).

Depending on the frequency and length of a microwave link, DSD variations along the

link path can cause random errors (Berne and Uijlenhoet, 2007). Similar to rain gauges,

the signal quantization of CMLs leads to a random uniformly distributed error (Zinevich

et al., 2010).

1.2.2.4 Weather radar

Single polarized weather radars (short for RAdio Detecting And Ranging) yield an indirect

measurement of precipitation by directly measuring the reflectivity of falling hydrometeors

(Doviak et al., 1994). We can describe the reflectivity Z in mm6m−3 as

Z =
λ4

π5|KW |2

∫ ∞

0
N(D)σbscdD, (1.6)

where the back-scattering cross section σbsc in cm2 depends on the polarization of the radar

and where the factor KW summarizes the dielectric particle properties (Ekelund et al.,

2020). Similar to specific attenuation k we can derive a Z − R power law by comparing

Equations1.6 and 1.1. However, typical radar frequencies yield highly non-linear relations
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like the one derived by Chen et al. (2021) for horizontal polarization at C-band (4-8 GHz):

R = 0.052Z0.57 ⇔ Z = 178.7R1.75 (1.7)

This relation is highly DSD-dependent and requires a specific choice of coefficients for

different scenarios, like the relations Z = 300R1.4 in convective and Z = 200R1.6 in

stratiform rain as used for the Weather Surveillance Radar – 1988 Doppler (WSR-88D)

at S-band (3GHz) (Chen and Chandrasekar, 2021).

Figure 1.5: Weather radars are active sensors that measure the reflectivity of raindrops

illuminated by the radar beam.

Reflectivity is derived from a measurement of back-scattered power P of a volume of

raindrops at range r illuminated by the radar beam as illustrated in Fig. 1.5 (Villarini

and Krajewski, 2010). Since this volume can be far from the radar, compensation for

the two-way attenuation PIA2 of atmospheric phenomena like rain, gases, and aerosols in

between is necessary. Using a radar-specific constant C, P is approximated as

P = Z
C|KW |2

PIA2
2r

2
(1.8)

The estimation of PIA2 is non-trivial and often relies on an independent measurement or

the use of additional sources of information, such as numerical weather models to estimate

temperature gradients (Ryzhkov et al., 2014).

In addition to the indirect measurement using a DSD-dependent relationship, radar mea-

surements need to avoid obstacles near the ground and, therefore, use an orography fol-

lowing beam angle. This leads to measurements high above the ground in regions far from

the radar which increases the error of radar measurements compared to sensors on the

ground (Pejcic et al., 2020).

Wilson and Brandes (1979) summarize the main error sources for weather radar rainfall

estimation as variations in the relationship between the backscattered energy and rainfall

rate, changes in the precipitation before reaching the ground, and anomalous propagation
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of the beam. A more recent review of uncertainties in radar rainfall estimates by Villarini

and Krajewski (2010) lists the following error components: A miscalibration of the radar

constant C (see Eq. 1.8) due to deterioration of the hardware or temperature dependen-

cies, attenuation of the beam, ground clutter and anomalous propagation, beam blockage,

variability of the Z-R relation, beam broadening and overshooting, vertical variability of

rainfall, vertical and horizontal air motion, and temporal sampling errors.

Especially DSD changes and precipitation drift before reaching the ground lead to system-

atic and time-dependent errors that hinder a direct comparison to rain gauges and other

sensors on the ground. Single measurements of reflectivity are insufficient to correct such

scenario-dependent errors because of the DSD uncertainty of the Z-R relation. It is, there-

fore, necessary to correct radar QPE using spatial and temporal dynamics as boundary

conditions for correcting rainfall estimates (see research question SQ5).

Much work has been conducted to improve weather radar QPE. The main approaches are

quality control algorithms like attenuation correction, adjustment of radar estimates using

additional sources of information such as rain gauges (Vogl et al., 2012; Pulkkinen et al.,

2016; Moraux et al., 2021), and radar polarimetry (Ryzhkov and Zrnic, 2019; Chen et al.,

2021). Radar polarimetry is especially promising because measurements of differential

reflectivity and specific differential phase can be used to further reduce DSD uncertainties

(Chen et al., 2021). Additionally, path-integrated attenuation can be estimated by using

the total span of differential reflectivity (Bringi et al., 1990; Testud et al., 2000; Chen

et al., 2021).

1.2.3 Rainfall Observation Data in Germany

The following section describes rainfall data from rain gauges, CMLs and weather radars

available for research purposes in Germany. All presented datasets have been considered

for at least one of the studies conducted within this thesis.

1.2.3.1 Rain Gauge Data

The German meteorological service (DWD) provides multiple rain gauge datasets which

are freely available on the opendata online archive (https://opendata.dwd.de/). One

set of observations includes 1-minute automatic rainfall estimates from a network with an

average station density was one rain gauge per 330km2. The network operates weighing

gauges, initially Ott Pluvio2 sensors, which were gradually replaced by rain[e] sensors

from Lambrecht meteo from 2018 to 2020. The sensor resolution is 0.01 mm (Pluvio2)

and 0.001mm (rain[e]) both quantized to 0.01mm for consistency within the dataset. The

seccond set of observations are daily measurements from Hellmann rain gauges with a

manual readout of the accumulated rainfall amount of the last 24 hours at 5:50 UTC with

a quantization of 0.1mm. For the period from 2013 to 2021, 1066 1-minute and 2150 daily

rain gauge stations were considered for studies conducted in this dissertation. Around

50% of the daily rain gauges share their location with the 1-minute rain gauges.
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1.2.3.2 CML Data

The CML data accessible for research purposes in Germany is recorded from a network

operated by Ericsson Germany and and counts 3904 unique CML paths distributed over

entire Germany. The length of CML paths ranges between a few hundred meters to almost

30km and the frequency ranges from 10GHz to 40GHz. The hardware of the CMLs is

homogeneous within the dataset using Ericsson MINI-LINK Traffic Node systems in all

cases. The real-time data acquisition system used to retrieve instantaneous TSL and

RSL records from two sub-links per CML path is described in Chwala et al. (2016). Data

collected at Ericsson is immediately sent to and stored at a server at the Karlsruhe Institute

of Technology (KIT). The temporal resolution of the recorded signal levels is 1 minute and

the power resolution is 1dB for TSL and 0.3dB (occasionally 0.4dB) for RSL. Data for all

of Germany is available from September 2017 onwards. The size of one year of data is

approximately 100GB.

1.2.3.3 Weather Radar Data

DWD operates a network of 17 C-band weather dual-pol doppler weather radars shown as

black dots in Fig. 1.6 and provides multiple precipitation products as a gridded composite

of data from the individual radars. To date, all available products are based on measured

reflectivity for a single polarization using a three-part Z-R relation (Bartels et al., 2004).

The measurement height above ground (see Fig. 1.6) is using a beam angle of 0.8 degrees

where no obstacle is blocking the beam and a terrain following angle otherwise which can

lead to measurement heights up to several kilometers.

Weather radar QPE is provided in the ”Radar Online Aneichung” (RADOLAN) and

”Radarklimatologie” (RADKLIM) product series that apply a range of quality checks and

bias correction techniques. Products selected for studies conducted within this thesis are

as follows:

RADOLAN-RY is a quality-checked and attenuation-corrected composite with a spatial

resolution of 1 km by 1 km and a temporal resolution of 5 minutes which is the in-

stantaneous measurement frequency of the radar scans and therefore the highest possible

resolution (Bartels et al., 2004).

RADOLAN-RW is a gauge-adjusted version of RADOLAN-RY with a temporal resolution

of 1 hour using a combination of multiplicative and additive factors. The factors are de-

rived from a comparison of the gridded radar data to the automatic rain gauges described

above (Bartels et al., 2004).

RADKLIM-YW is performing a similar gauge adjustment where weights are calculated at

a 1-hour resolution and remain constant for the 12 5-minute timesteps within this hour

to provide a temporal resolution of 5 minutes. In addition, the product is climatologically

corrected using the manual, daily rain gauge data. These climatological corrections aim to

reduce static errors like beam blockage and range-dependent underestimation (Winterrath

et al., 2017).
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Figure 1.6: Minimal measurement height above ground derived from the German radar

network composite on the RADOLAN grid. The precipitation scan uses an orography

following elevation angle between 0.5 and 1.8 degrees. In regions with overlapping radar

measurements, the minimum of measurement heights is shown. Figure adapted from Polz

(2023b).
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1.3 Deep learning

1.3.1 Statistical learning

The primary goal of data-driven modeling of geophysical processes is the approximation

of an unknown function which is assumed to be generating the observed data. We call

this function the data generating process. An abstract definition of machine learning is to

say that instead of hard coding rules into a computational system it is given the ability

to acquire its own knowledge by learning from observed data (Goodfellow et al., 2016).

Hardcoded rules in the form of physical formulas are available in the case of geophysical

processes, but there are two main limitations: The first one is that, while individual pro-

cesses have a concise description, a data-generating process outside a lab environment is

composed of many known and even unknown processes that increase the system’s com-

plexity. It is hard to impossible to describe all of them explicitly. The second one is that

modeling physical processes in the form of differential equations can be computationally

expensive, which is why the computation is usually performed on larger scales. Smaller

scales are parameterized. However, scale interactions and scenario-dependent choices of

parameters may lead to a bad general performance. Data-driven approaches can handle

smaller scales because they are less expensive to compute (Pathak et al., 2022) and they

can learn which scales are sufficiently well approximated by an average (see scale separa-

tion below).

Modern machine learning draws the ability to learn from observed data from the math-

ematical theory of statistical learning. Essentially, statistical learning is concerned with

function approximation by parameterized families of functions. The target function usually

describes a prediction in the form of a regression or classification problem. The learning

process is a minimization of a predefined objective function that estimates the deviation

from the observed ground truth.

Classical machine learning algorithms like logistic regression or naive Bayes classifiers

heavily rely on the representation of the data (Goodfellow et al., 2016). The main idea

behind deep learning is to learn from raw data instead of engineered features. In order to

be able to gain knowledge from raw data it is favorable to represent the data by simple

concepts that are then used to describe more complex features. Deep artificial neural

networks (ANNs) achieve such a hierarchy of representations by using multiple layers of

artificial neurons. Before going into more detail about ANNs we will introduce the basic

terms of machine learning and statistical learning. The required components for statistical

learning of a given task like regression or classification are data, labels, hypothesis space,

objective function and update rule.

The data is the collected information that is available for the given task. It contains the

predictor variables and serves as model input. The labels are the ground truth associated

with the data and serve as the expected model output. An example pair for data and

labels is observed precipitation in a catchment and observed river discharge. The task of

predicting discharge from precipitation is a regression problem.
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The hypothesis space consists of a parameterized family of functions which are assumed

to be hypothetical candidates to describe the relation between data and labels. In our

case, the hypothesis space will consist of different weight configurations of a chosen neural

network architecture.

The objective function is a performance measure that describes how well a considered

parameterization in the hypothesis space performs, for example, the mean squared error

between observed and predicted discharge.

The update rule or optimizer is an algorithm that describes the choice of a future param-

eterization given the current one with respect to the objective function. The goal is to

successively increase the performance until an optimum is reached. For gradient-based

learning, we will mostly consider variations of stochastic gradient descent. Note that if

the objective function and update rule do consider the labels the learning process is called

supervised learning. If they do not consider the labels it is called unsupervised learning.

Statistical learning theory aims to provide suitable hypothesis spaces, objective functions,

and update rules for machine learning. We will see in the next section that the theory

is able to prove that artificial neural networks are universal approximators of continuous

functions. However, statistical learning theory also shows that there is a caveat to the

choice of a hypothesis space, namely, the so called ”no free lunch” theorem which es-

sentially states that for a randomly chosen optimization problem, no algorithm performs

better than random search (Wolpert and Macready, 1997). This leads to the conclusion

that the choice of a suitable hypothesis space, objective function, and update rule is tied

closely to any available knowledge about the given learning problem. We will later see

which assumptions can be made about structured data from a physical world.

1.3.2 Artificial neural networks

Artificial neural networks (ANN) are a class of functions used in statistical learning theory.

They are inspired by biological neurons and, therefore, are linked to the term artificial

intelligence (AI). However, the term AI is very abstract and includes different approaches.

One of the largest domains is machine learning which includes ANNs. Before going into

details about why and when deep learning is a suitable approach to high dimensional

learning problems in the geosciences we need to see that ANNs are suitable for function

approximation. The artificial neuron is in fact a function

f : Rn → R

(xi) 7→ ρ
∑
i

wixi
(1.9)

with weights wi ∈ R and activation function ρ : R → R. ANNs consist of layers of neu-

rons. The simplest ANN is the multilayer perceptron (MLP), where the input of each

neuron consists of the output of all neurons in the previous layer. Such networks that

pass information uni-directional from the input to the output layer are called feed-forward

neural networks. There are other concepts of information flow in ANNs, but we will omit
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them in this section. An MLP is uniquely determined by a pair (W,ρ) consisting of weight

matrix W and activation ρ. More complex neural network architectures such as convolu-

tional neural networks have fewer connections between neurons than an MLP. If networks

consist of more layers than one input and one output layer, they are called deep neural

networks. Note that the non-linearity of the chosen activation function is an important

property since a deep neural network with linear activation is equivalent to an ANN with

just one layer. Common activation functions are step functions, the sigmoid function ex

ex+1

and the rectified linear unit (ReLU) max({0, x}). It is easy to see how function approxi-

mation with ANNs works since it is common knowledge that any continuous function can

be approximated arbitrarily well as a series of step functions (Forster, 2016).

Deep learning describes the optimization of the weights of a deep neural network to per-

form on a given data set. Statistical learning theory provides the framework for this

optimization process. In fact, it has produced remarkable results regarding the parame-

terized function class of neural networks (Cybenko, 1989; Hornik et al., 1989):

Universal Approximation Theorem

Let C(X,Y ) denote the set of continuous functions from X to Y , then ρ ∈ C(R,R) is

non-polynomial if and only if for all f ∈ C(K,Rm) with compact support K ⊆ Rn and for

all ϵ > 0 ∃k ∈ N, A ∈ Rk×n, b ∈ Rk, B ∈ Rk×m such that

supx∈K ∥ f(x)− g(x)) ∥< ϵ,

where g(x) = B(ρ(Ax+ b) is a multi-layer perceptron with arbitrary width and bounded

depth.

The theorem states that multi-layer feed-forward neural networks with a suitable activa-

tion function are universal approximators, i.e. they approximate any continuous function

with compact support arbitrarily well. The compact support assumption is not restrictive

in most cases.

So far we only treated the existence of an approximation to a known function with ar-

bitrarily small error. The crucial aspect is finding the approximation when the function

is unknown, but data generated by the function is available. This is the actual learning

process. A consequence of the universal approximation theorem is that any inaccuracy in

the approximation must be a consequence of inadequate learning. In machine learning,

the learning process is very often referred to as the training process.

The most common way of training an ANN with data is by means of gradient-based learn-

ing using back-propagation (Rumelhart et al., 1986). Let y = f(x,W ) be the output

of a feed-forward neural network f(·,W ) with weights W that was used to evaluate the

input x. Furthermore, let θ(y, y′) = θ(f(x,W ), y′) be the objective function evaluated at

y with respect to the ground truth y′. Then, back-propagation can be used to compute

the gradient ∇θ(W ) of θ with respect to the weights W . A benefit of ANNs is that partial

derivatives can be computed layer-wise using the chain rule.
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Figure 1.7: Idealized evolution of train and test error while training artificial neural net-
works.

Once the gradient is known, stochastic gradient descent can be used to update the weights

W in order to improve on the objective function (Kiefer and Wolfowitz, 1952). We have

Wn+1 = Wn − λ∇θ(Wn), (1.10)

where a defined learning rate λ > 0 is used to control the speed (step width) of the gradi-

ent descent to achieve θ(Wn) ≥ θ(Wn+1) (Bottou et al., 2018). To see where an optimum

is reached we need to define the training and generalization, or test, error. The training

error is the objective function evaluated using the training data which, in turn, is used to

optimize W . The generalization error is the objective function evaluated using a separate

test set that is assumed to be independent and identically distributed (i.i.d.) with respect

to the training data. To achieve a better test error it can be favorable to average gradients

over a so-called ”batch” of instances, or samples, of the training data. Fig. 1.7 shows

an idealized picture of the evolution of train and test error during the training process.

The stage where both train and test error still improve is called underfitting while over-

fitting refers to the stage where the training error decreases and the test error increases.

The goal of the training process is to stop at the optimal test error between the two stages.

1.3.3 High-dimensional learning

The curse of dimensionality refers to a series of problems that arise in high-dimensional

learning problems (Zimek et al., 2012). The main issue is the distance concentration effect

which describes the phenomenon that the higher the dimensionality of a space, the more

pairs of points in this space have the same distance (Aggarwal et al., 2001). Since objective

functions in the training of ANNs are essentially distance metrics, this is causing problems

in the computation of gradients during training.

As an example, consider an n-dimensional ball of radius 1, then half of its volume is closer

than r = 1 − n
√
0.5 to its boundary. As a percentage of the sphere radius, r is 30% in
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two dimensions, 16% in four dimensions, and less than 1% in 69 dimensions. This means

that if data was uniformly distributed in this ball, then almost all pairs of points have the

same distance in high dimensions. The consequences for the functional approximation of

such data are illustrated by another example given by Bronstein et al. (2021) who show

that the required number of observations to approximate a 1-Lipschitz function f is expo-

nential in the dimensionality of f if the error is required to stay below a given threshold.

However, the class of 1-Lipschitz functions is large and not clustered in its domain just

like the uniformly distributed points in a ball.

Why is this important? It means that without further structure in the data, the required

sample size for high-dimensional learning problems grows exponentially. However, data

that is generated by physical processes is structured by underlying principles of symmetry.

Symmetries are invariances under transformations of the observed space and include, for

example, temporal or spatial translations or rotations. By exploiting these symmetries the

dimensionality of the problem can be reduced if describing the data with less explanatory

variables is possible. Most physical problems are referred to as one (time-series), two (spa-

tial or image), or three (volume or video) dimensional. From a data-driven perspective,

the dimensionality of the problem changes, since model input is not processed by physical

equations that act on each point in low dimensional space (e.g. Brownian motion of a

particle suspended in a medium). The process acting on a point in time is viewed as a

function of all knowledge of the whole system. Each observed point in the system, e.g. a

grid cell or a single point of a time series, creates its own dimension in the feature space,

that is, the domain of explanatory variables of the system. As a result, the feature space

is often very high dimensional. E.g. a single time-step in the radar composite used in the

RADOLAN product consists of 900 by 900 grid cells which amounts to an observation in

an 810000-dimensional space.

To see that dimensionality can be reduced if structural information is known let us con-

sider a time series that we want to model as a stochastic process. The goal is to predict

the future behavior of the series given its past. If the Markow condition holds, e.g. if the

series describes a Brownian motion, then using only a limited number of past time steps

produces equally well-performing predictions than any longer history of the series. Now

what if symmetries that can be exploited to reduce the dimensionality of the problem are

unknown? We will see that the extraction of useful features from raw data can be learned

using suitable ANN architectures.

The term prior originally refers to a prior probability distribution in Bayesian statistics.

A prior is previous knowledge about the data that can be used to increase the accuracy

of a prediction. There are a number of priors that can be utilized to effectively use ANNs

for rainfall estimation.

The main assumption that needs to be made to approach physical processes as function

approximation problems is that the data-generating process is a continuous function in

Euclidean space. In a real-world scenario, this assumption is not always verifiable. Ad-

ditionally, there is noise due to random and systematic errors when observing the data.
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Atmospheric science is concerned with scales where this assumption is reasonable, yet

the practical applicability is always verified using an evaluation strategy that assures the

transferability and robustness of the approximation.

Scale separation is a powerful prior for approaching complex dynamical systems and for

effective learning in high dimensions. The underlying idea is that the behavior of the

system can be described by a decomposition into different scales (Bronstein et al., 2021).

A good example is Fourier analysis which assumes that a signal can be decomposed in

the frequency space. Different frequencies describe the different scales. When modeling

a process this is helpful, because usually the larger scales (lower frequencies) are well ap-

proximated if they are assumed to be locally constant. Scales that are small relative to the

observed scale of the system can be averaged since they appear as random fluctuations.

For example, this applies to fluctuations smaller than the resolution of a sensor. What is

left is the dynamic process that moves fast enough to change while being observed and slow

enough to not appear as random fluctuations. It makes sense to assume that, the more

complex a system is the more interaction happens between scales (Peters et al., 2004).

Then, an averaging of the larger and smaller scales would be less effective. But it also

makes sense to focus on modeling the scales that are not well approximated by an average.

A conjecture of this thesis is that scale separation is especially useful for improving rainfall

estimates subject to errors that are present at different scales because the processes that

cause them can be slow- or fast-moving.

ANNs apply the concept of scale separation by learning a hierarchical representation of

the observed data. The reason is that their implementation uses many layers of neurons

that successively increase the complexity of extracted features. It has been shown that

increasing the model complexity in terms of free parameters (wider networks) is not as

effective without also increasing the number of layers of the network (deeper networks)

(Goodfellow et al., 2014).

Another prior that is helpful for high dimensional data from CMLs or weather radars is

reducing the sparsity of useful information by feature extraction. The dimensionality of

the data is defined by its spatial and temporal extent. On the one hand, longer time

sequences or larger rainfall fields provide context for useful predictions. On the other

hand, rainfall is characterized by a high intermittency, that is, long periods without signal

alternate with shorter periods of rainfall.

Thus, not all information in a sequence of rainfall fields is useful, and trivial signals may

be ignored. This fact can be used to reduce model complexity and problem dimensionality.

A desired property for ANNs is to divide them into two functional parts. The first part

is meant to extract a hierarchy of features from the raw data and the second part is used

to make predictions based on these features. The feature extraction part is desirably an

equivariant operation, meaning that a shift (in time or space) in the input sequence should

result in a shift of the output sequence.

22



1.3. Deep learning

17 14 6

9 8 5

7 8 7

Input
f

0 ⅓ 0

0 ⅓ 0

0 ⅓ 0

Filter Kernel
g

Output
f∗g

2D

1D

10

0*7 8/3 0*7

0*17 14/3 0*5

0*9 8/3 0*4

3D

∗

∗

∗

3 8 1

7 8 1

3 2 2

7 3 7

1 1

0 0

0 0

0 0

0 0

1 0

2 0

1 3

1 7

0 4

0 0

0 4

1 3

2 3

∑

11 6

11 8⅓ 6

9 10 4⅔

5⅔ 8 3

3⅓ 5⅓ ⅔ 

3⅓ 1⅔ 3

6⅓ 3⅓ 4⅔

⅓ ⅓

1 ⅓

⅓ ⅓

0 0

0 0

1 0

1 0

⅔ 4⅔ 

1⅓ 4⅓ 

⅓ 2⅓  

0 2⅔

0 1⅓

1 2

1⅓ 4⅓

Figure 1.8: Examples of convolution in different dimensions. To be consistent with the
notation of convolutional layers in neural networks, the observed signal f provided to
the model is denoted as input and g is called the filter kernel. The top row shows a
1-dimensional convolution of time series data. The middle row shows a discrete example
of 2-dimensional convolution where the filter kernel is equal to a column-wise moving
average. The convolution can be performed in arbitrary dimensions as shown in the
graphical illustration of the 3-dimensional case in the bottom row.

A suitable equivariant mathematical operation is convolution of two functions f and g:

f ∗ g(x) =
∫ ∞

−∞
f(t)g(x− t)dt (1.11)

We will think of f as observed data that serves as model input and of g as a filter that is

used to extract features from the data. In our case the filter kernel g = (gk)k∈[−n,n] has

finite support which leads to the discrete version

(f ∗ g)i =
n∑

k=−n

fi−kgk (1.12)

Examples of convolution in 1, 2, and 3 dimensions are given in Fig. 1.8. It can be seen

that the filter kernel acts locally on the input.

A convolution layer can be expressed in the same way as an MLP layer, except, that the

weights are shared between neurons, i.e. instead of separate weights for all inputs from

all neurons of the previous layer, a neuron receives only valid inputs from a neighborhood

defined by the filter kernel and zero otherwise. A different neuron receives valid inputs
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from its own, different neighborhood, but uses the same weights. ANNs that use con-

volution layers are called Convolutional Neural Networks (CNNs) (LeCun et al., 2015).

Gradient-based training of CNNs works in the same way as for MLPs. CNNs originate

from image recognition and are inspired by the visual cortex of mammals. They are de-

signed to recognize objects or patterns, regardless of their location in images or time series

(Fukushima, 1980). In addition to the location equivariant convolution, CNNs often use

local and global pooling layers to select superior features and reject unimportant ones

which leads to higher performance and faster convergence (Cireşan et al., 2011). It has

been shown that the weight sharing and related minimization of free parameters in CNNs

enhance their generalization ability (Lecun, 1989).

1.3.4 Neural network architectures

The type and order of layers of a neural network are referred to as its architecture. Here,

we will elaborate on different neural network architectures that allow for effective learning

in high dimensions. The main concept that is applied is convolution.

Fig. 1.9 shows a 1-dimensional CNN for time-series classification with an architecture

inspired by LeNet (LeCun et al., 1998). It consists of multiple blocks with two convolution

layers followed by one max pooling layer which form the feature extraction part of the

network. While each pooling layer reduces the dimension of the input time series, the

number of applied filter kernels is increased in each block. Once the dimensionality is

reduced sufficiently, global average pooling is applied. Here, the classification part, that is,

the interpretation of the features starts using fully connected layers. To avoid over-fitting

to the training data dropout layers are added (Srivastava et al., 2014). In summary, this

network architecture uses functional layers that are targeted to enhance the generalization,

convergence, and classification performance. This architecture is used in Chapter 3. Fig.

1.10 shows a residual neural network (ResNet), an extension of the classical CNN approach

(He et al., 2015). The network uses so-called residual blocks, where the convoluted input

is afterward added to the raw input. In this case the raw input is additionally processed by

a convolution layer with kernel size one and no activation which allows for a multiplicative

scaling of the input. The larger part of the model capacity, i.e. the convolution with

non-linearity, is used for the residuals rather than the quantity itself. This network design

encourages the representation of features as a perturbation of the input which is beneficial

for the representation of dynamical systems (Bronstein et al., 2021). Another perspective

on the benefit of ResNets is that they allow for deeper networks without running into

gradient problems (He et al., 2015). We will use a 3-dimensional version of this ResNet

approach in Chapter 6.
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1.4 Research questions

The overall objective of this thesis is the improvement of CML and weather radar-derived

quantitative precipitation estimates using deep learning approaches. Both types of sen-

sors indirectly observe rainfall by measuring the microwave attenuation or reflectivity of

raindrops. They are challenged by different sources of systematic and random errors that

disturb the measurement. The aim is to both, analyze the systematic errors of these

two types of sensors, and reduce them using deep learning approaches. The random error

from DSD uncertainties in the k-R and Z-R relations, which have been treated in numerous

studies, will be less of a focus than systematic errors that require sensor quality control.

To achieve this goal it is necessary to define suitable objectives, identify the benchmark

performance of the state-of-the-art, and find solutions to improve quantitative precipita-

tion estimates from there. Deep learning has been shown to provide useful solutions for

modeling atmospheric phenomena. Therefore, deep neural networks will be applied in

this thesis to achieve high-performing signal processing routines that help mitigate sys-

tematic errors of CML and weather radar rainfall estimates. As described above, specific

opportunities but also challenges that arise in the application of deep neural networks to

geo-scientific problems are anticipated. Additionally, there is hope to gain more general

conclusions about these challenges and opportunities. In summary, the aim is to answer

the following two overarching research questions (OQ).

Overarching Research Questions

OQ1 Can systematic errors of CML and weather radar QPE be quantified,

attributed to causes, and corrected?

Section 1.2.2 reviewed the potential causes for systematic errors of rainfall sensors

placed in a complex natural environment. For CMLs, the identified errors were, on

one hand, an incorrect attribution of attenuation to rainfall, for example, due to

strong signal fluctuations during dry periods or wet antenna attenuation. On the

other hand, there are missing observations due to a complete loss of signal in heavy

precipitation. Random errors due to DSD variability and signal quantization need

to be considered in addition to systematic errors.

For weather radars, systematic errors can be due to radar miscalibration, attenuation

of the beam, ground clutter and anomalous propagation, beam blockage, scenario-

dependent variability of the Z-R relation, beam broadening and overshooting, ver-

tical variability of rainfall (compared to ground sensors), and temporal sampling

errors. Random errors due to DSD uncertainty apply similarly to the case of CMLs.

While the presence of such errors is known in theory, the frequency of their ap-

pearance in real-world rainfall observations is often unknown. The attribution to

a cause of an observed error in the rainfall estimate is also not always possible, as

is its correction. It is one objective of this thesis to achieve more clarity on the

potential for quantification, attribution, and correction of systematic errors within
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rainfall estimates from CMLs and weather radars.

OQ2 Are artificial neural networks a robust and transferable tool to provide

quantitative precipitation estimates?

Geophysical applications of deep learning algorithms are, in general, different from

classical deep learning problems like image classification. The main differences that

also apply to a successful application of deep learning in rainfall estimation are as

follows:

First, rainfall is characterized by a heavily skewed extreme value distribution and

high intermittency. It is unclear if deep learning algorithms, that were initially

developed for image recognition tasks, are robust tools to model such extreme value

distributions and if the model skill decreases for extreme events that occur at a low

frequency.

Second, the i.i.d. assumption that train and test sets are independent and identically

distributed is harder to achieve. A covariate shift between training and inference is

assumed to be much more likely. Mainly, the non-stationarity of observed systems

may also lead to a decreased performance if the distribution of the train and test

data are different. It is unclear if the transferability to new locations and different

time periods can be achieved without a loss of skill. This especially applies to rainfall

sensors where both, the local climatic conditions as well as the sensor hardware may

change in time and space.

Specific Research Questions

The following specific research questions (SQ) are used to answer the overarching ques-

tions. An overview of the connections between specific and overarching questions is given

in Fig. 1.11. Answers to these questions are achieved by the individual studies conducted

within this thesis (see Chapters 2 to 6). The questions are ordered chronologically by the

time when the studies were conducted.

SQ1 How do established signal processing techniques compare in a large-scale

evaluation of one year of CML data in Germany?

CMLs are opportunistic sensing devices in the sense that they are not designed for

rainfall estimation. Thus, they have an increased heterogeneity in data quality which

leads to complex data processing (see Section 1.2.2.3). A series of methods for the

detection of rain events and the compensation of wet antenna attenuation have been

proposed by research groups in different countries. Due to a lack of openly available

CML data, each method has been developed using a different dataset. To be able

to measure improvements in CML signal processing routines it is essential to draw

a baseline for the performance of state-of-the-art methods. Not only the application

of these methods on the same data set but also the choice of a suitable framework

to evaluate them is necessary.
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Figure 1.11: Research questions: The overall objective of improving rainfall estimates

using deep learning techniques is achieved by answering the two overarching research

questions. These target, on one hand, the successful mitigation of systematic QPE errors

and on the other hand the robustness of the deep learning approaches. Each overarching

question is related to a specific research question that was each answered in a individually

designed study (see Fig. 1.12).
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SQ2 Are 1D-convolutional neural networks able to distinguish between CML

signal level patterns caused by rainfall and fluctuations during dry peri-

ods?

The detection of rain events in CML attenuation data by state-of-the-art methods is

based on the assumption that the amount of fluctuation in the time series measured

by the rolling standard deviation allows for the separation of wet and dry periods.

The specific pattern of the fluctuation was not considered in previous studies. How-

ever, several phenomena that induce signal fluctuations during dry periods have been

identified, but it is yet unclear if they can be distinguished from rain events based

on their signal pattern. Due to the recent success of deep neural networks in pattern

recognition tasks, it is now important to test their performance for rain event de-

tection in CML attenuation data and investigate the impact that an improved rain

event detection has on the resulting rainfall estimates.

SQ3 How do blackouts impact CML rainfall estimates and how often should

they be expected in theory and practice?

Previous studies for the performance of CML-derived rainfall information excluded

missing periods in the data assuming that they appear randomly due to disturbances

in the data acquisition. However, it is known that CML hardware does not allow

for the measurement of high attenuation values when the signal-to-noise ratio at the

receiver is too low. The hardware, transmission power, and cut-off signal-to-noise

ratio influence when these blackouts happen. Since those are largely influenced by

network providers, it remains unclear how frequent blackouts occur in real-world

CML data. For planning mobile networks, using high-resolution rainfall climatol-

ogy is proposed by the ITU, but the suitability of such data has yet to be tested

empirically. Blackouts should be considered a systematic error of CML rainfall esti-

mates and an accurate detection of blackouts is important to develop approaches to

reconstruct the missing extremes in the future.

SQ4 How robust is manual quality control of CML data and how does it affect

rainfall estimation?

Understanding the cause of anomalies, that is, signal fluctuations not caused by

rainfall, is useful to understand more about the potential applications of CML data.

Additionally, compound events of rainfall and anomalies disturb accurate rainfall

estimation even if the rain event is located correctly. However, the causes of anoma-

lies are diverse and reference data is often scarce. There are unknown factors like

the mechanical properties of the CML tower and the hardware that may or may not

be exposed to influences like heat, solar radiation, or wind. Experts in the field of

CML-based rainfall estimation usually develop a good understanding of the patterns

in the time series caused by rainfall. Despite being able to tell which segments of

the time series resemble rain events, the causes for anomalies remain less well un-

derstood. Cataloging CML anomalies using expert knowledge seems a valid solution
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to overcome the scarcity of reference data, but it is unclear if there is ambiguity in

the expert decision and if expert flagging of anomalies can improve CML rainfall

estimates.

SQ5 Are 3D-convolutional neural networks capable of simultaneous temporal

super-resolution, ground-adjustment, and advection-correction of radar

rainfall estimates?

As summarized in Section 1.2.2.4, systematic errors in radar rainfall estimates when

compared to on-ground sensors include a temporal undersampling of small, fast-

moving rain cells and an advection-driven spatiotemporal mismatch. Additionally,

biases can be caused by an inadequate choice of scenario-dependent Z-R power-law

coefficients or strong attenuation and beam blockage. Typically, gauge adjustment is

used to correct these errors which relies on a dense rain gauge network in the study

region. On the one hand, statistical methods have been proposed to bias correct

radar rainfall with respect to a rain gauge reference. On the other hand, neural

network approaches have been used to learn a reflectivity-rain rate relationship and

thus to improve the radar rainfall estimate. To date, a large-scale, post-processing

approach is missing to correct the temporal undersampling and advection-driven

errors.
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1.5 Study Outline

The outline of this study follows the five main chapters composed of published journal

articles that aim to answer the specific research questions (see Figures 1.11 and 1.12).

The main chapters are accompanied by an introduction to the general topics of rainfall

estimation and deep learning and a synthesis that connects the specific and overarching

research questions in order to reflect on the main objective.

The basis for the conducted studies is comprised of country-wide CML, weather radar, and

rain gauge observations in Germany (see Sect. 1.2.3). The CML dataset was collected at

the Karlsruhe Institute of Technology from 2017 to 2023 and beyond (Chwala et al., 2016).

The weather radar and rain gauge datasets are provided by the German meteorological

service (Winterrath et al., 2017). The combined density of observations from these three

types of sensors that are available for research purposes in Germany is not surpassed in a

global comparison. Therefore, choosing Germany as a study region for a data-driven im-

provement of rainfall estimates appeared to be the optimal choice. Chapter 1 introduces

the reader to the topic of the thesis and motivates the research objective of improving

rainfall estimates using deep learning algorithms. The motivation is followed by more

general introductions to rainfall estimation techniques and deep learning. Based on this

general introduction, overarching and specific research questions are posed using identified

knowledge gaps. Afterward, the study outline and innovations of the thesis are stated, as

well as further related articles with the contribution of the author. These articles partly

overlap with the topic of the thesis but are not at its core.

In Chapter 2 ”Rainfall estimation from a German-wide commercial microwave link net-

work: optimized processing and validation for 1 year of data”, a large-scale evaluation of

state-of-the-art CML signal processing routines is conducted using one year of data from

countrywide CML observations in Germany. The study uses data from 3904 CMLs and

the months of September 2017 to August 2018. The temporal resolution of the CML atten-

uation data is one minute and the processed rainfall estimates are aggregated to hourly,

monthly, and seasonal data to be compared to a high-quality, gauge-adjusted weather

radar product of the German Meteorological Service. The study aims to compare opti-

mized versions of the rain event detection technique by Schleiss and Berne (2010) and

the wet antenna attenuation compensation schemes by Leijnse et al. (2008) and Schleiss

et al. (2013). The CML data is compared to the radar product once at the CML locations

and once on an interpolated map-based level. The results are compared in a dedicated

statistical evaluation framework that considers different suitable performance metrics and

different thresholding approaches to exclude dry periods from the analysis. Chapter 2 is

published as Graf et al. (2020a) in Hydrology and Earth System Science.
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Figure 1.12: Study design: The five main chapters of the thesis describe the individual

studies that are used to answer the research questions. Within each study, new method-

ologies to process and analyze the complex datasets have been developed and the impact

of the studied phenomenon on rainfall estimates is analyzed. Chapters 2-5 focus on CML

data and Chapter 6 focuses on weather radar QPE.
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Chapter 3 ”Rain event detection in commercial microwave link attenuation data using

convolutional neural networks”, is the first application of a deep learning technique to im-

prove the processing step of rain event detection in CML signal levels. The study applies

a convolutional neural network (CNN) to recognize rain events in the CML signal time

series and compares this approach to the previous state-of-the-art method introduced by

Schleiss and Berne (2010). The neural network is a one-dimensional version of the two-

dimensional image recognition CNNs such as LeNet (LeCun et al., 2015). The network

is trained on four months of data from 800 randomly selected CMLs and tested on two

different months of data from more than 3000 CMLs not included in the training. This

data-splitting routine is chosen to test for the transferability of the chosen method to future

times and previously unseen locations. As a rain event reference for the training, hourly

gauge-adjusted weather radar estimates are averaged along the link paths. The evalua-

tion of the results is conducted using climatology invariant metrics such as the receiver

operating characteristic. In addition to the rain event detection skill the improvement of

the resulting rainfall estimates by the CNN in combination with the remaining optimized

processing developed in Chapter 2 is analyzed. Chapter 3 is published as Polz et al. (2020)

in Atmospheric Measurement Techniques.

Chapter 4 ”Missing Rainfall Extremes in Commercial Microwave Link Data Due To

Complete Loss of Signal”, investigates the occurrence of blackouts (see Section 1.2.2.3), a

systematic error in CML rainfall estimates that was neglected in previous studies. Black-

outs occur when the rainfall-induced attenuation causes a complete loss of the CMLs

signal. The study proposes a new algorithm to detect blackouts and uses it to analyze

three years of CML data to gain knowledge about the frequency of blackouts and the

probability of missing high-intensity rain rates. As a reference, a gauge-adjusted and

climatology-corrected radar product with a 5-minute temporal resolution is used. Addi-

tionally, an attenuation climatology derived from 20 years of radar data is analyzed to

compare the expected occurrence of blackouts to the observed frequency. Chapter 4 is

published as Polz et al. (2023b) in Earth and Space Science.

Chapter 5 ”Expert Flagging of Commercial Microwave Link Signal Anomalies: Effect on

Rainfall Estimation and Ambiguity of Flagging”, is concerned with CML signal anomalies

and their detection and classification. Because of a lack of understanding of the poten-

tial causes of signal anomalies, the opportunistic nature of the sensing approach, and the

lack of suitable reference data, cataloging the signal anomalies using expert knowledge

is explored. To see if the manual data quality control is robust, four experts propose

quality flags for data from different CMLs with a high amount of fluctuations. After a

first round of flagging a set of anomaly classes is defined and discussed within the expert

group. Afterward, each expert individually flags three months of data from 20 CMLs, and

the results are compared. The study analyzes the degree of ambiguity between expert

decisions and the impact of the detected anomalies on the quality of the rainfall estimates.
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Chapter 5 is published as Polz et al. (2023a) in the proceedings of the 2023 IEEE Inter-

national Conference on Acoustics, Speech, and Signal Processing Workshops (ICASSPW).

Chapter 6 ”Temporal Super-Resolution, Ground-Adjustment and Advection Correction

of Weather Radar Observations using 3D-Convolutional Neural Networks”, describes the

correction of systematic errors in radar rainfall estimates and their mitigation using a

3D-residual neural network approach. The focus of the study is to simultaneously adjust

the radar QPE to on-ground information, correct for advection-related issues, and increase

the temporal resolution. Because of the complex error structure of radar rainfall estimates

a post-processing approach is chosen. The neural network is designed to predict the next

five minutes of estimated rainfall from rain gauges using a time series of adjacent radar

QPE. The target resolution is one minute. The model is trained using one year of data

(2020) from 17 C-band radars and 581 rain gauges operated by the German meteorolog-

ical service. The results are validated using eight years of independent data from 247

rain gauges with a 1-minute and 1138 rain gauges with a daily resolution. Chapter 6 is

published as Polz et al. (2024) in Atmospheric Measurement Techniques.

Chapter 7 is the synthesis of all studies conducted in Chapters 2 to 6. First, the key find-

ings of the studies are summarized and the specific research questions are answered. Then,

the implications of the key findings for the overarching research questions are discussed

and the overall goal is reviewed as a conclusion. Finally, an outlook on new knowledge

gaps and potential research topics that emerge from this thesis is given.
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1.6 Innovation

The main innovation of this thesis lies in the application of deep learning techniques for

rainfall estimation with CMLs and weather radars specifically and the identification of

specific challenges and opportunities of deep learning approaches for rainfall estimation

more generally. Specifically, this thesis presents:

• The first-time application of convolutional neural networks for rain event detection in

CML signal level time-series which is shown to outperform state-of-the-art methods

• A residual neural network approach for simultaneous temporal super-resolution,

ground-adjustment, and advection correction of radar rainfall that significantly re-

duces the error of radar QPE at a 1-minute temporal resolution.

The main innovations are accompanied by a series of important achievements that signif-

icantly advance CML rainfall estimation:

• The first country-wide rainfall estimates from CMLs in Germany and a benchmark

estimate of the relative error compared to gauge-adjusted weather radars

• The identification and quantification of missing rainfall extremes in the CML signal

level time series as a serious systematic error

• A new approach to cataloging CML signal anomalies using expert knowledge and an

analysis of their impact on CML rainfall estimates.
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1.7 Author Contributions

Chapter 2: Rainfall estimation from a German-wide commercial microwave link net-

work: Optimized processing and validation for one year of data

Graf, M., Chwala, C., Polz, J., and Kunstmann, H.: Rainfall estimation from a German-

wide commercial microwave link network: optimized processing and validation for 1

year of data, Hydrol. Earth Syst. Sci., 24, 2931–2950, https://doi.org/10.5194/

hess-24-2931-2020, 2020.

The main contribution of Julius Polz was the design and improvement of the statistical

evaluation, especially the identification of the Matthews correlation coefficient as a suitable

objective function for optimizing rain event detection. Julius Polz frequently discussed the

study layout and the technical implementation of the analysis with the other co-authors

and significantly contributed to the final outcome.

The detailed contributions of all authors are: The concept of this study was designed by

Maximilian Graf, Christian Chwala, and Harald Kunstmann. Maximilian Graf and Chris-

tian Chwala designed the analysis and Maximilian Graf carried it out with contributions

from Christian Chwala and Julius Polz. Christian Chwala set up the data acquisition

to provide the raw CML data. Maximilian Graf processed and evaluated all CML data.

The optimization of the individual processing steps was conducted by Maximilian Graf.

The concept of the statistical analysis to set a benchmark performance for CML wet-dry

classification was developed by Julius Polz and Maximilian Graf. The results were pre-

sented by Maximilian Graf and were discussed with all co-authors. The code both for the

CML processing and the evaluation was developed by Maximilian Graf with contributions

from Christian Chwala and Julius Polz. All figures were prepared by Maximilian Graf.

The manuscript was written by Maximilian Graf with contributions from and discussions

with all co-authors.

Chapter 3: Rain event detection in commercial microwave link attenuation data us-

ing convolutional neural networks

Polz, J., Chwala, C., Graf, M., and Kunstmann, H.: Rain event detection in commer-

cial microwave link attenuation data using convolutional neural networks, Atmos. Meas.

Tech., 13, 3835–3853, https://doi.org/10.5194/amt-13-3835-2020, 2020

Julius Polz was leading the design of this study proposing the CNN-based methodology

as well as the training and evaluation framework. He was the main contributor to the

technical implementation of the methods and the lead author of the manuscript preparing

all figures and writing the initial paper draft.

The detailed contributions of all authors are: Julius Polz, Christian Chwala, and Harald

Kunstmann designed the study layout and Julius Polz carried it out with contributions

from Christian Chwala and Maximilian Graf. Christian Chwala set up the data acquisi-

tion to provide the raw CML data. Maximilian Graf provided pre-processed CML data

which was further processed by Julius Polz. Julius Polz developed the CNN-based
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rain event detection model and conducted the training, validation, and model selection.

Julius Polz evaluated the CNN-based wet-dry classification and rainfall estimates against

a radar reference with contributions from Maximilian Graf. The code was developed by

Julius Polz with the contributions of Christian Chwala and Maximilian Graf. All figures

were prepared by Julius Polz. Julius Polz prepared the manuscript with contributions

from all co-authors.

Chapter 4: Missing rainfall extremes in commercial microwave link data due to total

loss of signal

Polz, J., Graf, M. and Chwala, C.: Missing rainfall extremes in commercial microwave

link data due to total loss of signal, Earth and Space Science, vol. 10, no. 2, pp.

e2022EA002456, https://doi.org/10.1029/2022EA002456, 2023)

The main contribution of Julius Polz to this study was the analysis of expected blackouts

based on a large dataset of climatology-corrected and gauge-adjusted weather radar esti-

mates while Maximilian Graf implemented the detection of blackouts in real CML data.

In all other aspects, including the overall study design, he contributed equally to the other

co-authors of the study.

The detailed contributions of all authors are: Julius Polz, Maximilian Graf, and Chris-

tian Chwala designed the study layout. Julius Polz and Maximilian Graf carried out the

analysis in equal parts with contributions from Christian Chwala. The data was provided

and prepared by all authors. In general, Julius Polz conducted all analyses related to

the synthetic CML data based on RADKLIM-YW and Maximilian Graf conducted all

analyses related to the observed CML data with respective contributions and discussion

with Christian Chwala. Accordingly, Figures 1 and 2 were prepared by Maximilian Graf

who provided CML-based statistics and developed a blackout gap detection algorithm

while Figures 3 and 4 were prepared by Julius Polz who provided synthetic CML-based

statistics and compared the blackout frequency in real and synthetic CML observation.

Christian Chwala contributed and discussed various stages of the analysis. Accompanying

example software of the blackout gap detection algorithm and example data were prepared

and published by Maximilian Graf within the python software package pycomlink. Julius

Polz and Maximilian Graf prepared the manuscript with the contributions of Christian

Chwala. Julius Polz and Maximilian Graf share the authorship of this publication with

equal contributions.

Chapter 5: Expert Flagging of Commercial Microwave Link Signal Anomalies: Effect

on Rainfall Estimation and Ambiguity of Flagging

Polz, J., Glawion, L., Graf, M., Blettner, N., Lasota, E., Schmidt, L., Kunstmann, H. and

Chwala, C., 2023 IEEE International Conference on Acoustics, Speech, and Signal Pro-

cessing Workshops (ICASSPW), pages 1–5, https://doi.org/10.1109/icasspw59220.

2023.10193654, 2023

Julius Polz was the main contributor to the design of this study and implemented the
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flagging tool. He also designed and conducted the evaluation of flagged data and prepared

the manuscript.

The detailed contributions of all authors are: Julius Polz, Luca Glawion, Maximilian

Graf, and Christian Chwala designed the study layout. Julius Polz and Luca Glawion

developed the data flagging tool and discussed it with all co-authors. Julius Polz, Luca

Glawion, Maximilian Graf, and Nico Blettner independently flagged the CML anomalies.

Julius Polz developed and carried out the analysis of the data and evaluated the impact

on the CML rainfall estimates. All figures were prepared by Julius Polz. Julius Polz

prepared the manuscript with contributions from all co-authors. Julius Polz presented

the conference publication at the IEEE International Conference on Acoustics, Speech,

and Signal Processing (ICASSP).

Chapter 6: Temporal Super-Resolution, Ground-Adjustment and Advection Correction

of Weather Radar Observations using 3D-Convolutional Neural Networks

Polz, J., Glawion, L., Gebisso, H., Altenstrasser, L., Graf, M., Kunstmann, H., Vogl,

S., and Chwala, C. Temporal Super-Resolution, Ground Adjustment, and Advection

Correction of Radar Rainfall Using 3-D-Convolutional Neural Networks. IEEE Trans-

actions on Geoscience and Remote Sensing, 62:1–10, https://doi.org/10.1109/TGRS.

2024.3371577, 2024

Julius Polz was the main contributor who designed the study and implemented the

ResRadNet model with contributions from Luca Glawion. He also designed the evaluation

of the trained model, prepared all figures, and prepared the first draft of the manuscript

before discussing it with all co-authors.

The detailed contributions of all authors are: Julius Polz, Stephanie Vogl, and Chris-

tian Chwala designed the study layout. Julius Polz and Maximilian Graf pre-processed

the radar and station data. Julius Polz developed the neural network architecture

with contributions from Luca Glawion, Hiob Gebisso, Lukas Altenstrasser, and Chris-

tian Chwala. Julius Polz conducted the advection correction using the Lukas-Kanade

Algorithm. Julius Polz designed the validation framework and evaluated the model

performance. The code was developed by Julius Polz with contributions from all co-

authors. Julius Polz prepared the manuscript with contributions from Maximilian Graf,

Luca Glawion, Christian Chwala, Stephanie Vogl, and Harald Kunstmann.
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1.8 Further related articles

In this section, co-authored articles related to the improvement of rainfall estimation and

prediction with CMLs and weather radars that have been published or submitted for

publication in the period of December 2018 to March 2023 are presented in chronological

order.

Rainfall estimation using the mobile network (Regenmessung im Mobilfunknetz)

Graf et al. (2021b)

Graf, M., Polz, J. and Chwala, C.

Physik in unserer Zeit

Abstract A most accurate estimation of precipitation is a fundamental part of climate

and environmental research as well as for various applications, for example in agriculture.

A new way of measuring precipitation is made possible by the mobile communications

network in Germany using directional radio links (Commercial Microwave Link, CML).

The great advantage of this method lies in the infrastructure, which can potentially be

used worldwide. The quality of the precipitation observations from about 4000 CML

in Germany shows a high agreement with the official measuring network of the German

Weather Service.

Near-Realtime Quantitative Precipitation Estimation and Prediction (RealPEP)

Trömel et al. (2021)

Trömel, S., Chwala, C., Furusho-Percot, C., Carbajal Henken, C., Polz, J., Potthast, R., Reinoso-

Rondinel, R. and Simmer, C.

Bulletin of the American Meteorological Society

Abstract On 5–7 October 2020, 250 participants discussed ideas and recent developments

in the fields of quantitative precipitation estimation (QPE) based on the exploitation of

measurements of polarimetric radars and microwave backhaul links, observation-based

quantitative precipitation nowcasting (QPN), numerical quantitative precipitation fore-

casting (QPF), flash-flood prediction (FFP), and their organization into seamless predic-

tion systems. This article describes the major findings, challenges and discussion points

identified during the conference.

High-resolution rainfall maps from commercial microwave links for a data-

scarce region in West Africa Djibo et al. (2023)

Djibo, M., Chwala, C., Graf, M., Polz, J., Kunstmann, H., and Zougmoré, F.

Journal of Hydrometeorology

AbstractWe present high-resolution rainfall maps from commercial microwave link (CML)

data in the city of Ouagadougou, Burkina Faso. Rainfall was quantified based on data from
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100 CMLs along unique paths and interpolated to achieve rainfall maps with a 5-minute

temporal and 0.55km spatial resolution for the monsoon season of 2020. Established pro-

cessing methods were combined with newly developed filtering methods, minimizing the

loss of data availability. The rainfall maps were analyzed qualitatively both at a five-

minute and aggregated daily scale. We observed high spatio-temporal variability on the

five-minute scale which cannot be captured with any existing measurement infrastructure

in West Africa. For the quantitative evaluation only one rain gauge with a daily resolution

was available. Comparing the gauge data with the corresponding CML rainfall map pixel

showed a high agreement with a Pearson correlation coefficient of over 0.95 and an under-

estimation of the CML rainfall maps of around ten percent. Because the CMLs closest to

the gauge have the largest influence on the map pixel at the gauge location, we thinned

out the CML network around the rain gauge synthetically in several steps and repeated

the interpolation. The performance of these rainfall maps dropped only when a radius

of 5 km was reached and around half of all CMLs were removed. We further compared

ERA5 and GPM-IMERG data to the rain gauge and found that they show much lower

correlation than data from the CML rainfall maps. This clearly highlights the large benefit

that CML data can provide in the data scarce but densely populated African cities.

spateGAN: Spatio-Temporal Downscaling of Rainfall Fields using a cGAN

Approach Glawion et al. (2023)

Glawion, L., Polz, J., Kunstmann, H., Fersch, B. and Chwala, C.

Earth and Space Science

Abstract Climate models face limitations in their ability to accurately represent highly

variable atmospheric phenomena. To resolve fine-scale physical processes, allowing for

local impact assessments, downscaling techniques are essential. We propose spateGAN,

a novel approach for spatio-temporal downscaling of precipitation data using conditional

generative adversarial networks. Our method is based on a video super-resolution approach

and trained on 10 years of country-wide radar observations for Germany. It simultaneously

increases the spatial and temporal resolution of coarsened precipitation observations from

32 km to 2 km and from 1 hr to 10 min. Our experiments indicate that the ensembles of

generated temporally consistent rainfall fields are in high agreement with the observational

data. Spatial structures with plausible advection were accurately generated. Compared to

trilinear interpolation and a classical convolutional neural network, the generative model

reconstructs the resolution-dependent extreme value distribution with high skill. It showed

a high fractions skill score of 0.6 (spatio-temporal scale: 32 km and 1 hr) for rainfall

intensities over 15mmh−1 and a low relative bias of 3.55%. A power spectrum analysis

confirmed that the probabilistic downscaling ability of our model further increased its skill.

We observed that neural network predictions may be interspersed by recurrent structures

not related to rainfall climatology, which should be a known issue for future studies.

We were able to mitigate them by using an appropriate model architecture and model
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selection process. Our findings suggest that spateGAN offers the potential to complement

and further advance the development of climate model downscaling techniques, due to its

performance and computational efficiency.

Potential and limitations of filling gaps in commercial microwave link

data stemming from complete loss of signal during heavy rainfall Graf

et al. (2023)

Graf, M., Blettner, N., Polz, J., and Chwala, C.

IEEE International Conference on Acoustics, Speech, and Signal Processing ICASSP

Abstract Rainfall estimates from commercial microwave links (CML) can be impaired

by the total loss of signal during heavy rainfall events. This implies that the highest

rainfall intensities may not be observed by CMLs during these so-called blackouts. As

CML rainfall estimation approaches an operational state, this issue has to be studied

and potential mitigation strategies have to be developed. Therefore, we investigate three

methods which fill blackout gaps detected by a filter established in previous work. The

methods we developed consisted of a linear and a cubic interpolation as well as the infilling

of the values at the detection limit of each CML. In general, the linear interpolation

underestimated and the cubic interpolation overestimated rainfall intensities compared to

a reference. The physically motivated infilling at the detection limit performed best. In

conclusion, blackout gaps should be mitigated with one propose methods to improve the

quality of rainfall estimates derived from CMLs.

Improved rain event detection in Commercial Microwave Link time series

via combination with MSG SEVIRI data Graf et al. (2024)

Graf, M.*, Wagner, A.*, Polz, J.*, Lliso, L., Lahuerta, J., Kunstmann, H., and Chwala, C.

(*equal contributions)

Atmospheric Measurement Techniques

Abstract The most reliable areal precipitation estimation is usually generated via combi-

nations of different measurements. Path-averaged rainfall rates can be derived from com-

mercial microwave links (CMLs), where attenuation of the emitted radiation is strongly

related to rainfall rate. CMLs can be combined with data from other rainfall measure-

ments or can be used individually. They are available almost worldwide and often repre-

sent the only opportunity for ground-based measurement in data-scarce regions. However,

deriving rainfall estimates from CML data requires extensive data processing. The sep-

aration of the attenuation time series into rainy and dry periods (rain event detection)

is the most important step in this processing and has a high impact on the resulting

rainfall estimates. In this study, we investigate the suitability of Meteosat Second Gener-

ation Spinning Enhanced Visible and InfraRed Imager (MSG SEVIRI) satellite data as an

auxiliary-data-based (ADB) rain event detection method. We compare this method with

two time-series-based (TSB) rain event detection methods. We used data from 3748 CMLs
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in Germany for 4 months in the summer of 2021 and data from the two SEVIRI-derived

products PC and PC-Ph. We analyzed all rain event detection methods for different rain-

fall intensities, differences between day and night, and their influence on the performance

of rainfall estimates from individual CMLs. The radar product RADKLIM-YW was used

for validation. The results showed that both SEVIRI products are promising candidates

for ADB rainfall detection, yielding only slightly worse results than the TSB methods,

with the main advantage that the ADB method does not rely on extensive validation for

different CML datasets. The main uncertainty of all methods was found for light rain.

Slightly better results were obtained during the day than at night due to the reduced

availability of SEVIRI channels at night. In general, the ADB methods led to improve-

ments for CMLs performing comparatively weakly using TSB methods. Based on these

results, combinations of ADB and TSB methods were developed by emphasizing their

specific advantages. Compared to basic and advanced TSB methods, these combinations

improved the Matthews correlation coefficient of the rain event detection from 0.49 (or

0.51) to 0.59 during the day and from 0.41 (or 0.50) to 0.55 during the night. Additionally,

these combinations increased the number of true-positive classifications, especially for light

rainfall compared to the TSB methods, and reduced the number of false negatives while

only leading to a slight increase in false-positive classifications. Our results show that

utilizing MSG SEVIRI data in CML data processing significantly increases the quality of

the rain event detection step, in particular for CMLs which are challenging to process with

TSB methods. While the improvement is useful even for applications in Germany, we see

the main potential of using ADB methods in data-scarce regions like West Africa where

extensive validation is not possible.
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Rainfall estimation from a German-wide

commercial microwave link network:

Optimized processing and validation for

one year of data (Graf et al., 2020a)

Graf, M., Chwala, C., Polz, J., and Kunstmann, H.: Rainfall estimation from a German-

wide commercial microwave link network: optimized processing and validation for 1

year of data, Hydrol. Earth Syst. Sci., 24, 2931–2950, https://doi.org/10.5194/

hess-24-2931-2020, 2020.

License: CC BY

Abstract

Rainfall is one of the most important environmental variables. However, it is a challenge to

measure it accurately over space and time. During the last decade commercial microwave

links (CMLs), operated by mobile network providers, have proven to be an additional

source of rainfall information to complement traditional rainfall measurements. In this

study we present the processing and evaluation of a German-wide data set of CMLs.

This data set was acquired from around 4000 CMLs distributed across Germany with a

temporal resolution of one minute. The analyzed period of one year spans from September

2017 to August 2018. We compare and adjust existing processing schemes on this large

CML data set. For the crucial step of detecting rain events in the raw attenuation time

series, we are able to reduce the amount of miss-classification. This was achieved by

a new approach to determine the threshold, which separates a rolling window standard

deviation of the CMLs signal into wet and dry periods. For the compensation of wet

antenna attenuation, we compare a time-dependent model with a rain-rate-dependent

model and show that the rain-rate-dependent model performs better for our data set. As

precipitation reference, we use RADOLAN-RW, a gridded gauge-adjusted hourly radar

product of the German Meteorological Service (DWD), from which we derive the path-
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averaged rain rates along each CML path. Our data processing is able to handle CML data

across different landscapes and seasons very well. For hourly, monthly and seasonal rainfall

sums we found a good agreement between CML-derived rainfall and the reference, except

for the winter season with non-liquid precipitation. We discuss performance measures

for different subset criteria and show, that CML derived rainfall maps are comparable to

the reference. This analysis shows that opportunistic sensing with CMLs yields rainfall

information with a good agreement to gauge-adjusted radar data during periods without

non-liquid precipitation.

2.1 Introduction

Measuring precipitation accurately over space and time is challenging due to its high spa-

tiotemporal variability. It is a crucial component of the water cycle and knowledge of the

spatiotemporal distribution of precipitation is an important quantity in many applications

across meteorology, hydrology, agriculture, and climate research.

Typically, precipitation is measured by rain gauges, ground-based weather radars or space-

borne microwave sensors. Rain gauges measure precipitation at the point scale. Errors can

be caused for example by wind, solid precipitation or evaporation losses (Sevruk, 2006).

The main disadvantage of rain gauges is their lack of spatial representativeness.

Weather radars overcome this spatial constraint, but are affected by other error sources.

They do not directly measure rainfall, but estimate it from related observed quantities,

typically via the Z-R relation, which links the radar reflectivity ”Z” to the rain rate ”R”.

This relation, however, depends on the rain drop size distribution (DSD), resulting in

significant uncertainties. Dual-polarization weather radars reduce these uncertainties, but

still struggle with the DSD-dependence of the rain rate estimation (Berne and Krajewski,

2013). Additional error sources can stem from the measurement high above ground, from

beam blockage or ground clutter effects.

Satellites can observe large parts of the earth, but their spatial and temporal coverage also

has limits. Geostationary satellites can provide a high temporal sampling rate of a specific

part of the earth. However rain rate estimates show large uncertainties because they have

to be derived from measurements of visible and infra red channels, which were not meant

for this purpose. Satellites in Low Earth orbits typically use dedicated sensors for rainfall

estimation (microwave radiometers and radars), but their revisiting times are constraint

by their orbits. Typical revisit times are in the order of hours to days. As a result, even

merged multi-satellite products have a latency of several hours, e.g. the Integrated Multi-

satellite Retrievals (IMERG) early run of the Global Precipitation Measurement Mission

(GPM) has a latency of 6 hours, while it is limited to a spatial resolution of 0.1 degrees.

The employed retrieval algorithms are highly sophisticated and several calibration and

correction stages are potential error sources (Maggioni et al., 2016).

Additional rainfall information, for example derived from commercial microwave links

(CMLs) maintained by cellular network providers, can be used to compare and comple-
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ment existing rainfall data sets (Messer et al., 2006). In regions with sparse observation

networks, they might even provide unique rainfall information.

The idea to derive rainfall estimates via the opportunistic usage of attenuation data from

CML networks emerged over a decade ago independently in Israel (Messer et al., 2006)

and the Netherlands (Leijnse et al., 2007). The main research foci in the first decade

of dedicated CML research were the development of processing schemes for the rainfall

retrieval and the reconstruction of rainfall fields. The first challenge for rainfall estima-

tion from CML data is to distinguish between fluctuations of the raw attenuation data

during rainy and dry periods. This was addressed by different approaches which either

compared neighbouring CMLs using the spatial correlation of rainfall (Overeem et al.,

2016a) or which focused on analyzing the time series of individual CMLs (Chwala et al.,

2012; Polz et al., 2020; Schleiss and Berne, 2010; Wang et al., 2012). Another challenge

is to estimate and correct the effect of wet antenna attenuation. This effect stems from

the attenuation caused by water droplets on the covers of CML antennas, which leads to

rainfall overestimation (Fencl et al., 2019; Leijnse et al., 2008; Schleiss et al., 2013).

Since many hydrological applications require spatial rainfall information, several approaches

have been developed for the generation of rainfall maps from the path-integrated CML

measurements. Kriging was successfully applied to produce countrywide rainfall maps for

the Netherlands (Overeem et al., 2016b), representing CML rainfall estimates as synthetic

point observation at the center of each CML path. More sophisticated methods can ac-

count for the path-integrated nature of the CML observations, using an iterative inverse

distance weighting approach (Goldshtein et al., 2009), stochastic reconstruction (Haese

et al., 2017) or tomographic algorithms (D’Amico et al., 2016; Zinevich et al., 2010).

CML-derived rainfall products were also used to derive combined rainfall products from

various sources (Fencl et al., 2017; Liberman et al., 2014; Trömel et al., 2014). In parallel,

first hydrological applications were tested. CML-derived rainfall was used as model input

for hydrologic modelling studies for urban drainage modeling with synthetic (Fencl et al.,

2013) and real world data (Stransky et al., 2018) or on run-off modeling in natural catch-

ments (Brauer et al., 2016; Smiatek et al., 2017).

With the exception of the research carried out in the Netherlands, where more than two

years of data from a country-wide CML network were analyzed (Overeem et al., 2016b),

CML processing methods have only been tested on small data sets. We advance the state

of the art by performing an analysis of rainfall estimates derived from a German-wide

network of close to 4000 CMLs. In this study one CML is counted as the link along one

path with typically two sub-links, for the communication in both directions. The tem-

poral resolution of the data set is one minute and the analyzed period is one year from

September 2017 until August 2018. The network covers various landscapes from the North

German Plain to the Alps in the south, which feature individual precipitation regimes.

The objectives of this study are (1) to compare and adjust selected existing CML data

processing schemes for the classification of wet and dry periods and for the compensation

of wet antenna attenuation and (2) to validate the derived rain rates with an established
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rainfall product, namely RADOLAN-RW, both on the country-wide scale of Germany.

2.2 Data

2.2.1 Reference data set

The Radar-Online-Aneichung data set (RADOLAN-RW) of the German Weather Service

(DWD) is a radar-based and gauge adjusted precipitation data set. We use data from the

archived real-time product RADOLAN-RW as reference data set throughout this work

(DWD). It is a compiled radar composite from 17 dual-polarization weather radars op-

erated by DWD and adjusted by more than 1000 rain gauges in Germany and 200 rain

gauges from surrounding countries. RADOLAN-RW does not use dual-pol information,

though. It is based on the reflectivity observations in horizontal polarization from each

radar site, which are available in real-time every five minutes. This data is then used

to compile a national composite of reflectivities, from which rain rates are derived. For

the hourly rainfall information of the RADOLAN-RW product, the national composite of

5-minute radar rain rates is then aggregated and adjusted with the hourly rain gauge ob-

servations. A weighted mixture of additive and multiplicative corrections is applied. The

rain gauges used for the adjustment have a spatial density of approximately one gauge per

300 km2.

The gridded data set RADOLAN-RW has a spatial resolution of 1 km, covering Germany

with 900 by 900 grid cells. The temporal resolution is one hour and the rainfall values

are given with a quantization of 0.1 mm. RADOLAN-RW is available with a lag time of

around 15 minutes. Detailed information on the RADOLAN processing and products is

availabel from DWD (Bartels et al., 2004; Winterrath et al., 2012).

Kneis and Heistermann (2009) and Meissner et al. (2012) compared RADOLAN-RW prod-

ucts to gauge-based data sets for small catchments and found differences in daily, area

averaged precipitation sums of up to 50 percent, especially for the winter season. Never-

theless, no data set with comparable temporal and spatial resolution, as well as extensive

quality control is available.

In order to compare the path integrated rainfall estimates from CMLs and the gridded

RADOLAN-RW product, RADOLAN-RW rain rates are resampled along the individual

CML paths. For each CML, the weighted average of all intersecting RADOLAN-RW grid

cells is calculated, with the weights being the lengths of the intersecting CML path in each

cell. As result, one time series of the hourly rain rate is generated from RADOLAN-RW

for each CML. The temporal availability of this reference is 100 percent but we excluded

the CML and RADOLAN-RW pairs in the evaluation, when CML data is not available.

We chose the RADOLAN-RW product, because it provides both a high temporal and

spatial resolution for entire Germany. This resolution is the basis for a good evaluation of

the path-averaged rain rates derived from CMLs. The rain gauge adjustments, while not

perfect, assures that the RADOLAN-RW rainfall estimates have an increased accuracy

compared to a radar-only data set.
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2.2.2 Commercial microwave link data

We present data of 3904 CMLs operated by Ericsson in Germany. Their distribution over

Germany is shown in Fig. 2.1. The CMLs are distributed country-wide over all landscapes

in Germany, ranging from the North German Plain to the Alps in the south. The uneven

distribution, with large gaps in the north east can be explained by the fact that we only

access one subset of all installed CMLs, the Ericsson MINI-LINK Traffic Node systems

operated for one cell phone provider.

Figure 2.1: Map of the distribution of 3904 CMLs over Germany. © OpenStreetMap

contributors 2019. Distributed under a Creative Commons BY-SA License.

CML data is retrieved with a real-time data acquisition system which we operate in coop-

eration with Ericsson (Chwala et al., 2016). Every minute, the current transmitted signal

level (TSL) and received signal level (RSL) are requested from more than 4000 CMLs for

both ends of each CML. The data is then immediately sent to and stored at our server.

For the complete processing chain presented in this work, we used this 1-minute instan-

taneous data of TSL and RSL for the period from September 2017 to August 2018 for

3904 CMLs to derive rain rates with a temporal resolution of 1 minute. For comparison

with the reference data, the 1-minute data is then aggregated. Due to missing, unclear

or corrupted metadata we could not use all CML data. Furthermore, we only used data

of one sub-link per CML. There was no specific criterion for selecting the sub-link. We

simply used the pair of TSL and RSL that came first in our listing.

The available power resolution is 1 dB for TSL and 0.3 (with occasional jumps of 0.4

47



Chapter 2. German-wide CML rainfall estimation

dB) for RSL. The TSL is constant for 25 percent of the CMLs. An Automatic Transmit

Power Control (ATPC), which is able to increase TSL by several dB to prevent blackouts

due to heavy attenuation, is active at 75 percent of the CMLs. While the length of the

CMLs ranges between a few hundred meters to almost 30 km, most CMLs have a length

of 5 to 10 km. They are operated with frequencies ranging from 10 to 40 GHz, depending

on their length. Figure 2.2 shows the distributions of path lengths and frequencies. For

shorter CMLs higher frequencies are used.
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Figure 2.2: Scatterplot of the length against the microwave frequency of 3904 CMLs

including the distribution of length and frequency.

To derive rainfall from CMLs, we used the difference between TSL and RSL, the trans-

mitted minus received signal level (TRSL). An example of a TRSL time series is shown in

Fig. 2.3a). To compare the rain rate derived from CMLs with the reference rain rate, we

resampled it from a minutely to an hourly resolution after the processing.

In our CML data set 2.2 percent are missing time steps due to outages of the data acqui-

sition systems. Additionally 1.2 percent of the raw data show missing values (Nan) and

0.1 percent show default fill values (e.g. -99.9 or 255.0) of the CML hardware, which we

excluded from the analysis. In order to increase the data availability, we linearly interpo-

lated gaps in raw TRSL time series which were up to five minutes long. This increased the

data availability by 0.5 percent. On the one hand, these gaps can be the result of missing

time steps and missing values but we also found cases where we suspect very high rainfall

to be the reason for short blackouts of a CML.

The size of the complete CML data set is approximately 100 GB in memory. The data set
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Table 2.1: Adopted confusion matrix
reference

wet dry

C
M
L wet true wet (TP) false wet (FP)

dry missed wet (FN) true dry (TN)

is continuously extended by the operational data acquisition, allowing also the possibility

of near-realtime rainfall estimation.

2.3 Methods

2.3.1 Performance measures

To evaluate the performance of the CML-derived rain rates against the reference data set,

we used several measures which we calculated on an hourly basis. We defined a confusion

matrix according to Tab. 2.1 where wet and dry refer to hours with and without rain,

respectively. The Matthew’s correlation coefficient (MCC) summarizes the four values of

the confusion matrix in a single measure (2.1) and is typically used as measure of binary

classification in machine learning. This measure is accounting for the skewed ratio of wet

and dry events. It is high only if the classifier is performing well on both classes.

MCC =
TP ∗ TN− FP ∗ FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(2.1)

The mean detection error (MDE) (2.2) is introduced as a further binary measure focusing

on the miss-classification of rain events.

MDE =

FN
n(wet) +

FP
n(dry)

2
(2.2)

It is calculated as the average of missed wet and false wet rates of the contingency table

from Tab. 2.1.

The linear correlation between CML-derived rainfall and the reference is expressed by

the Pearson correlation coefficient (PCC). The coefficient of variation (CV) in (2.3) gives

the distribution of CML rainfall around the reference expressed by the ratio of residual

standard deviation and mean reference rainfall,

CV =
std

∑
(RCML − Rreference)

Rreference

(2.3)

where RCML and Rreference are hourly rain rates of the respective data set. Furthermore,

we computed the mean absolute error (MAE) and the root mean squared error (RMSE)

to measure the accuracy of the CML rainfall estimates. The relative bias is given as

bias =
(RCML − Rreference)

Rreference

(2.4)
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Chapter 2. German-wide CML rainfall estimation

Often, in studies comparing CML derived rainfall and radar data, a threshold is used as

a lower boundary for rainfall. The performance measures, summarized in Tab. 2.2, were

calculated with different subset criteria or thresholds. This gives insight on how CML

derived rainfall compares to the reference for different rain rates and on how the large

number of data points without rain influence the performance measures. Another reason

for listing the performance measures with several thresholds is the increased comparability

with other studies on CML rainfall estimation, which do not uniformly use the same

threshold, see e.g. Table A1 in de Vos et al. (2019). Therefore, we defined a selection

of subset criteria and thresholds and show performance measures for data without any

thresholds (none), for the data set with RCML and Rreference < 0.1 mm/h set to 0 mm/h,

for two thresholds where at least RCML or Rreference must be > 0 and >= 0.1 mm/h and

two thresholds where Rreference must be >= 0.1 and >= 1 mm.
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Figure 2.3: Processing steps from the TRSL to rain rate. a) The TRSL is the difference of

TSL - RSL, the raw transmitted and received signal level of a CML. b) The RSD (rolling

standard deviation) of the TRSL with an exemplary threshold shows the resulting wet

and dry periods. c) The Attenuation is the difference between the baseline and the TRSL

during wet periods. d) The derived rain rate is resampled to an hourly scale in order to

compare it to the reference RADOLAN-RW.

2.3.2 From raw signal to rain rate

As CMLs are an opportunistic sensing system rather than part of a dedicated measurement

system, data processing has to be done with care. Most of the CML research groups

developed their own methods tailored to their needs and data sets. Overviews of these
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methods are summarized by Chwala and Kunstmann (2019), Messer and Sendik (2015)

and Uijlenhoet et al. (2018). The size of our data set is a challenge itself. As TRSL can

be attenuated by rain or other sources, described in Sect. 2.3.2.1 and only raw TSL and

RSL data is provided, the large size of the data set is of advantage but also a challenge.

Developing and evaluating methods was significantly sped up by the use of an automated

processing workflow, which we implemented as a parallelized workflow on a HPC system

using the Python packages xarray and dask for data processing and visual exploration.

The major challenges which arose from the processing of raw TRSL data into rain rates

and the selected methods from literature are described in the following sections. We

use parameters in this processing which are either based on literature, modified from the

literature or which we developed in this study. An overview of all used parameters is given

in Appendix 2.4.

2.3.2.1 Erratic behavior

Rainfall is not the only source of attenuation of microwave radio along a CML path.

Additional attenuation can be caused by atmospheric constituents like water vapor or

oxygen, but also by refraction, reflection or multi-path propagation of the beam (Upton

et al., 2005). In particular, refraction, reflection and multi-path propagation can lead to

strong attenuation in the same magnitude as from rain. CMLs that exhibit such behavior

have to be omitted due to their noisiness.

We excluded erratic CML data which was extremely noisy or which showed drifts and

jumps from our analysis on a monthly basis. To deal with this erratic data, we applied the

following sanity checks: We exclude individual CMLs if 1) the five hour moving window

standard deviation exceeds the threshold 2.0 for more then ten percent of a month, which

typically is the case for CMLs with either a strong diurnal cycle or very noisy periods during

a month, or if 2) a one hour moving window standard deviation exceeds the threshold 0.8

more than 33 percent of the time in a month. This filter is based on the approach for

detecting rain events in TRSL time series from Schleiss and Berne (2010), which we also

use later on in our processing. For the filter, a fairly high threshold was used, which should

only be exceeded for fluctuations stemming from real rain events. The reasoning of our

filter is, that if the threshold is exceeded too often, here 33 percent of the time per month,

the CML data shows an unreasonably high amount of strong fluctuation. In total, the

two sanity checks removed 1.1 percent from our CML data set. Together with the missing

values that remain after interpolating data gaps of maximum five minutes in the TRSL

time series, 4.2 percent of our data set are not available or not used for processing.

Jumps in data are mainly caused by single default values in the TSL which are described

in Sect. 2.2.2. When we removed these default values, we are able to remove the jumps.

TRSL can drift and fluctuate on daily and yearly scale (Chwala and Kunstmann, 2019).

We could neglect the influence of these drifts in our analysis, because we dynamically

derived a baseline for each rain event, as explained in Sect. 2.3.2.2. We also excluded

CMLs having a constant TRSL over a whole month.
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Chapter 2. German-wide CML rainfall estimation

2.3.2.2 Rain event detection and baseline estimation

The TRSL during dry periods can fluctuate over time due to ambient conditions as men-

tioned in the previous section. Rainfall produces additional attenuation on top of the dry

fluctuation. In order to calculate the attenuation from rainfall, a baseline level of TRSL

during each rain event has to be determined. We derived the baseline from the precedent

dry period. During the rain event, this baseline was held constant, as no additional infor-

mation on the evolution of the baseline level is available. The crucial step for deriving the

baseline is to separate the TRSL time series into wet and dry periods, because only then

the correct reference level before a rain event is used. By subtracting the baseline from

TRSL, we derived the attenuation caused by rainfall which is shown in Fig. 2.3c).

The separation of wet and dry periods is essential, because the errors made in this step will

impact the performance of rainfall estimation. Missing rain events will result in rainfall

underestimation. False detection of rain events will lead to overestimation. The task of

detecting rain events in the TRSL time series is simple for strong rain events, but chal-

lenging when the attenuation from rain is approaching the same order of magnitude as

the fluctuation of TRSL data during dry conditions.

There are two essential concepts to detect rain events. One compares the TRSL of a cer-

tain CML to neighbouring CMLs (Overeem et al., 2016a) and the other investigates the

time series of each CML separately (Chwala et al., 2012; Schleiss and Berne, 2010; Wang

et al., 2012). We choose the latter one and used a rolling standard deviation (RSD) with

a centered moving window of 60 minutes length as a measure for the fluctuation of TRSL

as proposed by Schleiss and Berne (2010).

It is assumed that RSD is high during wet periods and low during dry periods. Therefore,

an adequate threshold can be defined, which differentiates the RSD time series in wet and

dry periods. An example of an RSD time series and a threshold is shown in Fig. 2.3b)

where all data points with RSD values above the threshold are considered as wet.

Schleiss and Berne (2010) proposed the use of a RSD threshold derived from rainfall cli-

matology e.g. from nearby rain gauges. For our data set we assumed that it is raining

5 percent of all minutes in Germany, as proposed by Schleiss and Berne (2010) for their

CMLs in France. Therefore, we used the 95 percent quantile of RSD as a threshold, as-

suming that the 5 percent of highest fluctuation of the TRSL time series refer to the 5

percent of rainy periods. We refer to this threshold as the climatologic threshold. We

compared it to two new definitions of thresholds. We are aware that this threshold does

not reflect the real climatology at each CML location, nevertheless this method is a rather

robust and a simple approach which provides a first rain event detection.

For the first new definition, we derived the optimal threshold for each CML based on our

reference data for the month of May 2018. We used the same approach as for the climato-

logic threshold, but for each CML we tested a range of possible thresholds and calculated

the binary measure MCC for each. For each CML we picked the threshold which produced

the highest MCC in May 2018 and used it over the whole analysis period.
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The second new definition to derive a threshold is based on the quantiles of the RSD, sim-

ilarly to the climatologic threshold describe above. However, we propose to not focus on

the fraction of rainy periods for finding the optimal threshold, since a rainfall climatology

is likely not valid for individual years and not easily transferable to different locations.

We took the 80th quantile of the RSD of each CML, which can be interpreted as a mea-

sure of the strength of the TRSL fluctuation during dry periods, and multiplied it by

a constant factor to derive the individual threshold. The 80th quantile can be assumed

to be more robust against missclassification than the climatologic threshold, because this

quantile represents the general notion of each TRSL time series to fluctuate, rather than

the percentage of time in which it is raining. We chose the 80th quantile, since it is very

unlikely that it is raining more than 20 percent of the time in a month in Germany.

To find the right factor, we selected the month of May 2018 and fitted a linear regression

between the optimal threshold for each CML and the 80th quantile. The optimal threshold

was derived beforehand with a MCC optimization from the reference. We then used this

factor for all other months in our analysis. Additional, we found it to be similar for all

months of the analyzed period.

2.3.2.3 Wet antenna attenuation

Wet antenna attenuation is the attenuation caused by water on the cover of a CML an-

tenna. With this additional attenuation, the derived rain rate overestimates the true rain

rate (Schleiss et al., 2013; Zinevich et al., 2010). The estimation of WAA is complex,

as it is influenced by partially unknown factors, e.g. the material of the antenna cover.

van Leth et al. (2018) found differences in WAA magnitude and temporal dynamics due

to different sizes and shapes of the water droplets on hydrophobic and normal antenna

cover materials. Another unknown factor for the determination of WAA is the information

whether both, one or none of the antennas of a CML is wetted during a rain event. We

selected and compared two parametric WAA correction schemes which do not rely on the

use of auxiliary data like near-by rain gauges.

Schleiss et al. (2013) measured the magnitude and dynamics of WAA with one CML in

Switzerland and derived a time-dependent WAA model. In this model, WAA increases at

the beginning of a rain event to a defined maximum in a defined amount of time. From the

end of the rain event on, WAA decreases again, as the wetted antenna is drying off. We

ran this scheme with the proposed 2.3 dB of maximal WAA for both antennas together.

This is also similar to the WAA correction value of 2.15 dB, which Overeem et al. (2016b)

derived over a 12-day period in their data set. For τ , which determines the increase rate

with time we chose 15 minutes. The decrease of WAA after a rain event is not explicitly

modelled, because this WAA scheme is only applied for time steps, which are considered

wet from the rain event detection, which has to be carried out in a previous step.

Leijnse et al. (2008) proposed a physical approach where the WAA depends on the mi-

crowave frequency, the antenna cover properties (thickness and refractive index) and the

rain rate. A homogeneous water film is assumed on the antenna, with its thickness having
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a power law dependence on the rain rate. Higher rain rates cause a thicker water film

and hence higher WAA. A factor γ scales the thickness of the water film on the cover and

a factor δ determines the non-linearity of the relation between rain rate and water film

thickness. We adjusted the thickness of the antenna cover to 4.1 mm which we measured

from one antenna provided by Ericsson. We are aware of the fact, that antenna covers

have different thicknesses. But since we do not have this information for the actual anten-

nas that are used by the CMLs of our data, we use this value, as the best one available.

We further adjusted γ to 1.47E-5 and δ to 0.36 in such a way, that the increase of WAA

with rain rates is less steep for small rain rates compared to the originally proposed pa-

rameters. The original set of parameters suppressed small rain events too much because

the WAA compensation attributed all attenuation in the TRSL to WAA. For strong rain

events (>10 mm/h), the maximum WAA that is reached with our set of parameters is in

the same range as the 2.3 dB used as maximum in the approach of Schleiss et al. (2013).

We want to note that several recent methods quantifying the WAA were developed using

auxiliary information such as rain gauge data. This is the reason we did not consider these

approaches, as we wanted our CML data processing to be as applicable to new regions

as possible. The transferability of WAA estimation methods remains an open scientific

question, though. Fencl et al. (2019) quantified the influence of WAA for eight very short

(length < 500 m) CMLs using cumulative distribution functions from attenuation and rain

gauge data. Their approach is not applicable to new CMLs as it requires calibration for

each individual CML based on the local rainfall and attenuation statistics. Ostrometzky

et al. (2018) used a rain gauge to estimate the WAA of an E-band CML. They calculated

both the (dry, constant during rain events) baseline and the theoretical attenuation using

rain gauge data and attributed the residual attenuation as WAA. Moroder et al. (2020)

developed a model based on the dynamic antenna parameters reflectivity, efficiency and

directivity based on a full-wave simulation and applied it on a dedicated experimental

setup with CML antennas (Moroder et al., 2019). To apply this method it is required to

continuously collect the individual properties of the CML antennas, which might only be

possible in future CML hardware generations.

2.3.2.4 Derivation of rain rates

The estimation technique of rainfall from the WAA-corrected attenuation is based on the

well known relation between specific path attenuation k in dB/km and rain rate R in

mm/h

k = aRb (2.5)

with a and b being constants depending on the frequency and polarization of the microwave

radiation (Atlas and Ulbrich, 1977). In the currently most commonly used CML frequency

range between 15 GHz and 40 GHz, the constants only show a low dependence on the rain

drop size distribution. Using the k-R relation, rain rates can be derived from the path

integrated attenuation measurements that CMLs provide as shown in Fig. 2.3 d). We used
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values for a and b according to ITU-R (2005) which show good agreement with calculations

from disdrometer data in southern Germany (Chwala and Kunstmann, 2019, Fig. 3).

2.4 Results and Discussion

2.4.1 Comparison of rain event detection schemes

The separation of wet and dry periods has a crucial impact on the accuracy of the rainfall

estimation. We compared an approach from Schleiss and Berne (2010) to three modifica-

tions on their success in classifying wet and dry events as explained in Sect. 2.3.2.2.

The climatologic approach by Schleiss and Berne (2010) worked well for CMLs with mod-

erate noise and when the fraction of times with rainfall over the analyzed periods did

correspond to the climatological value. The median MDE was 0.33 and the median MCC

of 0.43. The distribution of MDE and MCC values from all CMLs of this climatologic

threshold were compared with the performance of the two extensions, displayed in Fig.

2.4.
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Figure 2.4: Mean detection error (MDE) and Matthews correlation coefficient (MCC) for

three rain event detection schemes for the whole analysis period.

When we optimized the threshold for each CML for May 2018 and then applied these

thresholds for the whole period, the performance increased with a median MDE of 0.32

and median MCC of 0.46. The better performance of MDE and MCC values highlights the

importance of a specific threshold for each individual CML, accounting for their individual

notion to fluctuate. The range of MDE and MCC values is wider than with the climatologic

threshold, though. The wider range of MDE and MCC values, however, indicates that

there is also a need for adjusting the individual thresholds over the course of the year.

The 80th quantile-based method had the lowest median MDE with 0.27 and highest median

MCC with 0.47. Therefore it miss-classified the least wet and dry periods compared to
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the other methods.

The threshold, which is based on the 80th quantile, is independent from climatology and

depends on the individual notion of a CML to fluctuate. Although the factor used to

scale the threshold was derived from comparison to the reference data set as described in

Sect. 2.3.2.2, it was stable over all seasons and for CMLs in different regions of Germany.

Validating the scaling factor with other CML data sets could be a promising method for

data scarce regions, as no external information is needed.

For single months, the MDE was below 0.20 as shown in Tab. 2.2, which still leaves room

for an improvement of this rain event detection method. Enhancements could be achieved

by adding information of nearby CMLs, if available. Also data from geostationary satellite

could be used. Schip et al. (2017) found improvements of the rain event detection when

using rainfall information from Meteosat Second Generation (MSG) satellite, which carries

the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) instrument.

All further processing, presented in the next sections, uses the method based on the 80th

quantile.

2.4.2 Performance of wet antenna attenuation schemes

Two WAA schemes are tested and adopted for the present CML data set. Both are

compared to uncorrected CML data and the reference in Fig. 2.5. Without a correction

scheme, the CML-derived rainfall overestimated the reference rainfall by a factor of two

when considering mean hourly rain rates, as displayed in Fig. 2.5a).

The correction by Schleiss et al. (2013) produced comparable mean hourly rain rates with

regard to the reference data set. Despite its apparent usefulness to compensate for WAA,

this scheme worked well only for stronger rain events. The mean detection error is higher

than for the uncorrected data set, because small rain events are suppressed completely

throughout the year. The discrepancy can also be a result of the path length of 7.6 km in

our data set which is four times the length of the CML Schleiss et al. (2013) used. This

might have an impact, since shorter CMLs have a higher likeliness that both antennas

get wet. Furthermore, the type of antenna and antenna cover impacts the wetting during

rain, as discussed in section Sect. 2.3.2.3.

With the method of Leijnse et al. (2008) the overestimation of the rain rate was also

compensated well. It incorporates physical antenna characteristics and, what is more

important, depends on the rain rate. The higher the rain rate, the higher the WAA

compensation. This leads to less suppression of small events. The MDE is close to the

uncorrected data sets and the PCC is higher, as displayed in 2.5b) and c). Recent re-

sults from Fencl et al. (2019) also favor a dynamic, rain intensity depended WAA model,

instead of a constant value for WAA compensation. Therefore, the scheme from Leijnse

et al. (2008) is used for the evaluation of the CML-derived rain rates in the following

sections.

Both methods are parameterized, neglecting known and unknown interactions between

WAA and external factors like temperature, humidity, radiation and wind. Current re-
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Figure 2.5: WAA compensation schemes compared on their influence on the a) mean
hourly rain rate, b) the correlation between the derived rain rates and the reference and
c) the mean detection error between the derived rain rates and the reference.

search aims to close this knowledge gap, but the feasibility for large scale networks like the

one presented in this study is going to be a challenge as only TSL and RSL are available.

A possible solution is the WAA model based on the reflectivityy, efficiency and directivity

of the antenna proposed by Moroder et al. (2020), which would have to be measured by

future CML hardware. Another approach could be to extend the analysis with meteorolog-

ical model reanalysis products to be able to better understand WAA behavior in relation

to meteorologic parameters like wind, air temperature, humidity and solar radiation.

2.4.3 Evaluation of CML derived rainfall

Path-averaged rainfall information obtained from almost 4000 CMLs is evaluated against

a reference data set, RADOLAN-RW. In Fig. 2.6 we show scatter density plots of path

averaged hourly rain rates, daily rainfall sums and seasonal sums of each CML with the

respective performance measures. Furthermore, scatter density plots of hourly, path-

averaged rain rates and rain rates from interpolated rainfall maps are compared for each

month in Fig. 2.8 and Fig. 2.9. Looking at the differences between the seasons in 2.6, it

is evident, that CMLs are prone to produce significant rainfall overestimation during the
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cold season (DJF). This can be attributed to precipitation events with melting snow,
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Figure 2.6: Seasonal scatter density plots of CML-derived rainfall and path-averaged

RADOLAN-RW data for hourly, a) - d), daily, e) - h) and seasonal, i) - l) aggregations

with respective performance metrics calculated from all available data pairs.

occurring mainly from November to March. Melting snow can potentially cause as much

as four times higher attenuation than a comparable amount of liquid precipitation (Paul-

son and Al-Mreri, 2011). Snow, ice and their melt water on the covers of the antennas

can also cause additional attenuation. A decrease of the seasonal performance measures

also reflects this effect, as the lowest values for PCC and highest for CV, MAE, RMSE,

BIAS and MDE are found for DJF. The largest overestimation occurs at low rain rates of

the reference. At higher reference rain rates, which most likely are those stemming from

liquid precipitation, there is far less overestimation. In spring (MAM) and fall (SON),

overestimation by CML rainfall is still visible, but less frequent. This can be explained

by the fact, that in the Central German Upland and the Alps, snowfall can occur from

October to April. Best agreement between CML-derived rainfall and RADOLAN-RW is

found for summer (JJA) months.

The temporal aggregation to daily rainfall sums and the respective performance measures

are shown in 2.6e)-h). The general relation between CML derived rainfall and the refer-
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ence is similar on both the hourly and daily scale. The BIAS is identical for the daily

aggregation. The RMSE and MAE are higher due to the higher rain sums. The overesti-

mation during the winter month is unchanged.

The accumulated rainfall sums of individual CMLs are compared against the reference

rainfall accumulation for each season in Fig 2.6i) - l). The overestimation of the CML

derived rainfall sums in DJF, and partly SON and MAM, can again be attributed to the

presence of non-liquid precipitation. This overestimation is larger for higher rainfall sums.

This could be the result of more extensive snowfall in the mountainous parts of Germany,

which are also the areas with highest precipitation year round. Rainfall sums close to zero

can be the result from the quality control that we have applied. Periods with missing

data in CML time series are consequently not counted in the reference rainfall data set.

Therefore, the rainfall sums in Fig. 2.6 are not representative for the rainfall sum over

Germany for the shown period. The PCC for the four seasons shown in Fig. 2.6i)-l) range

from 0.42 in MAM to 0.57 in JJA.

2.4.4 Performance measures for different subset criteria

Tab. 2.2 gives an overview of monthly performance measures for different subsets of CML-

derived and path-averaged reference rainfall. In the following, we will discuss the effects

of the different subset criteria and then compare our results to previous CML rainfall

estimation studies.

For all subset criteria, best performance measures are found during late spring, summer

and early fall. Highest PCC values are reached when all data pairs, including true dry

events, are used to calculate the measures. When very light rain (< 0.1 mm/h) is set to

zero on an hourly basis, the performance measures stay very similar, with the exception of

CV and BIAS, which show a slight increase in performance. This means that, even when

very small rain rates < 0.1 mm are produced, they do not change rainfall sums too much.

When either RCML or Rreference have to exceed 0 mm/h, the performance measures are

worse than with all data, because all 0 mm/h pairs are removed. When the same subset

criterion is set to 0.1 mm/h, a good agreement in the range of very small rain rates below

0.1 mm/h between both data becomes apparent, because the performance measures get

worse without them.

To examine the performance of the CML derived rainfall during rain events detected by

the reference, two thresholds are selected, where the reference must be above 0.1 and 1

mm/h, respectively, for the period to be considered rainy. With these thresholds, all false

wet classifications are removed before the calculation of the performance measures. The

PCC with this thresholds is still high for the non-winter months. The CV is reduced, while

MAE and RMSE are higher due to higher mean rain rates. The biggest differences can be

observed in the bias, where the influence of false wet detection and the overestimation of

CMLs over 0.1 and 1 mm/h reduce the bias.
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Table 2.2: Monthly performance measures between path averaged, hourly CML-derived
rainfall and RADOLAN-RW as reference for subset criteria and thresholds.

subset criteria
(mm)

2017 2018
mean Sept Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug

PCC
(-)

none 0.62 0.78 0.73 0.46 0.36 0.43 0.27 0.45 0.74 0.85 0.81 0.79 0.81
light rain to 0 0.62 0.78 0.73 0.46 0.36 0.43 0.27 0.45 0.74 0.85 0.81 0.79 0.81
cml or ref > 0 0.58 0.74 0.68 0.38 0.28 0.35 0.20 0.37 0.71 0.83 0.80 0.78 0.79

cml or ref >= 0.1 0.54 0.70 0.64 0.34 0.23 0.31 0.13 0.32 0.68 0.81 0.78 0.76 0.77
ref >= 0.1 0.58 0.73 0.71 0.38 0.28 0.35 0.22 0.39 0.73 0.82 0.79 0.80 0.80
ref >= 1 0.51 0.65 0.64 0.32 0.17 0.27 0.12 027 0.67 0.75 0.73 0.73 0.74

CV
(-)

none 7.01 3.80 4.40 6.09 11.4 7.62 18.5 6.82 5.20 3.98 5.17 5.88 5.33
light rain to 0 7.19 3.88 4.51 6.23 11.64 7.75 18.28 7.06 5.33 4.03 5.23 5.96 5.40
cml or ref > 0 3.03 1.73 2.00 2.96 5.59 3.85 6.82 3.09 2.19 1.60 2.04 2.36 2.10

cml or ref >= 0.1 2.42 1.40 1.64 2.51 4.78 3.35 5.19 2.53 1.67 1.18 1.50 1.71 1.54
ref >= 0.1 1.69 1.05 1.06 1.92 3.61 2.67 3.25 1.90 1.11 0.88 1.01 0.96 0.92
ref >= 1 1.11 0.73 0.69 1.24 2.27 1.73 2.18 1.14 0.70 0.63 0.72 0.67 0.65

MAE
(mm/h)

none 0.08 0.08 0.08 0.11 0.17 0.17 0.05 0.07 0.05 0.06 0.06 0.05 0.05
light rain to 0 0.08 0.08 0.07 0.11 0.17 0.16 0.05 0.07 0.05 0.05 0.05 0.05 0.05
cml or ref > 0 0.41 0.38 0.36 0.46 0.71 0.64 0.37 0.35 0.30 0.34 0.36 0.33 0.33

cml or ref >= 0.1 0.64 0.58 0.53 0.64 0.97 0.86 0.66 0.53 0.49 0.61 0.64 0.60 0.58
ref >= 0.1 0.72 0.64 0.57 0.70 1.02 0.91 0.68 0.55 0.54 0.73 0.83 0.74 0.69
ref >= 1 1.40 1.16 1.05 1.40 2.02 1.73 1.73 1.25 1.09 1.30 1.51 1.39 1.22

RMSE
(mm/h)

none 0.48 0.34 0.33 0.56 1.08 0.94 0.46 0.41 0.29 0.36 0.35 0.32 0.30
light rain to 0 0.48 0.35 0.33 0.56 1.08 0.94 0.46 0.41 0.29 0.34 0.35 0.32 0.30
cml or ref > 0 1.06 0.75 0.71 1.16 2.18 1.84 1.25 0.90 0.68 0.84 0.89 0.78 0.75

cml or ref >= 0.1 1.34 0.94 0.87 1.38 2.58 2.14 1.70 1.12 0.90 1.14 1.22 1.08 1.02
ref >= 0.1 1.45 1.01 0.90 1.47 2.66 2.22 1.68 1.15 0.96 1.33 1.52 1.31 1.18
ref >= 1 2.33 1.59 1.43 2.36 4.02 3.33 3.48 1.97 1.61 1.99 2.32 2.04 1.78

BIAS
(%)

none 30 20 34 11 79 39 67 7 21 0 10 30 35
light rain to 0 29 20 34 11 80 40 67 7 20 -2 8 27 32
cml or ref > 0 30 20 34 11 79 39 67 7 21 0 10 30 35

cml or ref >= 0.1 29 20 33 11 80 40 67 7 20 -2 8 27 32
ref >= 0.1 -4 -1 -1 -15 36 14 -6 -20 -10 -16 -15 -13 -3
ref >= 1 -9 -4 -9 -24 22 2 -16 -21 -12 -15 -17 -13 -5

MDE none 0.23 0.20 0.19 0.24 0.27 0.23 0.35 0.29 0.22 0.19 0.19 0.22 0.17

Therefore, when discussing these performance measures in relation to previous studies on

CML rainfall estimation, the selection of the threshold is of great importance. de Vos

et al. (2019) showed a collection of dutch CML-studies in Table A1. In Tab. 2.3 we

compare our performance measures to those of studies from de Vos et al. (2019) table

which are similar to our study. ’Similar’ in this context means considering the size and

temporal aggregation of the CML data set as well as the use of radar data as a reference

for path-averaged (link-based) rain rates from CMLs. The performance measures from our

results with the respective thresholds are in the same range as the performance measures

from de Vos et al. (2019) and Rios Gaona et al. (2015). The results thus should not be

compared in a purely quantitative way, because both use different sampling strategies and

span different time periods.

2.4.5 Rainfall maps

Interpolated rainfall maps of CML-derived rainfall compared to RADOLAN-RW are shown

in Fig. 2.7, Fig. 2.8 and Fig. 2.9. The respective CML maps have been derived using

inverse distance weighting (IDW) with the RADOLAN-RW grid as target grid and on an

hourly basis. Each CML rainfall value is represented as one synthetic point observation at

the center of the CML path. For each pixel of the interpolated rainfall field the nearest 12
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Table 2.3: Comparison of the performance measures to similar CML validation studies
(only link-based comparisons) with respective thresholds.

Study and Dataset Comparison Threshold Bias (%) CV (-) PCC (-)

de Vos et al. (2019)
Average of 1451 CMLs over
7 months (18 Feb–16 Oct 2016),
15 min instantaneously sampled

Link-based comparison
with gauge-adjusted radar,
15 min

CML or ref > 0 mm 23 3.43 0.52

Rios Gaona et al. (2015)
Average of 1514 CMLs over
12 rainy days (June to September
2011), min-max sampled

CML-based comparison
with gauge-adjusted ref,
15 min

CML or ref > 0.1 mm -13 1.44 0.66

This study
Average of 3904 CMLs over
one year (September 2017 -
August 2018), one min
instantaneously sampled

CML-based comparison with
gauge-adjusted radar, hourly

CML or ref > 0 mm 30 3.03 0.58
CML or ref >= 0.1 mm 19 2.42 0.54

synthetic CML observation points are taken into account. Weights decrease with the dis-

tance d in km, according to d−2. After the interpolation, we masked out grid cells further

away than 30 km from a CML path, for each individual time step. Hence, hourly rainfall

maps derived from CMLs are only produced for areas with data coverage. We applied

the same mask to the reference data set on an hourly basis to increase the comparability

between both data sets. For the aggregated rainfall maps, we summed up the interpo-

lated, individually masked, hourly rainfall fields. As an example, Fig. 2.7 shows 48 hours

of accumulated rainfall in May 2018. The general distribution of CML-derived rainfall

reproduces the pattern of the reference very well and the rainfall sums of both data sets

are similar. Individual features of the RADOLAN-RW rainfall field are, however, missed

due to the limited coverage by CMLs in certain regions. A video of this 48 hour showcase

with hourly time steps is published alongside this study (Graf et al., 2020b).

A qualitative comparison of monthly aggregation of the hourly rainfall maps is shown in

Fig. 2.8 and Fig. 2.9. The CML-derived rainfall fields resemble the general patterns of

the RADOLAN-RW rainfall fields. Summer months show a better agreement than winter

months. This is a direct result of the decreased performance of CML-derived rain rates

during the winter season, explained in Sect. 2.4.3. Strong overestimation is also visible

year round for a few individual CMLs, for which the filtering of erratic behavior was not

successful.

A quantitative comparison of the CML-derived rainfall maps to the reference is shown in

the third column of Fig. 2.8 and Fig. 2.9. For these scatter density plots we used all hourly

pixel values of the respective month within the 30 km coverage mask. During the winter

month, CMLs show strong overestimation. This is a direct result of non-liquid precipita-

tion as described in Sect. 2.4.3. From May to August 2018 the reference shows very high

rain intensities between 50 and 100 mm/h, which are not produced by the CML rainfall

maps. This can be attributed to several reasons. First, CML-derived rainfall, which serves

as basis for the interpolation, is path-averaged, with a typical path length in the range of

3-15 km. This means, that the rainfall estimation of a single CML represents an average

of several RADOLAN-RW grid cells which smoothes out the extremes. Second, due to the

interpolation, rainfall maxima in the CML rainfall maps can only occur at the synthetic
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Figure 2.7: Accumulated rainfall for a 48 hour showcase from 12.05.2018 until 14.05.2018
for a) RADOLAN-RW and b) CML-derived rainfall. CML-derived rainfall is interpolated
using a simple inverse distance weighting interpolation. A coverage mask of 30 km around
CMLs is used.

observation points at the center of each CML. Third, rainfall is only observed along the

path of CMLs and even with almost 4000 CMLs across Germany, the spatial variation of

rainfall cannot be fully resolved. In particular in summer, small convective rainfall events

might not intersect with CML paths and hence cannot appear in the CML-derived IDW

interpolated rainfall fields.

Considering this, the effect of different coverage ranges around the CMLs has to be taken

into account. For the map based comparison in Fig. 2.8 and Fig. 2.9 we tested several

distances from 10 to 50 km. For the presented results we choose 30 km as a trade off

between minimizing the uncertainty of the spatial interpolation and the goal to reach

country wide coverage with the produced rainfall maps. van de Beek et al. (2012) found

an averaged range of around 30 km for summer semi-variograms of 30 years of hourly rain

gauge data in the Netherlands, which can be used to justify/enforce our choice. With a 10

km coverage range, the performance measures are better than the ones for 30 km, which

are shown in Fig. 2.8 and Fig. 2.9. Monthly PCC values show an increase of around 0.05

and the bias is reduced by 3 to 5 percent. Nevertheless, with a coverage of 10 km around

the CMLs, coverage gaps emerge not only in the north-eastern part of Germany, but also

in the south eastern part. Vice versa, with a 50 km coverage range, the country wide

coverage is almost given, while the performance measures are worse compared to 30 km

(PCC shows a decrease between 0.03 and 0.05). Overall, the difference of the performance

measures of the 10 and 50 km coverage mask is limited in most parts of Germany by the

high density of CMLs, which already lead to an almost full coverage with the 10 km mask.
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Figure 2.8: Monthly aggregations of hourly rainfall maps from CMLs compared to

RADOLAN-RW from September 2017 until February 2018. For each month two scatter

density plots are shown, one for pixel-by-pixel comparison of the hourly maps (map-based

comparison), and one for the comparison of the hourly path-averaged rainfall along the

individual CMLs (link-based comparison).
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Figure 2.9: Monthly aggregations of hourly rainfall maps from CMLs compared to

RADOLAN-RW from March until August 2018. For each month two scatter density plots

are shown, one for pixel-by-pixel comparison of the hourly maps (map-based comparison),

and one for the comparison of the hourly path-averaged rainfall along the individual CMLs

(link-based comparison).
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In order to highlight the differences between a map-based and link-based comparison Fig.

2.8 and Fig. 2.9 also show hourly link-based scatter density plots for each month. The

differences in the performances measures for the warm months support the qualitative

impression, that the map-based comparison perform worse. The interpolation is prone to

introduce an underestimation for areas which are more distant to the CML observations.

During the winter months, this underestimation compensates the overestimation of the

individual CMLs which is due to wet snow and ice covered antennas. Hence, because

the two errors compensate each other by chance, this results in slightly better map-based

performance measures compared to the link-based measures for the winter months. Nev-

ertheless, rainfall estimation with CMLs for months with non-liquid precipitation is con-

siderably worse than for summer months in all spatial and temporal aggregations.

The derivation of spatial information from the estimated path-averaged rain rates could

be improved by applying more sophisticated techniques as described in Sect. 2.1. We have

already carried out several experiments using Kriging, to test one of these potential im-

provements over IDW. We followed the approach of Overeem et al. (2016b) and adjusted

the semivariogram parameters on a monthly basis based on the values from van de Beek

et al. (2012). We also tried fixed semivariogram parameters and parameters estimated

from the individual CML rainfall estimates for each hour. In conclusion, we, however,

only found marginal or no improvements of the performance metrics of the CML rainfall

maps. Combined with the drawback of Kriging that the required computation time is

significantly increased (approximately 10 to 100 times slower than IDW, depending e.g.

on the number of neighboring points used by a moving kriging window), we thus decided

to keep using the simple, yet robust and fast IDW interpolation. Furthermore, it is im-

portant to note that the errors in rain rate estimation for each CML contribute most to

the uncertainty of CML-derived rainfall maps (Rios Gaona et al., 2015). Hence, within

the scope of this work, we focused on improving the rainfall estimation at the individual

CMLs. Taking into account that we compare to a reference data set derived from 17 C-

band weather radars combined with more than 1000 rain gauges, the similarity with the

CML-derived maps, which solely stem from the opportunistic usage of attenuation data,

is remarkable.

2.5 Conclusion

German wide rainfall estimates derived from CML data compared well with RADOLAN-

RW, a hourly gridded gauge-adjusted radar product of the DWD. The methods used to

process the CML data showed promising results over one year and several thousand CMLs

across all landscapes in Germany, except for the winter season.

We presented the data processing of almost 4000 CMLs with a temporal resolution of one

minute from September 2017 until August 2018. We developed a parallelized processing

work flow, which could handle the size of this large data set. This workflow enabled us to

test and compare different processing methods over a large spatiotemporal scale.
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A crucial processing step is the rain event detection from the TRSL, the raw attenuation

data recorded for each CML. We used a scheme from (Schleiss and Berne, 2010) which uses

the 60 minute rolling standard deviation RSD and a threshold. We derived this threshold

from a fixed multiple of the 80th quantile of the RSD distribution of each TRSL. Compared

to the original threshold using the 95th quantile, which is based on rainfall climatology,

the 80th quantile reflects the general notion of each CML’s TRSL to fluctuate. We were

able to reduce the amount of miss-classification of wet and dry events, reaching a yearly

mean MDE of 0.27, with an average of the MDE for summer months below 0.20. Potential

approaches for further decreasing the amount of miss-classifications could be the use of

additional data sets. For example, cloud cover information from geostationary satellites

could be employed to reduce false wet classification, by, as a first simple approach, defining

periods without clouds as dry. Another opportunity would be, to additionally implement

algorithms exploiting information of neighboring CMLs.

For the compensation of WAA, the attenuation caused by water droplets on the cover of

CML antennas, we compared and adjusted two approaches from literature. In order to

evaluate WAA compensation approaches, we used the reference data set. We were able

to reduce the overestimation caused by WAA, while maintaining the detection of small

rain events, using an adjustment of the approach introduced by Leijnse et al. (2008). The

compensation of WAA without an evaluation with a reference data set is not feasible with

the CML data set we use.

Compared to the reference data set RADOLAN-RW, the CML-derived rainfall performs

well for periods with only liquid precipitation. For winter months, the performance of

CML-derived rainfall is limited. Melting snow and snowy or icy antenna covers can cause

additional attenuation resulting in overestimation of precipitation, while dry snow cannot

be measured at the frequencies and the TRSL quantizations the CMLs in our data set

use. We found high correlations for hourly, monthly and seasonal rainfall sums between

CML-derived rainfall and the reference. To increase the comparability of our analysis

with existing and future studies on CML rainfall estimation we calculated all performance

metrics for different subset criteria, e.g. requiring that either CML or reference rainfall is

larger than 0 mm.

We found the performance measures of this study to be in accordance with similar CML

studies, although the comparability is limited due to differences of the CML and reference

data sets. CML-derived rainfall maps calculated with a simple, yet robust inverse distance

weighting interpolation showed the plausibility of CMLs as an stand-alone rainfall mea-

surement system.

With the analysis presented in this study, the need for reference data sets in the process-

ing routine of CML data is reduced, so that the opportunistic sensing of country-wide

rainfall with CMLs is at a point, where it should be transferable to (reference) data scarce

regions. Especially in Africa, where water availability and management are critical, this

task should be challenged as Doumounia et al. (2014) did already. The high temporal

resolution of the presented data set can be used in future studies, e.g. for urban water
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management. In addition, CML derived rainfall can also complement other rainfall data

sets, e.g. to improve the radar data adjustment in RADOLAN in regions with high CML

density and regions, like mountain ranges, where radar data is often compromised. Thus,

CMLs can contribute substantially to improve the spatiotemporal estimations of rainfall.

2.6 Code availability

Code used for the processing of CML data can be found in the Python package pycomlink

(pycomlink, 2021).

2.7 Data availability

CML data was provided by Ericsson Germany and is not publicly available. RADOLAN-

RW is publicly available through the Climate Data Center of the German Weather Service
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2.9 Appendix to Chapter 2

Table 2.4: Comprehensive overview of used parameters, a short description and their

reference from literature if applicable. Parameters with enumeration in parentheses are

not used in the final processing.

description parameter value source

parameters used in final processing routine

1. Erratic behavior of CMLs (section 3.2.1)

1.1 sanity check to remove CMLs 5 hour RSD >2 for this study

with strong duirnal cycle or which at lest 10% per month

have noisy periods

1.2 sanity check to remove CMLs 1 hour RSD >0.8 for this study

with high fluctuation over large at least 33% per month

parts of or the complete month

2. Rain event detection (section 3.2.2)

2.1 RSD window length 60 min Schleiss and Berne (2010)

2.2 scaled q80 threshold 1.12 * 80% quantile of RSD this study

3. WAA compensation (section 3.2.3)

3.1 thickness of antenna cover 4.1 cm measured from one antenna cover

3.2 scale for water film thickness γ 1.47E-5 modified after Leijnse et al. (2008)

3.3 factor for the relation between 0.36 modified after Leijnse et al. (2008)

parameters used in alternative processing steps

(2.3) climatologic threshold 95% quantile of RSD Schleiss and Berne (2010)

(3.4) time for WAA to reach maximum τ 15 min Schleiss et al. (2013)

(3.5) maximal value of WAA 2.3 dB Schleiss et al. (2013)
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Chapter 3

Rain event detection in commercial

microwave link attenuation data using

convolutional neural networks (Polz

et al., 2020)

Polz, J., Chwala, C., Graf, M., and Kunstmann, H.: Rain event detection in commer-

cial microwave link attenuation data using convolutional neural networks, Atmos. Meas.

Tech., 13, 3835–3853, https://doi.org/10.5194/amt-13-3835-2020, 2020

License: CC BY

Abstract

Quantitative precipitation estimation with commercial microwave links (CMLs) is a tech-

nique developed to supplement weather radar and rain gauge observations. It is exploiting

the relation between the attenuation of CML signal levels and the integrated rain rate

along a CML path. The opportunistic nature of this method requires a sophisticated data

processing using robust methods. In this study we focus on the processing step of rain

event detection in the signal level time series of the CMLs, which we treat as a binary

classification problem. This processing step is particularly challenging, because even when

there is no rain the signal level can show large fluctuations similar to that during rainy

periods. False classifications can have a high impact on falsely estimated rainfall amounts.

We analyze the performance of a convolutional neural network (CNN), which is trained

to detect rainfall specific attenuation patterns in CML signal levels, using data from 3904

CMLs in Germany. The CNN consists of a feature extraction and a classification part

with, in total, 20 layers of neurons and 1.4 × 105 trainable parameters. With a struc-

ture, inspired by the visual cortex of mammals, CNNs use local connections of neurons

to recognize patterns independent of their location in the time-series (Fukushima, 1980).

We test the CNNs ability to generalize to CMLs and time periods outside the training

data. Our CNN is trained on four months of data from 800 randomly selected CMLs
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and validated on two different months of data, once for all CMLs and once for the 3104

CMLs not included in the training. No CMLs are excluded from the analysis. As a ref-

erence data set we use the gauge adjusted radar product RADOLAN-RW provided by

the German meteorological service (DWD). The model predictions and the reference data

are compared on an hourly basis. Model performance is compared to a state of the art

reference method, which uses the rolling standard deviation of the CML signal level time

series as a detection criteria. Our results show that within the analyzed period of April to

September 2018, the CNN generalizes well to the validation CMLs and time periods. A

receiver operating characteristic (ROC) analysis shows that the CNN is outperforming the

reference method, detecting on average 76% of all rainy and 97% of all non-rainy periods.

From all periods with a reference rain rate larger than 0.6 mmh−1, more than 90% were

detected. We also show that the improved event detection leads to a significant reduction

of falsely estimated rainfall by up to 51%. At the same time, the quality of the correctly

estimated rainfall is kept at the same level in regard to the Pearson correlation with the

radar rainfall. In conclusion, we find that CNNs are a robust and promising tool to detect

rainfall induced attenuation patterns in CML signal levels from a large CML data set

covering entire Germany.

3.1 Introduction

Rainfall is the major driver of the hydrologic cycle. Accurate rainfall observations are

fundamental for understanding, modeling and predicting relevant hydrological phenom-

ena, e.g. flooding. Data from commercial microwave link (CML) networks have proven to

provide valuable rainfall information. Given the high spatio-temporal variability of rain-

fall, they are a welcome complement to support traditional observations with rain gauges

and weather radars; particularly in regions where radar is hampered by beam blockage

or ground clutter. In regions with sparse rainfall observation networks, like in developing

countries, CMLs might even be the only source of small scale rainfall information.

Since the work of Messer et al. (2006) and Leijnse et al. (2007) more than a decade ago,

several research groups have shown the potential of CML data for hydrometeorological

usage. Prominent examples are the countrywide evaluations in the Netherlands (Overeem

et al., 2016b) and Germany (Graf et al., 2020a), which demonstrated that CML-derived

rainfall information corresponds well with gauge-adjusted radar rainfall products, except

for the cold season with solid precipitation. CML-derived rainfall information was also suc-

cessfully used for river runoff simulations in a pre-alpine catchment in Germany (Smiatek

et al., 2017) and for pipe flow simulation in a small urban catchment in Czech Republic

(Pastorek et al., 2019). A further important step was the first analysis of CML-derived

rain rates in a developing country, carried out by Doumounia et al. (2014), with data from

Burkina Faso.

In general, the number of CMLs available for research has increased significantly over the

last years and researchers from several countries have gained access to CML attenuation
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data. Currently, data from 4000 CMLs over Germany is recorded continuously with a

temporal resolution of one minute via a real-time data acquisition system (Chwala et al.,

2016). The number of existing CMLs over Germany is 30 times higher (Bundesnetza-

gentur, 2017), amounting to 130.000 registered CMLs. Consequently, it is envisaged to

increase the number of CMLs included in the data acquisition.

With this large number of CMLs available in Germany and with new data being retrieved

continuously, there is a need for optimized and robust processing of these big data sets.

Several studies address the details of the processing steps which are required for deriving

rainfall information from CMLs. These steps involve, e.g. the detection of rain events in

noisy raw data, the filtering of artifacts, correcting for bias due to wet antenna attenua-

tion (WAA) and the spatial reconstruction of rainfall fields. Uijlenhoet et al. (2018) give

a general overview of the required processing steps and the existing methods and Chwala

and Kunstmann (2019) discuss and summarize the related current challenges.

3.1.1 On the importance of rain event detection

The first of these processing steps, called rain event detection, is the separation of rainy

(wet) and non-rainy (dry) periods. A static signal level baseline to derive attenuation that

can be attributed to rainfall has proven to be ineffective due to e.g. daily or annual cycles

and unexpected jumps in the time series like for CML B in Fig. 3.1. Therefore, after

the rain events are localized correctly, an event specific attenuation baseline can be deter-

mined and actual rain rates can be derived via the k-R power law which relates specific

attenuation k in dB km−1 to rain rate R in mm h−1.

Detecting rain events is challenging, because CML signal levels can show high fluctuations,

even when there is no rain, e.g. due to multi-path propagation (e.g. Chwala and Kunst-

mann, 2019, Fig. 6). Therefore, the main difficulty is to distinguish between noise and

signal fluctuations caused by rain along the CML path. As seen in Fig. 3.1, the differences

in noise levels can vary significantly, depending on the CML that is used. When looking

at the magnitude of these fluctuations, we can see that a misclassification of wet and dry

periods can easily lead to a large over- or underestimation of rainfall. These missed or

falsely estimated quantities are often overlooked in scatter density comparisons of rainfall

products like Figure 3.9 a) and b) below, which shows our own results. But when absolute

amounts are compared, they represent an obvious issue with up to 30% of the total CML

rainfall that can be attributed to false positives. As these misclassifications generate a

bias different from the bias corrected in later processing steps like the WAA correction it

is important to optimize the rain event detection as an isolated processing step first and

to optimize subsequent processing steps afterwards.

3.1.2 State of the art

So far, several methods for rain event detection with CMLs have been proposed. The main

difference that divides these methods into two groups, is the type of CML data that can
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be used to estimate rainfall.

Figure 3.1: Three example signal level (TRSL) time series that illustrate the high vari-

ability in data quality when comparing different CMLs. The blue shaded periods indicate

where the radar reference show rainfall along the CML paths. The challenge is to identify

these periods by analysing the time series. Note that each attenuation event that is falsely

classified as wet, will produce false rain rate estimates, which will lead to overestimation.

The histograms show that for some CMLs the wet periods can be easily separated from

the dry periods and for others the distribution of TRSL values is nearly identical for both

classes. Fig. 3.2 below will show an example of how different detection methods deal with

the challenging time series of CML C.

Depending on the available data acquisition, CML signal levels are either instantaneously

sampled at a rate ranging from a few seconds up to 15 minutes or they are stored as 15-

minute minimum and maximum values derived from a high instantaneous sampling rate in

the background. In almost all cases only one of the two sampling strategies is available due

to the type of data management through the network provider. The resulting rain event

detection methods are highly optimized for one kind of sampling strategy and therefore

in general incompatible with the other kind.

The following methods were developed for instantaneous measurements: Schleiss and

Berne (2010) introduced a threshold for the rolling standard deviation (RSTD) of the
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attenuation time-series as a criteria to detect rain events. Despite being one of the first

methods that were developed, a large part the method is still the most commonly used

within the CML research community, as it was used in very recent studies from differ-

ent working groups such as Kim and Kwon (2018), Graf et al. (2020a) or Fencl et al.

(2020). Chwala et al. (2012) introduced Fourier transformations on a rolling window of

CML signal levels to detect the pattern of rain events in the frequency domain. Wang

et al. (2012) used a Markov switching model, which was calibrated and validated for a

single CML test site. Kaufmann and Rieckermann (2011) have shown the applicability of

random forest classifiers and Gaussian factor graphs and validated their approach using

14 CMLs. Dordević et al. (2014) used a simple Multilayer Perceptron (MLP) which was

trained and validated on a single CML. Ostrometzky and Messer (2018) proposed a simple

rolling mean approach to determine a dynamic baseline, also validated on a single CML.

Most of these studies are based on a comparably low and sometimes pre-selected amount

of CMLs ranging from one to a maximum of 50 devices, a number that is likely much

larger in a possible operational setting.

As a detection scheme for 15 minute min/max sampled data with a 10 Hz background

sampling rate Overeem et al. (2011) introduced the ’nearby link approach’. A period is

considered wet if the increase of CML specific attenuation correlates with the attenuation

pattern of nearby CMLs. They concluded that this is only applicable for dense CML

networks with a high data availability. Later, they conducted the first evaluation of a

rain event detection method on data from 2044 CMLs on a country scale Overeem et al.

(2016b). Very recently the same approach was used in de Vos et al. (2019), showing that

this approach works better in combination with min/max sampling than with 15 minute

instantaneous sampling. Habi and Messer (2018) tested the performance of Long Short-

Term Memory (LSTM) networks to classify rainy periods from 15 minute min/max values

of CML signal levels for 34 CMLs.

All rain event detection methods have to make a similar trade-off: A liberal detection of

wet periods is more likely to recognize even small rain rates, while it will produce more

false alarms during dry periods. On the other hand, a conservative detection will accu-

rately classify dry periods, but is more likely to miss small rain events. One can address

this by two means. First, by increasing detection rates on both wet and dry periods as

much as possible and therefore decreasing the impact of the trade-off. Second, by allowing

the flexibility to easily adjust the model towards liberal or conservative detection, e.g. by

only changing a single parameter.

In conclusion, until now, there have been few studies analyzing the performance of rain

event detection methods on large data sets. Overeem et al. (2016b) tested the nearby link

approach using 2044 CMLs distributed over the Netherlands with a temporal coverage

of 2.5 years of data. Graf et al. (2020a) extended the RSTD method and applied it to

one year of data from 3904 CMLs to set a benchmark performance on the same data set

used in this study. By optimizing thresholds for individual CMLs the full potential of

the RSTD method for one year of data was explored, yielding good results for the warm
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season with liquid precipitation. While the RSTD method is simple to implement and has

only two parameters (window length and threshold) to optimize, it is limited to measuring

the amount of fluctuations, rather than the specific pattern. More room for optimization

is expected using a data driven approach, such as machine learning techniques for pattern

recognition.

3.1.3 Data driven optimization through deep learning

Deep learning is a rapidly evolving field that is becoming increasingly popular in the earth

system sciences. A large field of application is remote sensing using artificial neural net-

works for image recognition (Zhu et al., 2017). Deep learning is also an established method

in time-series classification (Ismail Fawaz et al., 2019). In both studies, convolutional neu-

ral networks (CNNs) are considered one of the leading neural network architectures for

image and time-series classification. CNNs are inspired by the visual cortex of mam-

mals and they are designed to recognize objects or patterns, regardless of their location

in images or time-series. They are characterized by local connections of neurons, shared

weights and a large number of layers of neurons, involving pooling layers (LeCun et al.,

2015). CNNs with one dimensional input data (1D-CNNs) have already been used for

time-series classification, e.g. for classifying environmental sounds (Piczak, 2015). This

makes 1D-CNNs a promising candidate for the task of rain event detection in CML signal

levels.

3.1.4 Research gap and objectives

Due to the opportunistic use of CMLs, the variety of signal fluctuations and possible oc-

currences of errors naturally increase in a CML data set with its size. Separating rainy

from non-rainy periods is therefore a crucial step for rainfall estimation from CMLs. Al-

though applicable on a large scale, recently applied methods still struggle with falsely

estimated rainfall as can be seen in the evaluations from Graf et al. (2020a) and de Vos

et al. (2019). Despite the amount of proposed methods, this processing step has not yet

been investigated in detail using a large and diverse CML data set, especially for data

driven approaches. Given their promising results in other applications, the usage of artifi-

cial neural networks (ANNs) for rain event detection in the CML attenuation time-series

on a large scale provides a promising opportunity. It has been proven that in many cases

ANNs allow for high-performance, fast and robust processing of a variety of suitable data

sets. What is missing is a proof that they are applicable to a large and diverse CML data

set. The question is, does a high variability of frequency, length and spatial distribution

of the analyzed CMLs or a high variability of rain rates and event duration for a large

amount of analyzed periods affect the performance of ANNs in this specific case or not?

Additionally, the effect of rain event detection performance on the estimated rain rates

has yet to be investigated.

The objective of this study is to evaluate the performance of 1D-CNNs to detect rainfall
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induced attenuation patterns in instantaneously measured CML signal levels and to inves-

tigate the effect of an improved temporal event localization on the CML-derived rainfall

amounts. Furthermore, we test the CNNs ability to generalize to new CMLs and future

time periods in order to provide a validated open source model, that can be used on other

data sets. To provide the CML community with comprehensible results, we compare the

CNN to the method of Schleiss and Berne (2010), which we consider state-of-the-art due

to the amount of recent applications. We aim to provide a high statistical robustness of

the derived performance measures by using the, to date, largest available CML data set

consisting of data from 3904 CMLs distributed over entire Germany.

3.2 Methods

The following definition of rain event detection with CMLs is the basis of our methodology:

Rain event detection is a binary classification problem. Given a time window Xt,w,i of

CML signal data, where t is the starting time, w is the window length and i is the index

specifying a unique CML path, we have to decide if there is attenuation caused by rain

(wet) or not (dry). A time window is assigned the label 1 if it is wet or 0 if it is dry.

The available information to do this classification depends on the used data acquisition

and on which information is provided by the CML network operator. In the following, we

describe how a CNN can be used as a binary classifier to succeed in this task.

3.2.1 Data set

We use a CML data set that has been collected in cooperation with Ericsson Germany

through our custom CML data acquisition system (Chwala et al., 2016). It covers 3904

CMLs across entire Germany. The CML path length ranges from 0.1 km to more than 30

km, with an average of around 7 km. CML frequencies range from 10 to 40 GHz. The

acquired data consists of two sub-links per CML, transmitting their signal in opposite

directions along the CML path. For each sub-link a received signal level (RSL) and a

transmitted signal level (TSL) is recorded at a temporal resolution of 1 minute and a

power resolution of 0.3 dB for RSL and 1.0 dB for TSL. The recorded period used in this

study starts in April 2018 and ends in September 2018, to focus on the periods which

are dominated by liquid precipitation, where CMLs perform better than during the cold

season (Graf et al., 2020a). The data is available at 97.1% of all time steps and gaps are

mainly due to outages of the data acquisition system.

As reference data we use the gauge adjusted radar product RADOLAN-RW provided by

the German meteorological service (DWD). It has a spatial resolution of 1x1 km, covering

entire Germany on 900x900 grid cells. The temporal resolution is 60 minutes and the

resolution for the rain amount is 0.1 mm (Winterrath et al., 2012). To compare to this

reference, the window length w is set to 60 minutes and therefore w is omitted in the

notation below.
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Along each CML i, the path-averaged mean hourly rain rate Rt,i is generated from the

reference, using the weighted sum

Rt,i =

∑
k lk,irk,t
li

, (3.1)

where k is indexing the RADOLAN grid cells intersected by the path of i. The rain rate

of each grid cell is rk,t. Furthermore, lk,i is the length of the intersect of k and i and li is

the total length of i. A time window Xt,i is considered wet if Rt,i ≥ 0.1 mm h−1 and dry

otherwise.

3.2.2 Pre-processing

Before training and testing an artificial neural network, the raw time-series data has to be

pre-processed. We do this to sample time windows of a fixed size, which are normalized

and labelled according to the reference.

First, the full data set, consisting of all available CMLs, is split into three subsets. One

subset is used for training the CNN (TRG), one is used for validation and to optimize

model hyper-parameters (VALAPR) and one is used for testing only (VALSEP). The data

set TRG consists of data from 800 randomly chosen CMLs in the period from May to

August 2018. VALAPR covers the remaining 3104 CMLs during April 2018 and VALSEP

consists of data from all 3904 CMLs during September 2018. We used this splitting routine

to avoid information leakage from the training to the validation data. There can be a high

correlation of signal levels between CMLs that are situated close to each other (Overeem

et al., 2011). Therefore, the measurements contained in VALAPR or VALSEP can not

be taken from the same time range as for TRG. Using only 20% of all available CMLs

for training allows us to analyze the CNNs generalization to the remaining CMLs in the

validation data set. No CMLs were excluded from this analysis.

For each of the two sub-links of a CML, we compute a transmitted minus received signal

level (TRSL). Within one TRSL time-series, randomly occurring gaps of up to five min-

utes of missing data are linearly interpolated to be consistent with with the preprocessing

used in Graf et al. (2020a). We assume that the temporal variability of rainfall is not high

enough such that entire rain events can be hidden in such short gaps. The next step is

to normalize the data. Normalization of training and validation data is a commonly used

procedure in deep learning to enhance the model performance. We perform the normal-

ization as a pre-processing step and outside the CNN. After testing various normalization

techniques it turned out that the best performance of the CNN can be achieved by sub-

tracting the median of all available data from the preceding 72 hours from each time step.

In rare cases of larger gaps in the data acquisition, we set a lower limit for the data avail-

ability to 120 minutes.

The set of starting time-stamps of the hourly reference data set is denoted Trad. For each

CML i and each starting time t ∈ Trad a sample of data X̄t,i is composed from 60+k

minutes of TRSL from the two sub-links starting at t− k. The first k minutes serve as a
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reference to previous behaviour of the same CML and the last 60 minutes are the period

Xt,i that has to be classified. To investigate the impact of adding this additional infor-

mation, we compare multiple setups with k ranging from 0 to 240 minutes. The results

are given in Sect. 3. An example TRSL over a period of two weeks is shown in Fig. 3.2 (a).

Figure 3.2: Performance of the CNN and the reference methods for the noisy example

CML time-series from Fig. 3.1. a) shows the normalized TRSL time-series and b) is the

radar reference. Predictions from the CNN (e) yield an MCC of 0.74. Predictions through

σopt (c) and σq80 (d), which are very similar in this case, both yield MCCs of 0.28. Note

that the TRSL and RSTD time series of sub-link 2 are almost identical to those of sub-link

1 and are shown in light grey.

After interpolating short gaps, as described above, we exclude all samples with missing

values from the analysis. Since we loose up to five hours of data whenever there is a gap,

the interpolation routine increases the number of available samples from 75% to 94%.

To train the CNN we have to balance the wet and dry classes in the data set (Hoens and

Chawla, 2013). The under-sampling approach to achieve an equalized (50:50) class ratio

is to randomly discard samples of the majority class, i.e. dry samples. This approach is

chosen since we assume that dry periods mostly consist of redundant samples with only

small fluctuations. Later, we check that there is no loss in performance by evaluating
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the unbalanced data. The initial percentage of wet samples is between 5-10%. We per-

form the balancing on TRG and VALAPR. The balanced version of VALAPR is denoted

VALAPRB. VALAPR and VALSEP are kept as unbalanced data sets for validation. TRG

already denotes the balanced data, since the original unbalanced training data set is not

used in the analysis. In total, the number of samples is 2.3 × 105 for TRG, 3.9 × 105 for

VALAPRB, 2.2× 106 for VALAPR and 2.8× 106 for VALSEP.

3.2.3 Neural Network

CNNs especially apply to time-series classification when patterns have to be recognized

in longer sequences of data but the location of the occurring patterns is variable. They

are therefore suitable classifiers for sensor data like the TRSL from CMLs. The expected

advantage of the CNN over the reference method is that it is able to recognize the rainfall

specific patterns, rather than just the amount of fluctuations. Like other neural network

architectures they consist of a series of layers of neurons (Fig. 3.3). The first layer receives

the input data and the last layer serves as an output for a prediction. The hidden layers

in between are organized in two functional parts. The first part consists of a series of

convolution and pooling layers and is used to extract features from the raw model input.

Earlier convolution layers identify simple patterns in the data, which are used to identify

more complex patterns in subsequent layers. The second part consists of fully connected

layers of neurons and is used to classify the input based on the features extracted by the

convolutional part.

Before a CNN can be used as a classifier, it has to be trained on data in a supervised

learning process. All layers have a set of trainable parameters, so called weights, which

are optimized during the training process according to a learning rule. To be able to

monitor the model performance, a test data set is evaluated regularly during the training

process. Training is stopped before the model starts to over-fit, i.e. the performance on

the test data set either stagnates or drops, while it still rises for the training data.

3.2.3.1 Network architecture

We use a 1D-CNN, which has the same structure as the basic 2D-CNN, with alternating

convolutional and pooling layers followed by fully connected layers. The only difference is

that the input data of the convolutional layers is one dimensional. The specific architecture

and parameterization was optimized experimentally. To give an intuitive description of

our CNN, we follow the approach provided in (LeCun et al., 2015, p. 439):

The convolutional part of the CNN consists of four blocks of two convolutional layers

followed by a max pooling layer and one block of one convolutional and one average

pooling layer (see Fig. 3.3). Convolutional layers extract feature maps by passing local

patches (3x1) of input from the preceding layer through a set of filters followed by a

rectified linear unit. Each filter creates a different feature map.
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Figure 3.3: Graphical illustration of the CNNs architecture for k = 120. The Input shows

one sample X̄t,i of data consisting of 180 minutes of TRSL from the two sub-links of one

CML. Convolutional and pooling layers reduce the input dimension from 180 to 2, while

a total of 192 features are extracted. Numbers below convolutional layers are the layer

output dimensions, i.e. input dimension times the number of filters. The size of the local

patch in a convolutional layer is 3. Based on the extracted features, the fully connected

layers predict a class, which is stored in the output layer.

The pooling layer then combines semantically similar features by taking the maximum

(resp. average) within one local patch. This way, the dimension of the input is gradually

reduced while, at the same time, the number of extracted features increases.

The fully connected part of the CNN consists of two layers with 64 neurons each and an

output layer with one neuron. Its output is a prediction between zero and one, that can

be interpreted as the likeliness for the input sample to be wet or dry. To avoid over-fitting

to the training data two dropout layers are added, one after each fully connected layer,

with a dropout ratio of 0.4 (Srivastava et al., 2014).

We implement the CNN in a Python framework using the Keras (version 2.3.1) backend for

Tensorflow (version 2.1.0) (Chollet, 2022; Developers, 2022). For the model architecture,

type, number and order of layers has to be chosen. There are several hyper-parameters that

can be specified in the model setup. Each layer has a number of hyper-parameters that can

be adjusted, e.g. the size of the local patch or the number of filters in a convolutional layer.

We optimized all hyper-parameters iteratively by evaluating the performance of several

reasonable configurations on the test data set VALAPRB, and by choosing the model with

the best performance metrics (see 3.2.4). Depending on the length of the input time-series,

which varies with k, the number of convolutional layers is different, i.e. k < 60 we omit the

last two convolution layers. We trained one model for each value of k and one extra model,
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that additionally receives the CML meta-data consisting of the length and the frequency

of both channels through parallel fully connected layers and an add-layer before the fully

connected part. For k set to 120 minutes the final CNN consists of 20 functional layers

with a total of 140,033 trainable parameters. The organization of those layers is shown

in the network graph in Fig. 3.3. For all model versions, the detailed model and training

specifications, all hyper parameters and the weights of the trained CNN can be retrieved

from the code example at https://github.com/jpolz/cnn_cml_wet-dry_example.

3.2.3.2 Training setup

CNNs are feed-forward neural networks, which are trained by a supervised learning al-

gorithm (Goodfellow et al., 2016). Batches of samples are passed through the network

and the outputs are compared to the reference labels. After each batch a loss function is

computed and the weights are updated according to a learning rule. Here, the learning

rule is stochastic gradient descent with binary cross-entropy as a loss function and an

initial learning rate of 0.008 (Bottou et al., 2018). The training data set TRG consists of

7 batches with 104 samples each and the validation data set is VALAPRB. One training

epoch is finished when the whole data set is used once. After each epoch the training

and validation data sets are evaluated to compute the training and validation loss and the

learning rate is decreased slightly.

The training is stopped if the validation loss does not equal or surpass an earlier minimal

value for 50 epochs (stopping criterion). Afterwards the model which achieves the best

validation Matthews correlation (see MCC below) is selected from all versions, that existed

after the individual training epochs (model selection criterion). This model is then used

for classification on the validation data sets.

3.2.4 Validation

Our CNN is a probabilistic classifier. The raw model output Ȳt,i is on a continuous scale

from 0 to 1 (see Fig. 3.5), representing the estimated likeliness that a sample X̄t,i is wet.

A threshold τ ∈ [0, 1] is then set to decide whether a sample is wet or not, leading to the

prediction rule

Ỹt,i =

{
1, if Ȳt,i > τ

0, otherwise
(3.2)

Classification results, in the form of true positives (TP), false positives (FP), false negatives

(FN) and true negatives (TN) are compared to the reference in a confusion matrix, shown

in Table 3.1, which is the basis for computing further metrics.
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Table 3.1: Confusion matrix
reference

wet dry

p
re

d
ic
ti
o
n

wet
True wet (TP): False wet (FP):

#{ detected wet| reference wet} #{ detected wet| reference dry}

dry
Missed wet (FN): True dry (TN):

#{ detected dry| reference wet} #{ detected dry| reference dry}

The normalized version of the confusion matrix consists of the occurrence rates of TP, FP,

FN and TN samples, defined as

TPR =
TP

TP + FN
, (3.3)

FPR =
FP

FP + TN
, (3.4)

FNR =
FN

TP + FN
, (3.5)

and

TNR =
TN

FP + TN
. (3.6)

As a first metric for validation we use the accuracy score, defined as

ACC =
TP + TN

total population
∈ [0, 1]. (3.7)

It is a measure for the percentage of correct classifications being made. It is dependent

on the class balance of the data set. The balance of wet and dry samples in the data set

is directly related to the regional and seasonal climatology. Therefore, this metric is not

climatologically independent.

The second metric we use is the Matthews correlation coefficient (MCC), also known as

ϕ-coefficient, which is a commonly used metric for binary classification (Baldi et al., 2000).

It is acknowledging the possibly skewed ratio of the wet and dry periods and is high only

if the classifier is performing good on both of those classes. It is defined as

MCC =
TP · TN − FP · FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
∈ [−1, 1], (3.8)

where an MCC of 0 represents random guessing and an MCC of 1 represents a perfect

classification. A strong correlation is given at values above 0.25 (Akoglu, 2018). The

advantage of the MCC is, that it is a single number which we use to optimize the threshold

for the CNN.

The third metric we use is the receiver operating characteristic (ROC), defined by the pair

(FPR, TPR) ∈ [0, 1]×[0, 1] (Fawcett, 2006). The domain of the ROC is called ROC space.

The point (0,1) represents a perfect classifier, while the [(0,0),(1,1)] diagonal represents
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random guessing. The ROC is independent of the ratio of wet and dry periods and

therefore a climatologically independent measure for the classifier’s performance on rain

event detection. Each τ ∈ [0, 1] leads to a ROC resulting in a ROC curve γ ⊂ [0, 1]× [0, 1]

(e.g. Fig. 3.7). The performance of a classifier for different values of τ is measured by the

area

AUC =

1∫
0

γdτ ∈ [0, 1] (3.9)

under the ROC curve. Since changing τ directly influences the prediction rule (Eq. 3.2), it

can be adjusted causing the model to classify in a conservative (below [(0,1),(1,0)] diagonal

in ROC space) or liberal (above diagonal) manner. We can therefore address the trade-off

between true wet and true dry predictions as mentioned in the introduction. This way,

the AUC becomes a measure of the flexibility of a classifier, i.e. the ability to show good

performance with a more conservative or liberal threshold τ . The main purpose of the

ROC is that we use it to compare different methods, e.g. different values of k, independent

from a fixed threshold, by considering the ROC curve and the AUC.

3.2.5 Reference method

The reference method is a modification of Schleiss and Berne (2010) which is to date

the most commonly used method to separate wet and dry periods as reviewed in the

introduction. It is based on the following assumption: The standard deviation values

of fixed-size windows of TRSL is bounded during dry periods, whereas it exceeds this

boundary during wet periods and therefore allows for distinguishing the two classes. This

assumption has proven to give good results on our data set, however there are known

drawbacks. The method is limited to measuring the amount of signal fluctuations and

there are multiple effects that can cause high signal fluctuations during dry periods, e.g.

like for CML C in Fig. 3.1. Some of the factors are known, like multi-path propagation,

but others are unknown and still need to be investigated.

The method is applied by computing a rolling standard deviation of the TRSL time-series.

The normalization step is not necessary for this method. The window length is 60 minutes

and the standard deviation value is written to the timestamp in the center of this window.

A period Xt,i is considered wet if at least one standard deviation value on one or both

sub-links exceeds a threshold σ.

We compare two different thresholds σ, which are computed individually for each CML.

The first one, denoted σ80, is the 80th percentile of the 60-minute rolling standard deviation

of one month for a certain CML multiplied by a scaling factor which is constant for all

CMLs. In our case, the threshold is computed for VALAPR in April and VALSEP in

September. The scaling factor of 1.12 is adopted from Graf et al. (2020a). The second one,

denoted σopt, is optimized against the reference by maximizing the MCC. We computed it

for April 2018 and then reapplied it to September 2018 to test its transferability to future

time periods. To derive ROC curves, we applied a scaling factor τσ to each of the standard
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deviation thresholds. In the following we will refer to σ80 and σopt as both the resulting

detection method and the threshold.

3.2.6 Rain rate estimation

In the same way as the rolling standard deviation, the CNN can be used in a rolling window

approach, classifying the timestamp t as wet or dry by using the sample with starting

timestamp t − 30 as model input. With the resulting rain event detection information

from either the CNN or the two reference methods, rain rates are estimated in several

steps. We use the exact same processing scheme as described in Graf et al. (2020a),

which we refer the reader to for all the technical details. This processing includes erratic

treatment of CMLs and WAA compensation to derive rain rates with a temporal resolution

of one minute. For each detected rain event a constant baseline of the TRSL is calculated

from the preceding dry period. The attenuation above this baseline level is attributed

to rain but also to WAA. The WAA is compensated depending on the rain rate using a

method modified after Leijnse et al. (2008). The remaining specific attenuation k is used

to derive the path averaged rain rate R using the k − R relation from Eq. 3.10. The

constants a and b are taken from ITU-R (2005).

k = aRb (3.10)

For the CMLs used in this study this relation is close to linear, i.e. b is close to one. For

a comparison to RADOLAN-RW the one minute rain rates are then aggregated by taking

the hourly average.

Only from this analysis data from 45 CMLs (1.1 %) is discarded due to substantially

erratic signal levels to be able to follow the same procedure as in Graf et al. (2020a).

Additionally, we justify this procedure with the following observation: For the rain event

detection we want periods of erratic behavior to be included in both training and validation

data, since also CMLs that are not discarded by the erratic treatment can show periods

of erratic behavior, such as CML C from Fig. 3.1. Each erratic training and validation

sample contributes to the final statistics as one sample and the erratic CMLs do not distort

the analysis. This is very different for the rainfall amount, since erratic links are prone

to a very high overestimation of the final rain rates even when a low amount of time

periods is detected wet. Since erratic CMLs are a small fraction of the available CMLs

and they can be detected automatically, we decided to exclude their bias when analyzing

the contribution of false positives to absolute rainfall amounts. An example of such a time

series can be found in Fig. 3.11.
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3.3 Results

During training on TRG, the performance of the CNN was evaluated on VALAPRB after

each epoch. The resulting graphs of loss, ACC, TPR and TNR during the training process

are shown in Fig. 3.4.

Figure 3.4: Statistics of variables that were monitored during the training process.

For all three variables the performance on TRG and VALAPRB were similar across all

epochs with slightly higher performance on TRG. The threshold τ was optimized using

VALAPR, by maximizing the MCC, with resulting values of τ shown in Tab. 3.3. The

results from that table and the ROC curves in Fig. 3.7 c) show that in general the

performance of the CNN is increasing with higher values of k, but the performance gain

was insignificant for raising the value higher than 120 minutes or adding meta data as

model input. We therefore decided to set k = 120 and not to use added meta data for

evaluating further results and comparing them to the reference methods.
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Table 3.2: Performance metrics of rain event detection methods on VALAPR and VALSEP

Method TPR TNR ACC MCC AUC

V
A
L
A
P
R CNN 0.74 0.97 0.95 0.69 0.94

σq80 0.79 0.79 0.79 0.38 0.85

σopt 0.61 0.95 0.91 0.52 0.83

V
A
L
S
E
P CNN 0.77 0.97 0.96 0.69 0.96

σq80 0.82 0.78 0.78 0.35 0.87

σopt 0.63 0.92 0.90 0.44 0.84

Fig. 3.5 shows the distribution of the CNNs predictions on VALAPRB. The threshold τ

is set to 0.82. The final number of training epochs was 248 and the model from epoch

212 was selected (see Fig. 3.4 (a)). On one Nvidia Titan Xp GPU the training time was

30 minutes. Classifying 3904 samples, i.e. a one minute time-step for all CMLs, took

20ms which can be considered extremely fast allowing for a real-time application of the

method. For further verification, we repeated the training multiple times with a different

randomization (selection of CMLs and balancing) of TRG and VALAPRB but no signifi-

cant changes in performance could be observed.

Figure 3.5: Raw CNN predictions on VALAPRB, coloured according to the reference.

We evaluated the performance of the CNN and both reference methods using the unbal-

anced data sets VALAPR and VALSEP. The complete list of the achieved performance

metrics is presented in Table 3.2. Applying the threshold τ to the CNN predictions yielded

TPRs of 0.74 (VALAPR) and 0.77 (VALSEP) and TNRs of 0.97 (VALAPR and VALSEP)

(see also Fig. 3.10). On average, only 3% of the dry periods were falsely classified as wet

and 24% of the wet periods were missed. With a scaling factor τσq80 of 1.12, σq80 achieved

a balanced TPR and TNR with a value of around 0.79 for both rates in April and Septem-

ber. σopt on the other hand achieved similar TNRs than the CNN but at the cost of lower

TPRs.
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For both data sets, the CNN’s ROC showed a higher TPR for any fixed FPR than the

reference methods (see Fig. 3.7). As a consequence, the AUC was largest for the CNN.

On VALAPR, σopt yielded a better ROC than σq80, but only for low FPR values. On

VALSEP σq80 achieved a better ROC than σopt. The ROC curves of the CNN and σq80

had a very similar convex shape. Compared to the other two curves the ROC curve of

σopt showed a higher asymmetry. The CNN achieved the highest ACC and MCC scores

with an average of 0.95 and 0.69 on both data sets. While σopt has the second highest

ACC and MCC scores, the area below the ROC curve is lowest for both data sets.

Figure 3.6: Each bar shows the ACC score on samples from a) VALAPR and b) VALSEP,

grouped by the reference rain rate. An ACC of 0.5 represents random guessing.

We compare the ACC on detecting samples with a specific RADOLAN-RW rain rate of

x < Rt,i < x + 0.1 in Fig. 3.6. From all rain events where Rt,i ≥ 0.6 mm 90.4% were

correctly detected by the CNN. On the other hand around 38.9% of all rain events with

Rt,i < 0.6 mm were missed. All three methods have a lower ACC, the lower the rain

rate is. While σq80 shows an ACC for wet periods of different rain intensities, that is very

similar to that of the CNN, σopt misses more small events. On the other hand σq80 is

producing more false wet classifications than the CNN or σopt.

The MCC was computed individually for each CML and each validation data set. Figure

3.8 shows scatter density plots comparing the individual MCC scores of the CNN and

σopt. The CNN’s MCC on VALAPR is higher for 95.9% of all CMLs and on VALSEP it

is higher for 96.7% of all CMLs. We focus our analysis on hourly rainfall rates from all

non-erratic CMLs in September 2018. The resulting rain rates using either the CNN or the

σq80 detection scheme are shown in Fig. 3.9. For both methods the distribution of false

positive and false negative samples is centered around 0.1 mmh−1 and the distribution of

true positives is centered around 1 mmh−1.
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Figure 3.7: Receiver Operating Characteristic curves on VALAPR a) and VALSEP b).

Fine lines are generated by 200 random selections (bootstrapping) of 1% of the samples

and account for the variability of the model performance during a random short period

(∼ eight hours) of data. The performances of the CNN for different values of k and the

added meta data are shown in c) and the AUC values are given in Table 3.3

While the percentage of CML derived rainfall estimated during false positive events is

29.9% for σq80, it is significantly less for the CNN (see Fig. 3.9 d) and f). This constitutes

a reduction of 51% of falsely estimated rainfall for the month of September 2018. At the

same time the amount of missed rainfall is reduced by 27.5%. The amount of rainfall in

the true positive category could therefore be raised by 4.7%. The Pearson correlation for

the hourly rainfall estimates between radar and CMLs is 0.83 using σq80 and 0.84 using

the CNN.
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3.4 Discussion

3.4.1 Performance

We evaluate the performance of the CNN to detect rain events by two means. First, we

compare it to the performance of a reference method. Second, we estimate if the model

is performing in a near optimal state or if we expect that a higher performance could be

achieved. The comparison to the results of previous studies, e.g. Overeem et al. (2016a),

is difficult since the overall performance is depending on the distribution of the intensity

of rain events (see Fig. 3.6) and since there is a large variability of performance between

the CMLs (see Fig. 3.8).

Figure 3.8: Scatter density plots of the MCC achieved by the CNN and σopt on data

from individual CMLs. Both methods are MCC optimized for the unbalanced data from

VALAPR, while the CNN keeps the optimized performance in September, the performance

of σopt drops.

Since the results on both validation data sets are very similar (see Table 3.2) we further

focus on VALSEP, which was not used to optimize the model hyper-parameters. With

an ACC of 0.95 and an MCC of 0.69 the correlation between the CNN predictions and

the reference data set RADOLAN-RW can be considered as very high. A TPR of 0.74

might not appear very good at first sight, but considering that the detection accuracy for

samples with a rain rate of smaller than 0.6 mmh−1 is only 0.61, we actually achieve an

accuracy of over 0.9 for all rain rates higher than 0.6 mmh−1.

The CNN and the reference method σopt have a similar ACC value. At the same time the

CNN’s MCC is higher, despite the fact that σopt is MCC optimized for each CML. The

high ACC of σopt is due to the high TNR and the fact that 95% of all samples are negative

(dry). At a similar ACC and TNR we could increase the TPR, or rain event detection

rate, by 0.13. This constitutes a major improvement by the CNN.
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Figure 3.9: Scatter density comparison between hourly CML and radar rain rate estimates

derived from a) σq80 and b) the CNN. On the left hand side the amount of FP, TP and

FN hours with a specific rain rate are compared for c) σq80, e) the CNN and g) their

difference). On the right hand side the amount of rainfall these hours contribute are

shown for d) σq80, f) the CNN and h) their difference. The rain rates for false positives

and true positives are estimated by the CML, while the rain rates for false negatives are

taken from the reference.
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As shown in Fig. 3.8 the improvement is higher for CMLs with lower MCC, making the

whole CML data set more balanced in performance and therefore more trustworthy for

quantitative precipitation estimation. The CNNs distribution of MCC values of individual

CMLs is the same in April and September, while performance drops for σopt. The CNN’s

improvement in ACC and MCC over σq80 was even higher with 0.17 and 0.32. While the

TPR of σq80 is slightly higher than the TPR of the CNN, the TNR is much lower for σq80.

Thus the CNN shows substantial improvement in correctly classifying dry periods.

While the RSTD method can be set up to either have a high TPR (σq80) or a high TNR

(σopt), the ROC curves show that CNN achieves both rates at the same time. Thus, the

CNN shows a better overall performance than the reference methods and therefore im-

proves on the trade-off as mentioned above. This observation is illustrated by the example

in Fig. 3.2, which shows a very noisy CML time-series that produces a high amount of false

positives for the reference method, while the CNN does not attribute these fluctuations

to rainfall. All three methods have limitations to detect events with rain rates smaller

than 0.3mm. This is likely due to the detection limit of CMLs in our data set which is in

the same range. The detection limit depends on frequency, length and signal quantization

of a CML. For example, at a frequency of <20 GHz and at a length of <10 km a path

averaged rain rate of 1 mm h−1 creates a maximum of 1 dB of attenuation (Chwala and

Kunstmann, 2019, Fig. 7). In some cases the quantization (0.3dB for RSL and 1dB for

TSL) might therefore not allow for a detectable signal.

Differences in the performance on VALAPR and VALSEP can be traced back to a dif-

ferent distribution of occurring rain rates. While in April 35.5% of all events are in the

critical range from 0.1mm to 0.3mm, there are only 32% in September. In both data sets

the performance on higher rain rates (> 1.6 mm) and dry periods is almost identical.

Therefore the loss of performance in April is due to the slightly worse performance of the

CNN on smaller rain rates which occur more often in VALAPR than in VALSEP.

It should not be expected that the rain events detected through CMLs and the events de-

tected by the radar coincide completely. Both methods produce artifacts that are mistaken

as rainfall, or they miss events due to their detection limits. From all false classifications

that the CNN makes on VALSEP there are 50% with a raw model output between 0.2 and

0.8. Here the CNN does not give a certain prediction. This is due to very similar signal

patterns in noisy dry periods and small rain rates. The other 50% of those samples are,

according to the CNN, very likely to belong to the falsely predicted class. Despite this

being an issue for many CMLs about 10% have a ROC of (> 0.97, < 0.1) and correlate

very well with the RADOLAN reference. Therefore, we expect that less errors could be

made when training with a perfect reference data set, but there would still be errors due

to artifacts or insensitivity in CML measurements.

Despite those errors, which occur mostly for small rain rates, the correlation of wet and

dry periods between RADOLAN-RW and our CML data set is very high. The perfor-

mance boost in rain event detection gained through the CNN is very promising for future

applications in quantitative precipitation estimation with CMLs.
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3.4.2 Robustness

The CNNs ability to generalize to previously unknown CMLs is very high. As seen in

the training results the learning curves for both training and validation show a similar

dynamic (see Fig. 3.4). As expected the training data showed better performance, but

the validation was close at all epochs.

Only 20% of all available CMLs were used for training. The remaining 80% were only

used to prevent the model from over-fitting to the training data, to choose the model

architecture and to optimize the single parameter τ . Thus no information about the

validation data was given directly to the model. The resulting model architecture and

hyper-parameters are not specific enough to store this information. The high performance

in ACC, MCC and ROC on data set VALAPR, together with the learning curves in Fig.

3.4), therefore prove that the CNN was able to recognize the attenuation pattern in the

signal levels of a large number of previously unknown CMLs.

The stability of the CNNs performance for future time periods is analyzed using the re-

sults on VALSEP. While the training was done with TRG including the period of May

to August 2018, the performance in September was similar. Compared to the results on

VALAPR the CNN shows even higher performance on VALSEP, which can be explained by

the lower percentage of samples with small rain rates in September, which are challenging

to classify (see Fig. 3.6 a)). When we compare the CNNs accuracy per rain rate between

VALAPR and VALSEP, we see that there are no major differences in the individual scores.

Therefore the method can be considered as very stable throughout the analyzed time pe-

riod, while differences in overall performance mostly stem from different distributions of

the occurring rain rates. The reference method σopt, which was optimized in April, loses

performance in September, where it is outperformed by the adaptive method σq80. The

bootstrapping in Fig. 3.7 shows that all three methods perform almost equally well on

small random subsets of the validation data. The CNN shows the lowest variability.

As a measure for the flexibility of a classifier we adopted the ROC analysis in Sect. 3.2.4.

A model is called flexible if it has a high area below its ROC curve and if the curve is

axis-symmetric with respect to the [(0,1),(1,0)] diagonal of the ROC space. As observed

both the CNN and σq80 show a symmetrical ROC curve. Therefore they perform almost

equally well with a liberal or conservative threshold with a slight tendency to the conser-

vative side. On the other hand σopt shows a skewed performance, with a strong tendency

to the conservative side. The area AUC below the ROC curve was highest for the CNN,

making it the most flexible classifier. We can adjust τ for a ROC of either (0.03, 0.7) or

(0.3, 0.94) and a smooth, concave transition in between (see Fig. 3.7).

We conclude that within the analyzed period the CNN shows a temporally stable per-

formance, with a good generalization to previously unknown CMLs. The σopt method

performs well only if it is re-calibrated for different months and to individual CMLs, while

σq80 is by definition an adaptive method. Even with re-calibration or adaption, the refer-

ence methods are outperformed by the CNN.
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3.4.3 Impact of the detection scheme on the derived rainfall amounts

The difference between the scatter density plots in Fig. 3.9 a) and b) seems to be quite low

at first sight. What this representation of the data is not stressing enough is the amount

of rainfall generated by false positives. But they are an issue that is clearly visible from

Fig. 3.9 c)-h). Considering that the amount of rainfall estimated during time periods

falsely classified as wet can be reduced by 51.0% and that the amount of rainfall from

missed events can be reduced by 27.4%, the CNN shows a major improvement over the

reference method. The 4.1% of additional rainfall in the correctly classified wet periods

stem from time periods that were originally harder to classify, i.e. from small rain events,

and it should be expected, that the correlation between CML and radar rainfall drops.

Instead, the Pearson correlation coefficient increased slightly showing that the quality

of the estimated hourly rainfall could be improved. We omitted the same analysis for

a comparison of the CNN and σopt for which, based on the ROC values in Fig 3.7, we

anticipate a similar result, but with a higher pronunciation of missed rain events instead

of the strong impact of false positives.

Overall, we could observe that the improvement in rain event detection has a considerable

effect on the amount of over- or under estimation through falsely detected or missed rain

events. The improvement on the trade-off between false positives and false negatives

directly translates to the impact of their respective rainfall amounts. This is shown by the

false positive and false negative distributions in Fig. 3.9 c)-f) which are centered around

the same value, but are different in their amount depending on the used detection method.

3.5 Conclusion

In this study, we explore the performance and robustness of 1D-CNNs for rain event

detection in CML attenuation time-series using a large and diverse data set, acquired from

3904 CMLs distributed over entire Germany. We prove that, compared to a reference

method, we can minimize the trade-off between false wet and missed wet predictions.

While the reference method needs to be adjusted for different months of the analyzed

period to provide optimal results, the trained CNN generalizes very well to CMLs and

time periods not included in the training data. On average, 76% of all wet and 97% of all

dry periods were detected by the CNN. For rain rates higher than 0.6 mmh−1 more than

90% were correctly detected. This underlines the strong agreement between rain events

that can be detected in the CML time-series and rain events in the RADOLAN-RW data

set.

In future work, we plan to investigate the potential of using reference data with higher

temporal resolution to improve the temporal localization of the rain events. Data with

higher temporal resolution will, however, magnify the uncertainties that arise due to the

different spatial and temporal coverage of the different rainfall observation techniques. In

order to address these uncertainties, it will be important to further explore the relationship
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between weather radar and CML derived rainfall products. In the study presented here,

we focused on the optimization of rain event detection as an isolated processing step,

which provides the basis for a successful rain rate estimation. All subsequent processing

steps, including WAA correction, k-R relation and spatial interpolation, have an effect

on the CML derived rain rate, that can also lead to over or under-estimation. While

29.9% of the estimated rainfall through the reference method can be attributed to false

positive classifications, the CNN reduces this amount by up to 51% and, at the same time,

improves on true positive and false negatives. We anticipate, that this improvement will

lead to new insights into other effects that may disturb the quality of this opportunistic

sensing approach.

Our study shows that using data driven methods like CNNs in combination with the

good coverage of the highly developed weather radar network in Germany can lead to

robust CML data processing. We anticipate that this robustness enhances the chance

that we can transfer processing methods to data from other CML networks, particularly

in developing countries like Burkina Faso, where rainfall information is still scarce despite

its high importance to the local population (Gosset et al., 2016).

3.6 Code availability

Interactive code to build the CNN and an example evaluation using the trained CNN

are available at https://github.com/jpolz/cnn_cml_wet-dry_example. CML data was

provided by Ericsson Germany and is not publicly available in its full extent. RADOLAN-

RW is publicly available through the Climate Data Center of the German Weather Service

(DWD) https://opendata.dwd.de/climate_environment/CDC/grids_germany/hourly/

radolan/. We include a small example data set with modified CML locations, the trained

model weights and the pre-processed RADOLAN-RW reference data together with the

interactive code at https://github.com/jpolz/cnn_cml_wet-dry_example.
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3.8 Appendix to Chapter 3

Table 3.3: Number of training epochs, MCC optimized threshold and resulting metrics

for different values of k, evaluated on VALAPR.

Method k Training epochs Threshold τ TPR TNR ACC MCC AUC

CNN 0 269 0.77 0.53 0.97 0.93 0.55 0.86

15 158 0.78 0.59 0.97 0.94 0.60 0.88

30 274 0.79 0.64 0.97 0.94 0.64 0.91

45 271 0.79 0.67 0.97 0.94 0.66 0.92

60 128 0.84 0.71 0.97 0.95 0.68 0.93

120 212 0.85 0.72 0.97 0.95 0.69 0.94

180 211 0.86 0.72 0.97 0.95 0.69 0.94

240 170 0.84 0.73 0.97 0.95 0.69 0.94

CNN+Meta 180 321 0.79 0.70 0.97 0.95 0.68 0.93

σq80 - - - 0.79 0.79 0.79 0.38 0.85

σopt - - - 0.61 0.95 0.91 0.51 0.83

Figure 3.10: Normalized confusion matrices of VALAPR (top) and VALSEP (bottom).
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Figure 3.11: Time series of a CML that is considered as erratic and is removed by the

simple filter for erratic CML data introduced in Graf et al. (2020a). There are no time

periods, where a reasonable rainfall estimation would be possible.
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Chapter 4

Missing rainfall extremes in commercial

microwave link data due to total loss of

signal (Polz et al., 2023b)

Polz, J., Graf, M., Chwala, C.: Missing rainfall extremes in commercial microwave link

data due to total loss of signal, Earth and Space Science, 10, e2022EA002456. https:

//doi.org/10.1029/2022EA002456 , 2023

License: CC BY-NC

Abstract

An important aspect of rainfall estimation is to accurately capture extreme events. Com-

mercial microwave links (CMLs) can complement weather radar and rain gauge data by

estimating path-averaged rainfall intensities near ground. Our aim with this paper was to

investigate attenuation induced total loss of signal (blackout) in the CML data. This ef-

fect can occur during heavy rain events and leads to missing extreme values. We analyzed

three years of attenuation data from 4000 CMLs in Germany and compared it to a weather

radar derived attenuation climatology covering 20 years. We observed that the average

CML experiences 8.5 times more blackouts than we would have expected from the radar

derived climatology. Blackouts did occur more often for longer CMLs (e.g. > 10 km) de-

spite their increased dynamic range. Therefore, both the hydrometeorological community

and network providers can consider our analysis to develop mitigation measures.

Plain Language Summary

Commercial microwave links (CMLs) are used to transmit information between towers of

cellphone networks. If there is rainfall along the transmission path, the signal level is

attenuated. By comparing the transmitted and received signal levels, the average rainfall

intensity along the path can be estimated. If the attenuation is too strong, no signal is

received, no information can be transmitted and no rainfall estimate is available. This
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is unfavorable both for network stability and rainfall estimation. In this study, we inves-

tigated the frequency of such blackouts in Germany. How many blackouts per year are

observed in a three year CML dataset covering around 4000 link paths and how many

are expected from 20 years of weather radar data? We observed that the average CML

experiences 8.5 times more blackouts than we would have expected from the radar derived

climatology. Blackouts did occur more often for long CMLs, which was an unexpected

finding. While only one percent of the annual rainfall amount is missed during blackouts,

the probability that a blackout occurs was very high for high rain rates. Both, the hy-

drometeorological community and network providers can consider our analysis to develop

mitigation measures.

4.1 Introduction

Microwave radiation is attenuated by hydrometeors through scattering and absorption

processes. For raindrops an advantageous relationship between specific attenuation k in

dB/km and rainfall rate R in mmh−1 exists. This power law known as the k-R relation

is close to linear at frequencies between 20 and 35 GHz (Chwala and Kunstmann, 2019).

Commercial microwave links (CMLs) use frequencies from 7 to 80 GHz and thus can be

used to derive path averaged rainfall intensities by comparing transmitted and received

signal levels (TSL and RSL) (Uijlenhoet et al., 2018). In theory, the k-R relation is valid

for arbitrary rainfall intensities occurring in the underlying drop size distribution simu-

lations. In practice, the measurement of high attenuation values at a given transmitted

signal level has an upper bound when the signal cannot be distinguished from the receiver’s

background noise.

CML rainfall estimates were derived for many countries around the globe, e.g. the Nether-

lands (Overeem et al., 2016b), Sri Lanka (Overeem et al., 2021), Burkina Faso (Doumounia

et al., 2014) and Germany (Graf et al., 2020a). CML-derived rainfall information can be

used for applications like streamflow prediction, urban drainage modeling, agricultural

purposes and rainfall nowcasting (Fencl et al., 2013; Brauer et al., 2016; Stransky et al.,

2018; Imhoff et al., 2020). Especially for flash flood prediction, precise precipitation max-

ima are of great importance (Cristiano et al., 2017). While rainfall estimates from weather

radars are known to underestimate high intensities (Schleiss et al., 2020), rain gauges lack

spatial representativeness (Sevruk, 2006). CMLs can fill this information gap by estimat-

ing path averaged intensities at path lengths of a few kilometres.

Recent studies on the quality of CML rainfall estimates suggest a good agreement with

radar and rain gauge estimates (Graf et al., 2021a; Overeem et al., 2021). However, miss-

ing periods in the signal level time series might be excluded e.g. when comparing CML

time series against a path-averaged radar reference or rain gauges. Such periods can occur

due to hardware failure, maintenance or outages in the data acquisition. Additionally,

network providers usually design the hardware in such a way that transmission outages

due to high attenuation (blackouts) are allowed to occur for a certain amount of time
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per year. The International Telecommunication Union (ITU) recommends a minimum

availability of 99.99% which would allow up to 52 minutes of total loss of signal per year

(ITUßR, 2017).

Rainfall is the prevalent reason for CML signal attenuation. Hence, the amount of missing

data is in a close relationship with the local rainfall climatology. Because of blackouts

rainfall estimates from CMLs miss peak intensities, an error which propagates to further

applications. Figure 4.1 shows examples of such blackouts in CML attenuation time series

and the rainfall intensity according to a weather radar reference. To date, it is unclear to

what extent rain events are missed due to blackouts.

Our aim is to answer two questions related to CML blackouts using a country-wide CML

network in Germany. The first question is how many blackouts each CML is experienc-

ing in practice and how this affects rainfall estimates. The second question is how much

blackout time is expected considering 20 years of high-resolution weather radar rainfall

climatology and how this expectation compares to the results derived from the CML data.

4.2 Data and Methods

Our analysis was based on observed blackouts within CML data collected in Germany

and a comparison to the expected frequency derived from weather radar climatology (Sec.

4.2.1). We detected gaps in CML data that are assumed to be caused by attenuation (Sec.

4.2.2) and derived path integrated attenuation values from path averaged weather radar

rain rates (Sec. 4.2.3). Note that all calculations were repeated for each CML individually.

4.2.1 Data

CML data has been collected in cooperation with Ericsson Germany. The data acquisition

system described by (Chwala et al., 2016) has been used to record three years of instanta-

neously measured RSL and TSL of 3904 CMLs distributed over Germany (2018 to 2020).

The temporal resolution is one minute and the power resolution is 0.3 or 0.4 dBm for RSL

and 1 dBm for TSL. 25% of the CMLs have a constant TSL value (e.g. Figure 4.1b). The

other 75% use an automatic transmit power control (ATPC), which can increase TSL if

RSL decreases due to attenuation (e.g. Figure 4.1a,c,d). The CML path lengths range

from 0.1 to 30 kilometers with frequencies from 7 to 40 GHz as shown in Figure 4.2d). In

the context of rainfall estimation, CMLs are characterized by two main features. First,

the signal level sensitivity to rainfall, see e.g. Fig. 7 in Chwala and Kunstmann (2019),

which depends on the frequency, polarization and path length. Second, the dynamic range

of the signal level Drange, i.e. the difference between clear sky attenuation and maximum

measurable attenuation. The communication along a CML requires (de-)modulation of

information onto the carrier frequency. Different modulation schemes are used. In case of

increased attenuation along their path, the CMLs switch to more simple modulation.
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Figure 4.1: a)-d) show TSL and RSL time series during blackout gaps from four CMLs.

Rainfall intensities are derived from RADKLIM-YW along the CML’s paths. e) gives the

minimal and maximal TSL and RSL values of all 3904 CMLs for the analysed period of

three years. f) shows the distribution of the dynamic range directly calculated from CML

signal levels with Equation 4.1.

This decreases the usable bandwidth but increases the robustness against transmission

errors stemming from the lower signal-to-noise ratio during attenuation events (Bao et al.,

2015). If the RSL is too low, i.e. close to the noise floor of the receiver, the error rate
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for demodulation becomes too large and communication is cut off. Datasheets of CML

hardware (e.g. from Ericsson (2012)) guarantee a certain error rate at defined low RSL

values rather than a fixed lower RSL limit where this cutoff happens. Therefore, we need

to estimate the empirical Drange of each CML as

Drange = TSLmax −RSLmin − TSLmin +RSLmax. (4.1)

We removed TSL and RSL outliers outside the intervals [-20 dBm, 50 dBm] and [-99

dBm, 0 dBm] respectively. TSLmax and RSLmin were the highest (lowest) values which

occurred during heavy attenuation events representing the strongest observed attenuation

event for each single CML (see Fig 4.1a)- d) as examples). Contrarily, we can assume that

TSLmin and RSLmax are occurring frequently during clear sky conditions. To account for

individual outliers we removed values for TSLmin and RSLmax when they occurred less

often than approximately one hour in total during the three years, i.e. using the 99.995%

quantile. Without this filter Drange would be overestimated for about half of all CMLs

because there are individual rarely occurring high RSLmax or low TSLmin values. With

the potentially abrupt onset of heavy rainfall causing a complete loss of signal, RSLmin

may have been undersampled by the 1-minute instantaneous data sampling. Therefore,

the derived Drange can be assumed to be the minimal dynamic range a CML has.

As reference we used RADKLIM-YW (Winterrath et al., 2018) from the German Meteo-

rological Service (DWD) which we linearly interpolated from a 5- to a 1-minute resolution

to match the CML resolution. RADKLIM-YW is a gauge-adjusted, climatologically cor-

rected radar product with a temporal resolution of five minutes and a spatial resolution of

1 km. The underlying radar precipitation scans have been carried out every five minutes.

Therefore, the radar rainfall intensities can be considered to be instantaneous measure-

ments without temporal averaging. The product is composed of 17 weather radars and

adjusted by more than 1000 rain gauges with additive and multiplicative corrections. The

climatological correction accounts for range-dependent underestimation and radar spokes

caused by beam blockage, among others. RADKLIM-YW was considered the best and

highest resolved rainfall reference for this analysis and was available from 2001 to 2020.

Following Graf et al. (2020a) we derived the path averaged rain rate R for each CML as

the sum of radar grid cell rainfall intensities ri weighted by their lengths of intersection li

with a given CML path of total length L as described by Eq. 4.2.

R =
1

L

∑
i

rili (4.2)

To be able to investigate a potential temperature dependence of observed blackouts we

used the 2 meter temperature from the ERA5 analysis dataset provided by the European

Centre for Medium-Range Weather Forecasts Muñoz-Sabater et al. (2021). The temporal

resolution is instantaneous at a one hour frequency and the spatial resolution is 9 kilome-

ters. Similar to Eq. 4.2 an average along the CML path was computed by a weighted sum
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of ERA5-land grid cells intersected by the CML path.

4.2.2 Detecting blackouts in CML data

Gaps in CML signal level time series can have various causes. In this analysis we were in-

terested in gaps caused by strong attenuation during heavy rainfall and therefore excluded

periods which could be attributed to one of the following causes. Gaps longer than 24

hours were assumed not to be caused by heavy rain events. When more than 400 CMLs

exhibited a gap at the same time, we excluded this time step. The reasoning behind this

value is that we assumed a partial or complete outage of our data acquisition system which

polls the data in several batches of 400 to 500 CMLs every minute. Gaps occurring during

a period where a seven-day rolling mean of the RSL was below -60 dBm were removed.

This was done, because we can assume that there is a long-term transmission disturbance,

i.e. partial beam blockage due to a growing tree or due to ice cover on the antenna during

consecutive winter days with temperatures below freezing point, since none of the CMLs

in our dataset has a 3-year median RSL below -60 dBm. That is, all our CMLs have their

long-term baseline RSL level during clear sky conditions above -60 dBm. Around 0.2% of

all RSL values are removed from the analysis by filtering data acquisition gaps and long

term transmission disturbances.

The actual detection of blackout gaps is done with the remaining CML data based on

the following rule. A gap is defined as a blackout gap if either the last valid RSL before,

the first valid RSL after this gap, or both values were below -65 dBm. Examples of such

automatically detected gaps are shown in Figure 4.1a-d). The median RSL levels within

our dataset are well above -65 dBm. Therefore, we chose this threshold to select only

events with attenuation typical of heavy rain events. The thresholds we chose for filtering

the data and detecting the blackout gaps proved to be robust when applied to our dataset

where the CML hardware and data acquisition are homogeneous (Chwala et al., 2016).

However, they might need adjustment if our method is applied for CML datasets with

different characteristics.

We grouped observed blackouts into reference rainfall intensity bins and computed the

average amount of observed blackout minutes nobs per year for each CML. In addition,

nobs was normalized by applying the factor

favail =
#{ minutes in observation period}
#{ minutes with valid observations}

(4.3)

for each CML to account for missing time steps in the CML data.

4.2.3 Deriving a blackout climatology from radar data

In theory, a blackout due to heavy rainfall should be expected whenever the path integrated

attenuation (PIA) exceeds the CML’s dynamic range Drange. We estimated a blackout

climatology using 20 years of instantaneous radar measurements. A radar derived PIA was

calculated by individually applying the k-R relation to the rain rate ri of the i-th radar
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grid cell intersected by a CML path. This procedure was chosen over applying the k-R

relation to the path averaged rain rate to minimize errors due to the spatial variability of

rainfall along the path as explored by Berne and Uijlenhoet (2007). Hence, we calculated

PIA =
1

L

∑
i

arbi li + waa (4.4)

using coefficients a and b, derived from the ITU recommendation ITU-R (2005), which

depend on the CMLs frequency and polarization. The intersection length of CML path

and radar grid cell i is denoted li. Additionally, a constant waa =3 dB accounting for the

wet antenna attenuation (WAA) caused by rain drops on the cover of the CML antennas

was added (van Leth et al., 2018). We chose a value similar to Leijnse et al. (2008);

Schleiss et al. (2013). We assumed a high constant value which is reasonable for peak

rainfall intensities. Whenever PIA was larger than Drange, the CML was expected to

show a blackout gap. Thus, we derived the cumulative number of expected blackout

minutes nexp(Drange) as the average number of timestamps per year where PIA> Drange

multiplied by five due to the radar’s instantaneous sampling rate of five minutes. We

applied Eq. 4.3 to nexp according to the radar availability along CML paths. Due to

RSLmin undersampling, Drange might be higher in reality than estimated. In turn, nexp

should be lower than estimated, i.e. we would expect nobs to be smaller than nexp.

4.3 Results

4.3.1 CML signal levels and dynamic ranges

The distribution of TSLmin and TSLmax is defined by hardware configuration. The

distribution of RSLmin and RSLmax depends on TSL, path length and path loss. The

spread of observed RSLmax is lower than the spread of observed RSLmin. The distribution

of the dynamic range estimate is shown in Figure 4.1f). The observed Drange was on

average 40.5 dB with a minimum of 15.2 dB and a maximum of 74.3 dB.

4.3.2 Observed CML blackout gaps

Figure 4.2a) shows a histogram of path-averaged radar rainfall intensities. The higher the

path-averaged rainfall intensity the less frequently it occurred. For each bin the fraction of

CML data gaps which were detected as blackout gaps are shown (dark blue). In addition,

the fraction of all gaps that have not been detected as blackout are shown (light blue). Note

that gaps that were attributed to, e.g. failure of the data acquisition, have been removed

as described in Sec. 4.2.1. The fraction of gaps is increasing quickly until 50 mmh−1

and then less steep up to 125 mmh−1. For very high intensities above 125 mmh−1 the

sample size was less than 50 minutes per bin. Therefore, the fraction of all gaps, including

detected blackout gaps, was becoming sensitive to the occurrence of individual events and

hence the statistics were less robust. Overall, around 95% of the gaps during rainfall in
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Figure 4.2: a) shows the distribution of the reference rainfall intensities in green. For each
bin the fraction of gaps in the CMLs RSL time series and the fraction of the detected
blackout gaps are shown in light and dark blue. b) and c) show the same for the longest (>
10.5 km) and shortest (< 4.0 km) quartile of all CMLs, respectively. Note that gaps that
were attributed to, e.g. failure of the data acquisition, have been removed as described in
Sec. 2.1 for a), b) and c). d) shows the maximal rainfall intensity derived from the CMLs
estimated with the rainfall retrieval methodology from Graf et al. (2020a) and Polz et al.
(2020). e) shows the respective maximal attenuation observed at each CML during the
analysed three years.
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the radar reference were detected as blackout gaps. This fraction varied for the highest

observed rainfall intensities due to the small sample size. Based on the statistics from

Figure 4.2a), CMLs missed on average 1% of the yearly rainfall sum during blackout gaps.

The quartile of long CMLs, i.e. longer than 10.5 km, in 4.2b) showed a higher fraction of

(blackout) gaps. Additionally, path-averaged rainfall intensities are lower on average as

longer paths average out peak intensities. The quartile of short CMLs , i.e. shorter than

4.0 km, shows fewer (blackout) gaps and higher rainfall intensities. This pattern is also

visible in 4.2d) and e) where the maximum instantaneous rainfall intensity and attenuation

from each CMLs observations are shown. While the maximum attenuation increased with

length, the maximum observed path-averaged rainfall intensity decreased. The maximum

observed rainfall intensity from CMLs with 600 mmh−1 (and several events above 250

mmh−1 all beyond the figures colorscale) is well above the maximum intensity of the path

averaged reference product. Overall, shorter CMLs show fewer blackouts during heavy

rainfall.

4.3.3 Expected blackout gaps derived from radar based attenuation cli-

matology

Expected PIA values along each CML path were derived using Equation 4.4 and 20 years

of RADKLIM-YW data. Figure 4.3 shows path-averaged rain rate and PIA percentiles of

the full 20-year dataset corresponding to the highest 60, five or one minutes per year and

the 20-year maximum for individual CMLs (i.e. 60 minutes per year corresponds to the

highest 0.011415526 percent in the data). The expected PIA was increasing with CML

length, while the path averaged rain rate was decreasing. The five-minute PIA exceedance

level (see Figure 4.3 second column) was between 10 dB (1st percentile), occurring mostly

for shorter CMLs, and 53 dB (99th percentile), occurring mostly for longer CMLs. On

average, a path-average rain rate of 42.8 mmh−1 and a PIA of 32.7 dB were exceeded for

five minutes per year and a path-averaged rain rate of 17.9 mmh−1 and a PIA of 13.5 dB

were exceeded for 60 minutes per year.

The decrease of path-averaged rain rate exceedance levels with CML length was similar

for all frequency bins, while the increase of PIA was higher for higher frequencies. For all

frequencies, the respective de- or increase was higher for more extreme values, i.e. com-

paring the 20 year maximum to 60 minutes per year, while the correlation was decreasing.

The p-value was close to zero in all cases showing very high statistical significance.

Using the expected PIA values and our estimates of Drange we calculated nexp which is

shown in the second column of Figure 4.4). The majority of Drange was between 30dB and

50dB with higher values for longer CMLs (Figure 4.4 first column). Even though Drange

was increasing with length, nexp was also increasing with length.
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Figure 4.3: Rainfall and attenuation climatology for individual CMLs based on 20 years of

RADKLIM-YW. The exceeded path-averaged rain rate and PIA along each CML path of a

given length and frequency for at least 60, five and one minutes per year and the maximum

rain rate occurring once in 20 years are shown in the four columns. The top two rows show

rain rate and PIA (same color scale) as length against frequency scatterplots. Below, the

same rain rate and PIA exceedance levels are compared to the CML length data points

are shown for six frequency bins. The respective linear regression lines are shown with

values for slope (S), correlation (C) and p-value (P).
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Figure 4.4: In the three columns Drange (left), nobs (middle) and nexp (right) are compared

for each CML. The top row shows the respective variable on the color scale of a length

against frequency scatterplot. Below, the three variables are shown against the CMLs

length for six different frequency bins. A linear regression line and its values for slope (S),

correlation (C) and p-value (P) is given for each of the scatter plots.
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4.3.4 Comparison of observed and expected blackouts

Drange and the number of observed (nobs) and expected nexp blackout minutes per year

are shown in Figure 4.4 for the individual CMLs length and frequencies and shown for

each length in six frequency bins. Drange was increasing with CML length for all frequency

bins except for 5 GHz to 10 GHz. We observed that nexp and nobs increased with CML

length. However, nexp showed a smaller slope than nobs. The correlation between length

and nobs was low, but significant. The slope was strictly positive and increasing with

higher frequencies, though.

Longer CMLs missed a higher percentage of of high rainfall intensities than shorter CMLs

(see Figure 4.2b) and c). According to nexp a 99.99% availability margin (as recommended

by the ITU which is less than 60 minutes of blackouts per year) should have been observed

for all CMLs. In practice, i.e. for nobs, the 99.99% margin (60 minutes) was exceeded for

the longest CMLs in each frequency band. We found this to be true throughout all fre-

quency bins except 5 GHz to 15 GHz.

Figure 4.5: The observed number of blackout minutes per CML shown is compared to the

number of expected blackout minutes in the scatter density plot, where the dashed black

line corresponds to a 1:1 relation and the solid black line corresponds to a 5:1 relation.

The orange line shows the best linear regression fit with a slope of 2.0 and a correlation

(C) of 0.29. Outliers above the 99th percentile, i.e. nobs > 207.2 or nexp > 17.5, are

excluded from the linear regression.

In Figure 4.5, nexp is directly compared to nobs. The mean of nobs was 6 times higher

than the mean of nexp. The 99th percentiles of nobs and nexp were 207.2 and 17.5 minutes.

Higher values are considered as outliers. On average nobs was twelve times higher than
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nexp for all CMLs where nexp > 0 and 8.5 times higher if outliers were excluded. Taking

the median instead of the mean, the value is 4.6 independent of outliers included or not.

The average nobs for CMLs where nexp = 0 was 19.4 minutes and the median was 3.2

minutes. 95.0% of all CMLs showed more observed blackout minutes than expected, i.e.
nobs
nexp

> 1. For 47.6% of the CMLs we observed more than five times more blackouts

than expected and for 22.8% we observed more than 10 times more blackouts. A linear

regression excluding outliers shows an additive increase of 11 minutes and a multiplicative

increase of a factor 2. However, the correlation of 0.29 was low.

4.4 Discussion

4.4.1 Effects of CML length on blackout gaps and network design

The result that short CMLs have a lower likeliness to experience a blackout gap than

longer CMLs was unexpected, because we expected the dynamic range to increase with

CML length to account for the increasing PIA. Our empirical dynamic range estimates

indeed show an increase with length, but it is not sufficient to compensate the even larger

increase of PIA. Also, the path-averaging effect results in lower peak intensities of the

path-averaged rain rates which decreases the attenuation per kilometer of CML length.

We found this difference between short and long CMLs in both our CML dataset and our

radar-based attenuation climatology. Since observed and expected blackouts are based

on independent methodological assumptions, we are confident that the effect is real. One

potential explanation is that the path-averaging effect of peak intensities is overestimated

during planning of the CMLs availability, so that longer CMLs experience more PIA than

expected.

Our findings show potential to improve planning for future CML installations. Most promi-

nently, our results suggest to increase the dynamic range of long CMLs. ITU recommends

that the actual path length is multiplied by a so-called distance factor when calculating

long-term statistics of rain attenuation (ITUßR, 2021). This factor significantly reduces

the effective length (which is used for the calculation of path attenuation exceedance levels

from rain rate exceedance statistic) of longer CMLs, e.g. the factor is approximately 0.5

for a 10 km CML with 20 GHz. Our findings, that longer CMLs experience more blackouts

then shorter ones, suggest that this reduction of effective length of a CML for the calcu-

lation of path attenuation statistics is too strong, resulting in longer CMLs being planned

with a too low Drange. Our radar-based exceedance probability can be used to estimate

the potential increase of blackouts with CML length on the one hand. The total number

of blackouts should be expected to be much higher on the other hand, which requires

an additional increase of the dynamic range for all CMLs. As the ITU-recommended

99.99% availability was satisfied in most cases, this recommendation may be more urgent

for hydrometeorological applications than network stability.
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4.4.2 Implications of blackouts on CML rainfall estimation

Previous studies which compared CML rainfall information against reference data, nat-

urally considered blackouts as missing values and little attention was payed to their im-

plication on CML rainfall estimation. Our results confirmed that their impact on annual

precipitation sums is in fact low with around 1% .

However, blackout gaps do impact CML-derived rainfall maps on shorter time scales and

extreme value statistics in general, because extreme values are lost. The importance of

this effect is illustrated by Figure 4.2 which shows the occurrence of blackouts during

certain radar rainfall rates. The probability of a blackout at path-averaged rainfall in-

tensities beyond 100 mmh−1 is higher than 40%. To interpret such maximum observable

path-averaged rainfall rates the path-averaging effect of the CML observation needs to be

taken into account, which is different from point-like observations.

Since we observed that shorter CMLs have a much lower probability of blackout gaps,

there cannot be a general conclusion about the capability of a CML network to capture

rainfall extremes. We suggest several possibilities to deal with blackouts associated with

higher rainfall estimates. For applications requiring estimates of rainfall maxima with

high temporal resolution, only short CMLs could be used. Another solution could be to

fill RSL during detected blackout gaps with the minimal observable RSL value. Although

the true maxima cannot be recovered, this could be a reasonable first step to reduce the

considerable underestimation of high rain rates in CML-derived rainfall maps.

4.4.3 Underestimation of blackouts through radar-based attenuation cli-

matology

Our results also have potential implications for radar rainfall estimates. We observed

that the average CML experienced 8.5 times more blackouts than expected from the

radar-based climatology. The underestimation occurs even though our dynamic range

estimate is lower than in reality due to undersampling of RSLmin and the consideration of

3dB WAA. Although false positive blackout detection can not be excluded with certainty,

manual checks of the blackout gap detection (see Graf et al. (2022a)) confirmed the correct

magnitude of observed blackouts for the vast majority of CMLs.

Therefore, there is evidence that radar-derived path-averaged rain rates and the related

PIA could underestimate extreme values. This is supported by studies reporting that

gauge-adjusted radar products often underestimate heavy rainfall (e.g. Schleiss et al.

(2020)). This underestimation could be explained by the different spatial integration

characteristic of CML and radar. Another reason for the underestimation are effects that

occur in combination with rainfall, e.g. hail, that may lead to unexpected high attenuation

values, but they may not lead to high weather radar rainfall estimates due to quality control

and attenuation of the radar signal.
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Figure 4.6: a) and b) show the observed and expected number of blackouts per day and
month between 2018 and 2020. c) shows the mean 2 meter temperature along all CMLs
derived from ERA-5-land. d) shows the observed number of blackout minutes per CML
per 3 hours compared to the average ERA5-land 2 meter temperature along the link path
during the same period. The red line in c) and d) indicates the 4°C threshold below which
mixed type precipitation is more likely. 17.7% of all observed blackouts occurred below
this threshold.

Melting hydrometeors like wet snow or sleet cause attenuation of CML signal larger than

their rainfall equivalent (e.g.Tjelta and Bacon (2010)). We tested whether this effect

influenced the number of observed blackouts by comparing blackout occurrences to the

temperature along the CML paths derived from ERA5-land. Figure 4.6 shows the three-

year time series of daily and monthly observed and expected blackouts with the daily

mean temperature from ERA5 as well as a scatter density comparison of temperature

and observed blackouts occurring in 3-hour periods. Similar to van Leth et al. (2018)

we assumed that almost all precipitation above 4°C is liquid. We found that 17.7% of

all observed blackouts occurred below 4°C, while the majority was centered around 20

degrees. This shows that the contribution of melting hydrometeors at temperatures below
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4°C is not high enough to fully explain the underestimation of blackouts through weather

radar data. It could also be observed that, as expected, blackouts rarely occur at negative

temperatures. We conclude that despite the high spatial and temporal resolution, the

weather radar data is not sufficient to fully explain CML blackouts.

4.5 Conclusions

During extreme heavy rain events, CMLs may experience blackouts, i.e., complete loss of

signal. Our objectives were to determine the impact on rainfall estimation, the occurrence

of blackouts in a country-wide network of 3904 CMLs and to determine if these numbers

were consistent with the theoretical number of occurrences of blackouts derived from a

20-year climatology of a high-resolution weather radar product. On average, CMLs expe-

rienced 20 minutes of blackout per year and the average CML experienced 8.5 times more

blackouts than the radar climatology suggested. Shorter CMLs showed fewer blackouts in

both the observed and theoretically derived data. Although the amount of rainfall missed

was small compared to annual sums, the observed probability of blackouts during path-

averaged radar rainfall intensities beyond 100 mmh−1 was more than 40%, which impacts

CML rainfall estimates of individual heavy rainfall events on short timescales. Especially

surprising was the increase of blackouts with CML length. Therefore, we suggest that the

CML research community should be aware of this limitation and the proposed mitigation

measures. Finally, this study fills a knowledge gap on the distribution of blackouts in

CML data and weather radar derived attenuation climatology which can be considered in

future CML infrastructure planning.
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Abstract

Accurate detection of signal anomalies in the attenuation time-series from commercial

microwave links (CMLs) is crucial for high quality rainfall estimates. Example causes

of such anomalies include dew or ice on the antenna and multi-path propagation. In a

first effort to catalog examples of CML signal anomalies, four experts flagged suspicious

segments in the time-series of 20 CMLs in Germany. The results show that the agreement

between experts depends on the definition of the anomaly class. Removing the flagged

anomalies increased the Pearson correlation coefficient between CML and radar rainfall

estimates from 0.61 to 0.70 and reduced the BIAS by 40%. An implication of our study

is that expert uncertainty is an important factor for the quality control of environmental

sensor data.

5.1 Introduction

Commercial microwave links (CMLs) have been established as an important tool for rain-

fall estimation in data scarce regions and to support traditional rainfall sensors like rain

gauges or weather radars (Messer et al., 2006; Uijlenhoet et al., 2018). Processing CML

data is challenging due to the opportunistic nature and the indirect measurement of a
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Chapter 5. Expert Flagging of CML Signal Anomalies

rainfall intensity averaged along the link path based on the path integrated attenuation of

microwave radiation. The separation of wet and dry periods in the attenuation time-series

of CMLs is the most common strategy for quality control of CML data. The purpose of

wet-dry detection is to avoid the false estimation of rainfall from signal fluctuations dur-

ing dry periods (Chwala and Kunstmann, 2019; Polz et al., 2020). Signal anomalies may

disturb a reasonable rainfall estimation even during rain events (Engström et al., 2020).

Arguably, the definition of an anomaly is not straight forward as rainfall itself is the main

factor causing signal fluctuations that disturb the transmission of information along the

link path. However, it is equally important to learn more about the potential reasons for

fluctuations in CML signal levels which are not related to rainfall. We will denote only

fluctuations caused by such phenomena as anomalies in the following. A series of possible

causes for anomalies have been proposed including dew or ice on the antenna of a CML,

which creates high attenuation. Furthermore, the sensitivity to water vapor increases with

higher transmission frequencies (Fencl et al., 2021). Multi-path propagation above water

bodies, interference at the receiver by the reflection of the beam or the decrease of the

signal level by beam blockage may also cause anomalies. Additionally, wind, temperature,

or solar radiation can affect the hardware.

Many of the potential anomalies are assumed to be caused by phenomena for which suit-

able reference data is often missing to investigate their impact. For example, the wind

that causes the tower to swing may be estimated using data from weather models, but

other factors like the mechanical properties of the tower, that is, the height and construc-

tion material, are largely unknown. Progress in the investigation of CML signal anomalies

has been steady due to the interest in CML rainfall estimates, but slow compared to the

overall development in the field (Chwala and Kunstmann, 2019). This work tries to follow

a different approach to shed light on CML anomalies. Experts in the field of CML based

rainfall estimation usually develop a good understanding of the patterns in the time-series

caused by rainfall. Despite being able to tell which segments of the time-series resemble

rain events, the causes for anomalies remain less well understood.

The research questions for this work are: If individual experts are provided with the same

CML data and a predefined set of anomaly classes, do they usually agree on the same

classes? How can expert flagging improve CML rainfall estimates?
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Figure 5.1: Anomaly flagging tool used for this study. The two drop down menus (upper left) were used to select a CML ID and a month. The
green and white buttons allow for the selection, saving, and deleting of anomaly flags. The flagged periods were visualized in the 2nd panel. Besides
the TL time-series of both channels (1st panel), the rainfall estimates derived from CML, RADKLIM-YW and RADOLAN-RW reference data were
given (3rd panel). Additionally, the ERA5-Land variables t2m and d2m (4th panel), and horizontal wind speed and surface solar radiation (5th
panel) were given. © 2023, IEEE.
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5.2 Data and Methods

The CML data used in this study is a subset of a German CML data set, which in

its entirety contains 3904 link paths. The data acquisition allowed for an instantaneous

sampling of received (RSL) and transmitted (TSL) signal levels every minute with a signal

quantization of 1 dB for TSL and 0.3 or 0.4 dB for RSL (Chwala et al., 2016). Data was

collected from two sub-links with opposing transmission directions. For this study, we

selected 20 CMLs in March, May, and July 2019. For an expert flagging of anomalies,

this amount of data was expected to take about one day of work. Rainfall estimates were

derived following the processing routine from Graf et al. (2020a) using the rain event

detection from Polz et al. (2020). The wet antenna compensation we used was the rain

rate dependent model from Leijnse et al. (2008).

As a reference data set, we used the gauge-adjusted and climatology corrected weather

radar rainfall product RADKLIM-YW provided by the German Meteorological Service

(DWD) (Winterrath et al., 2017). It has a temporal resolution of 5 minutes and a grid

spacing of 1 km by 1 km. Its domain has an extent of 1100 km by 900 km and covers

the whole of Germany. A path-averaged rain rate R along a CML of total length L was

derived by a sum of radar rainfall intensities ri weighted by the lengths of intersection li

of the CML path and the radar grid cells.

R =
1

L

∑
i

rili (5.1)

We compared CML rainfall estimate (1-minute resolution) to the preceding radar measure-

ment (5-minute resolution). To quantify the agreement between CML and radar estimates

we used the mean squared error (MSE) and Pearson correlation coefficient (PCC). The

relative BIAS is defined as the average difference between radar and CML as a percentage

of the average radar rainfall intensity. The Matthews correlation coefficient compares the

quality of the rain event detection (radar wet vs. CML wet).

Additional reference data along link paths is derived from the enhanced land component

of the fifth generation of European ReAnalysis (ERA5-Land) provided by the European

Centre for Medium-Range Weather Forecasts (Muñoz-Sabater et al., 2021). Its spatial

resolution is 9km and the temporal resolution is 1 hour. We derived path averaged quan-

tities using the same procedure as in Eq. 5.1. We used the 2 metre temperature (t2m),

the 2 metre dewpoint temperature (d2m), the surface net solar radiation and the 10 metre

U wind component (wind speed).

All signal patterns that could not be attributed to rainfall were called anomalies. We cat-

egorized CML anomalies considering four different classes that we defined before flagging

the data. Examples are given in Figure 5.2
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Figure 5.2: Share of classes flagged by the experts. The percentage of the main classes

Dew (blue), Jump (orange), Fluctuation (green), and Unknown (red) among the time

steps flagged as anomalous are shown. The mixed class (purple) describes all timestamps,

where more than one class was selected by the experts. Examples of TL time-series of the

sub-links (grey and blue) are shown for all anomaly classes and additionally for typical

patterns caused by rainfall. All time-series segments are 24 hours long and the green

selection indicates the anomaly location. © 2023, IEEE.

The Dew class was described as a segment of the time-series which comprises a period of

a constant increase in attenuation without heavy fluctuation. Such, typically bell-shaped,

patterns can be caused by dew or snow on the antenna.

The Jump class describes all segments that had a large change in signal level within a

single time step. It includes spikes and jumps larger than 5 dB or long-term baseline

changes, i.e. multiple hours, larger than 2 dB.

The Fluctuation class describes all random or noise-like signal fluctuations which are

larger than 2 dB and the expert did not associate with rainfall.

The Unknown class was meant to be an open category to include all signal patterns

which can not be attributed to rainfall and which did not fit into any of the classes above.

Data was flagged using a custom built tool for visualizing the time-series. The code is

available online1. The user interface and provided information are shown in Figure 5.1.

It was allowed to select multiple classes for any given time step and CML. The flagging

was conducted by the first four co-authors listed for this paper who all have worked

with CML data for multiple years on a daily basis. After an initial round of flagging 10

CMLs different from the ones used in this study, the tool, the available classes, and their

interpretation were discussed. In the second round of flagging the data presented in this

study was conducted independently by each expert. Therefore, up to four votes per class

and time-step were possible.

1https://github.com/LGlawion/anomaly_selection_tool/tree/main/notebooks/cml
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5.3 Results

Figure 5.1 illustrates the expert flagging by showing a four-day segment from one of the

CML time-series. We shortly describe the reasoning behind the shown classification. In

the night between the 2nd to 3rd of March, after a small rain event detected by radar

and CML, the baseline attenuation slowly starts to rise until it stabilizes in the morning

hours. During the rise two distinct peaks are visible which might be due to semi frozen

particles which were not detected by the radar when they were completely frozen at higher

altitudes. At the same time, t2m is declining and d2m is very close to t2m. Therefore, the

expert selected the dew class since they assumed that dew, ice, or wet snow was covering

the CML antenna. This assumption was backed up by the sudden drop of TL 36 hours

later after surface solar radiation and temperature rose, likely causing the frozen ice cover

of the antenna to fall off. The sudden drop was classified as a jump. It could be observed

that the rain event detection of our CML data processing classified the beginning and end

of the ”dew” event as wet which led to a large estimated rainfall intensity while the radar

did not detect rainfall.

From all time steps in the data set, 10.84% were classified as anomalous by at least one

expert. Figure 5.2 shows the share of the flagged anomaly in each class. If multiple classes

were selected for a time step, it was referred to as a mixed class. The most frequent

anomalies were fluctuations with a share of 42.9%. The second largest category was

the mixed class with 31.6% followed by dew with 24%. The unknown and jump classes

were very seldom selected with 1.5% and 0.1%.

Figure 5.3: Left side: Frequency of anomaly classes (including mixed cases) compared to
the difference of ERA5-Land 2m surface temperature (t2m) and dew point temperature
(d2m). Right side: Agreement of experts for pure classes (excluding mixed cases). To be
read like: for 80% of all time steps where dew and only dew were flagged, there was only
one vote from one expert. © 2023, IEEE.
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Figure 5.4: Scatter density comparison of CML and RADKLIM-YW rainfall intensities.

The top panel shows all time steps of the data set. Below, all remaining time steps

after removing anomalies flagged by at least one (right) or at least two (left) experts are

compared. The bottom row shows the time steps that have been removed above. © 2023,

IEEE.

The right hand side of Figure 5.3 shows how many experts agreed on the classification of

each time step. While no more than two experts classified the same time step as unknown,

showing the lowest agreement, there was a high agreement for the fluctuation class. If

more than one expert agreed on fluctuation, then it was most likely that all four agreed.

For the two remaining classes (dew and jump), the likelihood of agreement declined with

the number of experts.

The left panel of Figure 5.3 compares the frequency of the anomaly classes to the difference
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between t2m and d2m, indicating a possible formation of dew on the antenna. While jump,

fluctuation, and unknown are independent of this quantity, the dew class was selected

more frequently when d2m and t2m were close.

The impact of the expert flagging on rainfall estimation is illustrated in Figure 5.4. All

panels compare the 1-minute rainfall intensities estimated from the CMLs (RCML) to

the 5-minute rainfall intensity of the RADKLIM-YW RRADKLIM . Removing anomalies

flagged by at least one expert leads to the largest improvement increasing the PCC from

0.61 to 0.70 and reducing the BIAS by 40%. The elimination of time steps flagged by

at least two experts seems to show less improvement. However, when comparing the

removed rainfall estimates (bottom row), it becomes obvious that all metrics worsen the

more experts agree on a flag. Overall, almost all removed data is close to the x-axis where

RCML ≫ RRADKLIM .

5.4 Discussion

Our results showed that the agreement between the experts was low since more than half

of all flags had only one vote for the same class from one expert. However, in the majority

of cases, the elimination of flagged time steps improved the PCC, MSE, BIAS and MCC.

A reason for the low agreement could be an imprecise flagging of the experts, that is, in

general, the same events were flagged, but the start and end points were chosen differently.

An event-specific analysis of this issue would require a larger and more complex evaluation

of the data set than we were able to present here.

In general, the benefit of the flagging for CML rainfall estimation can be considered high.

While wet-dry detection only removes false positives and false negatives (on the x and

y-axis of Figure 5.4), the expert flagging also discards correctly classified rain events that

produce a very large overestimation due to anomalous data.

5.5 Conclusion

The objective of this study was to investigate the impact of CML signal anomalies on

rainfall estimation as they were manually flagged by four experts in the field. Our results

show that while there is a low agreement among experts, the potential benefit for rainfall

estimation is very high considering an improvement of the PCC from 0.61 to 0.70 and

a reduction of the BIAS by 40%. Further implications of our results are that potential

algorithmic automation of the flagging procedure, e.g. by a machine learning approach,

could benefit from multiple experts flagging the same data. Previous approaches for

anomaly detection mainly focused on false classifications of the rain event detection, which

seems to be an incomplete view of the problem. Additionally, we showed that in case of

an automated detection, not only model uncertainty, but also expert uncertainty has to

be considered. Our results provide a baseline for future machine learning applications and

for the CML community to judge how ambiguous manual flags can be.
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Abstract

Weather radars are highly sophisticated tools for quantitative precipitation estimation and

provide observations with unmatched spatial representativeness. However, their indirect

measurement of precipitation high above ground leads to strong systematic errors com-

pared to direct rain gauge measurements. Additionally, the temporal undersampling from

5-minute instantaneous radar measurements requires advection correction. We present

ResRadNet, a 3D-convolutional residual neural network approach, to reduce these er-

rors and, at the same time, increase the temporal resolution of the radar rainfall fields

by a 5-minute short-range prediction of 1-minute time-steps. The network is trained to

process spatiotemporal sequences of radar rainfall estimates from a composite product

derived from 17 C-band weather radars in Germany. In contrast to previous approaches,

we present a method that emphasizes the generation of spatiotemporally consistent and

advection-corrected country-wide rainfall maps. Our approach significantly increased the

Pearson correlation coefficient of the radar product (from 0.63 to 0.74) and decreased the

root mean squared error by 22 percent when compared to 247 rain gauges at a 5-minute
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resolution. An additional large-scale comparison to 8 years of data from 1138 independent

manual daily gauges confirmed that the improvement is robust and transferable to new

locations. Overall, our study shows the benefits of using 3D convolutional neural net-

works for weather radar rainfall estimation to provide 1-minute, ground-adjusted, that is,

bias-corrected with respect to on-ground sensors, and advection-corrected radar rainfall

estimates.

6.1 Introduction

Weather radars are one of the most advanced tools for quantitative precipitation estima-

tion (QPE) at high spatial and temporal resolutions. Their observations are not only

essential for state agencies providing information for disaster or water management. They

also became one of the most popular rainfall observation tools for citizens. The key to their

success is the high spatial representativeness of the derived measurements. Even though

they integrate over large volumes, depending on the distance from the radar (Pejcic et al.,

2020), they provide several observations per km2 which is significantly higher than rain

gauge networks. For example, the average density of rain gauges is 1
330 km−2 in Germany,

which is high in a global comparison. However, the raw measurements of weather radars

are subject to systematic and random errors due to their indirect measurement high above

ground (Wilson and Brandes, 1979; Pulkkinen et al., 2016). Additionally, weather radar

measurements are instantaneous, typically sampled every 5 minutes, which leads to a tem-

poral undersampling. This becomes obvious when aggregating rain fields containing small

fast-moving cells which leads to gaps in the rain field. As a solution, advection correction

methods have been suggested (Anagnostou and Krajewski, 1999; Seo and Krajewski, 2015;

Pulkkinen et al., 2019).

A common approach to correct radar QPE biases is to merge radar and rain gauge data

to provide optimal rainfall estimates near the ground. Most of them consider both radar

and rain gauge data as sources of information to achieve a combined product. Others cor-

rect radar data to remove biases compared to rain gauge observations using a statistical

approach (Vogl et al., 2012; McKee and Binns, 2016; Pulkkinen et al., 2016). However,

scenario-dependent and advection-driven biases between radar and rain gauge data ask for

a more dynamic approach like Wang et al. (2015) propose. It is reasonable to assume that

the spatiotemporal dynamics contained in the rainfall fields measured by weather radars

can provide valuable information to correctly map radar rainfall estimates to the ground.

Deep neural networks have been used effectively for modeling dynamic physical systems.

They provide a flexible and computationally efficient modeling framework that can outper-

form state-of-the-art physical models with comparatively small computational effort and

at low latency (Pathak et al., 2022). The concept of using deep neural networks to derive

improved reflectivity-rainfall (Z-R) retrieval for radar-derived QPE has been used recently

by Yo et al. (2021) who targeted hourly observations of 45 rain gauges from radar reflectiv-

ity at S-band using one radar. Chen and Chandrasekar (2021) applied a 2D-convolutional

126



neural network (CNN) to derive point scale rainfall from reflectivity and differential re-

flectivity in the vicinity of one radar, also at S-band. Vogl et al. (2022) applied a neural

network approach deriving rainfall estimates from reflectivity measured at X-band using

one reference rain gauge and investigated the influence of different temporal aggregations

on the neural network performance. Hassan et al. (2022) applied classical machine learn-

ing algorithms to determine suitable physical retrieval algorithms in different scenarios.

Moraux et al. (2021) present a multi-modal approach for merging rain-gauge, satellite, and

radar rainfall estimates using all three data sources as model input. In summary, these

studies directly used radar reflectivity as input for their retrievals without increasing the

temporal resolution. They provide a proof of concept that a learned Z-R retrieval can

improve radar rainfall estimates at S- or X-band. The respective case studies involved

either single radar stations, a low amount of reference stations, or a short time period. It

remains unclear if an improved Z-R retrieval or an estimate of the spatiotemporal dynam-

ics and a reduced spatial or temporal mismatch between radar and on-ground reference

is responsible for the improvement. It is also unclear if radar rainfall estimates from a

radar composite, which can include additional errors or discontinuities, can be used to

consistently improve surface rainfall at high spatial and temporal resolutions (e.g. 1 km

and 1 minute) at a country-wide scale.

The research questions addressed by this study target these knowledge gaps:

1. Are 3D-convolutional residual neural networks a suitable tool to increase the tem-

poral radar resolution of 5 minutes by a short-term prediction of five 1-minute time-

steps?

2. Can biases between high-resolution C-band weather radar rainfall estimates and rain

gauges on the ground be effectively reduced?

3. Does the method provide spatiotemporally consistent country-wide rainfall maps

over Germany which can be used to correct advection-driven undersampling?

In summary, we aim to show that 3D-convolutional residual neural networks are capable

of simultaneous temporal super-resolution, ground adjustment, and advection correction

of radar rainfall. Our evaluation is based on 8 years of country-wide radar and rain gauge

observations. For the sake of brevity, we denote our proposed method by ResRadNet.
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6.2 Data and Methods

6.2.1 Data

All data used in this study was provided by the German Meteorological Service (DWD).

We used two rain gauge and two radar data sets. The 1-minute rain gauge data is freely

available on DWD’s opendata online archive (https://opendata.dwd.de/). The network

operated Ott Pluvio2 sensors until 2018. From 2018 to 2020 these rain gauges were replaced

by rain[e] sensors from Lambrecht meteo. Both sensors are weighing gauges that provide

the accumulated rainfall amount on a one-minute basis. While they have a different

resolution (Pluvio2 0.01 mm and rain[e] 0.001 mm) the quantization of the data set remains

the same with 0.01 mm.

Figure 6.1: Map of Germany showing the locations of the rain gauges used for the train,

validation and test split (left) and the minimal radar measurement height above ground

of the composite derived from the 17 C-band radars (right). Training data is taken from

2020 and validation and test data are from 2021.

The average station density was one rain gauge per 330km2.

The daily rain gauge data is also freely available on DWD’s opendata online archive (DWD,

2021). The network consisted of Hellmann rain gauges with a manual readout of the ac-

cumulated rainfall amount of the last 24 hours at 5:50 UTC. Therefore, the aggregation
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time was from 5:50 UTC to 5:50 UTC on the following day. The quantization of the data

set was 0.1 mm.

For the period from 2013 to 2021, there were 1066 1-minute and 2150 daily rain gauge

stations available. Around 50% of the daily rain gauges were located at the same site as

the 1-minute rain gauges. In order to obtain an independent network of daily rain gauges

we removed these stations from the analysis. The remaining 1138 locations are shown as

black dots in Fig. 6.1. Note that not all stations were available for the full period due

to maintenance, redistribution, and new installation. The number of missing gauges per

year was less than 5%.

The radar products from DWD used in this study are RADOLAN-RY, RADOLAN-RW,

and RADKLIM-YW. A detailed explanation of the operational routines of these three

radar products from DWD, e.g. on the used three-part Z-R relation, the rain gauge adjust-

ment or climatological corrections can be found in Bartels et al. (2004) for RADOLAN-RY

and RADOLAN-RW and in Winterrath et al. (2017) for RADKLIM-YW.

RADOLAN-RY is a quality-checked and attenuation-corrected composite of 17 weather

radars in Germany, with a temporal resolution of 5 minutes and a spatial resolution of 1

km by 1 km on a 900 km by 900 km equally spaced grid. DWD derives the rainfall rate

from a Z-R relationship based on measured reflectivity at C-band.

RADOLAN-RW is an hourly aggregated and gauge-adjusted version of RADOLAN-RY.

The adjustment consists of a weighted combination of multiplicative and additive factors

derived from the comparison of the 1-minute rain gauges described above with the radar

grid at an hourly aggregation.

For RADKLIM-YW, the DWD uses the same radar and gauge data, as well as the daily

rain gauges described above to derive a gauge-adjusted and climatologically corrected

radar product at a temporal resolution of 5 minutes and a spatial resolution of 1 km by

1 km on an equally spaced grid of 1100 km by 900 km extending 100 km to the east and

west compared to RADOLAN-RY. It should be noted that the adjustment weights are cal-

culated at a 1-hour resolution and remain constant for the 12 5-minute timesteps within

this hour. Thus, the 5-minute observations still deviate from the rain gauges used for

adjustment. The climatological corrections aim to reduce errors for example radar spokes

from beam blockage and range-dependent underestimation. We used RADKLIM-YW as

a visual reference for high-resolution maps.

The data set covers the years 2001 to 2021, but we omitted the time period between 2001

and 2012 since the number of available rain gauges was much lower due to the ongoing

set-up of the gauge network. To compare our results to an advection-corrected version of

RADOLAN-RY we used the Lucas-Kanade algorithm (Lucas and Kanade, 1981) imple-

mented in PYSTEPS version 1.7.1 (Pulkkinen et al., 2019). We used a base resolution of

5 minutes and 5 intermediate timesteps. To compare 1-minute neural network estimates

to RADOLAN-RY we interpreted the 5-minute resolution as a constant average during

the 5 minutes (see Rry/5 in Fig. 6.2e).

The minimal measurement height above ground (see Fig. 6.1) is derived from the terrain
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following the beam angle of the precipitation scan and is provided on the same grid as

RADOLAN-RY. Where no terrain is blocking the beam an angle of 0.8 degrees is used. In

the radar composite, the minimum of the measurement heights of two overlapping radar

scans is used. This usually gives the measurement height of the closest radar which also

has the highest weight in the composite of measurements. In some parts of Germany, the

measurement height exceeds 2.5 kilometers.

6.2.2 Data Pre-processing

We train our model on sequences of RADOLAN-RY radar images with the objective to

predict an assigned sequence of rain gauge measurements. The selection of radar sequences

and the assigned rain gauge were defined as shown in Fig. 6.1: If a rain gauge Y was

contained in the radar pixel Xt,i,j at time t in minutes, then Xi,j was associated with rain

gauge measurements (Yt′)t′∈{t,...,t+4}. For grid calculations we used ωradlib (Mühlbauer

et al., 2022). As model input, the neighboring radar pixels {Xk,l}k∈{i−5,...,i+5},l∈{j−5,...,j+5}

at times t − 20, t − 15, ..., t were concatenated to form a sample of shape (5,11,11) (see

Fig. 6.2b). Additional model input was given by the minimal measurement height above

ground from the 11 by 11 radar pixels (see Fig. 6.2a).

We excluded all samples where the radar input contained missing values or where all values

were zero. We also excluded all samples where the associated rain gauge had a missing

value, but no additional requirements were made for the rain gauge reference. Data was

split into spatially and temporally separated train, validation, or test sets by a random

selection of 581 stations for training, 238 for validation, and 247 for testing of the model.

The locations of the selected rain gauges are shown in 6.1. For training only the year

2020 was considered and, if not indicated otherwise, the full year 2021 was used for both

validation and testing. The training data was used to train the neural network and the

validation data was used for model selection and bias correction as described below. The

test dataset was an independent dataset only used for validation. The training data set

contained 8,773,000 samples in randomized order.

6.2.3 Model Architecture

The model architecture of ResRadNet consisted of a two-branch convolutional neural

network with two 3D-residual blocks in the radar input branch and a 2D convolution

block in the measurement height branch. A schematic overview is given in Fig. 6.2c,

a more precise description of the layers and connections is given in Tab. 6.2, and code

to re-build the model or retrieve the trained model is given in Polz (2023b). The model

architecture was designed using the Keras API in Tensorflow version 2.7.0 (Abadi et al.,

2016) and optimized with the AMSgrad version of the Adam algorithm and a learning rate

of 0.0001 (Kingma and Ba, 2017; Reddi et al., 2018) using a mean squared error (MSE)

loss (see Eq. 6.3). The residual blocks consisted of two convolutional branches receiving

the same input (see Fig. 6.2d). The first uses two 3D convolutional layers with a kernel
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size of 3 and ReLU activation. The second uses one 3D convolutional layer with a kernel

size of 1. They are followed by an add layer that combines the two branches. In general,

such a design allows for the use of deeper networks to learn more complex features without

running into gradient vanishing problems (He et al., 2015). More specifically, as Bronstein

et al. (2021) describe this network design encourages the representation of features as a

perturbation of the input. Therefore, in our case, the model is encouraged to learn to

represent the optical flow of a field rather than to produce a precise representation of the

field itself in every layer.
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Figure 6.2: Schematic overview of the ResRadNet architecture, the input and the target

data. To predict one set of five 1-minute rain gauge observations (e) the model uses the

minimal measurement height above ground (a) and five 5-minute radar time-steps (b) with

a spatial extent of 11 by 11 pixels (≡ 11 km), centered at the rain gauge location. The

neural network (c) is using convolutional layers (orange) and skip connections with add

layers organized as residual blocks (d). The height and rainfall information are processed

by separate input branches and later concatenated before being processed by another

convolutional block and a final fully connected part. Beneath the 1-minute rain gauge

observations Rst1, e) also shows the 5-minute average rainfall from the center radar pixel

Rry/5 and the rain gauge reference Rst5. ResRadNet was trained to predict Rst1 from a)

and b) and thus improve Rry/5.

We trained the model with a batch size of 1000. After each epoch, the same 100,000

random validation samples were evaluated and the model was saved. We did not use the

full validation set to speed up training time. After training, the model with the best

validation loss was selected. Due to the skewed distribution of rainfall estimates, there

was a multiplicative bias of the form Rst/Rnn = α ̸= 1, where Rst is the rain gauge ref-

erence, Rnn is the neural network prediction and where the R indicates the mean of the

quantity. We decided to remove this bias by using a bias correction factor Rnn 7→ αRnn
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which is equivalent to a common mean field bias reduction (McKee and Binns, 2016). We

computed this factor using the validation dataset.

In inference mode, the final model was used like a spatio-temporal filter kernel that was

applied to the neighborhood of every radar pixel. The computation time for a full radar

image was 5 seconds per time step using an NVIDIA Tesla V100 32GB GPU. The per-

formance loss on smaller GPUs is negligible due to the small size of the input data. An

approximate 20-second overhead for serialization and de-serialization of the samples could

be omitted by parallel computation.

6.2.4 Evaluation

The derived QPE is evaluated for different temporal aggregations (1 minute, 5 minute, and

daily) using a set of pixel-wise error metrics which are commonly used in the field (Chen

et al., 2021). The Pearson correlation coefficient (PCC) measuring the linear correlation

between predicted values and ground truth is defined as

PCC =

∑
n(Rst −Rst)(R−R)√∑

n(Rst −Rst)2
∑

n(R−R)2
, (6.1)

where Rst is the rain gauge reference and R is the radar (Rry) or neural network (Rnn)

prediction. Accordingly, the mean squared error (MSE), (normalized) root mean squared

error (NRMSE), and normalized bias (NBIAS) are given by

MSE = (Rst −R)2, (6.2)

NRMSE =
1

Rst

√
(Rst −R)2, (6.3)

and

NBIAS =
Rst −R

Rst

∗ 100. (6.4)

The NBIAS is independent of the temporal resolution and, therefore, also reflects the

relative bias for the whole evaluation period. Let R+ and R+
st indicate if radar or rain

gauges detect rainfall, i.e. let them be equal to 1 if the value of R (resp. Rst) is larger than

zero and zero otherwise. Then the mean detection error (MDE) is defined as the frequency

of cases, where R+
st ̸= R+. Additionally, we investigate the similarity, or rather maximal

dissimilarity, between the two distributions using the Kolmogorov-Smirnov (KS) test. It

is defined as the maximum deviation between the cumulative distribution of reference and

predicted values.
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6.3 Results

6.3.1 Model Selection and Comparison at 1-Minute Resolution

ResRadNet achieved the best MSE on the 100,000 sample validation set after 15 epochs.

For this validation data, the bias correction factor α was close to 1 with a value of 1.176

and we applied it to all predicted rainfall estimates presented hereafter. Therefore, the

model achieved zero NBIAS, a PCC of 0.68, and an MDE of 0.16 when compared to

the full 1-minute validation set. A constant prediction of five 1-minute values using the

average RADOLAN-RY value achieved worse results with an NBIAS of -24.3%, a PCC

of 0.57, and an MDE of 0.26. For the test data results at a 1-minute resolution were

similar with a slightly increased NBIAS (see Table 6.1). The 2D histogram comparing

Rnn1 and Rst1 shown in Fig. 6.3f showed that missed extremes (Rnn1 ≪ Rst1) were more

frequent than false extremes (Rnn1 ≫ Rst1) considering the higher values of bins close to

the x-axis.

Zoomed in

1 minute resolution

ResRadNetRADOLAN-RY

a) b) c)

d) e) f)

5 minute resolution5 minute resolution

Figure 6.3: 2D-histograms showing the relationship between RADOLAN-RY (Rry in a

and d) or ResRadNet (Rnn in b,c,e and f) and rain gauge (Rst) observations. For a and

b the temporal resolution is 5 minutes. For c it is 1-minute. d, e and f are a zoomed in

version of a, b and c with smaller bin widths to visualize what is happening for smaller

rainfall amounts below 1 mm.
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Table 6.1: Results for the 1- and 5-minute resolution of the test data and the independent
daily gauges.

Resolution 1-Minute 5-Minute Daily

Model RADOLAN-RY ResRadNet RADOLAN-RY ResRadNet RADOLAN-RY ResRadNet

MDE 0.26 0.16 0.23 0.19 0.15 0.15

NBIAS -18.0 4.4 -18.0 4.4 -15.0 7.5

PCC 0.57 0.67 0.63 0.74 0.84 0.86

RMSE 0.033 0.027 0.141 0.110 3.275 2.650

KS-Test 0.177 0.067 0.051 0.073 0.044 0.048

6.3.2 Comparison at 5-Minute Resolution

The results of the test data set at a 5-minute resolution are shown in Table 6.1. Both

RADOLAN-RY’s and ResRadNet’s PCC improved compared to the 1-minute results.

The KS-test and MDE improved for the radar and worsened for the neural network.

The RMSE increased in both cases and the NBIAS was independent of the resolution.

Except for the KS-test the ResRadNet achieved better results than RADOLAN-RY.

Fig. 6.3 shows a scatter density comparison of the rain gauge and the radar or neural

network predictions. The most obvious improvement of ResRadNet could be observed

near the x- and y-axis of the plots (comparing panels a) and b) and for the smaller

values comparing panels d) and e). The panels showing ResRadNet data show a higher

concentration of points along the diagonal and a lower concentration closer to the axes.

While there is still a large uncertainty for extreme values, outliers close to both axes could

be reduced. Fig. 6.4 shows a long-term analysis using the test stations and the years 2013

to 2021. It confirms that for the 5-minute resolution, ResRadNet performed better than

the radar for all years and all scores. The average improvement was 0.2 for the PCC,

2 for the NRMSE, 20% for the NBIAS and 7% for the MDE. The year 2016 showed

exceptionally poor PCC and NRMSE for RADOLAN-RY while ResRadNet seemed to

be able to correct this issue.

6.3.3 Comparison to Daily Rain Gauge Data

The comparison to the independent set of daily rain gauge measurements confirmed the

5-minute test results. ResRadNet improved the PCC with a value of 0.86 compared to

0.84 for RADOLAN-RY and decreased the RMSE from 3.28 to 2.65. The MDE and

KS-Test were very similar for both products. The resolution-independent NBIAS was

similar to the 1-minute gauges despite the different station locations (see Tab. 6.1). The

long-term evaluation from 2013 to 2021 (excluding the training year 2020) showed that the

improvement was very consistent (see Fig. 6.4). The 2021 scores were, again, the highest

for both RADOLAN and ResRadNet and the improvement was smaller than in previous

years. The NBIAS shows the same temporal dynamics as for the 5-minute data but is

slightly higher for both products.
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As an additional reference, we compared the operational gauge adjustment routine of

the DWD (RADOLAN-RW) and the daily rain gauge data, which was not used for this

adjustment (see Fig. 6.4). It could be observed that, at this temporal resolution, the

MDE is only marginally better than for RADOLAN-RY or ResRadNet. The NBIAS

andNRMSE are lower than for ResRadNet and the PCC is higher with values around 0.9.

An exception is the year 2016 when RADOLAN-RW suffers from a similar performance

decrease as RADOLAN-RY and does not outperform ResRadNet.

Figure 6.4: Long-term performance comparison of RADOLAN-RY (orange), RADOLAN-

RW (green), and ResRadNet (blue). The PCC, NRMSE, NBIAS and MDE metrics

are shown using the 247 5-minute test (solid lines) and 1138 daily (dashed lines) rain

gauges as a reference. RADOLAN-RW is not available at a 5-minute resolution.
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6.3.4 Spatial and Temporal Coherence

The spatial and temporal coherence of the rainfall fields can be seen in the maps shown

in Fig. 6.5 and the animation provided on Zenodo (Polz, 2023a). Since no radar reference

at a 1-minute resolution was available, the analysis of the 1-minute rainfall maps from the

neural network was done by visual inspection.

The maps showed that, compared to RADOLAN-RY and RADKLIM-YW, ResRadNet

produced smoother structures with more gentle gradients. However, no additional struc-

tures with an artificial character like previously discovered in Glawion et al. (2023) were

produced and the spatial distribution and connection of rain cells looked reasonable. Fig.

6.5 shows that the neural network decreased the overestimation (less red colors) in the

southwest of Germany and around the upper two rain cells in the southeast without an

increased underestimation (more blue colors). It even improved the severe misplacement

of the small rain cell with the highest intensity close to the border of the study area in

the southeast. The temporal coherence of the neural network predictions was judged by

visual inspection of the provided animation. It was similar to both radar products, that

is, between 5-minute time steps similar discontinuities could be observed. However, the

1-minute neural network resolution removed these discontinuities at the presented scale

creating a fluid motion.

Figure 6.5: Maps of rainfall intensity for 18:00 on 6 July 2021. The upper row shows

the 5-minute rain gauges, RADOLAN-RY, RADKLIM-YW, an aggregation of the neural

network predictions from 18:00 to 18:05 (ResRadNet 5min), and the single neural network

prediction from 18:00 (ResRadNet 1min). The bottom row shows the selected study area

in Germany and the difference between the rain gauge value and the grid cell it is contained

in using the product on top of the respective map. Red colors indicate an overestimation

compared to the rain gauges and blue colors an underestimation.
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To investigate if this fluid motion presented a plausible advection scheme we compared

a 180-minute aggregation of rainfall fields containing small, fast-moving cells. The prod-

ucts we used were RADOLAN-RY, RADKLIM-YW, an aggregation of every fifth neural

network prediction (ResRadNet every 5 min) to simulate a temporal undersampling, an

aggregation of all ResRadNet predictions, and the advection corrected RADOLAN-RY.

The maps are shown in Fig. 6.6. The two most prominent observations were that the neu-

ral network was moving the center of mass of the rainfall field on the bottom towards the

center of mass of RADKLIM-YW, which was gauge-adjusted. And, the discontinuities that

are visible for RY, YW and ”ResRadNet every 5 min” are gone for the ”ResRadNet every

1 min” and the advection corrected RADOLAN-RY and RADKLIM-YW predictions. The

smoothing of the rain field and the attenuation of extreme values is less pronounced for

the neural network than for the Lucas-Kanade advection correction.

Figure 6.6: Maps of rainfall sum between 16:00 and 19:00 on 6 July 2021. The products

shown are from top to bottom: RADOLAN-RY, RADKLIM-YW and the neural network

predictions. The left column shows an aggregation of 5 minute instantaneous measure-

ments and the right column shows the advection corrected radar products and all 1-minute

time steps.
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6.3.5 Influence of Measurement Height Above Ground

To investigate the influence of the measurement height above ground we analyzed all time

steps in the test dataset with a reference rainfall amount of at least 0.1mm. The considered

variables in those time steps were the minimal measurement height above ground and the

absolute error between Rnn1 and Rst1. Fig. 6.7 shows a linear fit to the two variables that

minimizes the squared error. The slope of the linear model can be interpreted as a 3.7%

increase in the mean absolute error per kilometer.

In addition to the version of ResRadNet that was presented above, we trained a second

model in exactly the same way but excluded the height information by omitting the

concatenate layer. The results show that the slope and intercept of the linear fit are

higher for the model that does not use the height information. Here, the slope represents

an increase of 4.6% of the MAE per kilometer. This model also showed a decreased PCC

of 0.60 which was computed using the 1-minute test data analogous to the first column

of Tab. 6.1 where the model with the height information achieved a PCC of 0.67 and

RADOLAN-RY achieved a PCC of 0.57.

Figure 6.7: Impact of measurement height above ground on rainfall estimates at a 5-minute

resolution. The lines show a linear fit to the absolute error between ResRadNet and the

rain gauge reference in the test dataset, where the rainfall amount exceeded 0.1mm. The

orange line shows ResRadNet using the minimal measurement height above ground as

described in the method section and the blue line shows a ResRadNet version where the

height information is not given to the model (by omitting the concatenate layer).

6.4 Discussion

We evaluated the ability of a 3D-convolutional neural network to produce spatially and

temporally coherent rainfall fields at an increased temporal resolution while reducing bi-

ases to rain gauge measurements on the ground.

The spatial structure of the neural network images is smoother than for the unadjusted

instantaneous radar rainfall measurements, but less smooth than the Lucas-Kanade advec-

tion corrected RADOLAN-RY product. The comparison to the rain gauges shows that the
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point-wise accuracy measured by PCC, RMSE, and MDE is much better for ResRad-

Net. We see two possible factors explaining this. On the one hand, a diffusive process due

to the advection, collision, and coalescence of raindrops may lead to an actual diffusion

of the distribution of rainfall on the ground. On the other hand, the location of the rain

gauge in the radar pixel is not considered in this study, which leads to the neural network

prediction as a maximum likely rain gauge measurement anywhere within the pixel. This

may of course lead to a smoother distribution than the actual radar measurement.

Despite this slight imprecision of the rain gauge location, we could show that the added

information about the minimal measurement height above ground significantly increases

the model performance, thus increasing the confidence in a meaningful ground adjustment.

The temporal coherence of the neural network at a 5-minute resolution is similar to

RADOLAN-RY. However, the fluid motion created by the 1-minute predictions indi-

cates that the neural network acts as a reasonable optical flow estimator, even though

it was trained to provide pixel-wise predictions and not spatiotemporally consistent fields.

RADOLAN-RY achieved a better MDE at a 5-minute resolution than at a 1-minute res-

olution, while the opposite holds for the neural network. This also shows that the neural

network is able to perform useful temporal interpolation.

The scores show in general that the neural network is able to significantly improve the

rainfall estimates of RADOLAN-RY. Compared to Seo and Krajewski (2015) we found

that our combined advection correction and ground adjustment method does impact and

improve light rain estimation. The comparison at the daily resolution showed that the

performance gain is a significant step towards the performance of the operational hourly

gauge-adjusted product RADOLAN-RW while operating at a much higher temporal reso-

lution. While RADKLIM-YW is gauge-adjusted and climatology-corrected and therefore

assumed to be much better than the un-adjusted product, the improvement of the neural

network towards RADKLIM-YW is larger than we would have anticipated. Our evalu-

ation strategy using a set of independent rain gauges and a separate time period shows

that ResRadNet is transferable to new locations with similar rainfall climatology.

A clear limitation of the neural network is that the uncertainty for extreme values could

not be reduced and that they are underestimated. However, as explained in the results

section outliers close to the axis (see Fig. 6.4) could be reduced effectively. Another draw-

back is that the multiplicative correction factor was necessary to correct the NBIAS.

We assume that both the extreme value underestimation and the correction factor are

due to the heavily skewed distribution of precipitation. In the progress of this work, we

experimented with log transformations to reduce this problem, but without reasonable

success. These drawbacks clearly need to be considered when using ResRadNet. However,

the considerably improved scores that proved to be consistent over a period of 8 years and

the temporal super-resolution we achieved make our approach very valuable. Additionally,

we were able to show that the model can be used to correct for advection-based temporal

undersampling when aggregating multiple time steps with less smoothing of gradients than

common advection correction techniques.
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Finally, we emphasize the real-time applicability of our method: With the low latency

of 5 seconds for the production of five 1-minute time-steps of rainfall maps covering all

of Germany, an application to a real radar system with measurements performed every 5

minutes is realistic. Additionally, the required data consisting of 25 minutes of available

radar data and an estimate for the measurement height above ground should be available

to potential users.

6.5 Conclusion

In this study, we evaluated the performance of a 3D-convolutional residual neural network

for simultaneous ground adjustment, advection correction, and temporal super-resolution

of weather radar images. In an attempt to solve all three issues by training a single neural

network, we were able to significantly increase the quality of the gridded country-wide

5-minute radar product RADOLAN-RY.

We were able to show that 3D-convolution in a residual network architecture is a suitable

tool to increase the temporal radar resolution of 5 minutes by a short-term prediction of

five 1-minute time-steps. While our neural network ResRadNet is only trained to pre-

dict one pixel value at a time, it generates continuous predictions for neighboring pixels,

resulting in spatially and temporally consistent rainfall fields. Using the raw RADOLAN-

RY radar product as a baseline, the model was able to effectively reduce biases between

country-wide C-band weather radar rainfall estimates and 247 1-minute and 1138 daily

rain gauges on the ground. By using a separate set of rain gauges for training and evalua-

tion we demonstrated the transferability of the network to new locations. With plausible

advection schemes and a 1-minute resolution produced by the neural network, an exem-

plary case study showed that the model acts as a suitable optical flow estimator that can

be used for advection correction. Despite the significant improvements that ResRadNet

provides, we experienced a common issue with using neural networks for modeling precipi-

tation. The heavily skewed distribution of rainfall leads to an underestimation of extremes

and makes an additional mean field bias correction necessary. Logarithmic transforma-

tions of the input data did not yield the desired improvements. Higher potential for an

accurate representation of extreme values may be given by probabilistic (ensemble) neural

networks like generative adversarial networks. A potential point of view is that the current

deterministic approach naturally favors the maximum likely predictions over extremes. As

for this study, we point out that the produced rainfall fields may be understood as a well-

performing maximum likely estimate. Future studies should aim to provide stochastic

approaches to extremes.
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6.7 Appendix of Chapter 6

6.7.1 Model Architecture

Table 6.2: Architecture of ResRadNet. The table resembles the model summary given by

the Keras API of Tensorflow version 2.7.0. The total number of trainable parameters was

177,985.

Layer Type Output Shape Kernel size Activation nParam Connected to Note

input-1 (QPE) (InputLayer) (5, 11, 11,1) 0

conv3D-1 (Conv3D) (5, 11, 11, 32) 3x3x3 - 896 ’input-1’

relu1 (ReLU) (5, 11, 11, 32) 0 ’conv3D-1’

conv3D-2 (Conv3D) (5, 11, 11, 32) 3x3x3 - 27680 ’relu-1’

relu-2 (ReLU) (5, 11, 11, 32) 0 ’conv3D-2’

conv3D-3 (Conv3D) (5, 11, 11, 32) 1x1x1 - 64 ’input-3’

add-1 (Add) (5, 11, 11, 32) 0 ’relu-2’,’conv3D-3’

conv3D-4 (Conv3D) (5, 11, 11, 32) 3x3x3 - 27680 ’add-1’

relu-3 (ReLU) (5, 11, 11, 32) 0 ’conv3D-4’

conv3D-5 (Conv3D) (5, 11, 11, 32) 3x3x3 - 27680 ’relu-3’

relu-4 (ReLU) (5, 11, 11, 32) 0 ’conv3D-5’

conv3D-6 (Conv3D) (5, 11, 11, 32) 1x1x1 - 1056 ’add-1’

add-2 (Add) (5, 11, 11, 32) 0 ’relu-4’, ’conv3D-6’

conv3D-7 (Conv3D) (3, 9, 9, 64) 3x3x3 ReLU 55360 ’add-2’ valid pad

averagepool3D-1 (AveragePooling3D) (1, 4, 4, 64) 2x2x2 0 ’conv3D-7’

reshape-1 (Reshape) (4, 4, 64) 0 ’averagepool3D-1’

input-2 (Height) (InputLayer) (11, 11, 1) 0

conv2D-1 (Conv2D) (10, 10, 4) 2x2 - 20 ’input-2’ valid pad

conv2D-2 (Conv2D) (9, 9, 8) 2x2 ReLU 136 ’conv2D-1’ valid pad

maxpool2D-1 (MaxPooling2D) (4, 4, 8) 2x2 0 ’conv2D-2’

concatenate-1 (Concatenate) (4, 4, 72) 0 ’reshape-1’,’maxpool2D-2’

conv2D-3 (Conv2D) (4, 4, 64) 2x2 - 18496 ’concatenate-1’

conv2D-4 (Conv2D) (4, 4, 32) 2x2 ReLU 8224 ’conv2D-3’

maxpool2D-3 (MaxPooling2D) (2, 2, 32) 2x2 0 ’conv2D-4’

conv2D-5 (Conv2D) (2, 2, 32) 2x2 - 4128 ’maxpool2D-3’

conv2D-6 (Conv2D) (2, 2, 32) 2x2 ReLU 4128 ’conv2D-5’

globalmaxpool2D-1 (Global MaxPooling2D) (32) 0 ’conv2D-6’

dense-1 (Dense) (64) ReLU 2112 ’globalmaxpool2D-1’

dense-2 (Dense) (5) ReLU 325 ’dense-1’

6.7.2 Animation

The animation is available at Zenodo (Polz, 2023c).

142



Chapter 7

Synthesis

7.1 Discussion of key findings and answers to specific re-

search questions

The main objective of this thesis is the improvement of commercial microwave link (CML)

and weather radar-derived precipitation estimation using deep learning approaches. Sec-

tion 1.2.2 reviewed sources of systematic and random errors in CML and weather radar

QPE. To achieve the main goal several studies that target either the quantification of

errors (see Chapters 2, 4, and 5) or their correction using deep learning approaches (see

Chapters 3 and 6) were designed. While the improvement of weather radar QPE is posed

as a post-processing problem (see Chapter 6), the improvement of CML QPE targets the

optimization of individual processing steps in the QPE retrieval (see Chapters 2 and 3). In

the following discussion the research questions are stated (bold) and a short summarizing

answer (italic) is given before going into more details.

SQ1: How do established signal processing techniques compare in a large-

scale evaluation of one year of CML data in Germany?

Rain event detection and wet antenna compensation were identified to have the highest

impact on the quality of rainfall estimates. It was shown that a self-adapting version of

the standard deviation method by Schleiss and Berne (2010) and the rain-rate dependent

model of Leijnse et al. (2008) were superior. The resulting CML rainfall estimates showed

a very high quality when compared to gauge adjusted weather radar QPE in the warm sea-

son.

Any optimization process needs to start with an accurate estimate of the current state and

appropriate means to measure progress. To improve rainfall estimates from Commercial

Microwave Links (CMLs) the first step was the comparison of state-of-the-art processing

methods using a large and representative data set and a first evaluation of country-wide

rainfall observations. Designing a suitable evaluation framework to quantify the perfor-
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mance of individual processing steps was an additional necessity.

Chapter 2 showed that for liquid precipitation opportunistic rainfall estimates from CMLs

are in very good agreement with established rainfall estimates from gauge-adjusted and

quality-checked weather radar information which was later backed up by the findings of

Chapter 3. The validation in Chapter 2 uses one full year of data from country-wide CML

observations to optimize and benchmark existing methods used to process the challenging

raw CML data.

The detection of rain events and the compensation of wet antenna attenuation were identi-

fied to have the highest impact on the quality of the resulting rainfall estimates. The focus

was on methods that do not rely on auxiliary data like weather radar, satellite images, or

neighboring CMLs because of potential data scarcity in regions where CMLs are situated

in future applications. This turned out to be the right path for an additional study con-

ducted in Burkina Faso, where the first high-resolution rainfall maps in West Africa based

on CML data were presented (see further related articles: Djibo et al. (2023)).

A comparison of different versions of the rain event detection algorithm of Schleiss and

Berne (2010) showed that the best performance could be achieved by using the self-

adapting 80th quantile of the 60-minute rolling standard deviation of the total loss (TL)

and an optimized scaling factor. It was preferred over the climatologic threshold of Schleiss

and Berne (2010) because of better performance and over a completely optimized thresh-

old because of the need for re-calibration and the resulting dependency on the weather

radar reference. The introduction of the MCC as an objective function for optimizing and

evaluating rain event detection was crucial, since it is more robust against an imbalance

of wet and dry periods, only yielding good values if the detection performs well on both

classes. Chapter 3 showed that seasonal differences in performance measures like accuracy

are mostly due to a change in climatology, which is a bias that could be avoided using

climatology-robust measures like MCC or AUC. By using the MCC, the scaling factor for

the standard deviation threshold turned out to be similar for all months.

As possible candidates for WAA compensation methods, the time-dependent model of

Schleiss et al. (2013) and the rain-rate dependent model of Leijnse et al. (2008) were con-

sidered. Both schemes performed well for higher rainfall intensities, but only the rain

rate dependent model could be calibrated to not suppress small rainfall rates completely,

which is why it was selected for processing the CML data in Germany. Note that the

transferability of these WAA estimation methods remains an open question. In general,

WAA compensation is harder to optimize than rain event detection which can be treated

as an isolated problem. Due to missing direct measurements of WAA, the effectiveness

of the compensation can only be estimated indirectly using its impact on the resulting

rainfall estimate. However, the quality of the rainfall estimate depends on multiple factors

ranging from miscalibration of other processing steps to DSD uncertainties and systematic

errors like wind, humidity, or radiation that can interact with WAA.

Using these optimized processing schemes the performance of one year of hourly, daily,

and seasonal rainfall sums from country-wide CML observations was evaluated against
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the gauge-adjusted weather radar product RADOLAN-RW. Taking into account that the

reference data set is derived from a dense network of C-band weather radars combined

with more than 1000 rain gauges in Germany and 200 from neighboring countries, the

opportunistic CML-derived rainfall estimates turned out to be of remarkable quality. The

Pearson Correlation Coefficient for hourly data was best during the warm period with a

value of 0.80 and worst during the cold season with a value of 0.39. This difference in per-

formance was confirmed by an evaluation of additional performance measures. The worse

performance in the cold season is due to a large overestimation of small reference rain

rates which is likely due to melting snow that creates high specific attenuation which is in

accordance with the findings of Overeem et al. (2016b). The computation of performance

metrics for different subsets of the rainfall data increased the comparability to previous

studies by de Vos et al. (2019) and Rios Gaona et al. (2015) conducted in the Netherlands.

The remaining differences in the performance metrics are due to the sampling strategy

and local rainfall regime. However, the comparison showed that a similar performance of

CML QPE in different countries should be expected.

The following limitations to the study conducted in Chapter 2 led to further research

questions SQ2-SQ4 answered by the studies conducted in Chapters 3, 4, and 5:

First, all considered methods for detecting rain events rely on the rolling standard devia-

tion approach. Consequently, they are based on the assumption that rain events can be

separated from dry periods solely based on the amount of fluctuation within the consid-

ered time window.

Second, missing periods in the CML data were not considered for the evaluation using the

assumption that they are caused by failures of the data acquisition system and, therefore,

appear randomly. Not considering these periods would, then, not create a bias in the data

set. It turns out that this assumption is wrong since the total loss of signal during heavy

rain events leads to a higher probability of missing extreme values (see Chapter 4 and SQ3

below).

Third, data quality was controlled by a static filtering approach that excludes single sen-

sors entirely from the data set if the amount of signal fluctuation significantly exceeds

an amount that can be justified by the local rainfall climatology. However, when analyz-

ing interpolated rainfall maps over different seasons the same study confirmed that data

quality is heterogeneous in space and time with a strong overestimation of some CMLs

that was visible throughout the year. Therefore, a dynamic filtering approach is necessary.

SQ2: Are convolutional neural networks able to distinguish between CML

signal level patterns caused by rainfall and fluctuations during dry periods?

The hypothesis that rain event detection can be improved significantly by recognizing the

signal pattern of rain events rather than measuring the amount of fluctuation proved to be

true. The CNN-based deep learning approach performed well in recognizing these patterns,

significantly reduced the detection error, and improved the resulting rainfall estimates.
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Chapter 3 was concerned with dynamic quality control of CML data by separating wet and

dry periods in the CML attenuation time series and the resulting improvement of CML

QPE. As identified by Chapter 2 fluctuations during dry periods present a major challenge

for CML rainfall estimation. Previously, the assumption made to separate wet and dry

periods is that fluctuations of a significant magnitude are only due to attenuation caused

by rainfall (Schleiss and Berne, 2010). The aim was to challenge this assumption and re-

place it with the hypothesis that rainfall-induced attenuation creates particular patterns

in the CML attenuation time series that can be distinguished from fluctuations caused

by phenomena not related to rainfall. While it was known that there were significant

fluctuations during dry periods it remained unclear if these patterns can be distinguished

from rainfall-induced attenuation (van Leth et al., 2018).

A 1D-Convolutional neural network designed for pattern recognition was applied to test

the hypothesis. The method was chosen, because the feature extraction part of the neural

network is a location equivariant function. That is, rain events in a time sequence could

be recognized independent of their precise location and only depending on the pattern.

The time-series pattern recognition task is a high-dimensional learning problem where

each time step of the fixed-length sequence presented to the neural network acts as a fea-

ture dimension. Utilizing this high-dimensional feature space was assumed to be superior

to, for example, reducing the complexity of the sequence to a single standard deviation

value. The CNN efficiently reduces the dimensionality of the problem which is essentially

achieved by the convolution algorithm which acts locally on the time series and is able to

discriminate redundant information in the sequence.

The results showed that the 1D-CNN approach was able to significantly outperform the

reference method by Schleiss and Berne (2010) which was optimized in Chapter 2. The

trained CNN was able to generalize well to sensors and time periods not included in the

training dataset correctly classifying, on average, 76% of all wet and 97% of all dry peri-

ods. For rain rates higher than 0.6 mmh−1 more than 90% were correctly detected. An

increasingly worse performance for low rain rates was likely caused by a detection limit of

the CMLs and not by a failure of the CNN-based rain event detection.

The reduction in false wet and missed wet events also led to a significant reduction of false

(51%) and missed (27%) accumulated rainfall over the analyzed period. The correctly

classified rainfall was increased by 4%, while, at the same time, increasing the Pearson

Correlation to the reference compared to the standard deviation method. Considering

that the added rainfall stems from ”hard to detect” rain events with reduced quality, this

shows that the temporal localization of rain events was improved.

In summary, CNNs proved to be a robust tool for classifying rain events in CML attenu-

ation time series and improved the quality of CML rainfall estimates. The deep learning

approach was used to replace one processing step in the retrieval algorithm in that case.

To test the potential of CNNs for improving reflectivity-based radar rainfall estimates a

post-processing approach was chosen (see Chapter 6 and the answer to SQ5 below).
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SQ3: How do blackouts impact CML rainfall estimates and how frequent are

they?

It was found that only a small fraction of the annual rainfall is missed due to blackouts,

but that the chances of missing rainfall extremes are very high introducing a strong bias to

the dataset. The occurence of blackouts also largely exceeded the climatologically expected

value.

In previous studies comparing CML rainfall estimates at the link level, periods with missing

data for either CML or reference have mostly been excluded from the analyses. However,

when extreme events are analyzed at a high temporal resolution, it becomes apparent that

an increased amount of CMLs drop out when peak intensities should be reached. This is

unfortunate, because capturing extremes is one of the most important aspects of rainfall

estimation.

In Chapter 4 the occurrence of blackouts in CML data and their impact on CML rainfall

estimates were analyzed as well as their expected frequency of occurrence according to a

radar-derived attenuation climatology. While only 1% of the annual rainfall sum is missed

during blackouts, the likelihood of missing rainfall estimates rises with the rainfall inten-

sity measured by the radar reference. It reached up to 40% for 5-minute, path averaged

radar rainfall rates of 100mmh−1 and higher which can occur multiple times per year.

Overall, the average CML in the dataset missed 20 minutes of extreme precipitation each

year. While this was found to be in accordance with the planned margin for mobile net-

work stability, which allows for up to 60 minutes of blackout per year, the missing extreme

values are clearly a more serious problem for hydrometeorological applications. The like-

lihood of missing rainfall extremes is increased for longer CMLs, an unexpected finding

that suggests that in extreme precipitation the reliability of shorter CMLs is higher. A

too-small increase of the dynamic range of the signal power with CML length was identi-

fied as a potential reason.

The comparison to the radar-derived attenuation climatology showed that the observed

occurrence of blackouts is much higher than expected. This coincides with the findings of

Schleiss et al. (2020) that weather radar QPE can underestimate extreme values. There-

fore, radar data has proven to be ineffective for planning a CML network that is robust

against blackouts. However, the effect that longer CMLs experience more blackouts was

also visible in this comparison indicating that the effect is not due to an incorrect detection

of blackouts.

A comparison to the two-meter surface temperature along the CML path derived from

the ERA5 reanalysis dataset showed that less than 20% of all blackouts occur below 4°C
where mixed-type precipitation can be expected. This excludes the possibility that non-

liquid precipitation that is not detected by the radar largely contributes to the number

of observed blackouts when melting while falling closer to the ground. This increases the
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confidence that the attribution of blackouts to heavy precipitation is correct.

In a later study, it was shown that even simple interpolation of blackout gaps improves

the rainfall estimates from CMLs considerably (see further related articles: Graf et al.

(2023)). An interpolation using fill values that assume the minimum observable received

signal level performed best. This observation agrees with the assumption that the true

total loss during blackouts surpasses the detection limit of the CMLs receiver.

SQ4: How robust is manual quality control of CML data and how does it

affect rainfall estimation?

While the robustness of manual quality control proved to be low due to ambiguity in quality

flags from different experts the possible improvement when excluding flagged data from the

analysis was significant.

The separation of the attenuation time series into wet and dry periods is the state-of-

the-art quality control mechanism for CMLs. An aspect that is missed in rain event

detection methods is the possibility of additional disturbances during rain events and a

resulting error in the rainfall estimate. A number of potential causes for signal anomalies

not related to rain have been proposed in the introduction to this thesis. It would be

desirable to have compensation schemes for these anomalies like there are for wet antenna

attenuation. However, suitable reference data is often missing and the sporadic occurrence

of such anomalies does not allow for global application of a correction like it is performed

for wet antenna attenuation.

In Chapter 5 CML signal anomalies were detected using expert knowledge and their impact

on rainfall estimates was analyzed. CML data was quality-checked in a manual flagging

process using a custom-built data explorer with pre-defined anomaly classes. To see if

such an expert classification is robust, the flags of four individuals were compared and the

degree of uncertainty between experts was investigated. The dataset was required to be

relatively small to be able to be processed within one day of work. It covered data from 20

CMLs and the months of March, May, and July 2020. Only CMLs with a proportionally

high amount of fluctuation were considered. The TL time series was used as the primary

indicator for anomalies. The results showed that 11% of all time steps of the considered

CMLs were flagged by at least one expert. The most frequently selected class contained

fluctuations, that is, random fluctuations of the signal (42.9%). The second largest class

contained patterns created by the formation of dew, or ice, on the antenna. This class

showed a higher agreement with the provided dew point indicator derived from the ERA5-

Land reanalysis. Sudden jumps in the time series or phenomena that did not fit into the

before-mentioned classes were found seldom. The agreement between experts was highest

for the fluctuation class.

To analyze the impact of anomalies on the quality of the CML QPE a comparison to

gauge-adjusted and climatology-corrected radar rainfall at a 5-minute resolution was con-
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ducted. To process the data, the routines developed in Chapters 2 and 3 were used. The

improvement when anomalies flagged by at least one expert were discarded was very high,

raising the Pearson Correlation Coefficient from 0.61 to 0.70 and reducing the relative bias

by 40%. In almost all cases, the removed anomalies produced an overestimation of rainfall

and a low correlation with the reference.

SQ5: Are convolutional neural networks capable of simultaneous temporal

super-resolution, ground-adjustment, and advection-correction of radar rain-

fall estimates?

The residual neural network architecture used to post-process the radar QPE showed a

high-performance and significantly reduced several error estimates. It was shown that the

spatial and temporal consistency of produced rainfall maps is very high and that the method

acts as a suitable optical flow estimator. A limitation of the model was an underestimation

of extreme values.

This question was answered in Chapter 6, where ResRadNet, a residual 3-D convolutional

neural network, was applied to post-process radar rainfall estimates. This post-processing

routine targeted a minimization of the mean squared error compared to rain gauges with a

1-minute temporal resolution. However, the method itself was designed to address specific

sources of systematic errors such as vertical and horizontal variability of rainfall when the

vertical distance to ground sensors is large and temporal sampling errors. The reduction

of the overall error was very successful increasing the Pearson Correlation Coefficient from

0.63 to 0.74 and reducing the root mean squared error by 22% and the normalized mean

bias by 20%. A long-term comparison of 8 years of data from 247 1-minute and 1138 daily

rain gauges showed that the performance of the method is stable in space and time and

that a transfer to new locations is possible within the study area.

A reason for the good performance of the method was the use of residual blocks in the

neural network architecture that emphasizes learning to represent the optical flow of a field

rather than the production of a precise representation of the field itself in every layer. A

comparison to the Lucas-Kanade algorithm showed that this prior assumption was correct,

as the neural network proved to be a good optical flow estimator. It is therefore a suitable

method for advection correction, that is, the reduction of temporal sampling errors by an

imputation of intermediate timesteps.

The largest limitation of ResRadNet is the underestimation of extreme precipitation.

There are two potential reasons that may be addressed in future studies: The first is

the imbalance of frequent zeros and small rain rates in the training dataset compared to

the sparse occurrence of extremes. The second is the deterministic nature of the method

that targets a maximum likelihood for predicted rainfall and, therefore, suppresses ex-

tremes. A probabilistic approach that produces a well-calibrated ensemble similar to the

one used in the related study Glawion et al. (2023) is the logical next step. Transferability
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of the method to different climate zones may not be given and is yet to be tested. This

also holds for a different radar system and the application of a different Z-R relation that

may introduce a different bias to the ResRadNet model input. In general, users of the

method are required to test for a covariate shift (input distribution changes while tar-

get distribution stays) or concept drift (input distribution stays while target distribution

changes) when applied to a different dataset.

7.2 Answers to Overarching Research Questions

OQ1: Can systematic errors of CML and weather radar QPE be quantified,

attributed to causes, and corrected?

The results showed that there is a high potential to reduce systematic errors with respect

to a reference, and that the error can be quantified in a suitable evaluation framework, but

that the attribution to causes is very difficult in most cases.

The long answer starts with calling to mind the fact that both types of rainfall sen-

sors that were considered in this thesis have a complex error structure and it is difficult to

disentangle the individual causes of errors. The opportunistic nature of CMLs increases

the difficulty because only the measured signal levels are available to researchers in order

to control the quality of rainfall estimates. One particular error in CML rainfall estimates

is due to an incorrect attribution of attenuation to rainfall. Chapter 2 identified erroneous

rain event detection and wet antenna attenuation to have the highest impact on rainfall

estimates and the largest potential for correction. The study focused on time-series-based

methods for rain event detection and wet antenna attenuation correction without auxil-

iary data to improve the applicability in data-scarce regions. The country-wide evaluation

quantified the overall error compared to a gauge-adjusted weather radar product with

remarkable similarity in the warm season. A large overestimation of annual precipitation

sums could be attributed to the cold season. Highly erroneous CMLs could be filtered

statically to exclude their error in produced rainfall maps.

Chapter 3 improved the detection of rain events in CML attenuation data using deep

learning-based pattern recognition to correct errors caused by large fluctuations during

dry periods. An attribution of the dry fluctuations to other causes was not possible since

the weather radar-based wet-dry reference did not allow for this kind of classification.

However, the large improvement in the detection of rain events compared to previously

used methods shows that it is possible to distinguish between rain events and anomalies

during dry periods that disturb the measurement. The CNN approach reduced the rainfall

estimated falsely due to such anomalies by more than 50% showing that their error can

be corrected to a large part.

Further quantification of different types of signal patterns and an effort to relate them

to atmospheric phenomena are presented in Chapter 5. The quantification of anomalies
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relied on the judgment of experts. However, there is a high ambiguity between experts

which hinders quantification, attribution, and correction of anomalies. An attribution to

causes such as dew was only partly successful. The example time series provided in Fig.

1.4 shows how different phenomena contribute to one pattern classified as anomalous. The

automated detection of manually flagged anomalies using ANNs is the subject of ongoing

research.

Chapter 4 treated ”blackouts”, another systematic error of CMLs that is easier to quantify

and where the attribution to a cause is less ambiguous. Yet, it is even more surprising

that previous studies completely neglected this error. The developed detection algorithm

showed a high agreement of blackouts with high rainfall intensities measured by weather

radars which shows that the cause of the missing data was indeed strong rainfall-induced

attenuation. However, it is unclear if the error can be corrected by reconstructing the

missing extremes. Graf et al. (2023) shows that a large improvement can be made by

filling blackout gaps with the highest measurable attenuation values. Further research

is needed to investigate if any skillful reconstruction of extreme rain events beyond the

highest measurable attenuation is possible.

The post-processing approach to correct systematic errors of weather radar rainfall es-

timates described in Chapter 6 is in contrast to the CML approach, where individual

phenomena and processing steps are treated separately. The focus was on simultaneous

advection correction and ground adjustment which is not a cause, but a consequence of

a multitude of potential errors. The residual neural network approach was successful in

reducing the overall error (e.g. RMSE) and in increasing the temporal resolution to effec-

tively reduce advection-driven sampling errors. However, not only the strength of the deep

learning method in increasing the predictive skill could be observed. A common weakness

of such models to not allow for the discovery of causal relations between model input and

output was visible.

OQ2: Are artificial neural networks a robust and transferable tool to pro-

vide quantitative rainfall estimates?

Both applications showed that the methods can be transferred to new locations and future

time periods within the same climatic region without losing skill. While the CML rain

event detection performed better for higher rainfall intensities, the opposite was true in

the radar application. Despite these limitations, the methods performed very well in the

respective tasks.

Transferability was defined as model predictions that do not lose skill in future time

periods and new locations. Both applications of neural networks in Chapters 3 and 6

have shown a very high transferability with almost no loss of skill outside the temporal

and spatial training domain. Chapter 3 showed that despite training on a small subset
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of the available CMLs, a good generalization to new sensors could be achieved. This is

especially remarkable because individual CMLs can exhibit very different characteristic

behavior over longer time periods.

Chapter 6 showed that the correction of radar estimates at a subset of all pixels that

contain rain gauges leads to an equal gain in skill at all pixels in the domain covered by

the radar network. It was shown that, despite individual predictions being made for a

single pixel, the transition to neighboring pixels is free of discontinuities and shows a high

spatial autocorrelation. The improvement was also visible when comparing the results to

a long time series (8 years) of daily rain gauges which were a completely independent set

of observations.

The robustness of the deep learning approach is judged in terms of correctly classifying

and predicting extremes that occur with a low frequency. While the detection of extreme

rain events in CML data was achieved with a very high probability the prediction of ex-

treme radar rainfall was less skillful. A potential reason for the missing extremes in the

ResRadNet predictions was that the regression problem using the mean squared error

as an objective function was not optimal. In both cases, the skewed distribution of the

rainfall data was problematic for model training. The solution was straightforward for

the classification task where a 1:1 ratio of rainy and non-rainy periods in the training

data was achieved. For ResRadNet such a sampling approach did not improve the skill

of the model. However, it was also observed that established advection correction meth-

ods based on the Lucas-Kanade algorithm lead to an even higher suppression of extreme

values. When comparing the two deep learning applications, where rain event detection

is a classification task and the correction of radar rainfall is a regression task, it is not

surprising that in the first task, more extreme signals lead to a higher model skill, whereas

in the second case, more extreme signals lead to more cautious predictions to minimize

the average error.

However, a generative approach that produces ensembles of solutions shows much more

skill in correctly predicting extreme values as shown in Glawion et al. (2023).

In summary, the two conducted studies showed that neural networks trained on past data

and a separate set of sensors can be transferred to future times and new sensor locations

without a significant loss of skill. The handling of extreme values was very good in the

CML case and, in the radar case, not worse than previously established methods. The

results indicate that suitable objective functions for rainfall intensity distributions are yet

to be established.
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7.3 Conclusion and Outlook

The studies presented in this thesis show that state-of-the-art rainfall products based on

CML or weather radar measurements of attenuation and reflectivity can be outperformed

using deep learning approaches. In addition to the performance gain best practices and

important limitations for using deep learning for rainfall estimation have been identified.

For CMLs, the detection of rain events and the compensation of attenuation caused by

other effects such as antenna wetting have been identified and successfully mitigated. The

application of a convolutional neural network for deep learning-based pattern recognition

outperformed the reference method and reduced missed or false rain events greatly enhanc-

ing the trust in CML QPE. Progress was also made in the detection and compensation of

blackouts showing that while only a small fraction of the annual rainfall is missed, they

significantly hinder the measurement of the most extreme precipitation events. However,

they can be localized and a lower bound for the missed rain rate can be computed. A

reconstruction of missing data in the measurement using a generative deep learning ap-

proach is the subject of current research.

The detection of signal anomalies caused by other atmospheric phenomena has proven to

be difficult due to a lack of suitable reference data. This is even more so the case in parts

of the world where climate observations are much more sparse compared to Germany. A

proposed solution is manual quality control of the dataset, but the presented study in

Germany showed that there is ambiguity in the expert flagging of the data. Despite this

ambiguity, the improvement that can be made when excluding flagged data from the set

of valid observations is large.

Overall, the performance of the improved CML QPE shows a remarkable quality compared

to gauge-adjusted weather radar QPE which has a much longer history of research and

incremental improvements.

The improvement of weather radar QPE using a deep learning approach was also very

successful. Instead of improving a particular processing step in the QPE retrieval a post-

processing approach using a residual 3D-CNN was chosen. The prediction of five future

1-minute time steps of a rain gauge on the ground could be achieved with a high perfor-

mance which showed that the neural network worked as a suitable optical flow estimator.

A temporal sampling error could be corrected achieving a higher quality product compared

to traditional methods.

The transferability of the deep learning approaches proved to be high when they were

applied to new locations or sensors in the same climatic region. It is an open question how

the trained neural networks would respond to a covariate shift in a different climate. For

rain event detection (see SQ2) the detection of more extreme rainfall seems unproblem-

atic. Larger issues could be caused by new sources of signal anomalies that are caused by

phenomena not present in Germany, for example, dust storms that occur during the West

African dry season. The correction of radar estimates is very much bound to the radar

input used for training which is biased by the processing of the raw reflectivity data and

153



Chapter 7. Synthesis

the radar calibration (e.g. the radar constant used to derive reflectivity).

Despite these problems that may occur when applying the trained networks to new cli-

matic regions this thesis provides a clear proof of concept for the presented deep learning

applications. There is no reason to assume that re-training the methods in new regions

should fail other than due to missing training data.

The real-time applicability of the presented methods is very high since the computations

are efficient and fast enough to not introduce additional latency in the provision of rainfall

products. A 1-minute ground adjustment of weather radar data was achieved which is

a significant improvement over the hourly gauge adjustment performed by the German

meteorological service.

Future work will focus on enabling the full potential of the improvements presented in this

thesis by investigating the automated detection of CML signal anomalies and the impu-

tation of missing data using deep learning techniques. Additionally, the transferability to

new climate zones has to be ensured by collecting more CML data around the globe and

by using new verification techniques such as satellite observations. A first effort was made

in Djibo et al. (2023) and Graf et al. (2024).

The next step in the improvement of radar QPE is the application of a generative deep

learning approach to polarimetric radar QPE. The suitability of a probabilistic approach

for rainfall extremes has been demonstrated in Glawion et al. (2023) and the superiority

of polarimetric QPE is shown by Chen et al. (2021). The potential to overcome effects like

partial beam blockage and to reduce DSD uncertainty is promising in combination with

the superresolution ground adjustment presented in Chapter 6 and should be pursued once

a large base of polarimetric radar data is available.

The expected impact of the published studies presented in this dissertation targets closing

the observational gap for rainfall estimation as demonstrated by the study conducted in

Burkina Faso which used processing routines developed for the German dataset (Djibo

et al., 2023). The study presents data from a dense network of CMLs located of the

city area of Ouagadougou which were used to achieve high-resolution rainfall maps where

previously only one daily rain gauge was available. The study highly benefits from the

experience and developed processing techniques that are presented in this work. The pro-

cessing of the data to achieve the presented quality standard would not have been possible

five years ago.

The availability of CML data for operational rainfall estimation is an urgent issue. While a

large part of the global population lives in areas with CML coverage, only a tiny fraction of

the data is being recorded. One problem is that network providers do not benefit directly

from providing the CML data which is due to the lack of a business model. Given the

public interest in building capabilities to adapt to climate change this must not remain

a limiting factor. Hopefully, the demonstration of the potential of CMLs and weather

radars will inspire researchers, stakeholders, and policymakers to acquire the necessary

CML data that is currently lost and to build new infrastructure for conventional sensors

like rain gauges and weather radars.
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List of Symbols

Symbol Description Unit

N Natural numbers

R Real numbers

∇ Gradient

sup Supremum

≫ Much greater

≪ Much less

A Total attenuation dB

C Radar constant -

f Frequency GHz

k Specific attenuation dBkm−1

KW Dielectric factor -

P Power W

PIA Path integrated attenuation dB

R Rain rate mmh−1

T Temperature °C
Z Reflectivity mm6 m−3

ν Fall speed m s−1

σext Extinction cross section cm2

σbsc Back-scattering cross section cm2
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List of Abbreviations

ACC Accuracy

AI Artificial intelligence

ANN Artificial neural network

API Application programming interface

ATPC Automatic transmit power control

AUC Area under curve

CNN Convolutional neural network

CML Commercial microwave link

CV Coefficient of variation

DWD German Meteorological Service

DSD Drop-size distribution

ECMWF European Center for Medium-range Weather Forecasting

ERA5 Fifth generation of European reanalysis

FN False negative

FP False positive

GPM Global Precipitation Measurement Mission

GPU Graphics processing unit

GSM Groupe Speciale Mobile

IDW Inverse distance weighting

IEEE Institute of Electrical and Electronics Engineers

IFRC International Federation of Red Cross and Red Crescent Societies

IFS Integrated forecasting system

IMERG Integrated multisatellite retrievals

ITU International Telecommunication Union

KIT Karlsruhe Institute of Technology

KS-test Kolmogorov-Smirnov test

LSTM Long short-term memory

MAE Mean absolute error

MCC Matthews Correlation Coefficient

MDE Mean detection error
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MLP Multilayer perceptron

MSE Mean squared error

MSG Meteosat Second Generation

NBIAS Normalized relative bias

nD n-dimensional

NRMSE Normalized root mean squared error

PARSIVEL Particle size velocity

PCC Pearson Correlation Coefficient

QPE Quantitative precipitation estimation

QPF Quantitative precipitation forecasting

QPN Quantitative precipitation nowcasting

Radar Radio detection and ranging

RADKLIM Radarklimatologie

RADOLAN Radar Online Aneichung

RealPEP Near realtime quantitative precipitation estimation and prediction

ReLU Rectified linear unit

ResNet Residual neural network

SEVIRI Spinning Enhanced Visible and InfraRed Imager

TN True negative

TL Total path loss

TP True positive

TRSL Transmitted minus received signal level
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