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Abstract

In today’s world, the significance of Artificial Intelligence (AI) is continuously growing as it increasingly
permeates various aspects of everyday life, exerting a significant influence on sectors such as healthcare,
finance, and other safety-critical domains. As AI systems become more deeply integrated into society, there
is an increasing demand for systems that are functionally intelligent and ethically sound. This makes the
development of trustworthy AI a societal imperative that aims to align technological advancements with
ethical standards and public expectations. In 2019, the European Commission released a framework for
trustworthy AI, defining ethical principles and key requirements (High-Level Expert Group on AI 2019).

At the core of AI systems are algorithms trained through machine learning (ML). These algorithms analyze
data and derive decisions that can be deployed to solve complex problems. Simultaneously, to realize these
algorithms, highly complex models, such as deep neural networks, are often used, whose inner workings
can no longer be intuitively understood by humans. This contrasts with the demand for explainability and
transparency in trustworthy AI. Moreover, training these models may require large amounts of labeled data,
necessitating a laborious and costly data annotation process, especially in high-risk domains. In this context,
the method of active learning (AL) proves to be promising, as human experts are involved in the training
process to label unknown data.

However, developing AI systems using AL presents challenges due to the dynamic evolution of the data
landscape and the high resource demands associated with creating and managing training data. Different
methodological approaches from software engineers and data scientists necessitate revising traditional process
models to meet the specific requirements of high data variability due to continuous model retraining. Effective
harmonization of these diverse development approaches is essential to ensure efficient and collaborative
workflows.

To address this, this dissertation presents a revised life cycle model that combines agile principles with the
requirements of data-driven AL projects. It aims to enhance the efficiency and transparency of development
by structuring the entire development cycle from planning to implementation and facilitating collaboration
within heterogeneous teams. Central to this is an innovative development methodology that encompasses
principles for data, code, and automation and provides a workflow that guides teams in establishing a
robust development process during the implementation and operation of the AI system. This methodology
promotes agility and collaboration while ensuring adherence to best practices.

Another crucial element for developing trustworthy AI is traceability, which, from a technical perspective,
extends from the original data sources to the model outputs. This includes both user inputs in the form of
annotations and model-generated predictions. Traditional frameworks often prove inadequate in this regard,
as they primarily focus on executing the AL methodology and neglect aspects of traceability. There is a clear
need for a framework that integrates both AL functionality and the necessary components for capturing data
provenance and versioning of artifacts throughout the life cycle, thereby contributing to the reproducibility
of results.

To address this challenge, this dissertation presents a new open-source framework called LIFEDATA, designed
to facilitate end-to-end traceability and efficient data annotation in AL projects. LIFEDATA provides a structure
for integrating technical components essential for traceability, including versioning of code, data, and models,
as well as logging user interactions. The broad applicability of the framework is demonstrated through two
use cases in the life sciences, including the analysis of skin images and the classification of ECG signals.
These use cases illustrate how AL can improve both the efficiency of data annotation and the quality of model
results.

Moreover, the explainability of AI systems is crucial for achieving transparency in technical processes and
systems. However, as models become increasingly complex, the challenge of making them understandable
to humans grows, with concepts of eXplainable AI (XAI) playing a central role. An integrative approach



is required, one that applies interpretable ML (IML) methods tailored to the specific needs of various
stakeholders.

To this end, a domain-specific approach specifically tailored to the use case of skin image analysis will
be presented. By combining a human-centered approach to the classification of skin lesions with an
interpretation method for AI-based systems, human-understandable explanations of model outputs are
examined. Additionally, the XAI-Compass is introduced, a concept for involving diverse stakeholders in
the development process. This instrument helps identify critical contact points between humans and model
interpretations through the systematic organization of roles, life cycle phases, and goals, allowing explanations
of AI systems to be tailored to the specific needs of different stakeholders. Three studies were conducted
using the ECG signal classification use case to develop and evaluate explanations for various stakeholder
groups.

Finally, this dissertation demonstrates that the proposed development life cycle and methodology for AL
projects have the potential to significantly enhance both transparency and collaboration in the development
of trustworthy AI systems. The introduced LIFEDATA framework, with its modular structure and focus on
artifact traceability, proves to be a practical solution for implementing AL across various application areas, as
evidenced by its successful use in the life sciences. Furthermore, the domain-specific implementation of an
IML method provides an innovative approach that helps make the outputs of an AI system understandable to
humans. In connection with integrating stakeholder perspectives through the XAI Compass, the conducted
studies show that involving different stakeholders improves the acceptance of model interpretations and
helps make them more understandable and relevant to various user groups.

Overall, this dissertation presents new approaches and practical solutions to the challenges in developing
trustworthy AI systems with AL, by focusing on transparency, traceability, and explainability.



Zusammenfassung

In der heutigen Welt nimmt die Bedeutung der Künstlichen Intelligenz (KI) kontinuierlich zu, da sie
zunehmend in zahlreiche Lebensbereiche vordringt und signifikanten Einfluss auf Sektoren wie das
Gesundheitswesen, die Finanzbranche und weitere sicherheitsrelevante Domänen ausübt. Mit der wachsenden
Integration von KI-Systemen in den gesellschaftlichen Rahmen wird der Ruf nach Systemen, die nicht nur
funktional intelligent, sondern auch ethisch vertretbar sind, immer dringlicher. Dies macht die Entwicklung
vertrauenswürdiger KI zu einem gesellschaftlichen Imperativ, der technologische Fortschritte mit ethischen
Standards und öffentlichen Erwartungen in Einklang bringen soll. Die Europäische Kommission hat
daher im Jahr 2019 ein Rahmenwerk für vertrauenswürdige KI veröffentlicht, das ethische Prinzipien und
Schlüsselanforderungen definiert (High-Level Expert Group on AI 2019).

Im Zentrum vieler KI-Systeme stehen Algorithmen, die durch maschinelles Lernen (ML) trainiert werden.
Diese Algorithmen analysieren Daten und leiten daraus Entscheidungen ab, die zur Lösung komplexer
Probleme eingesetzt werden können. Gleichzeitig werden zur Realisierung der Algorithmen häufig hochkom-
plexe Modelle, wie tiefe neuronale Netze, eingesetzt, deren innere Funktionsweise von Menschen nicht mehr
intuitiv verstanden werden kann, was im Widerspruch zur Forderung nach Erklärbarkeit und Transparenz
in vertrauenswürdiger KI steht. Zudem werden für das Training dieser Modelle große Mengen gelabelter
Daten benötigt, was insbesondere in risikobehafteten Domänen einen aufwändigen und kostenintensiven
Datenkennzeichnungsprozess erfordert. Hierbei erweist sich die Methode des aktiven Lernens (AL) als vielver-
sprechend, da sie die Einbindung menschlicher Experten zur Kennzeichnung unbekannter Datenpunkte
ermöglicht.

Die Entwicklung von KI-Systemen mit AL-Methodologie bringt indes Herausforderungen mit sich, da diese
Projekte durch die dynamische Evolution der Datenlandschaft und die hohen Ressourcenanforderungen bei
der Erstellung und Verwaltung von Trainingsdaten geprägt sind. Unterschiedliche methodische Ansätze von
Softwareentwicklern und Data Scientists erfordern eine Überarbeitung traditioneller Prozessmodelle, um
den spezifischen Anforderungen der hohen Datenfluktuation durch das kontinuierliche Neutraining der
Modelle gerecht zu werden. Eine effektive Harmonisierung dieser verschiedenen Entwicklungsansätze ist
entscheidend, um eine effiziente und kooperative Arbeitsweise zu gewährleisten.

Zu diesem Zweck wird in dieser Dissertation ein überarbeitetes Lebenszyklus-Modell vorgestellt, das agile
Prinzipien mit den Anforderungen datengetriebener AL-Projekte verbindet. Es zielt darauf ab, die Effizienz
und Transparenz der Entwicklung zu erhöhen, indem es den gesamten Entwicklungszyklus von der Planung
bis zur Umsetzung strukturiert und die Zusammenarbeit in heterogenen Teams erleichtert. Im Mittelpunkt
steht eine innovative Entwicklungsmethodik, die Prinzipien für Daten, Code und Automatisierung umfasst
sowie einen Workflow bietet, der als Leitlinie die Teams dabei unterstützt, einen robusten Entwicklungsprozess
während der Implementierung und dem Betrieb des KI-Systems zu etablieren. Dabei zeigt sich zum einen,
dass die Methodik die Zusammenarbeit und Agilität fördert und zum anderen zur Einhaltung von Best
Practices beiträgt.

Ein weiteres wesentliches Element für die Entwicklung vertrauenswürdiger KI ist die Nachvollziehbarkeit,
die, technisch gesprochen, von den ursprünglichen Datenquellen bis hin zu den Modellausgaben reicht. Diese
umfasst sowohl Benutzereingaben in Form von Annotationen als auch die von Modellen generierten Vorher-
sagen. Traditionelle Frameworks erweisen sich in diesem Zusammenhang häufig als unzureichend, da sie sich
primär auf die Ausführung der AL-Methodologie konzentrieren und die Aspekte der Nachvollziehbarkeit
vernachlässigen. Hier besteht ein klarer Bedarf an einem Framework, das sowohl die AL-Funktionalität als
auch notwendige Komponenten zur Erfassung der Datenherkunft und Versionierung von Artefakten entlang
des Lebenszyklus integriert und damit die Reproduzierbarkeit von Ergebnissen ermöglicht.

Um diese Herausforderung zu adressieren, wird in dieser Dissertation ein neuartiges Open-Source-Framework
vorgestellt, das die End-to-End-Nachvollziehbarkeit und effektive Datenannotation in AL-Projekten unter-
stützt. Dieses Framework bietet eine Struktur für die Integration technischer Komponenten, die für die



Nachvollziehbarkeit erforderlich sind, einschließlich der Versionierung von Code, Daten und Modellen sowie
der Protokollierung von Benutzerinteraktionen. Die breite Anwendbarkeit des Frameworks wird durch zwei
Anwendungsfälle aus den Lebenswissenschaften demonstriert, darunter die Analyse von Hautbildern und
die Klassifikation von EKG-Signalen. Diese Anwendungsfälle verdeutlichen, wie AL dazu beitragen kann,
sowohl die Effizienz der Datenannotation als auch die Qualität der Modellergebnisse zu verbessern.

Darüber hinaus ist die Erklärbarkeit von KI-Systemen entscheidend, um Transparenz in technischen
Prozessen und Systemen zu erreichen. Mit der zunehmenden Komplexität von Modellen steigt jedoch die
Herausforderung, diese Modelle für Menschen nachvollziehbar zu gestalten, wobei in diesem Zusammenhang
Konzepte der Erklärbaren KI eine zentrale Rolle spielen. Aufgrund der vielseitigen Anwendungsgebiete und
der unterschiedlichen beteiligten Personen ist hierbei ein integrativer Ansatz erforderlich, der Methoden des
interpretierbaren ML anwendet und diese auf die spezifischen Bedürfnisse verschiedener Interessengruppen
zuschneidet.

Im Rahmen dieser Dissertation wird hierzu ein domänenspezifischer Ansatz entwickelt, der auf den An-
wendungsfall der Analyse von Hautbildern zugeschnitten ist. Durch die Kombination einer menschlichen
Herangehensweise zur Klassifikation von Hautläsionen mit einer Interpretationsmethode für KI-basierte
Systeme werden menschenverständliche Erklärungen der Modellausgaben untersucht. Darüber hinaus wird
der XAI-Compass eingeführt, ein Konzept zur Einbindung diverser Interessengruppen in den Entwick-
lungsprozess. Dieses Instrumentarium hilft, durch die systematische Organisation von Rollen, Lebenszyklus-
phasen und Zielen wichtige Schnittstellen zwischen Menschen und Modellinterpretationen zu identifizieren,
um die Erklärungen von KI-Systemen gezielt auf die spezifischen Bedürfnisse unterschiedlicher Stakeholder
abzustimmen. Ziel ist es, durch erhöhte Verständlichkeit die Akzeptanz und das Vertrauen in die Modelle zu
stärken. Zur Demonstration dient der zweite Anwendungsfall, die Klassifikation von EKG-Signalen, worin
unterschiedliche Studien durchgeführt werden, um Erklärungen für verschiedene Personen zu entwickeln
und zu evaluieren.

Schließlich zeigt diese Dissertation, dass der vorgeschlagene Entwicklungslebenszyklus und die Methodik für
AL-Projekte das Potenzial haben, sowohl die Transparenz als auch die Zusammenarbeit bei der Entwicklung
vertrauenswürdiger KI-Systeme erheblich zu verbessern. Das eingeführte LIFEDATA-Framework mit seinem
modularen Aufbau und dem Schwerpunkt auf der Rückverfolgbarkeit von Artefakten erweist sich als praktik-
able Lösung für die Implementierung von AL in verschiedenen Anwendungsbereichen, wie die erfolgreiche
Anwendung in den Lebenswissenschaften belegt. Darüber hinaus bietet die domänenspezifische Implemen-
tierung einer Methode für interpretierbares ML einen innovativen Ansatz, der dazu beiträgt, die Ausgaben
eines KI-Systems auf eine für Menschen verständliche Weise erklärbar zu machen. Im Zusammenhang mit
der Integration von Stakeholder-Perspektiven durch den XAI-Compass zeigen die durchgeführten Studien,
dass die Einbindung verschiedener Stakeholder die Akzeptanz von Modellinterpretationen verbessert und
dabei hilft, diese verständlicher und relevanter für unterschiedliche Nutzergruppen zu gestalten.

Insgesamt liefert diese Dissertation somit neue Ansätze und praktische Lösungen für die Herausforderungen
bei der Entwicklung vertrauenswürdiger KI-Systeme mit AL, indem sie Transparenz, Nachvollziehbarkeit
und Erklärbarkeit in den Mittelpunkt stellt.
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„We can only see a short distance ahead,
but we can see plenty there that needs to be done.“

— Alan Mathison Turing 1950

With this quote from his paper on computing machinery and intelligence,
where he first introduced concepts of the famous Turing Test, a method
proposed to evaluate a machine’s ability to exhibit intelligent behavior
indistinguishable from that of a human, Alan Turing highlights the
ongoing challenges and opportunities in the development of artificial
intelligence (AI). Although this statement, whose author regarded as a
pioneer of computer science and AI, dates back more than 70 years, the
words still hold enduring significance.

The following chapter motivates the topic of this dissertation, highlighting
three current challenges explored in this context as well as the resulting
objectives of this thesis. In addition to an overview of the content of this
dissertation, the relevant contributions made during its preparation are
likewise highlighted.

1.1 Motivation

Today, the attention on AI technology is unprecedented (Van Noorden et
al. 2023). In a constantly evolving world, it’s becoming increasingly clear
that AI is permeating far-reaching aspects of daily life, with its impact
felt across various sectors, including healthcare, finance, education, and
beyond (Maslej et al. 2023).

The potential of AI has long moved beyond the purely academic realm and
has become a subject of societal discourse. As AI systems become more
deeply embedded in society, the need for these systems to be functionally
intelligent and trustworthy is emphasized. Thus, pursuing trustworthy
AI is no longer solely a scientific endeavor but a societal imperative
aimed at aligning technological progress with ethical standards and
public expectations (Brundage et al. 2020; Kaur et al. 2023; Li et al. 2023).
In this context, the European Commission’s High-Level Expert Group
on AI published in 2019 a framework for trustworthy AI, defining four
ethical principles as foundational, along with seven key requirements:
human agency and oversight, technical robustness and safety, privacy
and data governance, transparency, diversity, non-discrimination and
fairness, environmental and societal well-being, as well as accountability
(High-Level Expert Group on AI 2019).

In light of the need to implement AI systems trustworthy, the focus
on how these systems are developed becomes paramount. At the core
of most AI systems lie algorithms; statistical models trained through
machine learning (ML) methods to make predictions or decisions based
on data, or to generate new outputs in a way that appears intelligent
to a human (Russell et al. 2016). The primary difference between ML
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and traditional algorithms is that ML derives the knowledge needed
to solve a task through stochastic strategies directly or extract them
from the available data, rather than being defined through the explicit
programming of individual instructions (James et al. 2013).

Among the various training paradigms for ML models, supervised learn-
ing, which is conducted based on sample data, is notable for its reliance
on labeled training data. This reliance uncovers another significant issue:
the data labeling process is labor-intensive and one of the most expen-
sive steps in developing supervised learning models (Fredriksson et al.
2020b).

Human-in-the-loop ML methods have emerged as promising approaches
in this context, integrating human expertise into the training process
(Mosqueira-Rey et al. 2023). This combination improves the model’s
learning process and supports aspects of trustworthy AI by incorporating
human feedback directly into the AI system’s learning cycle. Active
learning (AL), a specific form of ML that involves human participation,
exemplifies this by allowing the learning system to consult a human
oracle to label unknown data points, thereby iteratively improving the
model’s performance (Settles 2009).

Through this approach, AL addresses two distinct demands: optimizing
the labeling process and advancing the development of trustworthy AI
systems. Motivated by the potential that AL can enhance the way we
approach both the efficiency of data labeling and the overarching goal
of developing trustworthy AI systems, this dissertation aims to explore
the synergies between AL and the concepts of trustworthy AI with a
focus on the requirement for transparency, which is closely linked to the
ethical principle of explainability (High-Level Expert Group on AI 2019).
Implementing transparency and explainability within trustworhty AI
presents not only technical but also conceptual challenges to the processes
and systems, which are detailed in the following section.

1.2 Challenges

The following section presents three main problems that arise when
implementing and integrating the AL methodology into trustworthy AI
systems. These problems are briefly introduced to provide an overview
of the challenges of this dissertation and will be discussed in further
detail in the respective parts.

1.2.1 Development Process in Active Learning Projects

The development of AI projects that implement the AL methodology
confronts development teams with a number of problems (Arpteg et al.
2018). As they are data-centric in nature, these are characterized by the
rapid evolution of the data landscape, the high resource requirements
for creating and managing training data (Sculley et al. 2015), and the
methodological heterogeneity within the teams (Diaz-de-Arcaya et al.
2023). There is a consensus in the research community, that traditional
process models need to be revised (Haakman et al. 2021; Machado et al.
2024), not only to meet the specific requirements of integrating an AL
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loop into a project. Further requirements in this context are particularly
relevant to trustworthy AI, where the traceability of each asset throughout
the entire life cycle plays an essential role (Habibullah et al. 2023).

Typically, teams comprise a variety of professionals whose methodologi-
cal approaches and perspectives on a project can vary significantly. For
example, software developers usually bring a strong familiarity with soft-
ware engineering (SE) concepts into projects, encompassing a systematic,
structured approach. They tend to view processes and problem-solving
through the lens of established development practices, where the trace-
ability of artifacts is a well-established practice.(Martínez-Fernández et al.
2022)

On the other hand, data scientists adopt a more experimental working
method, with a strong focus on iteratively improving algorithms through
experimentation and learning (Makinen et al. 2021). This approach is
essential in developing trustworthy AI but can lead to a less structured
workflow that is more difficult to integrate into traditional software de-
velopment cycles (Rule et al. 2020). The challenge of traceability becomes
particularly evident here, as data scientists’ iterative development cycles
and experimental approaches require comprehensive documentation
and tracking of all changes and decisions to ensure transparency and
comprehensibility.

The coexistence of these different working styles in a team, without a
clear process that allows for the integration and coordination of different
approaches, can impair development efficiency and hinder the fulfillment
of requirements for trustworthy AI. The shortcomings of traditional
process models exacerbate this: Established approaches are either too
rigid and sequential to effectively respond to the emerging changes in
data within an AL project. They often do not offer the necessary flexibility
required to deal with the complexity and dynamics of AL projects.

Challenge I

Established process models for AI projects need to be revised, especially
when integrating an AL loop. Heterogeneous engineering teams need a
methodology to manage the dynamic data to implement data-centric AI
projects effectively and harmonize different development approaches.

1.2.2 Design of Traceability-Aware Active Learning

Systems

The development of trustworthy AI necessitates a traceability system
that spans from the initial data acquisition to the outcomes of the trained
model, including user inputs and outputs generated by the ML model.
One of the key requirements in the realisation of trustworthy AI results
in the challenge of achieving end-to-end traceability (High-Level Expert
Group on AI 2019), extending from the initial data origin to the final
model output. This level of traceability goes beyond the artifacts produced
throughout the life cycle. In an AL system, this includes both user inputs
via given annotations and the outputs generated by the model in the form
of predictions. Achieving this level of traceability contributes further to
reproducibility and transparency in developing trustworthy AI systems
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and enhances the ability to explain system behavior (Pineau et al. 2019;
Samuel et al. 2021).

From a system perspective, building an AL loop that adheres to the
requirements of trustworthy AI presents developers with the challenge of
integrating numerous technical components like a workflow orchestration
component (Kreuzberger et al. 2023; Steidl et al. 2023). The integration of
these components becomes particularly necessary as AI systems transition
from a laboratory setting into operational deployment, requiring robust
frameworks that can support continuous training systems. This includes,
for instance, the implementation of feedback loops and the integration
of components for the seamless logging of data origins as well as the
continuous versioning of all artifacts during the execution of the ML
pipeline in a continuous training system (Isdahl et al. 2019).

Traditional frameworks for implementing AL systems prove to be inade-
quate as they are primarily focused on executing the AL methodology
and neglect traceability, which is relevant for trustworthy AI. This gap
in existing approaches underscores the need for a framework that im-
plements both dimensions: the functionalities of the AL methodology
for effective data annotation and the integration of data provenance and
artifact versioning technologies.

Challenge II

Frameworks for AL projects do not cover the requirements for End-to-End
traceability in AL systems. About trustworthy AI development, a framework
is required that covers the AL functionality and the technical components,
including the data provenance of user input in the form of annotations and
the versioning of all artifacts created in the AL system.

1.2.3 Tailored Explainability in Trustworthy AI Systems

In the quest to develop trustworthy AI systems, the challenge of explain-
ability is multifaceted and touches upon the need for AI systems to be
transparent in both their technical processes and the human decisions
that guide their application. This means that such systems must be
capable of providing insights into their decision-making processes in
a manner understandable to humans.(High-Level Expert Group on AI
2019)

Complicating the landscape is the trend toward using increasingly com-
plex models to process growing volumes of data within data-centric
AI systems. These models, such as deep neural networks (DNNs), are
powerful for many problem definitions but often reach a level of complex-
ity where their decision-making processes and inner workings become
difficult for humans to explain, leading to their common characterization
as Black-Boxes. This complexity of models used in AI systems poses
a significant hurdle on the path to technical explainability. The poten-
tial ambiguity of outputs generated by these models is exemplified by
phenomena like the „Clever Hans Effect“, where a model’s seemingly
correct predictions are based on mistaken correlations in the training
data (Lapuschkin et al. 2019). Such instances highlight the importance
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of interpretable machine learning (IML), aiming to make the decision-
making process of AI systems transparent, ensuring that their operations
are functionally correct and understandable.

However, the pursuit of enhanced technical explainability may lead
to compromises, often due to the fact that increasing a system’s inter-
pretability can come at the cost of its accuracy and vice versa (High-Level
Expert Group on AI 2019). This dilemma stems from technological con-
siderations as well as from the usability of the systems (Bell et al. 2022),
where, especially in high-risk scenarios, different stakeholders must be
able to demand comprehensive explanations of how an AI system arrives
at its decisions (High-Level Expert Group on AI 2019).

Therefore, explanations must be tailored to the expertise level of the
concerned stakeholders (Miller 2019; Laato et al. 2022). This necessitates
the domain-specific implementation of IML methods and, on the other
hand, an adaptable level of detail in explanations to ensure they are
accessible to different stakeholders (Longo et al. 2024).

Challenge III

Addressing the layered challenge of (technical) explainability in developing
trustworthy AI requires an integrative approach. Overcoming the complexity
of AI systems necessitates applying interpretable machine learning meth-
ods, their customization to the domain, and providing stakeholder-specific
explanations.

1.3 Objectives and Contributions

While the previous section presents the challenges addressed in this
dissertation, the following section is dedicated to the objectives to solving
these challenges.

1.3.1 Active Learning Development Life Cycle and

Engineering Methodology

As outlined in Section 1.2.1, developers face numerous hurdles when
implementing data-centric AI projects, especially those employing an
AL loop. These issues are associated with the dynamic nature of data
and the requirement for trustworthy AI to track artifacts throughout the
life cycle. Additionally, the diverse methodological approaches prevalent
within various development teams add complexity.

To adapt traditional process models and development flows to this in-
creasing complexity, this dissertation proposes a revised AL development
life cycle model and an innovative development methodology for AL
projects.
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Objective 1

Provide an AL development life cycle model and an engineering workflow tai-
lored for AL projects. The primary goal is to establish a unified methodological
foundation that enhances the efficiency and transparency of implementing
AL projects. This approach aims to facilitate the management of challenges
such as data volatility, high resource requirements for artifact creation, and
methodological diversity within teams.

Contributions:

▶ AL Development Process Model: A detailed schema that struc-
tures the development process into project phases and individual
steps, integrating established development concepts. It guides en-
gineering teams through the AL development life cycle, defining
specific activities and roles, thereby offering clear structure and
direction.

▶ Coordinated Development Methodology: A step-by-step guide
derived from the process model to support teams in the practical ex-
ecution of projects. This includes concepts related to code, data, and
automation like continuous integration, and deployment pipelines,
along with an innovative branching workflow. The development
methodology focuses on effectively integrating various approaches,
ensuring efficient project realization.

1.3.2 Framework for Traceable Active Learning Projects

As described in Section 1.2.2, the development of trustworthy AI ne-
cessitates a comprehensive traceability system. This system must track
every stage of the process, from the initial acquisition and preparation
of data to the final outputs of the trained model, while also capturing
user interactions and the model-generated predictions. This contributes
to transparency and reproducibility - from a systemic perspective, im-
plementing AL projects that aim to meet these requirements poses a
significant issue for developers in integrating numerous components.

In order to provide development teams with a blueprint that supports
them in the implementation of AL projects, this dissertation presents an
innovative framework that includes both the functionalities required for
effective data annotation within the AL methodology and the integration
of essential technologies for data provenance and artifact versioning.

Objective 2

Development of a framework that equips AL systems with the essential
components for end-to-end traceability. This includes ensuring the data
provenance of user inputs in the form of annotations and facilitating the
versioning of all artifacts generated within the AL life cycle.
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Contributions:

▶ Open-Source Framework: Introduction of a open-source frame-
work that enables teams to carry out AL projects effectively. It
establishes a foundation for end-to-end traceability and outlines a
comprehensive approach for the technical implementation of the
required components.

▶ Generic Project Template: Provision of a reusable and adaptable
project template as an integral part of the framework which includes
key components essential for realizing AL projects with a focus on
traceability.

▶ Application in two Case Studies: By demonstrating the utility of
the framework through two use cases in the life sciences domain,
this dissertation further contributes to the application of complex
ML pipelines in the classification of skin images and ECG signals,
as well as the evaluation of different QSs in these scenarios.

1.3.3 Integration of Interpretable Machine Learning

The challenges regarding explainability in developing trustworthy AI
systems mentioned in Section 1.2.3 involve the necessity for complex
technical procedures utilized in AI systems to be explained in a human-
comprehensible form to diverse stakeholders.

To address the adaptation of technical explanations of AI systems to
both the domain and user, this dissertation proposes an approach for
integrative approach aiming to involve different stakeholders in the
development process of trustworthy AI.

Objective 3

Enhance the accessibility of AI explanations by developing an interpretation
algorithm supplemented with domain knowledge to increase the relevance of
model interpretations for a non-technical audience within a selected domain
and, furthermore, adapting model interpretations to specific stakeholder
groups to increase the relevance of AI explanations for the respective users.

Contributions:

▶ Domain-Specific Interpretation Algorithm: Implementing an ap-
proach tuned for an AI-based skin image classifier to elucidate the
model’s outputs.

▶ Stakeholder Integration Framework: Provision of a visual tool
that systematically aligns stakeholder groups, life cycle stages,
objectives and possible touchpoints for model interpretations.

▶ Interdisciplinary Studies: Execution of studies employing social
science methods to capture a broad spectrum of stakeholder per-
spectives on model interpretations for an AI-based ECG signal
classifier.
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1.4 Outline

This section provides an overview of the structure of this dissertation.
Figure 1.1 provides the thesis outline, illustrating the chapter division’s
general structure and thematic interrelations.

Following the introductory part in Chapter 1, Chapter 2 present the
foundations associated with this work. The thesis’s three main parts
II, III, and IV are each divided into two chapters. The structure of the
chapters is designed such that the reader should follow the sequence as
the content build upon each other.

Part II, encompassing Chapters 3 and 4, introduces the development
concepts in AL projects from a process perspective. Part III, comprising
Chapters 5 and 6, focuses on a systems perspective in the design of AL
projects. The latter chapter further introduces the two case studies that
extend to the chapters in the following section. Subsequently, Part IV
describes a stakeholder integration approach, with Chapter 7 addressing
the domain perspective and Chapter 8 discussing studies involving
various stakeholders in an AI project. The dissertation concludes with a
summary in Chapter 9, which offers a perspective on future work.

Introduction1

Conclusion and Outlook9

Development in AL Projects
A Process Perspective

Design of AL Projects
A System Perspective

Interpretable Machine Learning
An Integration Approach

Active
Learning

Development
Life Cycle

3

Engineering
Methodology

4

Framework
Design

Approach

5 Domain Specific 
Model Interpretations7

Stakeholder-orientated
Model Interpretations

8

Skin Image
Analysis

ECG Signal
Classification

Use Cases &
Evaluation6evaluate

applied

evaluate
integrate

evaluate
applied

ad
op

t

evaluate
integrate

enable enable

Foundations2

Objective 1 Objective 2 Objective 3

Figure 1.1: Thesis outline. The overall structure of this dissertation shows the chapters organized in three main parts, as well as their
interrelationships and the integration of two use cases.
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Part I. Introduction and Foundations

Chapter 1: Introduction. The thesis begins by describing the current
progress in the field of trustworthy AI and the challenges associated with
its development. Based on this motivation, the objectives and the resulting
approaches are presented. Furthermore, the research contributions are
presented. This summarizes the publications that already contain parts
of this dissertation, as well as the related research projects.

Chapter 2: Foundations. This chapter introduces the basic aspects of
developing AI systems. Initially, an introduction to the technical concepts
of AI and ML is provided, followed by an overview of AL and its
associated foundations. This includes both AL scenarios and a review of
established strategies for querying samples, which are an integral part of
the methodology. The chapter then delves into the field of trustworthy
AI, focusing on the technologically relevant concepts for this dissertation,
such as IML methods. The chapter closes with a brief overview of the
fundamentals of SE pertinent to the development of AI systems.

Part II: Development in Active Learning Projects

A Process Perspective

Chapter 3: Active Learning Development Life Cycle. This chapter
presents the proposal of a development life cycle model for AL projects,
which is based on the principles of traditional process models and the
agile concepts of DataOps, MLOps, and DevOps and combines them.
The aim is to synchronize the established practices of the individual
phases, iterations, and their relationships to develop AL projects.

Chapter 4: Engineering Methodology. In this chapter, the development
life cycle model for AL projects from Chapter 3 is taken up and translated
into a methodology that enables interdisciplinary teams to synchronize
the implementation tasks which are performed in the individual phases
and iterations of the AL project. To this end, practicable guidelines are
presented to enable engineering teams to overcome the challenges that
arise during implementation (Objective 1). The concepts presented are
then evaluated in a three-stage process.

Part III. Design of Active Learning Projects

A System Perspective

Chapter 5: Framework Design Approach. This chapter introduces
LIFEDATA, an open-source framework that can be used for the develop-
ment of AL projects. It addresses Objective 2 by providing developers
with a tool that can be used as a starting aid in realizing AL projects,
whereby the implemented concepts promote traceability.
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Chapter 6: Use Cases & Evaluation. The framework described in
Chapter 5 is applied in two use cases in Chapter 6, which serve to
evaluate the implemented concepts. While simulations are carried out in
skin image analysis, the use case of ECG signal classification depicts a
real scenario with human-in-the-loop.

Part IV. Interpretable Machine Learning

An Integration Approach

Chapter 7: Domain Specific Model Interpretations. Part IV of this
dissertation addresses the requirement of explainability of trustworthy
AI. To cover Objective 3, Chapter 7 presents a domain-specific approach
that was developed specifically for the use case of skin image analysis.
Here, a human-understandable approach for classification of skin leasons
is combined with an ML model interpreation algorithm. This approach
is then presented and analyzed using selected examples.

Chapter 8: Stakeholder-orientated Model Interpretations. This chap-
ter introduces the XAI-Compass, a framework that can be used to consider
the different perspectives on model interpretations in an AI system. For
this purpose, conceptual solutions are presented on how the different
touchpoints can be technically implemented, which are concretized using
the ECG signal classification use case. Furthermore, three studies will be
carried out.

Part V. Conclusion and Outlook

Chapter 9: Conclusion and Outlook. The final chapter of this disser-
tation provides a summary of all the concepts and results discussed
throughout. In this chapter, the objectives defined at the outset of the
thesis are recapitulated. Additionally, the results are critically reflected
upon to ascertain their scientific and practical significance. Furthermore,
the chapter offers an outlook on potential future research directions
inspired by the findings of this thesis.



1.5 Scientific Participation 13

1.5 Scientific Participation

While working on this dissertation, participation in various projects
and research associations took place. These collaborations provided
insights into the practical applications and interdisciplinary implications
of the research related to this dissertation. In addition to the project
collaborations, this section discusses supervised theses and published
papers directly associated with this dissertation.

1.5.1 Research Projects

The following section provides a concise overview of research projects
and their themes, elucidating the overarching objectives related to this
dissertation. In addition to presenting the projects, a separate focus is
placed on the author’s personal contributions to each project.

Life Sciences Improved by a Framework for Efficient Data Annotation

Through Active Learning (LIFEDATA)

Summary: Over recent years, the surge in medical digitization has
amassed a wealth of data. A significant portion of this data aids in
diagnosing diseases. Using existing annotated data, ML methods can be
used to train models that make it possible to make predictions on new
data. These technologies are aimed at applications such as the use of AI-
based clinical decision support systems. Nevertheless, making accurate
predictions, especially using deep learning (DL) models, necessitates a
substantial foundation of annotated data that adequately captures even
rare diagnoses. The procurement of such a dataset is either resource-
intensive or leads to underutilized extant data.

In response to this challenge, an open-source framework was developed
within the LIFEDATA project. The eponymous framework melds AL
methodologies with Deep Neural Networks. Its sophisticated design
autonomously identifies and prioritizes high-value data points, such
as rare diagnoses, for expert annotation. This streamlined approach
promotes efficient ML model training. Through the integration of semi-
supervised learning in combination with AL, a significant portion of
annotations can be generated with minimal manual intervention.

The collaborative project, spanning 3.5 years, was funded by the German
Federal Ministry of Education and Research (BMBF)1. Collaborators 1: Reference number 031L9196B
included the University of Augsburg, the GS Elektromedizinische Geräte
G. Stemple GmbH, Kaufering (Corpuls), and the German Heart Center
of the Technical University of Munich. Through the lens of two distinct
Life Sciences case studies – skin image analysis and the classification
of ECG signals – the initiative evaluated the framework’s versatility
and applicability across various data challenges. Another key objective
was to integrate algorithms that provide the interpretation of model
classifications, ensuring the iterative ML model decisions are transparent
and explainable.
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Personal Contribution: The project followed a biphasic structure. Dur-
ing the initial phase, the open-source framework was developed and
refined based on a previously annotated dataset. During this stage, the
foundational architecture was established, and primary functionalities
were implemented.

This foundational work paved the way for the integration of the secondary
use case in the subsequent phase of the project. Contributions spanned
from implementing core functionalities of the primary framework to
actively participating in the setup of complex ML pipelines across both
use cases. In addition to hands-on engagement with the core framework
and ML pipelines, a significant emphasis was placed on conceptualizing
and integrating features for semi-supervised ML. Additionally, various
algorithms for model interpretation were developed and applied, catering
to diverse data types and model architectures.

Post-development, there was participation in the deployment of the appli-
cation. Involvement extended to the technical realization, with primary
responsibility being attributed to the long-term provision and optimiza-
tion of all requisite components and their underlying infrastructure.
Another major contribution was accompanying the conceptualization
and technical execution of multi-annotator functionalities. This entailed
collaborative implementation as well as planning and scheduling exper-
iments, as well as the realization of a dashboard to analyze the entire
project.

Dissemination: At the end of the second project phase, the open
sourcing process for the relevant software components was prepared
and carried out. In addition, the following talks were held:

▶ Trustworthy AI in medicine - from efficient data annotation

to intuitive model explanation. The talk, originally titled „Ver-
trauenswürdige KI in der Medizin - von effizienter Datenannotation
bis intuitiver Modellerklärung.“, co-presented with Bernhard Bauer
and Marius Nann, encompassed an interactive workshop where
the project was introduced to a professional audience at the con-
ference KI-Fabrigk @WIKOIN22 in Ingolstadt.2 The objective was2: Relevant passages are found in this

dissertation in Part II, Chapter 6, and in
Part IV, Chapter 8

to educate about trustworthy AI by demonstrating the concepts of
transparency and model interpretation implemented in LIFEDATA.
During a live poll, workshop participants were able to vote on their
level of trust in the developed model and the training data used.

▶ LIFEDATA - A Framework for Traceable Active Learning Projects.

A curated selection of scientific contributions was showcased at
the First Bavarian International Conference on AI (AI.BAY 2023),
which took place on February 23 and 24, 2023, at the „Forum der
Zukunft“of the German Museum in Munich. As part of a poster
session, the LIFEDATA project was presented3, highlighting the3: Relevant passages are found in this

dissertation in Part III, Chapter 5 and 6 innovation of the framework, its technical implementation, and the
results of the two use cases.
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Center for Responsible AI Technologies

Summary: Founded in 2022 by the Technical University of Munich,
the University of Augsburg, and the Munich School of Philosophy,
the excellence Center for Responsible AI Technologies aims to explore
integrating philosophical, ethical, and social scientific perspectives into AI
research. The primary objective is to contribute to the socially responsible
development of AI technologies and to act as an innovation accelerator
on three levels:

First, a focus is placed on research and methodological development.
This includes concepts for practically integrating AI applications such
as medicine, the future of work, mobility, and climate. It encompasses a
holistic view of inter- and transdisciplinary research that deals with AI’s
philosophical-ethical and societal aspects. Second, the center focuses on
educating and training the next generation of professionals and decision-
makers. By delving into AI’s ethical and societal challenges, it aims to
enhance future experts’ awareness and technical skills. Third, importance
is placed on stimulating societal discourse and outreach. This involves
including diverse societal perspectives and groups to further promote
the acceptance and understanding of AI within society.(Hochschule für
Philosophie München / Philosophische Fakultät 2022)

Personal Contribution: The participation in the Center for Responsible
AI, which is related to this thesis, mainly consisted of knowledge transfer
in the form of talks and workshops.

AI Production Network

Summary: The AI Production Network was initiated to future-proof
the economy through advanced research in the field of AI for the pro-
duction sector. The Production Network is dedicated to researching AI
solutions that are tested on production facilities on an industrial scale.
Within the network, organizational units have been established that
focus on education, further training, and the development of a shared
research infrastructure. Through collaborations with academic partners
and small and medium-sized enterprises as well as large industrial
partners, the AI Production Network sets research priorities in various
areas. These include resilient material technologies and value creation
networks, generative design methods and material development, as well
as adaptive manufacturing processes and closed-loop production. Fur-
thermore, intensive research is conducted on digital twins for products,
materials, processes, and production networks. Another area of focus is
human-centered production technologies and self-organizing process
route planning, aiming to optimize human-machine interaction and the
efficiency of production processes.

Personal Contribution: Within the AI production network, parts of
concepts from this dissertation could be integrated into project deliver-
ables. Concrete participation included the development of new ideas
and the supplementation of existing concepts. Based on expertise in
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AL, MLOps, and XAI, results contributed to several projects’ evolution.
Further engagement took place in the context of workshops, especially
intending to transfer the know-how in the previously mentioned areas to
future scientists.

1.5.2 Supervised Theses

During the elaboration of this research, several Bachelor’s and Master’s
theses were supervised, for which the author of this dissertation devel-
oped the topics and conceptual decisions. These studies contributed to
broadening the scope and depth of this dissertation. A selection of these
works served as independent research projects and as components that
complement the overarching narrative of this dissertation.

The following section provides a brief overview of the relevant theses
and places them in the context of this dissertation.

Reduction of Annotation Effort - A Comparison of Active Learning

Frameworks

(Albrecht 2020)

Summary: In this thesis, with its original title „Reduktion des Annota-
tionsaufwands - Ein Vergleich von Active Learning Frameworks“, various AL
frameworks are introduced and systematically compared. The reposito-
ries of open-source projects of different AL tools were evaluated to assess
the licensing, support, and usability. To measure its performance, AL
simulations were conducted, and benchmark tests were implemented.
Furthermore, the frameworks were evaluated concerning their flexibility
and extensibility, and the results were analyzed using a utility value
analysis.
Related sections in thesis: Part III, Chapter 5

Bias Detection using Interpretable Machine Learning Methods

(Figel 2021)

Summary: This thesis addresses the growing awareness and accompany-
ing concerns regarding the potential bias of ML models. It outlines the
field of IML, advocates for using these methods to make models more
transparent, and investigates how they can contribute to uncovering bias.
To this end, experiments are initiated in which a deliberate synthetic bias
is introduced into the analyzed data. Subsequently, using IML techniques,
it is evaluated how effectively they are suited for bias detection.
Related sections in thesis: Part IV, Chapter 7

Evaluating Explainability in the Context of Active Learning

(Elia 2021)

Summary: This Master’s thesis combines the methodologies AL and
IML. The investigation focuses on the dynamics that underlie the model
and their consequential effects on the output of the model interpreta-
tions. Specifically, domain-specific explanations for a skin image analysis
classification model are generated in an AL simulation and evaluated
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according to the requirements of a reasonable explanation accuracy, de-
gree of importance, novelty and representativeness, stability, consistency,
certainty, and fidelity.
Related sections in thesis: Part IV, Chapter 7

Model Explanations as Quality Gate in Machine Learning Pipelines

(Bergmair 2022)

Summary: This Master’s thesis lies at the intersection of IML methods
and MLOps and presents the conception of an automated quality check of
an ML model based on the results of an IML method. Besides computing
performance metrics to evaluate the predictive performance of a trained
ML model on a test dataset, an additional step aims to measure the
quality of the prediction in terms of interpretability. By ensuring that
the model makes valid statements before it is released, this additional
step is intended to support an automated release process. Specifically, an
ML pipeline was implemented for an image classification task, where
a separate stage uses the trained model and validates the generated
predictions by applying interpretation methods and calculating a quality
measure.
Related sections in thesis: Part III, Chapter 5 and 6

Interpretable Machine Learning with ECG Data

(Trautwein 2022)

Summary: The application of different interpretation methods to a 12-
lead ECG classifier is implemented and investigated in this thesis. The
goal is to adapt the standard implementations to the domain-specific
requirements of the related use case. For this purpose, on the one hand,
different interpretation techniques and, on the other hand, their output
with different representation forms were investigated. In this context,
an initial concept for the visualization of the model explanations was
developed, and the first visual details were investigated.
Related sections in thesis: Part IV, Chapter 8

Evaluating Explainable AI Algorithms Using Scenario-Based Focus

Groups

(Lang 2023)

Summary: This Master’s thesis delves into the multifaceted perspectives
of stakeholders involved in the development of AI systems. Employing
focus group discussions, a well-established methodology in social science,
were used to develop a scenario related to the practical application of an
AI-enhanced ECG classifier This scenario was then critically discussed
within two specialized expert groups. The feedback and insights derived
from these discussions were meticulously analyzed to comprehend the
facets related to the trustworthiness of the AI system.
Related sections in thesis: Part IV, Chapter 8
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MLOps in Academia: From Concept to Implementation

(Weigell 2024)

Summary: This Master’s thesis investigates the integration of MLOps
into academic ML research, a practice that is widely established in the
industry but still scarcely adopted in the academic environment. The
objective is to develop the Academic MLOps Framework, which is created
by adapting MLOps principles to the academic context, based on an
interview study and a multivocal literature review. This framework
comprises the Academic MLOps Platform, realized through a reference
implementation using a Kubernetes cluster and open-source tools as
well as a tailored workflow. The combination of these components aims
to facilitate the application of MLOps in academic research. This work
contributes to bridging the methodological gap between the industry
and academic ML research by successfully integrating MLOps principles
into the academic research process.
Related sections in thesis: Part II, Chapter 4 and Part II, Chapter 6

1.5.3 Publications

A central part of the scientific work within the context of this dissertation
is the publications directly related to the research findings and insights of
this thesis. The following Section introduces publications that underwent
a peer-review process - a procedure ensuring that the presented concepts,
implementations, results, and conclusions withstand critical examination
by experts in the respective field and meet high academic standards.

Passages and findings from the author that were previously published
and are utilized in this thesis are not additionally cited.

Towards Domain-Specific Explainable AI: Model Interpretation of a

Skin Image Classifier using a Human Approach

Reference:

(Stieler et al. 2021)

Authors: Fabian Stieler, Fabian Rabe and Bernhard Bauer

Conference: IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR) Workshops, June 19-25, 2021, Nashville, TN, USA

Abstract: ML models have started to outperform medical experts in
some classification tasks. Meanwhile, the question of how these classi-
fiers produce certain results is attracting increasing research attention.
Current interpretation methods provide a good starting point in inves-
tigating such questions, but they still massively lack the relation to the
problem domain. In this work, we present how explanations of an AI sys-
tem for skin image analysis can be made more domain-specific. We apply
the synthesis of Local Interpretable Model-agnostic Explanations with
the ABCD-rule, a diagnostic approach of dermatologists, and present
the results using a Deep Neural Network based skin image classifier.

Personal Contribution: I designed and implemented the methodol-
ogy, designed the experiments, formulated the hypotheses and analysed
the results. I researched and wrote the main parts of the paper. I presented
the paper at the CVPR2021 workshop.
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Text passages are included in this thesis: Part IV, Chapter 7

Git Workflow for Active Learning - A Development Methodology

Proposal for Data-Centric AI Projects

Reference:

(Stieler et al. 2023a)

Authors: Fabian Stieler and Bernhard Bauer

Conference: 18th International Conference on Evaluation of Novel Ap-
proaches to Software Engineering (ENASE), April 24-25, 2023, Prague,
Czech Republic

Abstract: As soon as AI projects grow from small feasibility studies
to mature projects, developers and data scientists face new challenges,
such as collaboration with other developers, versioning data, or traceabil-
ity of model metrics and other resulting artifacts. This paper suggests
a data-centric AI project with an AL loop from a developer perspec-
tive and presents „Git Workflow for AL “: A methodology proposal to
guide teams on how to structure a project and solve implementation
challenges. We introduce principles for data, code, as well as automa-
tion, and present a new branching workflow. The evaluation shows that
the proposed method is an enabler for fulfilling established best practices.

Personal Contribution: I researched and wrote the main parts of the pa-
per. This concerns both the initially submitted version and the revision of
the approved version. Furthermore, I presented the paper at ENASE2023.

Text passages are included in this thesis: Part II, Chapter 3 and 4

Enhancing Collaboration and Agility in Data-Centric AI Projects
Reference:

(Stieler et al. 2024)

Authors: Fabian Stieler and Bernhard Bauer

Book: Evaluation of Novel Approaches to Software Engineering, 18th
International Conference ENASE, April 24-25, 2023, Revised Selected
Papers, in Springer Nature: Communications in Computer and Informa-
tion Science

Abstract: Usually, mature Artificial Intelligence (AI) projects are de-
veloped by a team of various members, such as data engineers, data
scientists, software engineers and machine learning (ML) engineers.
They often pursue highly heterogeneous approaches, leading to new
challenges in collaboration, particularly regarding software quality, data
versioning and the traceability of model metrics and other resulting
artifacts. These challenges are further intensified when AI projects rely
on dynamic datasets, introducing an entirely new dimension that teams
must deal with. Adopting principles from the machine learning opera-
tions (MLOps) paradigm becomes essential in this context. To go beyond
existing process models and develop actionable guidelines, our work
introduces a Git workflow for AI projects. We present basic instructions



20 1 Introduction

for data and code while outlining a minimal infrastructure setup. Build-
ing upon abstract concepts, we delve into concrete, actionable steps by
examining the proposed branching workflow. Through a case study, we
apply the development methodology to two use cases and demonstrate
that the principles and approaches positively impact project outcomes.

Personal Contribution: I researched and wrote the main parts of the
paper. This concerns both the initially submitted version and the revision
of the approved version.

Text passages are included in this thesis: Part II, Chapter 3 and 4

LIFEDATA - A Framework for Traceable Active Learning Projects
Reference:

(Stieler et al. 2023b)

Authors: Fabian Stieler, Miriam Elia, Benjamin Weigell, Bernhard Bauer,
Peter Kienle, Anton Roth, Gregor Müllegger, Marius Nann and Sarah
Dopfer

Conference: 2023 IEEE 31st International Requirements Engineering
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Integration Framework (STXIF), a novel approach that aims to seam-
lessly integrate technical advances with social science methodologies
for a nuanced understanding of Explainable Artificial Intelligence (XAI)
tailored to specific use cases. We begin with an overview of related work
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is on the presentation of the STXIF, which includes the XAI-Compass
and socioscientific analysis of stakeholder perspectives. The perspectives
of these stakeholders, classified by the XAI-Compass as Model Breakers,
Model Builders, and Model Consumers, are investigated using qualitative
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sumers (medical professionals) and Model Builders (developers) in a real
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approach. The practical implications extend to the concrete develop-
ment and implementation of XAI in real-world applications, in line with
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practical applications establishes a foundational framework for future
interdisciplinary research and application in the evolving landscape of
human-computer interaction (HCI).
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In this chapter, fundamental concepts from various disciplines are in-
troduced, which are significant for the subsequent chapters of this
dissertation. Given the thematic diversity, this chapter does not claim
to provide an exhaustive summary of all fundamentals. Instead, the
presentation specifically focuses on those aspects essential for a thorough
understanding of the following chapters.

Figure 2.1 provides a schematic overview of the connections between dif-
ferent research areas and their subfields, as well as potential intersections.
Furthermore, this visualization clarifies which fundamental concepts
become relevant in various parts of the dissertation.
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Figure 2.1: Research fields and their rele-
vance to the thesis’ parts

The thematic framework of this work is initially established in Section 2.1
with a brief introduction to the field of ML and deepens the technical
details of the AL methodology. Building on this, Section 2.2 primar-
ily explains the principles and key requirements associated with the
development of trustworthy AI. In order to do justice to the focus on
transparency and explainability in processes and systems, Section 2.3
provides a brief overview of the field of XAI and IML, while, finally in
Section 2.4 the basics of SE for AI systems relevant to this thesis will be
presented.
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2.1 Machine Learning

The field of ML, which is significantly shaped by the disciplines of
AI, computer science, and particularly statistics, primarily focuses on
developing algorithms that enable computers to learn from data and
make predictions or decisions based on that data. Murphy 2012 defines
ML as

„ [...] a set of methods that can automatically detect patterns in data, and
then use the uncovered patterns to predict future data, or to perform other
kinds of decision making under uncertainty (such as planning how to collect
more data!).“

ML deals with designing and implementing systems that can learn
from experiences (the data) to solve a problem rather than relying on
programming with explicit individual instructions.

James et al. 2013 describes a system generically through the simplified
expression

𝑦 = 𝑓 (𝑥) + 𝜖 (2.1)

where 𝑦 represents the quantitative response of the system, the dependent
variable, 𝑥 represents the input data (independent variables), and 𝜖
denotes the error term. This error term captures the random deviations
from the fixed but unknown function 𝑓 , due to model uncertainties and
unaccounted-for variables, and tends to average to zero. ML methods
are used to generate a model that approximates 𝑓 , thereby producing
predictions

�̂� = 𝑓 (𝑥) (2.2)

The accuracy of these predictions �̂� for 𝑦 is influenced by both reducible
and irreducible errors. The irreducible error remains due to factors
such as unobserved variables and inherent variability, which cannot be
predicted or controlled by the model. The goal of ML is to minimize the
reducible error by applying appropriate learning techniques to estimate
𝑓 .(James et al. 2013)

2.1.1 Learning Types

A typical differentiation of ML methods arises from the type of feedback
available during the algorithm’s learning phase. This feedback influences
the strategy with which the function 𝑓 is approximated and optimized,
leading to a classification into three basic forms of learning types:

In 1) Reinforcement learning, learning does not occur directly from
datasets; instead, various strategies are tried in a dynamic environment,
where the trained model learns from the outcomes of the actions taken.

2) Unsupervised learning is applied when there are no corresponding
responses 𝑦𝑖 for the observations 𝑖 = 1..𝑛 in the input vector 𝑥𝑖 within
the training data. In this case, the goal is to discover structures or patterns
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within the data itself, which is useful for tasks such as clustering or
dimensionality reduction.(Murphy 2012)

While reinforcement learning is not the subject of this thesis and unsu-
pervised learning plays a subordinate role, the third and most common
form of learning is crucial for AL.

In 3) Supervised learning, the fundamental goal is to derive a function
𝑓 that maps an input vector 𝑥 to an output 𝑦, utilizing a labeled dataset
𝐷𝐿 = (𝑥𝑖 , 𝑦𝑖)𝑁𝑖=1, where𝑁 denotes the number of training examples. Each
element of the dataset comprises an input feature vector 𝑥𝑖 , which can
vary in complexity from simple numerical values, such as height and
weight, to structured objects like images, sentences, graphs, or signals.
The corresponding output 𝑦𝑖 can assume various forms, including ordinal
or categorical labels, ranging from simple binary classifications to more
complex multi-class scenarios.(Murphy 2012)

In essence, supervised learning algorithms strive to learn this mapping
function from the training data provided, enabling the model (within an
AI system) to predict outputs for new, unseen inputs. The approximation
function, as outlined in (2.2), is employed to predict inputs 𝑥 that were
not included in the training set 𝐷𝐿.(Murphy 2012)

Supervised learning is primarily divided into two types of tasks, depend-
ing on the nature of the output variable 𝑦. James et al. 2013 describe these
as follows:

▶ Regression: Here, the output variable 𝑦 is continuous, and the
method models the relationship between the input data and a
continuous outcome. Typical applications include estimating real
estate prices or predicting temperatures in weather forecasting.

▶ Classification: Conversely, classification addresses tasks where the
output variable 𝑦 is categorical. The model must determine the
appropriate category or class for the data based on the given input
data 𝑥. These categories can be, for example, medical diagnoses
such as explored in the use cases detailed in Chapter 6.

The ability to achieve good results on new, unseen data is referred to as
generalization. A supervised learning algorithm assesses its performance
using a loss function that measures the errors between the probabilistic
output �̂� and the actual response 𝑦. The central challenge in supervised
learning is to optimize the models’ predictive performance by minimizing
the discrepancy between �̂� and 𝑦. This is achieved by minimizing the
loss function L(𝑦, �̂�), which quantifies the errors for each training
example.(James et al. 2013)

We continue and focus on the classification task type as it is relevant to
this thesis. When the output 𝑦 is categorical, a specific form of the loss
function, known as Categorical Cross Entropy, is particularly pertinent.
It is suitable when multiple classes exist and 𝑓 (𝑥) estimates a probability
for each class:

L(𝑦, �̂�) = −
𝑁∑
𝑛=1

𝐶∑
𝑐=1

𝑦𝑛𝑐 log(�̂�𝑛𝑐), (2.3)

where �̂�𝑛𝑐 , is an indicator that specifies whether observation 𝑛 belongs
to class 𝑐, and 𝐶 is the number of classes.(James et al. 2013)
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2.1.2 Artificial Neural Network

Among the various methods for implementing 𝑓 () within supervised
learning, such as regression models, support vector machines, and
decision trees, which differ in their analytical as well as computational
properties, artificial neural networks have gained prominence in recent
years due to their flexible architecture and ability to handle non-linear
relationships. Given their relevance to this thesis, the following will
discuss artificial neural networks in more detail.

Basic Structure and Concepts

Initially inspired by biological systems, artificial neural networks have
proven particularly effective in recent years due to their flexible archi-
tecture and ability to process non-linear relationships. Biological neural
networks consist of interconnected cells that process and communicate
signals with each other.(Bishop 2006; Charniak 2018)

An artificial neural network adapts this concept and essentially consists
of connected nodes and artificial neurons. These are organized into an
input layer, one or more hidden layers, and an output layer, as illustrated
in Figure 2.2. Each neuron in a layer receives inputs, applies a weighted
sum followed by a non-linear activation function, and forwards the result
to the next layer. To elucidate the functioning, we shall commence with
the basic form of an artificial neural network:

The Perceptron. The simplest component of an artificial neural network
is the perceptron, a single-layer neural network. It consists of a vector of
weights 𝑤 = [𝑤1..𝑤𝑚], one for each input feature 𝑥𝑖 , and a distinguished
weight 𝑏, called bias. Let Φ = {𝑤 ∪ 𝑏} be the parameters of a perceptron
with 𝜙𝑖 as 𝑖th parameter, a perceptron receives inputs and calculates the
following function:

𝑓Φ(𝑥) =
{

1 if 𝑏 +∑𝑙
𝑖=1 𝑥𝑖𝑤𝑖 > 0

0 otherwise
(2.4)

Rephrased, the perceptron’s operation involves taking each input, multi-
plying it by its corresponding weight, and adding a bias term to the sum.
If the resulting value exceeds zero, the output is set to 1; otherwise, it
is set to 0. Using the standard notation, where the dot product of two
vectors of length 𝑙 is defined as

𝑥 · 𝑦 =

𝑙∑
𝑖=1

𝑥𝑖𝑦𝑖 (2.5)

lead to an expression for the perceptron’s calculation as follows:

𝑓Φ(𝑥) =
{

1 if 𝑏 + 𝑤 · 𝑥 > 0
0 otherwise

(2.6)



2.1 Machine Learning 27

The perceptron can classify linearly separable data. However, its capac-
ity to solve more complex problems is limited by its linear decision
boundary.(Charniak 2018)

The Neuron. Building upon the perceptron, a single neuron in a more
sophisticated network can be described by a similar weighted sum and
activation function. This neuron can be seen as a mathematical model
that processes input signals through a series of weights and biases. The
neuron’s output is a function of the weighted sum of its inputs, passed
through a non-linear activation function 𝜎:

�̂� = 𝜎

(∑
𝑗

𝑤 𝑗𝑥 𝑗 + 𝑏
)

(2.7)

The adjustment of the weights 𝑤 and the bias 𝑏 in an artificial neuron
occurs through a learning process in which the parameters are altered to
minimize the error function L(𝑦, �̂�). This is done using an optimization
method, like gradient descent, which incrementally adjusts the param-
eters in the direction of the steepest descent of the error gradient. The
gradient of the error is calculated as follows:

∇L=
𝜕L

𝜕𝑤
, ∇L𝑏 =

𝜕L

𝜕𝑏
(2.8)

Then, the weights and biases are updated by:

𝑤 = 𝑤 − 𝜂∇L, 𝑏 = 𝑏 − 𝜂∇L𝑏 (2.9)

where 𝜂 is the learning rate, a real number that determines the extent
to which a parameter is adjusted during a given update. The gradient
indicates how significantly a small change in each weight and bias affects
the error. This process is iteratively repeated for many training examples
to systematically improve the model.(Ruder 2017)

An advanced form of gradient descent is Adaptive Moment Estimation
(Adam), proposed by Kingma et al. 2015, which utilizes adaptive learning
rates for different parameters. Adam combines the advantages of two
other extensions of gradient descent: a parameter-wise adaptation of the
learning rate and an adaptive adjustment of the learning rates based on
the average first and second momentum of the gradient. The update
rules for Adam are given by:

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)∇L, 𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2)(∇L)2 (2.10)

�̂�𝑡 =
𝑚𝑡

1 − 𝛽𝑡1
, �̂�𝑡 =

𝑣𝑡

1 − 𝛽𝑡2
(2.11)

𝑤 = 𝑤 − 𝜂 �̂�𝑡√
�̂�𝑡 + 𝜖

(2.12)
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Here, 𝑚𝑡 and 𝑣𝑡 are estimates of the first and second momentum of the
gradient, 𝛽1 and 𝛽2 are decay factors for these momentums, and 𝜖 is a
minimal value to prevent division by zero.(Kingma et al. 2015)

Building on the concept of Adam, Nesterov-accelerated Adaptive Moment
Estimation (NAdam), proposed by Dozat 2015, incorporates Nesterov
momentum into the Adam optimizer framework. NAdam enhances the
traditional momentum method by calculating a look-ahead update for
the parameters, which anticipates future gradients based on current
momentum. This is particularly effective for reducing the oscillations in
updates and speeding up convergence. While we retain the first update
step of Adam (2.10), the adjustment of the first and second momentum is
given by:

�̂�𝑡 =
𝛽1𝑚𝑡

1 − 𝛽𝑡1
, �̂�𝑡 =

𝑣𝑡

1 − 𝛽𝑡2
(2.13)

as well as the parameter update incorporating Nesterov momentum:

𝑤 = 𝑤 − 𝜂
�̂�𝑡 + (1−𝛽1)∇L

1−𝛽𝑡1√
�̂�𝑡 + 𝜖

(2.14)

whereby the parameter update steps are performed based on the gradient,
and a refined estimate of future gradients is taken into account.(Dozat
2015)

The activation function 𝜎 used in the neuron plays a crucial role, as
it introduces non-linearity, enabling the network to model complex
functions and learn non-linear decision boundaries. Prominent activation
functions are the Sigmoid and Rectified Linear Unit (ReLU), The Sigmoid
function, defined by

𝜎(𝑥) = 1
1 + 𝑒−𝑥 (2.15)

is particularly effective for binary classifications due to its ability to
map values into a (0, 1) range. On the other hand, the ReLU function,
represented by

𝜎(𝑥) = max(0, 𝑥) (2.16)

is frequently used in deeper networks for its computational efficiency
and effectiveness in promoting sparse activations, which can enhance
the learning process in complex network architectures.(Goodfellow et al.
2016)

Multilayer Neural Networks

Multilayer neural networks, the fundamental concept of DL, consist
of multiple layers of neurons. Figure 2.2 illustrates such a structure,
where the first layer is referred to as the input layer and the last layer as
the output layer. All intervening layers are called hidden layers. These
structures enable the networks to capture complex patterns in the data by
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Input Layer Output LayerHidden Layers

Fully Connected

Reccurend Connected

Figure 2.2: Schematic representation of a
multi-layer neural network, consisting of
an input layer, two hidden layers, and an
output layer. The neurons within these
layers are depicted as circles. They are
interconnected by gray lines, illustrating
a fully connected structure where each
neuron in one layer is connected to all
neurons in the subsequent layer. The red
arrows highlight recurrent connections
between some neurons in the hidden
layers, representing a special case where
the neurons or layers are able to retain
information by maintaining a state.

using more than one hidden layer, allowing each layer to incrementally
extract higher-value features from the inputs and thus represent the
information. The number of layers and neurons and the number and
characteristics of the connections between them can vary, which in this
context describes the model architecture.

The simplest form are feedforward networks, suitable for illustrating
the basic concept of multilayer neural networks. The general mathe-
matical representation for a feedforward network involves a series of
transformations:

𝑧(𝑙+1) =𝑊 (𝑙)𝑎(𝑙) + 𝑏(𝑙) , 𝑎(𝑙+1) = 𝜎(𝑧(𝑙+1)) (2.17)

where 𝑧(𝑙+1) is the input to layer 𝑙 + 1,𝑊 (𝑙) represents the weight matrix
for layer 𝑙, 𝑏(𝑙) is the bias vector, 𝑎(𝑙) is the activation from the previous
layer (with 𝑎(0) = 𝑥 for input layer), and 𝜎, again, denotes the activation
function applied element-wise.(Goodfellow et al. 2016)

In contrast to feedforward networks, where information moves in only
one direction – from input nodes through hidden layers to output nodes
– Recurrent Neural Networks (RNN) have loops allowing information
to be persisted. An RNN processes sequences by maintaining a state
(memory) that captures information about what has been calculated so
far. The basic formulation of an RNN can be expressed as follows:

ℎ𝑡 = 𝜎(𝑊𝑥ℎ𝑥𝑡 +𝑊ℎℎℎ𝑡−1 + 𝑏ℎ), 𝑦𝑡 =𝑊ℎ𝑦ℎ𝑡 + 𝑏𝑦 (2.18)

where 𝑥𝑡 is the input at time 𝑡, ℎ𝑡 is the hidden state at time 𝑡,𝑊𝑥ℎ ,𝑊ℎℎ ,
and𝑊ℎ𝑦 are weights, and 𝑏ℎ and 𝑏𝑦 are biases.(Lipton et al. 2015)

This recurrent structure endows RNNs with the capacity to cultivate a
profound comprehension of sequences and their contextual frameworks,
distinguishing them from feedforward networks. Nevertheless, despite
their inherent capabilities, traditional RNNs frequently encounter diffi-
culties in sustaining long-term dependencies, a phenomenon exacerbated
by the vanishing gradient problem. In response to these challenges, Long
Short-Term Memory (LSTMs), conceptualized by Hochreiter et al. 1997,
introduce an enhanced architectural paradigm. Applied to an RNN,
LSTMs incorporate a sophisticated gating mechanism – encompassing
input, output, and forget gates – that meticulously regulates the flow of
information, thereby empowering the model to dynamically retain or
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Figure 2.3: Visual depiction of a convolu-
tional neural network. This multi-layered
model begins with an input layer, fol-
lowed by alternating convolutional lay-
ers with ReLU activation and pooling
layers for spatial reduction. The layers
extract features, represented by varied
depths in the „Feature Maps“. A flat-
tening layer converts these maps into a
one-dimensional vector, which feeds into
a fully connected network, culminating
in the output.
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expunge information across extended sequences, thus ensuring stability
and augmenting performance.

While RNNs excel in sequence prediction and handling time-series data,
Convolutional Neural Networks (CNNs), as illustrated in Figure 2.3,
are uniquely adept at processing spatial data. This specialization makes
CNNs indispensable for applications involving grid-like data structures,
such as images and videos, where preserving and interpreting spatial
relationships are crucial.

Convolution, a fundamental mathematical operation in CNNs, extracts
features from input data by applying filters or kernels. Following the
notation from Goodfellow et al. 2016, the convolution for a given input
function 𝑥(𝑡) and a kernel 𝑤(𝑡) is:

𝑠(𝑡) = (𝑥 ∗ 𝑤)(𝑡) =
∫

𝑥(𝑎)𝑤(𝑡 − 𝑎) 𝑑𝑎 (2.19)

In practical terms, especially in digital applications like image processing,
convolution involves sliding the kernel over the input, calculating the
dot product at each position. This process efficiently captures local
dependencies and patterns in the input data.

For a two-dimensional input, such as an image 𝐼, and a two-dimensional
kernel 𝐾, the discrete convolution is given by:

𝑆(𝑖 , 𝑗) =
∞∑

𝑚=−∞

∞∑
𝑛=−∞

𝐼(𝑚, 𝑛)𝐾(𝑖 − 𝑚, 𝑗 − 𝑛) (2.20)

This operation is applied repeatedly across the image, allowing the
network to build a complex hierarchy of features, from simple edges to
more abstract shapes and structures.(Goodfellow et al. 2016)

Each convolution layer is typically followed by a ReLU activation layer,
which introduces non-linearity, enhancing the network’s ability to learn
complex patterns. As shown in Figure 2.3, this is followed by pooling
layers, which reduce the spatial dimensions of the feature maps, thereby
decreasing computation and memory usage while still preserving essen-
tial features. These layers collectively form the feature learning phase of
a CNN, which culminates in a flatten layer that prepares the feature-rich
data for the final prediction phase, effectively translating the intricate
spatial hierarchies into outputs that the network can use for classification
or other tasks.(O’Shea et al. 2015)
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2.1.3 Active Learning

As described in Section 2.1.1, the training of ML models following the
principle of supervised learning requires large quantities of labeled
datasets (𝐷𝐿). Often, data are available in an unlabeled form (𝐷𝑈 ),
characterized by the absence of the label 𝑦𝑖 for a corresponding feature
vector of sample 𝑥𝑖 . Labeling this data can present various challenges,
particularly involving human annotation. For instance, rare specialized
expertise may be required, or the time and involvement of experts may
lead to high costs.(Tharwat et al. 2023)

AL represents a specialized subset of ML where the model actively
intervenes in the process of data selection to enhance its performance.
Unlike traditional approaches in supervised learning that ’passively’
receive a fully labeled dataset, AL strategically selects unlabeled data
points to be labeled. The most cited survey paper by Settles 2009 provides
a definition of AL according to which

„Active learning systems attempt to overcome the labeling bottleneck by
asking queries in the form of unlabeled instances to be labeled by an oracle
(e.g., a human annotator). In this way, the active learner aims to achieve high
accuracy using as few labeled instances as possible, thereby minimizing the
cost of obtaining labeled data.“

AL addresses the challenges of data labeling by selecting a small yet
targeted subset of unlabeled data for annotation, thus making the training
of ML models more effective. In addition to the primary goals of achieving
high accuracy and reducing labeling efforts, AL provides the framework
for implementing targeted search strategies for specific types of data or
information within a larger dataset (Tharwat et al. 2023). Ghai et al. 2021
summarize that beyond the original definition of AL focusing on instance
labels, the method has been used to query feedback on features, for
example, to determine whether the presence of a feature is an indicator
of the target concept (Druck et al. 2009; Raghavan et al. 2006; Settles 2011),
an active class selection (Lomasky et al. 2007), or even active feature
acquisition (Zheng et al. 2002).

Scenarios

AL represents an interactive training paradigm in which Settles 2009
delineates three distinct problem scenarios wherein the learner (the
model) is permitted to pose queries. Figure 2.4 delineates the distinctions
among these three principal scenarios, predicated on the assumption
that the queries are unlabeled instances to be labeled by an oracle.

Membership Query Synthesis. Membership Query Synthesis, first
investigated by Angluin 1988, allows the model to generate synthetic
instances in the input space independently and subsequently request
their labeling. This approach is particularly suitable for finite problem
domains, as it does not require the processing of unlabeled data and
enables the learner to generate query instances quickly. The advantage of
this method lies in scenarios where data can be easily synthesized. Thus,
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Figure 2.4: Three different Active learn-
ing scenarios based on Settles 2009
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promising results have been shown in non-human applications, such as
the „robotic scientist“ described in King et al. 2004 and King et al. 2009,
which conducts independent biological experiments, demonstrating the
potential of this approach in technical and scientific domains.(Settles
2009)

Despite the effectiveness of this approach, there are limitations, particu-
larly the generation of instances whose labeling poses a challenge in itself.
For example, in the work of Lang et al. 1992, the synthetic generation
of images for the classification of handwritten characters resulted in
many images that contained no recognizable symbols and were thus
difficult for human annotators to interpret. This aspect reveals the limited
applicability of the Membership Query Synthesis approach, especially
when the oracle is a human annotator faced with artificially generated
instances that lack natural semantic meaning.(Settles 2009)

Stream-Based Selective Sampling. Stream-based selective sampling,
introduced by Atlas et al. 1989 and Cohn et al. 1994, operates under
the assumption that acquiring an unlabeled instance is cost-effective,
thus allowing the instance to be sampled from the actual distribution.
Subsequently, the learner evaluates each sample to decide whether to
request a label. This process, often referred to as sequential or stream-
based AL, involves assessing each individual instance from the data
stream and deciding whether to label or discard it. The uniqueness of
stream-based sampling lies in its reliance on the natural distribution
of data, ensuring that even when the distribution is non-uniform or
unknown, the generated queries remain relevant and grounded in real
scenarios.(Settles 2009)

The relevance and utility of stream-based selective sampling have been
confirmed through various applications. In several studies (e.g., Thomp-
son et al. 1999; Moskovitch et al. 2007), the scenario of selective sampling
has been considered as a type of pool-based scenario, which is described
subsequently. Both scenarios share the commonality of deriving in-
stances from a real data distribution, with the main difference being
that in selective sampling, the data are sampled sequentially, while in
pool-based sampling, a large set of data points are sampled (Tharwat
et al. 2023).(Settles 2009)
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Pool-Based Sampling. Pool-based sampling, motivated by the frequent
presence of large volumes of unlabeled data in real-world problems, is
the most prominent scenario in AL. Introduced by Lewis et al. 1994b, this
scenario assumes the existence of a small set of labeled data 𝐷𝐿 and a
large pool of unlabeled data 𝐷𝑈 . By employing a query strategy (QS),
the selection of data points to be labeled from the pool 𝐷𝑈 is assessed
and presented to the oracle for labeling. After the oracle labels these
data points, the newly labeled data are incorporated into 𝐷𝐿, the training
dataset, and used for training the model.(Settles 2009)

Labeled
(training-)data

Human
annotator

Machine learning
model

Unlabeled
data

(Re-)training

Query

label propagation

Semi-Supervised
Learning

Figure 2.5: Pool-based Active learning
cycle based on Settles 2009

As illustrated in Figure 2.5, the essence of this scenario lies in its cyclical
process, where many or all instances in the pool are iteratively evaluated.
This procedure continues until a predefined termination condition is
met, such as exhausting a specific query budget or determining that
no significant improvements can be made to the model’s performance.
The iterative nature of evaluating and expanding the training dataset
underpins the dynamic learning process in pool-based sampling, making
it particularly effective for refining model performance in data-centric
environments.(Tharwat et al. 2023)

While in pool-based sampling AL scenarios, human annotators may be
queried for labels, semi-supervised learning techniques (Yarowsky 1995)
provide an alternative potential for effective data labeling. As depicted
in Figure 2.5, the unlabeled data are used to further enhance the model
trained from the labeled data 𝐷𝐿. Here, the learner identifies unlabeled
data points from 𝐷𝑈 that are likely to be correctly predicted. These
instances are then assigned a pseudo-label and added to 𝐷𝐿, where they
are available in the next training iteration.(Zhu 2008)

Query Strategies

In Section 2.1.1, the concept of supervised learning was introduced,
wherein a loss function L is used to reduce the training error with the
aim of approximating a function 𝑓 as accurately as possible. However,
since the test error for unseen data cannot be directly computed during
training, the process is often described as selecting a hypothesis with the
lowest empirical risk from the possible hypothesis space.(Tharwat et al.
2023)

In the AL context, the core question is how the active learner can efficiently
cover the hypothesis space using a limited querying budget. Unlike
conventional supervised learning, where the sample of observations is
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Shematic visualization of different query strategies

b) Randomly selected data pointsa) True classification, fully labeled data c) Query informative data points d) Query representative data points

Figure 2.6: Schematic visualization of different QSs, based on Settles 2009 and Tharwat et al. 2023: a) A fictional fully labeled dataset
with a decision boundary of a possible classifier. In b) the model is trained with a sample of labeled instances randomly drawn from
the problem domain, which results in a less accurate decision boundary of the classifier. In c) the selection was made specifically for
informative instances, and in d) for representative instances. In both cases, the decision boundary approaches its optimum but shows
that the QSs lead to different classifiers.

randomly selected, AL uses strategic queries to minimize empirical risk by
improving the representation of the data space and thus enabling a more
accurate approximation of 𝑓 . This is achieved by selecting informative
and representative data points, as illustrated schematically in Figure
2.6.(Tharwat et al. 2023)

Each QS utilizes these functions to assess the potential utility of points
in the unlabeled dataset 𝐷𝑈 and guide the selection process to ensure
coverage of the data space according to the desired goal and minimize
extrapolation errors.

Over the past few years, several surveys have been published that provide
comprehensive overviews of different QSs (Settles 2009; Fu et al. 2013;
Kumar et al. 2020; Tharwat et al. 2023). Kumar et al. 2020 and Tharwat
et al. 2023 present possible taxonomies, simplified summarized in Figure
2.7. Herein, the QSs are categorized based on their utility function, which
is used to evaluate the utility values of a data instance from 𝐷𝑈 to be
queried.

Figure 2.7: Taxonomy of QSs based on
Kumar et al. 2020 and Tharwat et al. 2023.
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A commonly used distinction in utility functions is the search for in-
formative data points, as illustrated by their proximity to the decision
boundary in Figure 2.6 c), and the search for representative data points,
exemplified by the centers of potential clusters in Figure 2.6 d).(Tharwat
et al. 2023)

Alternatively, QSs can be categorized based on the available information.
Data-based strategies require the slightest knowledge, operating only
with raw data and, in some cases, the labels of currently labeled data. In
model-based strategies, in addition to the data, the model is required, but
not its predictions. An example of this is the expected model change, a
strategy where the data points queried are those that would have the most
significant impact on model weights (Vezhnevets et al. 2012) or gradient
length (Zhang et al. 2017). Prediction-based strategies require the most
knowledge, as they need data, the model, and its predictions.(Tharwat
et al. 2023)

Besides the main categories included in Figure 2.7, there are approaches
often summarized as Meta-AL. These methods address the interdepen-
dence of the model’s predictive performance and the QS by allowing
the AL system to change the utility function during runtime, such as in
the „AL by Learning“ algorithm introduced by Hsu et al. 2015. In hybrid
approaches, various utility functions are combined within a QS, aiming
to utilize their respective advantages and enhance efficiency.

Following this, a selection of common QSs will be introduced, which will
be relevant throughout this thesis.

Information-based

Information-based QSs aim to identify data points with the highest
informational content to minimize the uncertainty of the model by
specifically targeting those points that exhibit the greatest ambiguity.
Typically, these points are located near the decision boundaries of the
model, where predictions are most uncertain.

The primary motivation of these approaches is to enhance model accuracy
by systematically requesting the labeling of instances from the oracle
that most challenge and expand the existing function of the model.
Consequently, the utility function used in these QSs is designed to
specifically measure the uncertainty of each unlabeled data point to
determine its potential informational value.

Settles 2009 describes uncertainty sampling (Lewis et al. 1994b) as possibly
the simplest and most commonly used QS. This strategy selects instances
for which the model’s prediction probability is the lowest, making
it suitable for probabilistic models where decision-making involves
estimating the likelihood that a specific label is correct.

In a multi-class problem, a general variant of uncertainty sampling is
applied, where the selection of most informative instances 𝑥∗ occurs at
the point where the model has the least confidence in its most likely
prediction:

𝑥∗ = arg max
𝑥

(
1 − 𝑃𝜃(�̂�|𝑥)

)
, (2.21)
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where �̂� is identified as the class label for which the model 𝜃 assigns the
highest posterior probability given the input 𝑥.(Settles 2009)

Uncertainty sampling has proven particularly effective in applications
involving sequential data, such as natural language processing and
information extraction. It efficiently calculates the sequence and its
associated probabilities, making it suitable for handling complex data
structures.(Settles 2009)

However, basic uncertainty sampling sometimes overlooks valuable in-
formation from the probability distribution of other potential predictions.
Variants such as margin sampling (Scheffer et al. 2001) and entropy-
based (Shannon 1948) uncertainty sampling have been introduced to
address this issue, considering a more holistic view of the model’s
predictions.(Settles 2009)

Other information-based methods include Query-by-Committee, intro-
duced by Seung et al. 1992, an approach in which multiple models vote
on the selection of instances through their differing predictions. Expected
error reduction, a decision-theoretic approach, describes a technique
where the utility function assesses the likelihood of reducing the model’s
generalization error (Roy et al. 2001).(Settles 2009)

The focus of information-based QSs on identifying data points near
the decision boundaries may overlook the broader input space and the
overall data distribution. Consequently, information-based approaches
often select multiple similar instances, leading to redundancies in the
labeled data set 𝐷𝐿. Furthermore, information-based QSs are heavily
dependent on initial labeled training data, which, if insufficient, can
cause the model to extrapolate and thereby compromise the learning
process.(Tharwat et al. 2023)

Representation-based

Representation-based QSs focus on leveraging the structure of the un-
labeled data to identify data points that capture the overall input space
structure. The utility function of these QSs is oriented towards evaluating
the representativeness of data points in 𝐷𝑈 and aims to query those that
best illustrate the overall data distribution. This approach particularly
stands out from information-based QSs when the labeled data set 𝐷𝐿

is small, such as in the early stages of AL, where it aims to enhance the
learner’s exploratory capabilities.(Tharwat et al. 2023)

Kumar et al. 2020 as well as Tharwat et al. 2023 categorizes representation-
based QSs into density-based and diversity-based QSs. Motivated by
applications in parallel environments, where querying data points from
different sources may lead to redundancy, the diversity-based approach
seeks to select those data points that exhibit significant diversity compared
to labeled data in 𝐷𝐿 (Xu et al. 2007).

In the density-based QSs, representative data points are chosen from
regions of the input space that show high density, thus reflecting the
overall data distribution. The utility functions employ various metrics
to assess representativeness, typically analyzing the distances between
feature vectors to determine proximity.(Tharwat et al. 2023)
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One density-based QS introduced by Ebert et al. 2012 utilizes a graph
density method to identify densely connected nodes within the input
space. This approach begins by constructing a graph with 𝑘-nearest
neighbors where a connection, or edge, exists between nodes 𝑥𝑖 and 𝑥 𝑗 if
the distance 𝑑(𝑥𝑖 , 𝑥 𝑗) between them ranks among the 𝑘 smallest distances
for 𝑥𝑖 , using the Manhattan distance metric and a set 𝑘-value of 10. The
edges of this graph are symmetric and weighted with a Gaussian kernel,
expressed as

𝑊𝑖 𝑗 = 𝑃𝑖 𝑗 exp
(
−
𝑑(𝑥𝑖 , 𝑥 𝑗)

2𝜎2

)
, (2.22)

where 𝑃𝑖 𝑗 indicates the presence of an edge between 𝑥𝑖 and 𝑥 𝑗 . The
weight matrix derived from this formula is crucial for assessing the
representativeness of data points as it ranks them based on their weighted
connections within the graph structure. To normalize these weights and
thus prevent the repeated selection of nodes from the same dense regions,
the graph density for each node 𝑥𝑖 is calculated as the ratio of the sum of
the weights of the connected edges to the sum of their corresponding
binary indicators.

Tharwat et al. 2023 lists cluster-based approaches as a third type of
representation-based QS. The utility function in these approaches evalu-
ates the selection criterion by clustering the input space using clustering
techniques and selecting the nearest instances around the cluster centers
(Ienco et al. 2013).

One such clustering method is the 𝑘-means algorithm, which Zhdanov
2019 utilizes in a QS to sample instances. The k-means algorithm organizes
the dataset into a predetermined number of clusters (𝑘), assigning each
data object to the nearest cluster center. This is achieved by minimizing
the sum of squared distances between data points and their respective
cluster centers, given by

𝑆 =

𝑘∑
𝑖=1

∑
𝑥∈𝐶𝑖
∥𝑥 − 𝜇𝑖∥2 (2.23)

where 𝐶𝑖 represents the set of points assigned to cluster 𝑖, and 𝜇𝑖 is the
center of cluster 𝑖. The algorithm begins with an initial assignment of
cluster centers, often chosen randomly, and then iterates through two
main steps: (1) assigning each data point to the nearest cluster center and
(2) updating the cluster centers to the mean of the points assigned to them.
These steps are repeated until the positions of the cluster centers no longer
change significantly, indicating that the clusters have stabilized.(Zhdanov
2019)

Representation-based QS are particularly adept due to their ability to
select instances that represent the structure of the input space, thus
facilitating outlier detection. Moreover, they prevent sample bias and
the selection of redundant instances. However, representation-based
QS tend to require more queries to cover relevant and uncertain areas
effectively.(Tharwat et al. 2023)
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2.2 Trustworthy Artificial Intelligence

The previous sections presented the technical fundamentals from the
fields of ML and AL. These disciplines focus on developing models
capable of learning from data and making decisions based on that
information. Such models are increasingly playing a central role in many
application areas. They are used in AI systems whose decision-making
processes have consequences for humans who interact with or are affected
by them. The following section aims to provide a concise introduction to
the theoretical and conceptual foundations that underpin trustworthy AI,
a vast and multifaceted field, reflecting these technologies’ complexity
and broad applicability.

Against the backdrop of the growing integration of these technologies
into everyday life, the concept of trustworthy AI is gaining increasing
importance. This concept covers the performance as well as the aspects
of the trustworthiness of such systems. To this end, numerous proposals
for AI principles have been published in the past (Toreini et al. 2020) from
which various frameworks have been formed that, regardless of their
terminology of responsible or ethical AI, address technical, legal, and
social implications.(Thiebes et al. 2021)

In 2019, the independent High-Level Expert Group on AI of the European
Commission introduced its ethics guidelines for trustworthy AI (High-
Level Expert Group on AI 2019). These guidelines have quickly become
established and form the basis for integrating the concept of trustworthy
AI into further guidelines and frameworks, such as the OECD (Organi-
sation for Economic Co-operation and Development) Principles for AI
(OECD 2024).(Thiebes et al. 2021)

The authors (Thiebes et al. 2021) delve into the broader definition of
trustworthy AI1, and follow the High-Level Expert Group on AI 2019,1: The definition according to ISO/IEC

TR 24028:2020 2020 for trustwothy AI
is: „Trustworthy AI is a framework to en-
sure that a system is worthy of being trusted
based on the evidence concerning its stated
requirements. It makes sure that the users’
and stakeholders’ expectations are met in a
verifiable way.“

proposing that

„ [...] AI is perceived as trustworthy by its users (e.g., consumers, organiza-
tions, society) when it is developed, deployed, and used in ways that not only
ensure its compliance with all relevant laws and its robustness but especially
its adherence to general ethical principles.“

The guidelines have found broad acceptance in research and practice
(Hickman et al. 2021; Liu et al. 2023; Kaur et al. 2021; Kaur et al. 2023),
forming the core of the framework depicted in Figure 2.8. This frame-
work is built on three components that are essential for trustworthy AI
throughout its entire life cycle (High-Level Expert Group on AI 2019):

▶ Lawful AI: AI systems should operate within the bounds of existing
laws, including European, national, and international regulations.

▶ Ethical AI: AI systems should be aligned with ethical norms
to ensure their operation and outcomes are morally sound and
justifiable.

▶ Robust AI: AI systems should function safely and reliably in both
technical and social contexts.

The foundations for trustworthy AI according to High-Level Expert
Group on AI 2019 are established by building on fundamental rights and
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Figure 2.8: High-level framework for trustworthy AI according to High-Level Expert Group on AI 2019: The three main components are
incorporated into the foundations for trustworthy AI, which set out an approach based on fundamental rights. The four ethical principles
(left) are translated into seven key requirements (right). These key requirements are considered equally important and interdependent –
they rely on and support each other. The goal of trustworthy AI is to ensure that these seven key requirements are implemented and
evaluated throughout the entire life cycle of the AI system.

summarizing four ethical principles. These principles originate from the
field of ethics, specifically AI ethics - a subfield of applied ethics that deals
with the ethical challenges arising from AI development, deployment,
and use (Floridi et al. 2018). The primary focus is determining how AI can
enhance or impair the quality of life, human autonomy, and the freedoms
necessary for a democratic society.

To realize trustworthy AI, the guidelines articulate seven high-level key
requirements that address the four ethical principles, which are briefly
introduced in the following section.

2.2.1 Ethical Principles

The ethical principles are designed to ensure that AI systems operate
within legal parameters and uphold and promote ethical standards
essential for societies. These principles aim to ensure that AI systems
contribute to individual and collective well-being and promote a fair and
just society. The ethical principles are designed to evolve alongside the
socio-technical environment, influencing both the creation of regulatory
instruments, such as the approved EU AI Act (European Commission
2024), as well as the interpretation of fundamental rights. According to
High-Level Expert Group on AI 2019, they include:

▶ Respect for Human Autonomy: AI systems should enhance human
agency and decision-making capabilities without creating depen-
dencies. This principle requires that AI respects human dignity and
supports our ability to make decisions freely and without undue
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influence, ensuring that individuals maintain control over their
personal and societal interactions.

▶ Prevention of Harm: AI systems must operate in a way that
protects users and society from harm. This includes safeguarding
physical and mental integrity, personal data, and privacy. In the
development and operation of AI, safety and robustness should
be prioritized to actively prevent harm wherever possible and to
address potential vulnerabilities to mitigate risks.

▶ Fairness: Fairness must be central to AI development to ensure
that AI systems do not perpetuate existing biases or create new
forms of discrimination. This involves equitable treatment of all
users and the just distribution of AI’s benefits and burdens. AI
should facilitate access to opportunities and resources in a way
that promotes equality and non-discrimination.

▶ Explicability:
2 Transparency and understandability are crucial for2: As stated in the guidelines, „Explica-

bility is crucial for building and maintaining
users’ trust in AI systems. This means that
processes need to be transparent, the capa-
bilities and purpose of AI systems openly
communicated, and decisions – to the extent
possible – explainable to those directly and
indirectly affected. Without such information,
a decision cannot be duly contested. An ex-
planation as to why a model has generated a
particular output or decision (and what com-
bination of input factors contributed to that)
is not always possible. These cases are referred
to as ’black box’ algorithms and require spe-
cial attention. In those circumstances, other
explicability measures (e.g., traceability, au-
ditability, and transparent communication
on system capabilities) may be required, pro-
vided that the system as a whole respects fun-
damental rights. The degree to which expli-
cability is needed is highly dependent on the
context and the severity of the consequences
if that output is erroneous or otherwise inac-
curate.“(High-Level Expert Group on AI
2019)

maintaining user trust and enabling accountability. AI systems
should be understandable to their users, providing clear, compre-
hensible explanations for decisions where possible. When decisions
are complex, it becomes even more critical that the processes behind
them are transparent and subject to oversight.

Although the concepts in this dissertation primarily touch on the principle
of explicability, it is important to consider this in the context of all four
principles since they dynamically interact within AI applications. While
they guide the ethical development and implementation of AI systems,
tensions may arise between them, requiring careful consideration and
balance. Often, contextual judgment is necessary to effectively manage
conflicts, such as between individual privacy and public security or
between enhancing autonomy and preventing harm.(High-Level Expert
Group on AI 2019)

2.2.2 Key Requirements

Trustworthy AI demands that ethical principles be transformed into
concrete requirements across the life cycle of AI systems, involving
various stakeholders such as developers, deployers, end-users, and the
broader society. According to High-Level Expert Group on AI 2019 these
stakeholders each play a separate role in ensuring that these requirements
are met. For example, developers must incorporate these requirements
into the design and development of AI systems; deployers (provider) must
ensure their systems and services meet these standards; end-users and
the broader society should be informed and able to demand adherence
to these requirements.

In context of this thesis, while the primary focus is on the key require-
ment of transparency, it is essential to recognize that this requirement,
like others, is interconnected and influences the overall framework for
trustworthy AI as depicted in Figure 2.8. The key requirements proposed
in the guidelines (High-Level Expert Group on AI 2019) have mutual
dependencies and influence each other, necessitating a brief introduction
to all seven key requirements set forth for trustworthy AI:

▶ Human Agency and Oversight: This requirement emphasizes
supporting human autonomy in interactions with AI systems,
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preventing over-reliance on technology. It ensures that AI systems
augment rather than replace human decision-making, maintaining
a balance where humans retain control over, and responsibility for,
AI-driven decisions.

▶ Technical Robustness and Safety: AI systems must be resilient
and operate reliably under a variety of conditions. This involves
ensuring AI systems are free from vulnerabilities that could lead to
failures or accidents, thus safeguarding users and the environment
from potential harm. The systems must include robust security
measures to prevent malicious attacks and ensure data integrity.

▶ Privacy and Data Governance: Effective management of data is
crucial. This involves ensuring that personal data collected by
AI systems is processed securely and privately, respecting user
confidentiality throughout the system’s life cycle. Proper data
governance further means that data is accurate, processed law-
fully, and used ethically, aligning with established data protection
regulations.

▶ Transparency:
3 The operations within AI systems should be trans- 3: Transparency in the context of AI sys-

tems is defined in ISO/IEC TR 29119-
11:2020 2020 to a „Level of accessibility
to the algorithm and data used by the AI-
based system“. In ISO/IEC TR 24028:2020
2020 the definition is „Transparency of
AI systems relates to making the data, fea-
tures,algorithms, training methods and qual-
ity assurance processes available to external
inspection by a stakeholder.“

parent, making it possible for users to understand and trust the
technology. This includes ensuring that the decisions made by AI
are explainable4 and that the processes leading to those decisions

4: Explainability in the context of AI
systems is defined in ISO/IEC TR 29119-
11:2020 2020 to a „Level of understanding
how the AI-based system came up with a
given result“. An alternative definition is
given by ISO/IEC TR 24028:2020 2020,
which states that „Explainable AI systems
would aim to provide an understanding of the
processes contributing to the truth, accuracy
and reasonableness of its results beyond the
inductive observation that the systems seem
to work.“

are accessible and understandable. Furthermore, transparency in-
volves clear communication about the AI system’s capabilities and
limitations.

▶ Diversity, Non-Discrimination, and Fairness: AI systems should
be designed and operated in a manner that prevents bias and
ensures fairness and inclusivity. This means actively addressing
potential biases in AI programming and data sets, and ensuring
that AI applications do not discriminate against any individual or
group.

▶ Societal and Environmental Well-being: AI should contribute pos-
itively to societal goals and operate sustainably. This requirement
focuses on the broader impact of AI technologies, encouraging
solutions that enhance societal well-being and operate without
harming the environment.

▶ Accountability: There must be clear mechanisms in place to hold
AI systems and their operators accountable for their performance
and impacts. This includes having clear processes for auditing and
monitoring AI systems and for addressing any issues or harms that
arise. Accountability ensures that those affected by AI systems have
avenues for redress and that AI operators can provide justifications
for decisions and actions.

The relationship between the requirements for trustworthy AI is exem-
plified in the survey by Ge et al. 2024, where they are juxtaposed in a
matrix. In the review by Li et al. 2023, representative explicit interactions
among aspects of AI trustworthiness are graphically depicted in depen-
dency, with the authors distinguishing between technical, ethical, and
other requirements and categorizing relationships into „Trade-off with“,
„contribute to“, and „manifest in“.

This dissertation emphasizes the key requirement of transparency related
to the other requirements. Regarding controlling and understanding AI
Systems, these requirements enable users to understand and effectively
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monitor the operations of AI, which is indispensable for maintaining
human agency and oversight (Floridi 2021; Miller 2019). Moreover, they
are relevant for technical robustness and safety as they facilitate a well-
founded evaluation as well as validation of the reliability and security of
AI systems (Ali et al. 2023).

Transparency contributes to adhering to data protection and data gov-
ernance standards. A profound understanding of data management
processes fosters trust and ensures compliance with legal regulations.
Furthermore, this requirement promotes fairness and helps prevent
discrimination by enabling precise analysis and correction of potential
biases in AI operations, thus ensuring equitable treatment of all user
groups (Zhou et al. 2022; Dey et al. 2022).

Moreover, AI’s societal and environmental impacts significantly benefit
from transparency, enabling stakeholders to evaluate technologies and
align them with societal goals and sustainable practices (Hagendorff
2020). The co-dependency between transparency, explainability, and
accountability is evident as transparent processes and systems enable
monitoring and audits, allowing developers and providers to be held
accountable for their performance and impacts, thus fulfilling account-
ability requirements.(High-Level Expert Group on AI 2019)
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2.3 Explainable Artificial Intelligence

In the concepts of trustworthy AI, a crucial aspect is that systems are
transparent. The field of XAI addresses this need by contributing to
improving the explainability of AI systems. XAI aimed to make the
decision-making processes of AI models more understandable to humans.
This section focuses on the computer science perspective of this field5 5: Some text sections are from contribu-

tions published in Section „XAI in Com-
puter Science“ in Ziethmann et al. 2024

and elaborates on the methods of IML relevant in this dissertation.

Vilone et al. 2021 provide a summary of definitions of notations related
to the concept of explainability, which they compiled from an extensive
literature review. They found that the term explainability is often replaced
by the term interpretability and is considered synonymous within the
research community. For this reason, the terms are treated as such in this
thesis.

Nevertheless, due to the significant attention this research field has
received in recent years, various terminologies according XAI and IML
have been established. Schwalbe et al. 2023 defines XAI as

„ [...] the area of research concerned with explaining an AI system’s decision.“

Molnar 2022, in his often-cited eponymous work, refers to the field of
IML as

„ [...] methods and models that make the behavior and predictions of machine
learning systems understandable to humans.“

2.3.1 Interpretable Machine Learning

Driven by the increasing complexity and opacity of ML models, which,
despite their high predictive performance, often offer little insight into
the underlying decision-making processes, there is a push to enhance the
comprehensibility of these systems for various users through suitable
interpretation mechanisms. Given the rapidly growing research field,
numerous comprehensive reviews exist in the literature and taxonomy
proposals of this research field (Arrieta et al. 2020; Arya et al. 2019;
Carvalho et al. 2019; Schwalbe et al. 2023; Saeed et al. 2023; Speith
2022).

A central topic in technical XAI research is the balance between the
performance of ML models, such as predictive accuracy, speed, and
resource consumption, and their explainability. In simplified terms, more
complex models often promise higher predictive accuracy but tend to
be less transparent and, thus, harder to interpret. IML is relevant in
this context since it technically contributes as the basis for many XAI
concepts. Due to the plethora of methods published in recent years, there
are extensive compilations on this (Adadi et al. 2018; Molnar 2022).

Figure 2.9 illustrates a simplified version of the taxonomy proposed by
Speith 2022, in which the methods are categorized along various dimen-
sions. Typically, approaches are differentiated along the stage dimension
between ante-hoc, intrinsically explainable models, corresponding to the
Explainable-by-Model Design paradigm (Rudin et al. 2022), and post-hoc.
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Figure 2.9: Simplified taxonomy of IML
methods based on Speith 2022.
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The latter includes methods to provide insights into a black-box model’s
workings after being trained.

In addition to these stage-based distinctions, methods for IML can be cate-
gorized based on the results they produce. This includes techniques such
as surrogate models and feature relevance analysis. Surrogate models
approximate the behavior of complex models with simpler, interpretable
ones, like linear regression, to provide an overall understanding of model
predictions. Feature relevance methods assess the importance of individ-
ual features in the model’s decision-making process, identifying which
inputs significantly impact the predictions.

Techniques like Local Interpretable Model-agnostic Explanations (LIME,
proposed by Ribeiro et al. 2016), and Shapley Additive Explanations
(SHAP, proposed by Lundberg et al. 2017) are prominent examples,
which will be detailed in Section 2.3.2. These methods are suitable for
different model types and are generally characterized as model-agnostic.
Additionally, there are methods for specific model architectures, such
as CNNs, which create, for instance, Pixel Attribution Saliency Maps,
including Gradient-weighted Class Activation Mapping (Grad-CAM,
proposed by Selvaraju et al. 2017). Further differences arise regarding
supported input data formats; for instance, Randomized Input Sampling
for Explanation (RISE, proposed by Petsiuk et al. 2018) is model-agnostic
but is suitable only for image data.

Another possible categorization is according to the scope of the expla-
nation, whether it encompasses individual predictions (local) or the
entire model (global). Global model interpretability involves compre-
hending how a model makes predictions by examining all features and
learned components like weights. However, this is challenging for com-
plex models with numerous parameters, as human cognitive limits make
it difficult to visualize multi-dimensional feature spaces. Consequently,
interpretability often requires focusing on specific model aspects, such as
weights in linear models. Modular interpretability examines how model
parts contribute to predictions, offering insights into elements like linear
model weights, which require context for accurate interpretation.(Molnar
2022)

Local interpretability, on the other hand, focuses on specific predictions,
providing detailed explanations for individual instances. This can reveal
simpler dependencies than global interpretations, offering more precise
insights. Explaining predictions for a group of instances can be done
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using global or local methods, either treating the group as a complete
dataset or aggregating individual explanations to understand the model’s
behavior for that subset.(Molnar 2022)

The results computed by the methods can often result in statistical metrics,
which technical experts primarily use. To address this dilemma, another
part of technical XAI research explicitly deals with the stakeholder
perspective (Gleicher 2016; Langer et al. 2021). This area, for example,
involves visualization techniques aimed at translating complex model
decisions into visually interpretable formats. Besides textual or numerical
output formats, heatmaps, for instance, are used to highlight which parts
of an image sample are crucial for the model’s classification.

Further, XAI research is viewed through the lens of HCI (Ferreira et al.
2020; Miller 2019; Mueller et al. 2021). In this domain, the concept of
interactive explanations is gaining importance. These approaches allow
users to interact with the AI system through dialogues and feedback
loops, fostering an understanding of the model outputs (Chromik et al.
2020).

Generating explanations using IML aims, as mentioned above, to make
the model’s decision-making processes more understandable for humans.
Social sciences can help determine what constitutes a „good“ explanation,
where Miller 2019 has provided a comprehensive overview. Molnar
2022 summarizes this by noting that people prefer brief explanations.
Explanations are social interactions, which is why the social context
significantly influences the content of the explanation (Miller 2019).In
this context, evaluating the explanations through appropriate methods
and measurable metrics is crucial in assessing the effectiveness and
usefulness of various approaches.

Typically, the understandability, relevance, and accuracy of the explana-
tion are evaluated (Nauta et al. 2023), which, according to the approach
of Doshi-Velez et al. 2017, can be determined concerning specific tasks
and either through human or non-human input. They propose three
main levels of evaluation:

▶ Application Level Evaluation: Explanations are tested in real-
world scenarios with end users. For example, in a customer service
application, support agents might use a chatbot to determine how
well its explanations help resolve customer inquiries, comparing
the explanations to traditional support methods.

▶ Human Level Evaluation: Involves testing explanations with layper-
sons rather than experts, making it more cost-effective. Participants
choose the best explanations, providing insights into their clarity
and effectiveness for non-experts.

▶ Function Level Evaluation: Evaluations are conducted without
human input, using proxies like model complexity to assess inter-
pretability. For example, decision tree depth might serve as a proxy,
with shallower trees indicating better interpretability, provided
predictive performance remains strong (Molnar 2022).
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2.3.2 Methods for Local Post-hoc Explanations

There is a wide range IML methods in the literature. The following
section introduces the methods relevant to this dissertation, which focus
on the post-hoc approach and are primarily used to generate local
explanations.

Randomized Input Sampling for Explanation (RISE)

The core idea of RISE, introduced by Petsiuk et al. 2018, is to assess the
importance of different parts of an input by observing how random
perturbations affect the model’s output. This method involves creating a
series of randomly masked versions of an input image and analyzing the
classifiers predictions for each masked input. This approach provides
insight into which regions of the input are most influential in the model’s
decision-making process.

The algorithm involves generating a series of 𝑁 random binary masks,
{𝑀1 , 𝑀2 , ..., 𝑀𝑁}, where each element of a mask is set to 1 (showing the
pixel) with a certain probability and 0 otherwise. These masks are scaled
up to the input’s dimensions and used to perturb the input image by
element-wise multiplication.

To evaluate the importance of each pixel 𝜆, RISE computes the expected
model output when the pixel is visible, denoted by 𝑆𝐼 , 𝑓 (𝜆). This score is
calculated by averaging the outputs across all perturbed images where
the pixel 𝜆 is unmasked, as described by:

𝑆𝐼 , 𝑓 (𝜆) =
1

𝐸[𝑀]
∑
𝑚

𝑓 (𝐼 ⊙ 𝑚) · 𝑚(𝜆) · 𝑃(𝑚 = 𝑀) (2.24)

where 𝑓 (𝐼 ⊙ 𝑚) is the model’s output for the perturbed image, 𝑚(𝜆)
indicates whether pixel 𝜆 is visible in mask 𝑚, and 𝑃(𝑚 = 𝑀) represents
the probability of mask 𝑚 being applied. This method assigns more
weight to the masks that reveal the pixel, hence providing insights into
which pixels significantly impact the model’s decision-making process.
By computing the relevance scores for all pixels, RISE generates a saliency
map that visualizes the influential regions of the input image. (Petsiuk
et al. 2018)

Gradient-weighted Class Activation Mapping (Grad-CAM)

Grad-CAM, developed by Selvaraju et al. 2017, is a prominent gradient-
based method used to generate saliency maps within the category of
post-hoc IML approaches. These method calculate the model’s output
gradients with respect to input features to assess their impact on decision-
making. This contrasts with other gradient-based techniques like vanilla
gradients (Simonyan et al. 2014) and guided backpropagation (Sprin-
genberg et al. 2015), which vary in their backpropagation algorithm
handling.

The essence of Grad-CAM lies in its generation of a coarse localization
map that identifies crucial image regions for class prediction. This process
begins by computing the gradients of the model’s output with respect to
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the feature maps in the last convolutional layer. These gradients reflect
each feature map’s influence on the final class output.

The crucial computation in Grad-CAM involves assigning weights to these
feature maps. These weights, 𝛼𝑐

𝑘
, are derived by globally averaging the

gradients across all spatial locations within each feature map, producing
a scalar that quantifies each map’s importance for the class 𝑐:

𝐿𝑐Grad-CAM = ReLU

(∑
𝑘

𝛼𝑐
𝑘
· 𝐴𝑘

)
(2.25)

Here, 𝐴𝑘 are the feature maps, and 𝛼𝑐
𝑘

are the weights calculated as
described. Combining these weights with their respective feature maps
and applying a ReLU (2.16) function filters out non-positive influences,
creating the resulting heatmap. (Selvaraju et al. 2017)

Local Interpretable Model-agnostic Explanations (LIME)

LIME, a post-hoc model-agnostic method proposed by Ribeiro et al. 2016,
is independent of the input data type and is based on a perturbation-
based approach. The underlying method of LIME starts with selecting
an instance for which an explanation is sought. Subsequently, a dataset
with perturbed samples in the vicinity of this example is created, and the
original model is used to predict the outcomes for these variations. These
predictions are then fed into a simpler, interpretable model – typically
a linear regression model – that has been trained to approximate the
behavior of the black-box model locally around the selected instance.

The simplicity of this surrogate model ensures that its operation is
understandable to humans, thereby making the functioning of the black-
box model more comprehensible for the selected local instance. In other
words, the interpretability of the explanation depends on the simplicity
of the model used. The key is to find a balance between fidelity to the
original black-box model and the inherent transparency of the surrogate
model to ensure that the predictions generated are both accurate and
comprehensible to humans.

To quantify the significance of features in influencing the model’s pre-
diction for a particular class, a LIME-generated explanation 𝜉 for the
instance 𝑥 is given by:

𝜉(𝑥) = arg min
𝑔∈𝐺

L( 𝑓 , 𝑔,𝜋𝑥) +Ω(𝑔) (2.26)

where 𝑓 denotes the complex original model and 𝑔 the simpler inter-
pretable model. Here, Lmeasures how well 𝑔 approximates 𝑓 near the
instance, with 𝜋𝑥 expressing the weights or the locality around 𝑥, and Ω

is a regularization term that controls the complexity of model 𝑔.

The quality and usefulness of the explanations generated by LIME can
vary depending on the perturbation strategy. Moreover, generating ex-
planations requires a high computational effort, especially for complex,
multidimensional datasets. Another methodological aspect is the locality
of the explanations. LIME generates explanations only in the direct
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vicinity of a selected instance, with the captured feature dependencies
being specific for the proximity of the respective instance and not nec-
essarily universally valid for the entire model behavior. This local focus
can lead to different explanations for similar examples, depending on
where and how the perturbations are performed. Conversely, this charac-
teristic is advantageous for examining the robustness of the generated
explanations.(Ribeiro et al. 2016)

Shapley Additive Explanations (SHAP)

SHAP, devised by Lundberg et al. 2017, employs the game-theoretically
optimal Shapley values to elucidate individual model predictions. Each
feature in a dataset is treated as a „player“ in a game where the model’s
prediction is the payoff. SHAP leverages this analogy to fairly distribute
the prediction „payout“ among all features, reflecting each one’s contri-
bution to the outcome. (Molnar 2022)

Central to SHAP is the computation of Shapley values (Shapley 1953).
Specifically, it calculates the marginal contribution of each feature across
all possible combinations, or coalitions, of features. Lundberg et al. 2017
defined an explanation as

𝑔(𝑧′) = 𝜙0 +
𝑀∑
𝑗=1

𝜙 𝑗𝑧
′
𝑗 (2.27)

Here, 𝑔 represents the explanation model, 𝑧′ ∈ 0, 1𝑀 is the coalition vector
indicating the presence (1) or absence (0) of features in the coalition,
𝑀 is the total number of features, and 𝜙 𝑗 are the Shapley values or
feature attributions. This linear representation aligns with the principles
of additive feature attribution, similar to LIME but extended through the
lens of game theory.

The concept of Shapley values in SHAP centers around the idea that the
contribution of each feature to the prediction can be calculated by simu-
lating the inclusion or exclusion of that feature in various combinations
of other features. The Shapley value for a feature essentially represents
its average marginal contribution across all possible subsets of features,
ensuring that each feature’s contribution to the prediction is measured
fairly and consistently.(Lundberg et al. 2017)

Moreover, SHAP transcends its role as merely a local explanation tool; it
incorporates global interpretation methods that aggregate Shapley values
to provide broader insights into model behavior. This global perspective
enables a deeper understanding of model predictions across the entire
dataset, not just at the individual prediction level. (Molnar 2022)
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2.4 Software Engineering for AI Systems

The development of AI systems involves unique characteristics that
require specialized approaches from the field of software development.
Unlike traditional software systems, AI systems are more data-driven
and probabilistic. In traditional software development, individual com-
ponents or entire systems are designed through a series of steps, from
requirements to final implementation, organized into stages and phases
known as the development process. Common approaches include se-
quentially (e.g., the waterfall model, Benington 1983), iterative (e.g., the
V-model, Forsberg et al. 1991) and agile (e.g., Scrum, Schwaber 1997)
approaches, which differ in their structuring of procedures.

In AI systems, complexity arises from the dependency on the algorithms
and models being developed. Regardless of whether the models are
trained using supervised or unsupervised methods, they heavily rely
on large datasets. Unlike traditional software development projects,
data-intensive projects pose particular challenges due to the inherent
uncertainty regarding the quality of the solutions. Consequently, process
models from conventional software development are often inadequate, as
they do not sufficiently account for the data-intensive aspects. To address
this, data science process models have been established that cover the
exploratory nature of these projects and incorporate these aspects within
a development process.(Kutzias et al. 2023)

2.4.1 Process Models for Data-intensive Systems

In the following, three prominent process models for data-intensive
systems will be presented.6 6: Edited text from the publication

Stieler et al. 2024

Knowledge Discovery in Databases (KDD) One of the earliest process
models originates from the data mining practice known as KDD, pro-
posed by Fayyad et al. 1996. KDD is defined as the non-trivial process of
identifying valid, novel, potentially useful, and ultimately understand-
able patterns in data. The structure of KDD is illustrated in Figure 2.10(a),
which describes the five main phases and the flow between them.

The process begins with the selection phase, in which relevant data
is identified and extracted from a larger data set. The selected data,
referred to as Target Data in the diagram, is then transferred to the
preprocessing phase, resulting in Preprocessed Data. This is followed
by the transformation phase, where the data is converted into formats
suitable for mining, often involving normalization or aggregation. In
the data mining phase, algorithms are applied to extract patterns from
the processed data. Finally, in the interpretation/evaluation phase, the
patterns are analyzed to determine their significance and usefulness. The
five main phases in KDD are designed to be interactive and iterative, as
indicated by the feedback loops, and include several decision-making
steps to achieve optimal results.(Fayyad et al. 1996)
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Comparison of Process Models for Data-intensive Systems

b) Cross-Industry Standard Process for Data Mining (CRISP-DM)a) Knowledge Discovery in Databases (KDD) c) Team Data Science Process (TDSM)
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Figure 2.10: Comparison of process models for data-intensive systems, illustrating the distinct methodologies and workflow stages.
Panel (a) displays the Knowledge Discovery in Databases (KDD) process (Fayyad et al. 1996), emphasizing the sequential steps from data
selection to knowledge interpretation. Panel (b) outlines the Cross-Industry Standard Process for Data Mining (CRISP-DM), proposed
by Wirth et al. 2000, highlighting its cyclical, iterative approach from business understanding to deployment. Panel (c) represents the
Team Data Science Process (TDSP), developed by Microsoft 2020, showing a structured, team-oriented workflow that integrates data
acquisition and understanding through to deployment.

Cross-Industry Standard Process for Data Mining (CRISP-DM) CRISP-
DM, introduced by Wirth et al. 2000, is another well-established process
model, comprising six phases: Business Understanding, Data Under-
standing, Data Preparation, Modeling, Evaluation, and Deployment.
Like KDD, CRISP-DM is iterative, accommodating the often nonlinear
nature of data mining projects – both process models are compared in
the survey of Mariscal et al. 2010.

The phases as well as the CRISP-DM workflow are illustrated in Figure
2.10(b). The process starts with the Business Understanding phase, which
ensures that the project aligns with the organization’s objectives. It
involves defining the project requirements from a business perspective
and converting this knowledge into a data mining problem definition.
The subsequent Data Understanding phase involves collecting initial
data, familiarizing oneself with the data, and identifying any data quality
issues that need to be addressed. In the Data Preparation phase, data
is selected, cleaned, and formatted into a final dataset for modeling.
During the Modeling phase, various modeling techniques are chosen
and applied to the prepared dataset.(Wirth et al. 2000)

During the Evaluation phase, models are assessed to ensure that they
meet the business objectives set out at the beginning of the project. The
feedback loops shown in the CRISP-DM diagram illustrate the circular
design of CRISP-DM. Particularly from the evaluation phase back to
the business understanding phase, the business goal-oriented focus of
this process model is underlined. The final phase, Deployment, involves
applying the model in a practical setting, which could include generating
reports or integrating the model into an operational system.(Wirth et al.
2000)

Team Data Science Process (TDSP) In contrast to traditional process
models for data mining projects, the TDSP, proposed by Microsoft 2020,
represents a significant shift towards modern data science practices.
TDSP is further iterative but envisages a more agile procedure, enabling
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effective and efficient collaboration within data science teams. It breaks
down the data science process into five clearly defined phases: Busi-
ness Understanding, Data Acquisition and Understanding, Modeling,
Deployment, and Customer Acceptance.

Each phase includes specific tasks and milestones and assigns clear roles
to individual team members to increase the team’s productivity through
high transparency and coordination. The Business Understanding phase
sets the stage for the project, similar to CRISP-DM, but with a more agile
approach that allows for iterative feedback and adjustments. The Data
Acquisition and Understanding phase focuses on gathering the necessary
data and understanding its structure and quality, which is essential for
building reliable models.(Microsoft 2020)

The Modeling phase involves developing predictive models, emphasizing
rapid prototyping and iteration to refine the models. The Deployment
phase in TDSP is more integrated with the operational aspects of the
organization, ensuring that models are deployed, monitored, and main-
tained over time. Finally, the Customer Acceptance, illustrated by the
arrow between Deployment and End, includes system validation, which
confirms that the deployed model and pipeline meet the customer’s
requirements, and project hand-off, which specifies the step at which
the project is delivered to the person or team who will use the system in
production.(Microsoft 2020)

Further Approaches. Additional process models have been introduced,
including the Analytics Solutions Unified Method (ASUM) (IBM Corpo-
ration 2016), the lightweight IBM Cloud Garage Method for data science
(ILG) (Kienzler 2020), Engineering Data-Driven Application (EDDA)
(Hesenius et al. 2019), and the Data Science Process Model (DASC-PM)
(Schulz et al. 2020), which are compared in the work of Kutzias et al.
2023.

Another modern concept focusing on ML/AI projects was presented
by Studer et al. 2021. The authors propose the Cross-Industry Standard
Process Model for the Development of Machine Learning Applications
with Quality Assurance Methodology (CRISP-ML(Q)) which is com-
patible with CRISP-DM. The main difference from CRISP-DM is that
the „Business-“ and „Data Understanding“ phases are combined, and a
„Monitoring & Maintenance“ phase complements the overall process.

2.4.2 Operation Frameworks

Following the introduction of process models that focus on the structured
development of data-intensive systems, an important consideration
arises regarding how these concepts can be integrated into an agile
operationalization framework. This is where modern approaches such as
DevOps, DataOps, and MLOps come into play, offering an evolutionary
response to the dynamic demands of contemporary environments and
will be briefly introduced in the following.7 7: Edited text from the publication

Stieler et al. 2024
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DevOps. DevOps, named for its fusion of „development“ and „opera-
tions“, is an integrated approach that merges software development and
IT operations practices to enhance the speed and efficiency of software de-
livery. Developed by Debois 2008, the core concepts of DevOps recognize
the need to eliminate inefficiencies in traditional software development
processes, particularly addressing the separation between development
and operations. Today, DevOps is a widely adopted strategy that aims
to ensure continuous development and delivery throughout the entire
software life cycle.(Azad et al. 2023)

Beyond its technical aspects, DevOps has become known for fostering
collaboration between development and operations teams within orga-
nizations, as the methodologies represent a cultural shift within teams
that prioritizes rapid delivery through agile and lean practices within a
system-oriented framework. Despite its widespread adoption, the litera-
ture has no universally accepted definition. DevOps is best understood as
a paradigm encompassing methods, principles, and practices promoting
communication and collaboration.(Senapathi et al. 2018)

The DevOps life cycle is often depicted as an infinite loop of operations
comprising seven steps: planning, coding, building, testing, releasing,
deploying, operating, and monitoring. Technologies, particularly au-
tomation tools, are employed to create a programmable and dynamic
infrastructure that supports the entire system life cycle.

A cornerstone of this approach is the implementation of Continuous
Integration (CI) and Continuous Delivery (CD), which are essential
for the rapid deployment of software updates. In CI, code changes are
automatically tested and integrated into a shared repository multiple
times a day. This process helps developers quickly identify and fix
errors, ensuring the codebase remains stable and functional. CD, on
the other hand, automates the release of tested code to production
environments, allowing new features and updates to be delivered quickly
and consistently.(Azad et al. 2023)

DataOps While DevOps has transformed collaboration between soft-
ware development and IT operations to improve the speed and reliability
of software delivery, a similar evolution is taking place in data manage-
ment. As organizations increasingly rely on data-driven decision-making,
flexible data operations have become crucial. This is where DataOps
comes into play, offering a framework that applies DevOps principles to
the entire data life cycle.(Munappy et al. 2020)

At its core, DataOps, like DevOps, aims to enhance the efficiency of
data-intensive processes by fostering a culture of collaboration and
continuous improvement among data engineers, data scientists, and IT
operations teams. A key component of DataOps is the use of automated
data pipelines, which facilitate data flow. These pipelines encompass
steps such as data ingestion, validation, transformation, and integration,
ensuring that data is accurate and ready for analysis at each stage.(Ereth
2018; Munappy et al. 2020)

To achieve this, concepts from DevOps, such as CI/CD, are adapted and
applied to data operations. In doing so, DataOps promotes a dynamic
and responsive data environment where new data products and analytics
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solutions can be rapidly iterated. This reduces the effort required to
manage data workflows, allowing teams to focus on deriving actionable
insights.

MLOps. MLOps extends the concepts of DevOps and DataOps to
address the unique requirements of ML/AI projects. This approach
harmonizes the various phases in the life cycle of AI systems and ensures
efficient production, implementation, monitoring, and iteration within
industrial contexts. MLOps tackles the complexity of developing and
managing AI systems by providing a structured framework that integrates
the efforts of data engineers, data scientists, software engineers, and ML
engineers into a cohesive workflow.

MLOps aims to create a collaborative and efficient environment for
AI projects, focusing on seamless integration and interaction among
various roles to enhance productivity. According to Kreuzberger et
al. 2023, MLOps incorporates principles comparable to best practices,
guiding how processes should be realized. These principles include
comprehensive version control for source code and data, configurations,
and models. This ensures reproducibility and traceability, which are
crucial for managing complex AI systems.

A key aspect of MLOps is automation, particularly in managing workflows
for model training, deployment, and monitoring. MLOps integrates
essential DevOps concepts like CI/CD, extending them with Continuous
Training (CT), where ML models are iteratively retrained based on new
data or defined triggers, such as changes in data patterns (John et al. 2021;
Karamitsos et al. 2020; Lwakatare et al. 2020b). This approach ensures that
models remain up-to-date and effective, aligning with evolving datasets
and business requirements. Another fundamental principle is workflow
orchestration, which coordinates tasks within ML pipelines to efficiently
manage dependencies and execution order.(Kreuzberger et al. 2023)

The MLOps ecosystem further includes concepts related to creating a
robust infrastructure that supports the entire lifecycle of AI projects. This
infrastructure encompasses components for data collection, preparation,
model development, validation, deployment, and subsequent continuous
monitoring and maintenance.(Zhou et al. 2020)
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The effective development and integration of highly complex AI systems
necessitate, irrespective of the application domain, a comprehension
of the challenges accompanying implementation at both the technical
and organizational levels. The foundational framework for a successful
introduction and seamless deployment of AI systems is constituted by
precisely formulated phases and the resultant activities for a project
team, which are expounded within the context of traditional software
development through so-called life cycle models.

In simple terms, a life cycle is a structured process encompassing the
various steps undergone in the conception, development, and operation
of a (software-) product (Machado et al. 2024). As delineated in Section
2.4, the substeps are sequentially and phase-based in certain process
models, while others entail multiple iterations.

Regardless of this, the research community has already identified defi-
ciencies in existing ML life cycle models (Diaz-de-Arcaya et al. 2023; Xie
et al. 2021; Machado et al. 2024), which manifest themselves, for example,
in missing phases, such as a feasibility study (Haakman et al. 2021), or
even monitoring (Studer et al. 2021). Concurrently, it can be observed that
most proposed life cycle models overly emphasize the aspects of the ML
pipeline, inadequately integrating the phases and activities of classical
software development, such as requirements management and testing
(Steidl et al. 2023).

Transposing the characteristics of the AL methodology onto an AI
project elucidates an iterative and agile approach arising due to the
inherent continuity across all phases. In addition to an agile mindset, it
is imperative to consider the extensions of modern ML life cycle models
encompassing data centrality, model training, and exploratory tasks and
integrate them into a flexible and adaptable development process. When
considering the interaction of individual subtasks from the developer’s
perspective, both existing concepts like DevOps and emerging concepts
from MLOps and DataOps are implicated in implementation.

The subsequent Chapter presents the proposition of an AL development
life cycle founded upon the tenets of these three concepts. Its purpose is
to synchronize established practices and the individual phases, iterations,
and their interrelationships within the AL development life cycle. It is
based on the publications Stieler et al. 2023a, in which the iterations of the
AL development life cycle are described, as well as on Stieler et al. 2024,
where the life cycle is set in a project context as well as supplemented by
project dependency phases and roles.
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3.1 Project Process Model

A myriad of actions, methods, and decisions characterize the development
of AL systems. Typically, there are numerous tasks and activities to be
addressed. Executing these in individual steps forms a process, which,
when organized in phases, results in a process model.

Such a process model for AL projects is depicted in Figure 3.1. Within
the figure, various colored circles represent the continuous phases of
Data-, ML-, Development-Iteration, and the Operations Phase, with their
individual stages. These stages are detailed in Chapter 3.3.

To gain a holistic understanding, let’s first approach the outer circle of
the figure, which defines the four overarching conceptual main phases

of the AL project process model. These phases follow in a clockwise
direction and are embedded in the context of the entire course of an AL
project.

Figure 3.1: Active learning development
process. The different colored circles rep-
resent four continuous phases of devel-
opment life cycle, while the main concep-
tual phases of an AL project, arranged
clockwise, compose the outer circle.
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Scoping & Project Planning

3.1.1 Scoping & Project Planning

Like other AI projects and projects in traditional software development,
AL projects begin with an initial phase where various stakeholders in-
volved define the project requirements and objectives. These are typically
characterized by first identifying the specific use cases and the challenge
definition that can be addressed or supported by AL. Thereby, the mea-
surability of the requirement is a crucial principle according to the IEEE
Standard for Software Development Life Cycle (IEEE Standards Board 1995),
which contributes to the evaluation of the project (Studer et al. 2021).
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In addition to technological considerations, the initial phase is crucial for
planning the resources required for the project. These resources include
financial and time budgets, as well as infrastructure components such
as hardware and software. Equally important are the human resources
needed for implementation, including domain experts and, in some cases,
human annotators with varying qualifications as part of an AL project.
Both CRISP-DM (Wirth et al. 2000) and Microsoft’s TDSP (Microsoft 2020)
initiate a project with the „Business Understanding“ phase, during which
the aforementioned tasks are performed.

Studer et al. suggest in their enhanced CRISP-ML(Q) merging the „Busi-
ness Understanding“ phase with the „Data Understanding“ phase, ar-
guing that ML projects heavily depend on data availability and quality.
For this reason, the authors propose even in this initial project phase
feasibility studies, which examines the applicability of ML technologies
in general, legal constraints, and the requirements for the application
(Studer et al. 2021). Although this argument seems logical, the phases
in the AL development life cycle remain separated to make the process
more flexible and adaptable by emphasizing the dynamic nature of data
in an AL project.

As Figure 3.1 illustrates, the Scoping & Project Planning Phase further
encompasses the Maintenance and Acceptance phase. This highlights the
necessity of thorough project preparation that influences and supports
all subsequent life cycle phases. It is evident that the Scoping & Project
Planning Phase leads into the Acceptance Phase, where a comparison
is made between the initially established project goals and acceptance
criteria.

3.1.2 Data Engineering

In the initial data engineering phase, the primary focus is on compre-
hending and clarifying the data intended for use in the AL project or
those that should be supplemented with labels. This comprehension is
foundational, as subsequent process phases are built upon it.

The activities carried out in the second conceptual phase of an AL project
resemble data collection. At this point, data collection predominantly
refers to an inventory of the available data for the entire project or a
subset serving as a representative sample (Arnold et al. 2020; Steidl et al.
2023; Tamburri 2020; Ashmore et al. 2022). Such data can originate from
various sources and, depending on their nature - whether structured,
semi-structured, or unstructured - can be held on different platforms,
including data warehouses, data lakes, or data lakehouses (Roh et al.
2021; Zha et al. 2023).

Once the data is assembled, it is described based on its foundational
characteristics. This includes data types, value ranges, missing values,
and other preliminary statistics offering a rapid overview of the data’s
appearance and its current labeling status (Wirth et al. 2000; Studer et al.
2021).

An initial manual exploratory data analysis should be conducted at this
stage, a procedure that will be elaborated on in more detail later in this
chapter when reiterated during continuous iterations. Nevertheless, in



60 3 Active Learning Development Life Cycle

this phase, a relevance check is carried out to filter out data that could be
irrelevant or redundant for the AL task to initiate the next life cycle phase
with the result of a clear understanding of the data. In more mature
states of the project, additional aspects of data engineering include data
management, which encompasses activities related to data versioning,
data provenance, and data backup.

3.1.3 Modeling

The Modeling phase encompasses all tasks related to the algorithmic
solution (Wirth et al. 2000; Microsoft 2020; Studer et al. 2021). Insights
from the Scoping & Project Planning- and Data Engineering phases feed
into this stage, forming the foundation for selecting modeling techniques.
This selection is primarily dictated by the defined ML- and business
objectives, the data at hand, and the project’s specific constraints.

Specifically, the choice of modeling technique hinges on the nature of
the task, whether it is a classification or regression problem, for instance,
and the types of data available. It’s inherent to the types of models that
specific techniques are better suited for structured data, while others are
particularly apt for unstructured data.

Therefore, not only do the project objectives defined in the Scoping &
Project Planning phase, especially those concerning performance, play
a role, but criteria such as complexity, interpretability, robustness, and
scalability of the model influence the selection of an appropriate modeling
technique. Ultimately, from the universe of all models, a subset of suitable
methods emerges, deemed fitting for the AL project and considered
for implementation. In this context, conducting a literature review on
similar problems has established itself as a proven method to gain a
comprehensive overview of the ML tasks and potential solution proposals.
Published results can further serve as performance benchmarks and can
be integrated into the project objectives.(Studer et al. 2021)

To fulfill the key characteristic of AL, adaptability must be considered
when selecting the model type, to ensure an effective and efficient integra-
tion of new training data and feedback in the AL project. In this context,
involving domain experts at this stage is crucial, enabling engineers to
gain a comprehensive understanding of the problem domain.

Furtermore, as the project progresses, aspects of model management fall
into the Modeling Phase, which includes aspects of model versioning and
experiment tracking, which will be explained further in this chapter.

3.1.4 Maintenance

As in traditional software projects, the maintenance phase in AL/ML
projects is crucial for ensuring the long-term effectiveness, reliability, and
functionality of the implemented system, including the trained model.
Studer et al. 2021 highlight this phase in their process model, arguing
that ML models are often used over extended periods and have a life
cycle that must be managed.

This aspect is even more pronounced in AL projects. Since ML models
are regularly updated with new data or labels, key activities such as
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concept drift and system updates have a continuous nature during the
maintenance phase. These aspects will be explicitly discussed in the
operations phase later in the chapter.

3.1.5 Acceptance

Microsoft’s TDSP features a final phase called the „Customer Acceptance
Phase“ (Microsoft 2020), which inspires the proposed process model for
AL projects to merge this into an „Acceptance Phase“.

On a conceptual level, evaluation, and validation refer to the project
objectives defined in the Scoping & Project Planning phase. This mainly
involves considering how results can be measured and the methodologies
available for this purpose. Studer et al. 2021 suggest measuring success
criteria on three levels: Business Success Criteria, ML Success Criteria,
and Economic Success Criteria. When applied to an AL project, besides
the model performance metrics, the number of collected annotations or
the quality of labels can further be a quality standard.

Finally, the conceptualization of the AL project ends with the Acceptance
phase, indicating that once the defined project objectives are met, the
project concludes. It simultaneously connects back to the Scoping &
Project Planning Phase, highlighting its iterative nature. The inner steps,
which follow counterclockwise, demonstrate various feedback mecha-
nisms in the AL development life cycle related to the implementation,
which can commence once the conceptualization is finalized.
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3.2 Inception

When initiating an AL loop from a technical point of view, the literature
often distinguishes between cold and warm starts from a technical
perspective. Following this terminology, Figure 3.2 illustrates these
potential entry points, each associated with a specific conceptual project
phase.

Figure 3.2: Potential stages of inception.
After a mandatory Scoping & Project
Planning phase mainly for problem un-
derstanding, tasks may vary depending
on the entry point, e.g., initial sample se-
lection, following a declarative approach,
the use of seed data, or transfer learning
techniques.
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While a Scoping & Project Planning phase is mandatory, different methods
arise depending on whether initial models or training data are already
available, which can be combined. It is conceivable, for example, that an
existing ML pipeline needs to be extended to include continuous training
and data labeling. On the other hand, possible entry points differ in the
applicable methods for project starts in situations where neither initial
data labeling nor trained models are present.

3.2.1 Cold Start

The Cold Start of the AL project describes a scenario where the project
starts from scratch, from an ML perspective, without access to information
or prior experience. This means that neither a pre-trained ML model nor
labeled data are available, and project participants must initially gather
requirements and knowledge about the project’s scope. This type of
project initiation presents several challenges. Firstly, it is more difficult for
project members to identify suitable algorithm types and QSs. Secondly,
without prior knowledge of the data, there is significant uncertainty
about relevant features and concepts, which may lead to a slower model
convergence during the initial phase.

Initial Selection

In the literature, the Cold Start problem in an AL project is primarily
examined concerning the QS for initial sample selection. The challenge
framed is that without sufficient information, it becomes difficult to
discern which data points are informative or representative in this early
phase. However, the initial data substantially influences the efficiency
and initial performance of the model. Suppose the model is initialized
with data that has not been carefully preselected. It may converge to a
local minimum and fail to capture the entire data distribution pertinent
to the project. To address this, Barata et al. 2021 describe the outlier-
based discriminative active learning (ODAL) approach in their paper,
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in which they select the most effective samples for model improvement,
particularly in the initial phase of an AL project, using a novel QS based
on the combination of outlier detection and discriminant analysis.

A further approach for a specialized QS is proposed by Chen et al. 2022,
who present a solution based on contrastive learning1. Other methods 1: Contrastive Learning is an ML tech-

nique based on the principle of learning
by comparing similar and non-similar
data points.

use clustering techniques to perform the initial data selection in an
unsupervised manner. For example, Brangbour et al. 2020 introduce a
method in which cluster quality and impurity indices are additionally
calculated and demonstrating that their proposed QS suits the Cold Start
AL scenario.

Declarative Approach

As indicated in Figure 3.2, after the data-related phase follows the phase
of model-related tasks. A potential entry point for the Cold Start mod-
eling scenario lies in adopting a declarative approach. This approach
encompasses methods such as AutoML, a highly probabilistic technique
wherein algorithms and model architectures suitable for the underlying
problem are automatically selected, extending to hyperparameter op-
timization and automated feature extraction (He et al. 2021). The high
degree of automation inherent in this approach substantially expedites
the model creation process, enabling individuals with limited expertise
in ML to construct initial models.

In the more abstract form of declarative specification of ML code, specific
facets of automation are omitted, affording developers more significant
influence over the selection of ML tasks and algorithms (Molino et
al. 2021). This approach permits more seasoned developers to make
targeted adjustments and better account for specific problem domains.
It establishes a bridge between automated model construction and the
expertise of ML professionals, facilitating feasibility studies for more
intricate challenges during this phase.

3.2.2 Warm Start

The second possible scenario for initializing AL is the Warm Start ap-
proach. If an ML model is already in use, introducing an AL loop can
enhance the current model’s performance. Compared to Cold Start, Warm
Start offers several crucial advantages that become apparent when taking
a closer look at the techniques that can be considered for this setup.

Seed Data

One approach that can be used in combination with other techniques is
the use of so-called Seed Data. This refers to a previously labeled dataset
on which the initial ML pipeline would be built, and the model be trained.
Available data sources, even publicly available ones, can be tapped into,
or a domain expert can review and label a random selection of existing
data.

In the former case, it may involve sufficiently large datasets originating
from another project and reused for the intended use case of the AL
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project. This subset of the training data is fed into an initial model with a
new learning function to solve a new problem. In the latter case, randomly
chosen data points are selected and annotated. The resulting labeled
database serves as the basis for training the initial ML model and, as
Nath et al. 2022 suggested, may be used to generate pseudo-labels, which
are used for fine-tuning the model for the Warm Start.

Transfer Learning

As a second entry point for warm starting an AL project, an existing, pre-
trained model already possesses learned features and concepts captured
in similar data or other problem contexts, leading to a quicker convergence
in the learning process. Transfer learning is a well-studied method in this
context, which can be combined with other methods. Pre-trained models
are used as a starting point and adapted to the specific requirements of
a new problem. Pan and Yang categorize various techniques into three
categories:

▶ Inductive Transfer Learning: This setting corresponds to instance-
based Transfer Learning, where it is assumed that certain parts of
the data in the source domain can be reused through weighting to
learn in the target domain. Instance Re-weighting and Importance
Sampling are two essential techniques in this context.

▶ Transductive Transfer Learning: This category includes the feature-
representation-transfer approach. An attempt is made to learn
an appropriate feature representation for the target domain by
transferring features from the source domain.

▶ Unsupervised Transfer Learning: This area covers parameter
transfer, where parameters from the source domain are used to
initialize or regulate the model in the target domain. (Pan et al.
2010)

For example, the combination of Transfer Learning within an AL loop
has been investigated by Kale and Liu. The authors experimentally demon-
strate that the disadvantages of the Cold Start can be overcome in an
AL setup, reducing the number of required sample queries on a given
dataset.(Kale et al. 2013)

Once the initial phase is overcome, an AL project can transition into
the continuous phases, which will be described in more detail in the
following Section.
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3.3 Continuous Phases

From a process perspective, the fundamental distinction between conven-
tional AI and AL projects arises when considering the cyclic iterations
and the continuity inherent in the methodology. The proposed AL devel-
opment life cycle is divided into four continuous phases, each addressing
tasks that iteratively occur throughout the project’s duration.

The following Section details the activities and tasks targeted in each
iteration and addresses the relationships between the iterative phases
during implementation of an AL project.

3.3.1 Data Iteration
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The phase of data iteration is a central component of the AL development
life cycle and differs from conventional AI projects. Its significance lies
in continuously adapting and optimizing the data foundation to ensure
that the model is consistently supplied with relevant and informative
data. This necessity arises from the goal of AL projects to enhance the
learning process by repeatedly providing new and specifically selected
data.

While AI projects may rely on static datasets, an AL project requires the
continuous review and updating of data to effectively adapt the model
to new information and maximize its performance. This iterative process
ensures that the model is not limited to historical data but can continually
learn from new, potentially relevant data and user feedback in the form
of annotations.

The steps involved in data iteration simultaneously form the data pipeline,
with various specifications described in the literature. When examining
data engineering activities on a technical level, they can essentially be
grouped into the three phases of Extract, Transform, and Load (ETL) or
ELT processes (Idowu et al. 2021; Tamburri 2020; Ashmore et al. 2022;
Amershi et al. 2019). Additionally, the entry point of a data iteration
is often described as data ingestion, which consists of data collection
and selection. This stage can manifest in two distinct ways in the AL
development life cycle, initiating the data iteration process.

Query and Stream

Delving into the data ingestion phase, one can discern a bifurcation
primarily characterized by pool-based and stream-based approaches.
The main difference lies in how the data is processed. A stream process-
ing engine is often used to implement stream-based data input. This
component processes continuously incoming data in real-time and makes
it available in short batches for further application.

In contrast to the stream-based method, querying new data in the AL
development life cycle is identified as a second potential stage for entering
data iteration. As presented in the main scenarios for AL in Section 2.1.3,
this includes membership query synthesis and the pool-based approach.
In these methods, data is not queried by the model in real-time. Instead,
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the model either formulates a query de novo or selects the best query set
from a pool of instances.

Both approaches, stream-based and query-based, heavily depend on
specific project requirements, particularly regarding data type and avail-
ability. As described in Section 2.1.3, QS plays a central role in both
scenarios, aiming to identify those data points whose annotation would
have the most significant impact on improving the model. These ap-
proaches can be used in isolation or in combination.

The distinction between these approaches is also reflected in Microsoft’s
TDSP development life cycle (Microsoft 2020). The differences between
the methods are primarily based on how data is processed, with stream
processing handling and processing data in real-time (Steidl et al. 2023;
Kreuzberger et al. 2023), whereas query-based approaches focus on the
strategic selection of existing data points (Settles 2009).

Transformation

Once new data becomes available, it is crucial to make it accessible in
a consistent manner for the subsequent phases while further adhering
to versioning methods. This ensures up-to-date and consistent data is
processed throughout the entire AL project. Data provisioning follows
a predefined sequence in which data transformation procedures are
combined to optimally prepare the data for the subsequent analysis and
modeling phases. During this phase, rule-based tasks are applied to
the extracted raw data to improve its quality and structure. These tasks
typically include noise reduction, data imputation, and the correction
of inconsistencies to ensure that the data supplied to downstream ML
processes is as clean and standardized as possible.

This stage includes data cleaning, which involves identifying and cor-
recting erroneous or incomplete data. This is often achieved through
algorithms and techniques that enable the interpolation or estimation
of missing values, noise reduction, and detecting and treating data
anomalies.

The importance of consistent data accessibility and adherence to version-
ing methods is emphasized in various reviews to ensure the consistency
and currency of data throughout the entire process (Studer et al. 2021;
Steidl et al. 2023; Kreuzberger et al. 2023). Data provisioning occurs
in a structured sequence, with the data transformation procedures, as
described e.g., by Polyzotis et al. 2018 and within KDD (Fayyad et al. 1996),
also being combined to optimally prepare the data for the further stages
of analysis and modeling. Rule-based tasks, such as noise reduction,
data imputation, and the correction of inconsistencies, play a central
role in ensuring high data quality. Ilyas et al. 2019 and Breck et al. 2019
emphasize the relevance of making the data as clean and standardized
as possible for the subsequent ML processes. This aligns with the data
cleaning described in the CRISP-DM model (Wirth et al. 2000), a central
component within the data preparation phase.
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Label

In the life cycle model of an AL project, the data labeling phase is crucial
and is typically defined as a separate stage in the data-related tasks. After
the QS selects the data and has undergone data transformation, the new
instances must be labeled by an „Oracle“. This task can be performed
either by a human annotator or by the model itself as part of automated
data labeling or semi-supervised learning.

The choice between manual and automated data labeling depends on
various factors, including the available resources and the specific require-
ments of the application. Manual labeling generally provides high-quality
labels but is time-consuming and costly. Automated labeling allows for
faster processing but can be more prone to errors, particularly if the
model is not sufficiently trained or the data is inconsistent.

Additionally, the type of application, the data type, and the problem to be
solved influence the choice of labeling method. In real-time applications,
automated labeling may be preferred, whereas, for safety-critical or
high-precision applications, manual labeling by domain experts may be
required.

The importance of this phase is highlighted in the life cycle models
of Amershi et al. 2019 and Fischer et al. 2020, where it is defined as
a distinct phase. The decision between manual or automated labeling
and the factors based on resource requirements and the need for high-
quality labels are examined by Fredriksson et al. 2020a. As mentioned,
automated labeling is often implemented in real-time applications, while
Alonso 2015 and Bernhardt et al. 2022 emphasize the importance of
high-quality labeling, particularly in safety-critical areas. A combination
of both methods is demonstrated in Desmond et al. 2021.

Load

To complete the data iteration, the loading phase focuses on providing
the results of data-related tasks in a standardized manner for use in other
stages of the AI life cycle. During this phase, a particular consideration in
AI projects is data division into training, testing, and validation datasets.
Additional considerations must be taken into account as these datasets
may exhibit a certain level of dynamics. New data streams and labels may
be introduced, and the characteristics of the data may change over time.
Therefore, it is essential to periodically review and adjust this division to
ensure it remains representative of the current data distribution. These
adjustments can be made, for example, through stratified sampling to
maintain the same class distribution or by considering temporal aspects
to capture evolving patterns.

Following the process towards the operations phase, it becomes evident
that these tasks play a role in monitoring. Furthermore, artifacts resulting
from a data iteration may affect different ML pipelines or should be
available in additional projects that are organizationally separated but
technically interconnected. Therefore, ethical and legal aspects must be
considered when providing data to preserve data privacy, especially
when dealing with sensitive or personal information.(Steidl et al. 2023)
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Another task in this phase is metadata management, which documents
the data and contains information about the data’s origin. This contributes
to understanding the context and history of the data.(Microsoft 2020)

3.3.2 Machine Learning Iteration
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Upon the availability of new data or annotations, the ML model undergoes
continuous (re)training within the AL loop. This iterative process is crucial
for refining the ML model’s performance, ensuring that it consistently
responds to the latest and most relevant information. The ML pipeline,
which orchestrates this process, typically includes various sub-steps that
may vary depending on the problem domain and application area, and
which describe the activities of ML iteration.

These steps include data preprocessing, model training, and optimization.
Each of these tasks within the AL development life cycle is designed to
adapt the model to new data inputs and account for an evolving data
basis. The tasks related to the ML model, including the aforementioned
sub-steps, constitute the green-colored ML iteration shown in Figure
3.1.

This iterative loop is crucial for maintaining the effectiveness of the model,
as it enables the model to dynamically respond to new data, annotations,
or additional requirements that may arise within an AL project. The ML
iteration is closely integrated with the overall AL development life cycle,
with the results of each iteration feeding into subsequent rounds of data
selection and annotation.

Trigger

In an AL system, some ML tasks are performed manually, while others
are executed automatically through the continuous retraining of the ML
pipeline. A central component of this automation is the various trigger
mechanisms that initiate the retraining of the model.

Automated triggers can be categorized into different types. Feedback
and alarm systems use feedback or alarms collected during runtime
to initiate processes, such as deleting individual datasets, which can
result in retraining the model. Additionally, functional components for
workflow orchestration play a crucial role in automated ML processes,
forming the foundation of automated ML pipeline execution. Discrete
triggers, such as event-driven or time-scheduled triggers, typically drive
this execution. Another example includes thresholds, where reaching
certain levels triggers model updates, such as when model performance
deteriorates, an effect further detailed of the „Monitoring“ Section in
3.3.4. These thresholds can relate to model and data metrics, as well as
throughput, latency, or GPU utilization.

This automation enables the integration of the ML pipeline into both
development and operational processes. In event-driven scenarios, mod-
els are retrained when data updates occur or in response to external
events, such as changes in the repository or reconfigurations of the QS.
While fixed schedules may not be reactive enough and could lead to
unnecessary pipeline executions, they still offer advantages in optimizing
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the frequency of retraining, resource allocation, and the order of job
executions, particularly when edge and cloud resources are involved.
This dynamic not only underscores agility but also promotes proactive
readiness. Fixed time triggers (e.g., hourly, daily, weekly) ensure that
models are regularly retrained. This consistent approach ensures that the
models remain adapted to the current data landscape, maintaining their
relevance and performance.

The importance of automated trigger mechanisms for the continuous
execution of the ML pipeline is highlighted by Steidl et al. 2023, who
identify three main types: feedback and alarm systems, orchestration
services, and schedules, as well as repositories. Kreuzberger et al. 2023
emphasize in their end-to-end MLOps architecture the significance
of functional components for workflow orchestration that support an
automated ML pipeline. In this context, they highlight discrete triggers,
such as event-driven or time-driven triggers, and thresholds that trigger
model updates, which are central to making the ML pipeline dynamic
and efficient.

Experimentation

The interface to the development iteration refers to the experimentation
phase, which further constitutes a substantial phase within the ongoing
process in AL projects. Experimental tasks encompass activities such as
evaluating novel model architectures, quantifying model performance
with parameter configuration adjustments, or exploring innovative ap-
proaches to data preprocessing. The iterative nature of this process allows
for the continuous incorporation of new ideas and improvements into
model development.

Activities such as feasibility studies and concept proofs may be included
within this phase, stemming from an ML iteration, as proposed by
Haakman et al. 2021. This means that AL teams have the opportunity
to test new concepts and approaches in an experimental framework,
verifying their applicability and effectiveness before transitioning into
actual model production (Baylor et al. 2017).

Moreover, the subtle shift from the developmental iteration towards the
experimental corridor of ML iteration underscores a quintessential tenet
for AL projects, as elucidated by Mattos et al. 2017: the orchestration of
automated continuous experiments. This paradigm facilitates methodical
hypothesis validation within the ML context and underscores that AL
ventures transcend episodic experimental bouts. As a result, AL projects
are not limited to one-time experiments but can conduct continuous
testing and experimentation to monitor and improve model performance
over time (Hummer et al. 2019). This contributes to creating adaptive
learning systems that adapt to changing conditions and requirements,
thus maintaining long-term effectiveness.

Exploration

Irrespective of an ML pipeline’s application-specific implementations,
one stage involves a systematic data analysis. When the ML iteration
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commences in an experimental milieu, manual execution becomes typ-
ically required, similar to how it is described for the conceptual Data
Engineering phase (cf. 3.1.2). Here, experts meticulously dissect the data,
leveraging visual analytics to decipher inherent patterns and intricate
relationships that hold promise for algorithmic training. A case in point
is the deployment of attribute recognition methodologies. These are
systematically harnessed to probe the data, mining for salient attributes
that can be seamlessly integrated into the model’s fabric.

Some tasks in this phase are amenable to automation, especially when
navigating familiar data relationships. Although the tasks are data-
driven, the focus here shifts towards a model-centric orientation. In
this context, the data corpus undergoes statistical evaluations, enabling
a profound understanding of its inherent attributes and distributions.
Complementing this, anomaly detection techniques stand poised to
identify and mitigate potential data aberrations, ensuring they don’t
inadvertently compromise the integrity of the resulting model.(Polyzotis
et al. 2018; Caveness et al. 2020; Breck et al. 2019)

Processing

The subsequent processing steps in the proposed AL development life
cycle are categorized under „Process“. The intricacies of data preprocess-
ing for the ML model are closely tied to domain-specific considerations
and the overarching application context. The relevance and effectiveness
of specific techniques vary depending on the data type and the model’s
architectural specifics. A strategic combination of various methods is
often orchestrated to prepare the data for model training optimally.

This preparatory phase includes methods such as data weighting and
resampling. In data weighting, different levels of importance are assigned
to certain data instances to increase the significance of data subgroups se-
lectively deemed critical for model performance. Resampling, conversely,
involves a tactical reconfiguration of the data distribution to reduce the
dominance of overrepresented data points.

Another crucial component of this phase is feature engineering, where
new, potentially more informative features are developed from the
existing data pool. These procedures range from mathematical transfor-
mations and aggregations to targeted feature selection and extraction
areas. Before these refined data are fed into an ML model, normalization
procedures ensure consistency in value ranges, while standardization
techniques, such as scaling, provide a uniform data structure. All these
preprocessing tasks must align with the application in the production
environment to prevent training-serving skew.

Another central aspect of preprocessing is data augmentation, a critical
strategy in modern ML practice. Traditional augmentation techniques
include data shifts, such as rotations, scaling, or mirroring of the original
data, to increase data diversity. Other augmentation methods introduce
controlled perturbations, such as injecting noise or overlaying artifacts, to
enhance the model’s robustness and generalization capabilities. Another
augmentation method is data synthesis, where new data instances are
created from the existing corpus, often using additional ML models for
this generative process.
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These preprocessing steps’ importance and adaptation to the specific
application context are comprehensively integrated into established
process models. Studer et al. 2021 emphasizes the close connection
between data preprocessing and domain-specific requirements, where
the effectiveness of techniques varies depending on the data type and
model architecture. Idowu et al. 2021, Amershi et al. 2019, and Arnold
et al. 2020 support the inclusion of feature engineering during this phase
to enhance model performance by creating new features. Steidl et al. 2023
highlights that normalization and standardization procedures are crucial
to ensure consistency between training and production environments
and to avoid training-serving skew. Finally, the significance of data
augmentation in improving model robustness and generalization through
various techniques, such as data shifts and data synthesis, is detailed by
Studer et al. 2021.

Training

The subsequent phase shifts the focus from the data towards the model.
Training represents the pivotal step within the ML iteration, during
which the adjustment of the ML model is carried out according to its
objective function, mirroring the defined problem-solving approach. In
this process, pre-processed data is fed into the model to identify patterns.
The outcome is an algorithm that is subsequently deployed as a prediction
service in an AI application and is iteratively retrained within the context
of an AL project. Thus, the training phase aims to refine the model so
that the resulting algorithm can make as accurate predictions as possible
on unknown data points.

Similar to pre-processing methods, choosing appropriate modeling
techniques and algorithm types is largely contingent upon the nature of
the ML problem, the set objectives, the data, and the project constraints.
The overarching objective, often serving as a benchmark for model
performance, acts as a proxy. Another essential facet within this training
process is the optimizer. It dictates the strategy of the learning process
and determines how the model parameters are calibrated to meet the
defined objectives. Moreover, regularization is an integral component of
the training process. It can be incorporated into the objective function,
the optimizer, and the model itself, playing a crucial role in minimizing
overfitting. Through it, more distinct and stable solution paths in the
learning process can be identified.(Amershi et al. 2019; Studer et al. 2021)

Optimization

In the subsequent phase, optimization and regularization techniques are
intensified. Model-oriented optimization, which represents an extension
or additional iteration in ML, typically involves activities focused on
the iterative repetition of the training process and improving model
performance. An essential task in this phase is hyperparameter tuning,
where a range of external configuration variables, such as the learning rate,
are systematically tested, as they significantly influence an algorithm’s
learning process. In this context, model performance evaluation is usually
carried out using a validation dataset, which is either provided by a
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previous method or generated in real-time during this phase, for example,
through techniques like cross-validation.

If the design of the ML pipeline includes the training of multiple models,
as is the case with ensemble methods, methods for aggregating these
models are implemented during this phase. Another typical activity
during the optimization phase is model compression, where compression
or pruning techniques are applied to create a more compact model. These
procedures aim to prepare the often significantly large trained models for
subsequent use, either to enable faster inference times through accelerated
predictions or to reduce the required storage space for integration into an
edge device. Furthermore, in the AL context, this optimization can include
parameterized QS, which is optimized during a labeling simulation.

Other established life cycle models address the importance of model-
oriented optimization and its various activities. For example, Zaharia
et al. 2018 describe the iterative repetition of the training process and the
optimization of model performance as central tasks. Ashmore et al. 2022
emphasize the systematic review of hyperparameters that govern the
learning process of the algorithm. Furthermore, the necessity of model
compression during the optimization phase is discussed by Studer et al.
2021 and Karlaš et al. 2020, to prepare models for more efficient use,
whether through faster inference or reduced storage requirements.

Model Selection

The model selection phase in the AL process serves as the connection
between the ML iteration and the development iteration. After optimiza-
tion, once a suitable version of the fully trained model has been identified,
the focus shifts to deciding which model is best suited for the specific
requirements of the project in the subsequent phases. In this context, it is
crucial to implement a model versioning system that not only tracks the
different versions of the model artifacts but also their dependencies. This
allows for easy reproduction or rollback to previous versions as models
rapidly evolve.

During model selection, certain criteria, such as complexity, interpretabil-
ity, and scalability, are manually evaluated and incorporated into decision-
making during the conceptual modeling phase. Other important criteria,
such as compatibility and integration, arise from the requirements of the
software environment or the integration into existing data processing
pipelines. On the other hand, performance factors like predictive accuracy
or robustness can be managed through automated processes.

This phase is particularly significant in the context of AL, as it involves
the continuous adaptation of the model through the ongoing expansion
of the training data. Clearly, the data selected by the QS and the chosen
model influence each other. A successful model selection strategy thus
ensures that the model used in the next iteration of the AL process is both
powerful and robust, accurately reflecting the current data situation.

The literature on existing life cycle models extensively discusses the
importance of model versioning and the criteria for model selection.
Steidl et al. 2023 and Zaharia et al. 2018 emphasize the technical necessity
of a model versioning system that facilitates tracking and restoring
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previous model versions. Inspired by Wirth et al. 2000 , Studer et al. 2021
focuses on the model selection stage by choosing an appropriate model
architecture based on various performance factors such as accuracy and
robustness.

3.3.3 Development Iteration

Development

Code

Build

Model

Selection

Experim

ent

Release

Plan

Re
qu

ire-

Test

m
en

ts

Section of the development iteration in
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Concepts of iterative development cycles originate from the practices
of DevOps and encompass methodologies for the continuous improve-
ment and automation of conventional software projects. In traditional
software development, DevOps pipelines already consist of an array
of methodologies employed by development teams to design, test, and
deploy software products more efficiently and promptly.

The AL development life cycle adapts the concepts of continuous integra-
tion and deployment of the source code and ML-related artifacts. These
include the trained model, which has emerged from the ML iteration and
is made available for the subsequent development iteration according to
the model selection phase.

Requirements

As in traditional software development projects, it is crucial in AL projects
to ensure that the developed system, the model to be trained, and the
generated data align with the project goals and the actual needs of the
users. During an ongoing requirements analysis, feedback is continuously
consolidated from an extended circle of stakeholders. This circle can
range from subject matter experts to end users to ensure that diverse
perspectives and expertise are incorporated into the development process.
This phase aims to quickly identify emerging or changing requirements
and integrate them into project planning.

This aspect is particularly important because the dynamics of new
data and models further influence the development and refinement of
models and other software components. However, the foundation for
all requirements is the use case, including its users and their needs. To
effectively capture these, methods such as user interviews and in-depth
user research can be conducted to identify requirements related to user
interaction, user interfaces, and feedback mechanisms.

The engineering team must also address data-related requirements, such
as availability, access, quality, volume, and data protection. The same
applies to requirements related to annotation, which directly influence
the design of annotation tools so that users can efficiently label data.
These identified requirements can impact the entire spectrum of the
AL project and span its entire lifecycle. While some requirements may
concern the ML model, others might affect data and QSs. Still, other
requirements might have less influence on ML-related areas and focus
primarily on the user experience. Therefore, careful planning is essential
before diving into the development iteration. The importance of ongoing
requirements analysis and the inclusion of a broad stakeholder circle is
emphasized in the literature.
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Rahman et al. 2019 highlights the need to incorporate different perspec-
tives into the development process, while Steidl et al. 2023 describes the
dynamics of new data and models and their impact on development.
The collection and categorization of requirements, particularly for ML
applications, is comprehensively discussed by Studer et al. 2021, who
summarize model-related requirements in ML projects arising from the
operation of an application in the target environment into dimensions
such as performance, robustness, scalability, explainability, and resource
requirements. Another categorization is presented by Habibullah et al.
2023, who identify 35 groups of non-functional requirements for ML
applications and classify them according to product operation, product
revision, and product transition.

Plan

In the planning phase of the AL development life cycle, a further initial
step in the development iteration emerges. This step in the process
primarily addresses the requirements that can be derived from the
feedback gathered during the operational phase. In addition to this
predictable flow, the high volatility introduced into the AL project by the
constantly changing data and model landscape can lead to requirements
that necessitate spontaneous responses and adjustments by engineering
teams.

Typically, the transition to the continuous phase occurs systematically,
with task-tracking tools frequently being utilized. These instruments
serve the purpose of organizing and monitoring assigned tasks. In this
context, a established DevOps and MLOps principle becomes a corner-
stone: The collaboration of project members. Teams define objectives
based on the specific areas and structure the implementation into tasks
by setting priorities, calculating available resources, and considering
time constraints. In this phase, it is paramount that interdisciplinary
teams collaborate closely to foster a consolidated understanding of the
multifactorial requirements directed at the ML model and other system
components and how these might integrate into pre-existing parts.

Code

The next step in the development iteration focuses on the actual im-
plementation. In this phase, the previously defined specifications are
transformed into functional software code. Particularly in the context
of ML, this process encompasses the conventional programming code
as well as the code of ML-specific algorithms, which represent the
probabilistic aspect of an AI system and are organized within the ML
pipeline.

During this phase, it is paramount to ensure close collaboration among
the often diverse development teams. Regardless of which component of
the AI project is being developed, whether it pertains primarily to data
engineering functions or the ML pipeline, the involved team members
use integrated development environments (IDEs), code editors, and
other appropriate technologies to convert the planned modifications into
executable source code. In coding for ML projects, the use of codespaces
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has become established, with environments being created, for instance,
through the use of a development container. These development con-
tainers, also known as „Dev-Containers“, are Docker containers that
are specifically configured to provide a fully functional development
environment (GitHub 2023).

Build

As evident in Figure 3.1, the next step in the yellow colored development
iteration is a new version’s build. In this stage, the developed code is
turned into an executable form, an essential part of continuous integration,
which according to Karlaš et al. 2020 is already the „de-facto standard for
building industrial-strength software“.

In software development, it is expected to utilize a variety of third-party
libraries and frameworks. Dependency management is used to resolve the
versions of the packages used and integrate them into the project. During
this phase, the model is orchestrated with the rest of an application’s
logic at the system level. Part of this process is called packaging, where
the code and model logic are bundled into build artifacts that are used for
further steps, particularly for later deployment. Thus, the essential task is
containerizing the model and its dependencies to prevent compatibility
issues (Lenarduzzi et al. 2021).

Test

As in traditional software development, a successful build is followed by
a phase in which manual and automated tests are conducted. These tests
are designed to ensure that the artifacts created during the development
iteration meet functional and quality requirements. The testing phase
bridges the gap between the development iteration and the subsequent
phases, and it precedes the release phase, highlighting that continuous
testing is an essential step in the AL development life cycle.

In data-oriented projects with an ML pipeline, automated tests, including
unit tests, integration tests, and regression tests, extend beyond the
application code to encompass data dependencies and the selected
model. Various ML-specific testing properties must be considered, such
as correctness, model relevance, robustness, security, privacy, efficiency,
fairness, and interpretability, as proposed by Zhang et al. 2019.

The importance of the testing phase and the necessity of continuous
testing are emphasized in the literature. Gmeiner et al. 2015 highlights the
role of manual and automated testing following a successful build, while
Sculley et al. 2015, Tao et al. 2019, and Lenarduzzi et al. 2021 emphasize
the importance of ML-specific tests that go beyond the application code
and cover data and model dependencies.

While Breck et al. 2017a proposes a comprehensive approach to ML testing
at the project level, covering the entire development life cycle, Steidl et al.
2023 discusses the challenges of automating tests in ML pipelines. The
available testing strategies show that achieving full automation makes
it difficult to ensure efficient use throughout the pipeline. For example,
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acceptance tests often require user involvement, which complicates
complete automation.

Release

Following the successful completion of tests for the selected model
and the implemented code, the process advances to the release phase.
The pertinent software and model versions are securely and efficiently
transitioned into the operational phase during this phase. At this juncture,
the development team typically produces all essential documentation
required for operation. This lays the foundation for proficient change
management, fostering development iteration in the AL life cycle through
a culture of continuous improvement.

A crucial component within the continuous integration and delivery
paradigm that impacts this phase is formulating a rollback plan encom-
passing all necessary technical aspects. This ensures that the AL life cycle
remains agile, instilling confidence in executing future development
iterations. Furthermore, the team responsible for the operational phase
can respond should issues arise, reverting to a prior version introduced
in an earlier release phase.

3.3.4 Operations Phase
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In addition to the iteration cycles, representing data engineering, the ML
pipeline, and development, all operational tasks are highlighted in red
in Figure 3.1. These tasks are carried out continuously in a production
environment from the time of release and throughout their deployment.
In a sense, this phase bridges the gap from the development iteration
back to the data iteration, emphasizing the data-centric focus of the AL
life cycle. The operational tasks emerge with significant importance, as
they contribute to the improvement of quality and the enhancement of
efficiency and further represent the essential aspect of the feedback cycle
for an AL application.

Feedback

When models of AI systems undergo updates over time, it often induces
alterations in the system’s inherent behavior, a phenomenon articulated
by Sculley et al. 2015. In their discourse, they shed light on the complex-
ities birthed by such changes, leading to what they term as a form of
„analysis debt“. This characterizes a predicament where anticipating
a model’s behavior before its official deployment becomes an intricate
endeavor. Echoing this sentiment, Kreuzberger et al. 2023 underscore
the imperative of integrating multiple feedback loops within an AI
system. Their rationale pivots on the notion that feedback loops act as
conduits, channeling insights from quality evaluations back into the
iterative engineering processes.

Examined through the lens of AL, the paramountcy of continuous
feedback throughout the life cycle emerges distinctly, cementing its role as
the central nexus between the oracle and the learner. These direct, explicit
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feedback loops, especially in an operational setting, encapsulate responses
from stakeholders interfacing with the deployed system. This entails
responses and actions captured as data annotations for the requested
samples, which are harnessed for the model’s subsequent training phases.
This facilitates the evaluation and validation of the learning progress,
offering indicators, for instance, of data where the model showcases a high
prediction performance or segments of the problem sphere necessitating
further conceptual acquisition. This feedback equips the operations team,
allowing them to enact initial responsive measures, such as system
reconfigurations or, for example, recalibrations of the QS.

While direct feedback loops may be resource-intensive during analysis,
they invariably pose a persistent challenge in the AL life cycle. A more
intricate scenario emerges from latent feedback loops arising from indirect
system influences. The ensuing implicit feedback manifests, e.g., in
behavioral shifts, evident when users, in response to a new model
version, either intensify or diminish the frequency of anticipated actions
(Sculley et al. 2015).

Across both scenarios, the imperative remains the meticulous collation
of information regarding the model’s performance juxtaposed with user
behavioral patterns during operational deployment, all of which inform
a robust monitoring paradigm.

Monitoring

With the integration of continuous monitoring, another MLOps prin-
ciple is implemented into the AL development life cycle. During this
phase, there’s a dual focus: firstly, on overseeing the current state of the
learning model, and secondly, on ensuring the efficiency of the overall
learning process. Continuous monitoring offers the ability to identify
vulnerabilities and inconsistencies during training, allowing for timely
interventions and corrections.

This approach implies consistent oversight of data quality, including
new annotations, as well as tracking the learning progression using
model performance indicators. These indicators evolve over time, such as
accuracy, loss, and other relevant metrics. A sudden decline or stagnation
in these indicators can point towards challenges in the training process
that might affect the learning progress. Due to possible shifts in the
data basis, changes in user behavior, or other environmental factors,
the statistical properties of target variables, which the model aims to
predict, can change over time. This phenomenon is generally understood
as concept drift (Gama et al. 2014). In this context, specialized detection
techniques are employed with the objective of preserving the predictive
performance of the model as it evolves.

An exhaustive approach to continuous monitoring doesn’t solely revolve
around data and the model. Furthermore, it encompasses other pivotal
components of an AI system (Kreuzberger et al. 2023). Regular assess-
ments of the code and infrastructure resources, for instance, are crucial. It
ensures that they continue to meet the demands of the entire AL process
and, if necessary, are modified to cater to new requirements.
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Configuration

As evident in the AL development life cycle, the stages Feedback and
Monitor converge into the Configuration phase. To achieve optimal
performance from a model, insights from these stages must be assimilated
and meticulously refined. Such refinements often involve adjusting
parameters to calibrate the model’s architecture to new datasets and
labels.

Sculley et al. 2015 emphasize the significance of configuration in AI sys-
tems. They note that large-scale systems possess an array of configurable
options, a fact apparent from the previously examined data-, ML-, and
development- iterations. These range from data acquisition, data trans-
formation, feature selection, potential pre-processing or post-processing
methodologies and, model training settings.

Consequently, the chosen configuration in an AI system influences the
model, learning process, and the QS. The operations team should be
equipped to respond flexibly to shifting dynamics. Switching to an
implemented QS should be facilitated by a reconfiguration, bypassing
the need for a development iteration. This flexibility allows the system
to adapt to available resources and factors influencing this decision,
informed by outputs from the Monitoring- and Feedback-stage.

However, the versatility of configuration management poses its set of
challenges. Real-time modifications necessitate a reevaluation of out-
comes. A continuous assessment mechanism is indispensable to ensure
that all configuration adjustments consistently align with the overarching
goal of optimal model performance.

Evaluation

In addition to assessing the current configuration, the continuous evalu-
ation of the entire system’s performance is essential due to the ongoing
changes in training data and continuous retraining (Kreuzberger et al.
2023). At this juncture, the effectiveness of the trained model in making
predictions on a test dataset is examined. Typically, a subset of data that
is always disjoint from the training and validation datasets is utilized
to ensure an unbiased evaluation akin to a „blind test“ (Studer et al.
2021). Studer et al. 2021 further advise that this test dataset be carefully
selected and curated, preferably by a team of domain experts who can
verify accuracy and representativeness for real-world cases. Specific
challenges in implementing the AL loop might arise, as care must be
taken throughout the project’s duration to ensure that the dedicated test
data were not used as training data in an earlier phase.

Depending on the problem statement and model type, performance
metrics, such as accuracy, 𝐹𝛽-score, precision, recall, and the receiver
operating characteristic (ROC) curve are measured on this dataset. Each
of these statistical indicators captures distinct facets of model quality by
quantifying prediction accuracy. Evaluation criteria are established based
on the ML objectives of the project, such as achieving a specific prediction
accuracy for a certain class within the dataset. Beyond these qualitative
scores, other model attributes can be assessed, equally pertinent in
determining the model’s performance, such as prediction speed or costs
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related to required training duration or storage capacity (Zaharia et al.
2018). Regardless of which aspect of the model is being measured, it
is inherent that some values can be computed metrically while a set
of values needs to be estimated. For this purpose, dummy estimators,
for instance, are employed, simulating a model that generates random
predictions as a baseline.

The QS is the second ML-related performance category subjected to
continuous evaluation in the AL context. This phase investigates whether
the choice and configuration of the selection strategy align with the
desired objectives, for example, if a forced class selection effectively
expands the data space for the model in this task and the desired effects
on the model, e.g., a higher certainty value, become apparent. Thus, this
phase provides insights into whether training and additional labeling
of training data should continue or if the model has already achieved
an acceptable performance level. Suppose performance gains between
iterations are only marginal. In that case, it might indicate that the model
benefits little from further annotation rounds, necessitating further design
decisions - a potential feedback loop linking the operational phase with
the development iteration through the requirements stage.

Validation

Evaluating the model’s performance and the QS provides an initial
insight into the performance level achievable with the current conditions.
However, more than simply computing metrics is required to ensure a
model makes accurate predictions. Hence, during the operational phase,
additional efforts are made to determine whether the system meets
practical requirements.

Continuous validation in an AL development life cycle ensures that the
model and data align with the expected operational behavior in real-world
conditions (Caveness et al. 2020). As mentioned in the Model Selection-
(cf. 3.3.2) and Test-stage (cf. 3.3.3), the criteria for interpretability and
robustness play a pivotal role in this context. For example, utilizing model
explanation techniques can aid in understanding „how“ and „why“ the
model makes specific predictions and analyze the model’s functioning
in-depth.

Besides model validation in AL projects, another crucial aspect is the
continuous validation of the provided annotations. One method in this
regard is, for instance, determining inter-annotator agreement. Here,
a sample of annotated data is taken and compared with additional
annotation sets from other oracles to validate the quality and accuracy of
the assigned labels, ensuring high consistency in data annotation.

Deployment

The deployment phase, which connects the operational phase with the
data iteration in the development life cycle, embodies the characteristics
of the AL methodology. This phase focuses on activities to integrate
artifacts such as traditional software components and model versions
into a production environment where they are available for interaction
with the Oracle.
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Best practices in continuous deployment include safety techniques such
as A/B testing and canary releases (Zinkevich 2019). These techniques
minimize risks and allow new model versions to be gradually introduced
and tested before full implementation. In the context of the release phase,
automated processes for rollback decisions can be employed to reduce
the risk when introducing a new model version.

For the deployment phase of an ML model, Studer et al. 2021 identify
relevant activities that go beyond risk minimization and the definition
of a release strategy. These include defining the inference hardware, ad-
dressing infrastructure concerns, with significant differences depending
on whether the target platform involves scalable cloud-based services or
embedded systems.

Steidl et al. 2023 identify four essential criteria a model must meet before
deployment. First, all steps in the development pipeline, including quality
assurance, must be successfully completed. Second, the optimal model
must be identified, which can be particularly challenging when multiple
model versions need to be fairly compared. Third, custom deployment
criteria, such as improving accuracy or achieving a specific benchmark,
must be met. Fourth, human involvement may be necessary, such as in
manual testing, particularly with specific participants.

The importance of these criteria and continuous deployment techniques
is extensively covered in the literature. Baylor et al. 2017 and Olston et al.
2017 discuss best practices for risk minimization and automation in the
deployment phase, while Studer et al. 2021 and Steidl et al. 2023 mention
the specific requirements for inference hardware and the need to meet
custom criteria.
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3.4 Roles

Incorporating AL into a development project, especially when aiming
for a high degree of maturity, requires the integration of a variety of
roles, encompassing interdisciplinary groups of both technical and non-
technical participants. This Section aims to provide a general overview
for assigning the roles used in the subsequent Chapters.

3.4.1 Non-technical Roles

Project Managers. Falling under the umbrella of Business Stakeholders,
they oversee the entire life cycle of the AL project. Project Managers
coordinate the various roles, manage resources, and ensure project
milestones are met in time and budget (Lwakatare et al. 2020b). They
play a key role in risk management and aligning the project with its
objectives.

Ethicists. They accompany the development process and ensure that all
processes within an AL project comply with ethical standards and legal
regulations through methods such as „Embedded Ethics“ (McLennan
et al. 2020). This includes monitoring the fair and unbiased use of models
and conducting ethical reviews of data labeling.

Annotators. In AL projects where human oracles support the labeling
process, these individuals may bring various qualifications or be trained
to annotate specific data types. For labeling tasks that do not require
specialized knowledge in a field, a crowdsourcing approach is often
adopted in large-scale projects (Nguyen et al. 2015; Zhao et al. 2011).
Annotators play a pivotal role by supplying the model with requested
annotations and providing feedback throughout the iterative learning
process (Budd et al. 2021; Fredriksson et al. 2020b).

In an AL project, human oracles, who may bring various qualifications
or be trained for labeling certain data, are deployed (Budd et al. 2021;
Fredriksson et al. 2020b). They play a crucial role by providing the
requested labels and feedback for the model.

Domain Experts. Subject Matter Experts are individuals with in-depth
knowledge essential for comprehensively understanding the problem
domain and seeking an appropriate algorithmic solution. They often act
as a bridge between non-technical and technical roles, for example, by
refining labeling guidelines with Data Scientists to ensure high-quality
annotations and consistency of labeling (Budd et al. 2021).

3.4.2 Technical Roles

Data Scientists. Data Scientists are responsible for designing algorithms
and modeling. Their role typically encompasses all tasks from the ML
iteration, including feature engineering as pre-processing, implementing
the logic for model training, optimizing models, and implementing QSs.
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They work closely with other team members to ensure that the AL process
is aligned with project goals.(Lwakatare et al. 2020b; Kreuzberger et al.
2023; Makinen et al. 2021)

Data Engineers. Their realm lies mainly in data iteration steps, such
as procuring, organizing, and managing the datasets used for the AL
project (Kreuzberger et al. 2023). They ensure that the data is clean,
well-annotated, and organized to be accessible for the AL process, and
therefore primarily trained for tasks in the field of DataOps (Tamburri
2020).

Data Curators. Data Curators manage and enhance data collections to
ensure they are organized and accessible for the projects use case. Their
responsibilities include assessing and improving data quality, correcting,
enriching sources, and managing metadata. Collaborating closely with
Data Engineers and Data Scientists, they support data integration for
model training and -analysis. They ensure data sets are well-documented
and consistently formatted, supporting data lineage traceability and
compliance with governance standards.(Tammaro et al. 2019)

Solution Architects. This group includes roles concerned with the
design and technologies of the system. Software Engineers ensure ad-
herence to best practices and coding guidelines in the implementation.
DevOps Engineers are instrumental in automation, for example, for
CI/CD (Lwakatare et al. 2020a). Quality Assurance or Test Engineers
ensure that implemented components function as intended, creating tests
to potentially identify system errors (Lenarduzzi et al. 2021).

AI/ML Engineers. They are responsible for integrating ML models
into a production environment. As a cross-domain role in MLOps,
they take components, such as the model from Data Scientists, and
ensure seamless integration into the scalable production system by
managing the operation of the infrastructure, for example, through
cloud resources, automated execution of pipelines, provisioning, and
monitoring (Kreuzberger et al. 2023; Lwakatare et al. 2020b; Makinen
et al. 2021).

Each role contributes unique skills and knowledge, and the synergy
between these roles lays the foundation for the successful development
and deployment of AL systems.

A proposal for a development methodology to enable effective collabora-
tion between the different technical roles is presented in the following
Chapter 4.
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3.5 Summary

This chapter introduces the development life cycle for AL and explores
how modern concepts from DataOps, DevOps, and MLOps can be
integrated into AL projects. In light of traditional process models and
AI/ML life cycles frameworks, this part of the dissertation proposes an
iterative approach that facilitates the transition to an agile development
process.

For this purpose, the phases and individual steps as well as possible
starting points of an AL project were defined, and the characteristic tasks
within these steps were structured. By clarifying their interrelationships,
the conceptual phases and the continuous iterations in the areas of data,
ML, development, and operations were aligned. Furthermore, relevant
technical and non-technical roles were identified.
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In the implementation of AI systems, the technical roles delineated in
Section 3.4.2 are confronted with a plethora of emerging challenges,
particularly evident as projects progress from developing feasibility
studies to large-scale, mature projects.

These challenges are multifaceted, extending from the necessity of har-
monizing collaboration among diverse roles — each with its distinct
methodological approach — to the details of managing data versioning,
ensuring the traceability of performance metrics, and securing the in-
tegrity of resulting artifacts such as the trained model (Arpteg et al. 2018;
Amershi et al. 2019; Lwakatare et al. 2020a; Fischer et al. 2020; Tamburri
2020; Diaz-de-Arcaya et al. 2023).

The preceding Chapter 3 meticulously maps out the structured life
cycle dedicated to the development of AL projects, articulating the array
of tasks the team navigates through the distinct phases and iterations
of the project. Advancing beyond this process model, the following
Chapter 4 delves into strategizing how these interdisciplinary teams
can synchronize their efforts to implement AI systems effectively and
efficiently. This exploration is rooted in a commitment to address the
existing challenges by instructing the engineering team with precise,
actionable guidance distilled from the flexible and agile nature of the AL
development life cycle.

To this end, individual concepts of a development methodology are
proposed and presented as a synthesis of theory and practical application,
serving as an interface between the working methods of the different
technical disciplines.

The methodology was first introduced in the publication Stieler et al.
2023a, with a concentrated lens on AL projects, evaluating its practicality
through an examination of best practices adherence, augmented by
insightful findings from interviews with experts from the industry. The
concepts presented were abstracted and described in more detail in Stieler
et al. 2024 for data-centric AI projects. Furthermore, the evaluation of the
methodology was extended on the basis of a metadata analysis, which is
based on the technical implementation of the respective AL projects of
the use cases described in Chapter 6.
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4.1 Developing in Data-Centric Projects

Analogous to the development of concepts such as DevOps, in traditional
software development, an ecosystem of tools and methods has emerged,
which further includes best practices and development strategies like
Git-Flow (Driessen 2010) and trunk-based development (Zettler 2023).
These methods enable teams to collaborate on different parts of a project
and, through the use of version control systems, develop high-quality
software by tracking project progress and integrating or, if necessary,
reverting changes made by multiple contributors (Chacon et al. 2014).

However, these solutions cannot be directly applied to AI projects, as
AI and traditional software projects fundamentally differ in one aspect:
in traditional software projects, the source code is sufficient to create
the artifacts (e.g., an executable program). AI projects, whose artifacts
include a trained ML model, have two types of inputs: code and data
(Sculley et al. 2015). Since data is usually more volatile than code, ML
artifacts need to be recreated more frequently. In this context, emerging
concepts are currently establishing themselves in the form of best practice
formulations for AI projects and the formalization of MLOps principles
(Serban et al. 2020; Kreuzberger et al. 2023).

The agile development methodology outlined in this Section offers a set
of guidelines designed for teams of interdisciplinary technical roles, like
software engineers and data scientists, to systematically organize their
work. This methodology emphasizes a data-driven development ethos,
acknowledging the central role of data in AI projects and the unique
challenges it presents. It aims to strengthen collaboration and enable
traceability of artifacts in terms of code and data for the entire engineering
team to help meet the requirements of trustworthy AI development.

A central idea of the proposed development methodology is the inte-
gration of runners for CI, CD, and CT1, which each behave differently1: Following Steidl et al. 2023, the

acronym CD4ML is frequently used in
this context, which describes the techni-
cal implementation of MLOps concepts
by applying CD principles to the AI life-
cycle management.

depending on the task for which they are intended and are therefore
crucial for the agility and effectiveness of the AI system development
process. These runners automate key development tasks, ensuring that
new code commits trigger a cascade of actions, from automated testing
to model training and deployment, thereby enabling rapid iteration and
feedback.

In Section 4.3, we elaborate on a branch-based workflow in which we
introduce data- and code focused levels as well as new types of branches.
To realize this, we first present the necessary principles related to data,
code, and the runners.

4.2 Basic Concepts

In the current landscape of AI system development, a multitude of tech-
nologies and toolchains are emerging that aim to extend the capabilities
of developers and data scientists (Giray 2021; Ruf et al. 2021). As these
technologies advance, it becomes essential to formulate methods indepen-
dent of any specific tools, ensuring broad applicability and integration
compatibility across various platforms and environments.
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The concepts and methods outlined below are designed not to be tied
to particular tools or technologies but to provide a universal approach
that can be applied to a branch-based development process2. Even 2: Tools used to apply the development

methodology require the support of a
branch-based structure for code and
data.

though established tools, whether open-source or proprietary, can further
significantly influence productivity and collaboration, the proposed
methodology aims to streamline the workflow in data-centric AI projects.
It does so by allowing the use of any technology stack, thereby avoiding
the dependence on specific tools. This universality ensures that the branch-
based development approach, coupled with an agnostic attitude towards
the burgeoning variety of tools, creates a workflow that accommodates
the diversity of the current technological ecosystem.

To implement the foundational concepts, such as the use of runners for CI,
CD, and CT to enable automated iterations as proposed in (Karamitsos
et al. 2020), the following Sections will present fundamental principles
related to data and code management. In addition, we provide a brief
overview of the necessary infrastructure.

4.2.1 Data Principle

As described in Section 3.1, after the initial conceptualize phases, from a
technical process perspective, AI projects typically start with collecting
and preprocessing raw data. Like the program code, the data exhibits a
persistent dynamism across the project’s duration. These changes can
result from adding new data results and new project requirements,
which in turn require the collection and processing of additional data.
In practical terms, new raw data may need to be imported or new data
labels introduced in a subsequent iteration phase.

Here, it becomes clear that the artifacts generated by an AI project do not
solely depend on the underlying code but are significantly influenced by
the data used and processed. This necessitates efficient and traceable data
versioning (Kreuzberger et al. 2023; Karlaš et al. 2020; Amershi et al. 2019).
Although it is possible to do this manually – for example, by assigning
timestamps to the different versions of the dataset – a dedicated tool
for data versioning is often recommended in practice to ensure optimal
transparency and reproducibility, in particular when certification and
qualification of AI systems are addressed.

Typically, tools like Data Version Control (DVC) store data as unique
snapshots or as raw data in external storage systems (e.g., an object
or file storage) and link them to the project repository in the using
a metadata file (Iterative 2020). Other technologies would be applied
when the data volume becomes too large for the aforementioned method,
implementing by versioning the data changes made. Yet another approach
conducts location-dependent data storage, for instance, when using edge
devices. In this context, it becomes clear that it is important to version
the dependencies of the processing steps and the extracted features
(Lwakatare et al. 2020b; Kreuzberger et al. 2023). These are, for some
use-cases, stored in Feature Stores to maintain consistency and avoid
redundancies.(Steidl et al. 2023)

Developing an ML pipeline with complete, often massive datasets can
make implementation inefficient for various reasons. Factors such as data
selection and extended computation time can significantly slow down the
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engineer’s workflow. For this reason, we recommend creating a so-called
development dataset. This provides a representative but significantly
smaller subset of the original data and is designed so that the entire ML
pipeline only takes a few minutes to perform its calculations.

This approach allows developers to use the development dataset for
local development on their local systems. Additionally, the runner or the
executing system can quickly provide feedback on whether a specific
code change leads to a disruption or other problems in the ML pipeline.

The creation of this development dataset must be reproducible, version-
safe and should therefore not be done manually. The ideal solution, as
shown in Figure 4.1, is a standalone code module that draws samples
from the original full datasets. This module should allow automatic
updates of the partial datasets when the full dataset changes.

Assuming this code module offers the option to include specific samples
or sample clusters in the development dataset, it could serve as a basis for
regression tests. In these tests, samples that have caused problems in the
ML pipeline in the past could be continuously monitored and examined
from the beginning of model training to identify and fix potential error
sources early. Additionally, implementing data quality checks at this
stage ensures that the training and evaluation data meets predefined
standards, reducing the risk of errors or biases. These checks, which,
e.g., validate data types, detect missing values, and ensure proper data
distribution, can catch anomalies early, preventing them from affecting
the entire pipeline. Combined with data versioning, these checks offer
a comprehensive view of data quality over time, enhancing the overall
reliability of the ML pipeline.

Figure 4.1: Development dataset concept.
The dynamics of the complete datasets
involved in the AL project are repre-
sented in separate iterations. The data
within these iterations may change, or
new data sources can be accessed. The
Dev-Dataset-Creator module generates a
small subset from this, which is provided
as a developer dataset within the project.
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Considering the dynamic nature of the data in data-centric AI projects,
even more in AL projects, further requirements arise for this development
dataset, shown in Figure 4.1. As seen from the change from the first
to the second iteration, the Dev-Dataset-Creator module can mitigate
the dynamics. Depending on the use case, the data basis is subject to
permanent changes, e.g., due to stream data, which makes development
with this data impractical, even if these were processed into batches.
However, the development dataset should approximate the distribution
of the entire datasets as accurately as possible, which occurs between
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the second and third iterations. If the distribution of the full dataset
changes significantly, a new version of the development dataset is created
automatically (𝑑𝑒𝑣1 → 𝑑𝑒𝑣2).

Furthermore, outliers and distorted samples should be included from
the beginning to ensure a realistic development environment. If new
data sources are tapped during the project’s duration, these must be
considered in the development dataset, as seen in the fourth iteration.

Figure 4.1 illustrates a simplified outline. A project may require various
development datasets that differ in size and content. It’s important to
understand that this dataset does not claim to serve for training a high-
performance model, nor – contrary to common terminology – to test its
performance during development time. As a primary target group of
the development dataset, the team can use it during the development
iteration to check the executability of the ML pipeline code on their local
clients before their push and use it, e.g., for integration tests in a CI job,
and therefore improve the quality of the committed code.

4.2.2 Code Principle

During initial phases, especially while prototyping, consolidating all ele-
ments of the ML pipeline into a single script or notebook is a widespread
practice (Rule et al. 2018). Yet, such a method presents pitfalls. Not only are
these artifacts typically constrained to a lone developer’s workspace, but
they complicate version-tracking. To foster effective collaboration within
AI projects, it becomes imperative to disintegrate the ML pipeline’s vari-
ous steps into distinct modules, facilitating collaborative work amongst a
development team (Amershi et al. 2019). This modularity enables team
members to zero in on specific segments of the pipeline, optimizing work
distribution.

The proposed project architecture, as depicted in Figure 4.2, underscores
the alignment of individual code modules with the distinct phases of
an ML pipeline. Crafting an ML pipeline mandates the discernment of
requisite stages and the lucid articulation of inter-stage dependencies.
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Figure 4.2: Proposed project structure.
The elementary sections are structured
into code, data, docs, and test.

As soon as an engineering team begins the implementation phase, it
is essential to ensure that the data passes through the ML pipeline as
early as possible, even if it has yet to produce meaningful results or
artifacts such as trained models. The development dataset mentioned
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in Section 4.2.1 can be used to provide data to the code modules during
the development phase. By ensuring this early data flow, developers can
work simultaneously on different phases and manage their individual
tasks.

Therefore, it is necessary to transform all steps of the ML pipeline into an
automatically executable form. A sustainable code implementation, e.g.,
using parameters and configuration files, allows for different implemen-
tations and settings of each stage. By tracking these through a version
control system like Git (Chacon et al. 2014) and using feature flags, a
systematic comparison is possible even when multiple developers and
data scientists work on the same ML pipeline stage.

This established software development concept allows specific features
or changes in the code to be turned on or off during runtime without
deploying new code. It enables different software engineers or data scien-
tists to work on various features or settings in parallel without interfering
with each other’s work. In an AI project, this further facilitates controlled
experimentation and rapid iteration, ensuring that new changes or op-
timizations can be evaluated and integrated seamlessly into the ML
pipeline without disrupting the ongoing work of other contributors.

To meet further requirements regarding traceability, the „version num-
ber“, e.g., the hash information in the tracked metadata file of the input
dataset, must be treated as part of the configuration. Some data ver-
sioning tools, like DVC (Iterative 2020), offer this by storing hashes of
the datasets as version numbers in the configuration files. These tools
implement a Git-like architecture, where the concepts of Git version
control are applied to data. Other approaches, like DeltaLake (Armbrust
et al. 2020), utilize a multi-hop layer architecture, where data versions
are created at each layer or „hop“ in the data flow. In this approach, only
the changes between versions are stored. Moreover, regardless of their
architecture, data version control systems can often cache ML pipeline
artifacts (e.g., preprocessed data, trained models, or evaluation reports).
They can restore these artifacts if an execution with identical code and
data occurred in the past.

This capability creates synergies in terms of the runtimes of the ML
pipeline throughout the AI project, whether in the local development
environment, experimenting with the entire dataset, or in the production
environment (Steidl et al. 2023). For example, when new training data
flow into the pipeline, the model can be retrained and, if necessary, opti-
mized and evaluated. On the other hand, the computationally intensive
preprocessing step can be repeated for only some of the datasets. By
skipping this step, the new model can be quickly deployed.

4.2.3 Automation Principle

An important aspect in AI projects is the increased demand for infrastruc-
ture (Giray 2021; Ruf et al. 2021). This is reflected in the growing field of
MLOps research, which encompasses managing different environments
and effectively scaling hardware resources, along with the associated
concepts and tools. Figure 4.3 outlines a simplified infrastructure setup
agnostic to the underlying technologies and illustrates the necessary
components for implementing a distributed system for AI projects.
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Figure 4.3: Concept of a minimal infras-
tructure setup. The different components
and their relevance for realizing the il-
lustrated workflow are shown.

In step 1 , the raw data and the created development dataset must made
available to the data storage. Typically, the upload is not done directly
from the developer’s client, but it is imported from the corresponding
data source for larger datasets. The development dataset remains on the
developer’s client and should be small enough to enable fast iterations
during ongoing work. Once the required datasets are available on the
data storage, at step 2 , developers commit and push their code to the
Source Control Management (SCM) system. An SCM application is able
to trigger a runner, the CI/CD/CT runner, at step 3 . This runner should
be hosted on a powerful machine (e.g., with GPUs) and takes into account
the planning, management, and scaling of the computational resources
needed for executing the ML pipeline. This becomes necessary when
the resources exceed the capacities of the developer’s computer, such as
training the model on the entire dataset.

Each job is uniquely associated with a specific commit, facilitating easy
decision-making on whether certain long-running jobs can be terminated.
Existing tools and frameworks from traditional software projects can
be reused to manage and monitor the servers where the runners are
executed. In step 4 , the runner checks out the version of the dataset
specified in the configuration files and runs the ML pipeline.

In step 5 , the runner reports the status to the SCM system and uploads
artifacts, such as the trained model or preprocessed data, to the data. This
can occur when the developer submits new code, conducts experiments
on the entire dataset, or triggers an automated job, such as scheduled
nightly retraining. The SCM application allows access to the runner’s
logs, providing the simplest solution for monitoring the progress of the
ML pipeline. This can be further enhanced by using appropriate tools
like MLflow (Zaharia et al. 2018), which enables the collaborating team of
data scientists at step 6 to make structured comparisons of experiments
or monitor the model in the production environment.

The presented infrastructure concept is minimalistic and can be expanded
in different ways: Separate runners for CI, CD, and CT can be replaced by
powerful clusters, e.g., the data storage can be enhanced by a feature store
and/or a model registry. Additionally, the deployment implementation,
as shown in step 7 , can be further refined and is intended to indicate
the interconnections of the individual components.
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4.3 Branching Workflow

One of the core ideas of the proposed development approach for data-
centric AI projects is to utilize the CI/CD/CT runners introduced in
Section 4.2.3 for automation purposes using a branch-based workflow
concept. This involves introducing different namespaces for branches,
with each namespace focusing on either the code or data dimension.
The runners behave differently based on the namespace of the branch in
which they are triggered.

This organizational structure provides a structured environment for a
team collectively working on an AI project repository. Furthermore, it
serves as a catalyst for agile development by efficiently adapting the
feedback cycles to the specific implementation types, whether application-
or data-oriented tasks. To further investigate the branching workflow, we
will illustrate the concept through an example project in the subsequent
Section.

4.3.1 Main Branch

After the scoping phase is completed and the setup described in Section
4.2 is in place, the code for the initial ML pipeline is first transferred to the
repository’s main branch in the SCM application. Similar to traditional
software projects, the main branch, contains a complete version of the
code. Because the main branch is characterized as long-term, it is advisable
to follow the proposed code structure from the beginning, even if, in the
initial steps, the focus should still be on the exploratory phase of the data.
At the beginning of an AI project, the rest of the code may consist solely
of stubs and interfaces for each downstream phase of the ML pipeline.
Subsequently, the primary requirement for the main branch is to provide
a clean, executable, and stable version of the ML pipeline.

In this regard, the focus of the CI/CD/CT runners in its branch namespace
lies on code quality: they execute the ML pipeline using the development
dataset as a form of integration testing. Given that the configuration files
contain information about the allowable values of all parameters (cf. 4.2.2),
they can verify the code across the permissible combinations, which,
even with the development dataset, can prove to be time-consuming.

Furthermore, traditional unit tests and other code analysis steps should
be performed to maintain the desired high quality in the main branch.
Similar to traditional software development practices, static analysis tools
can be employed to uncover potential issues in the code, such as poor
programming practices or unused variables.(Lenarduzzi et al. 2021)

These additional steps contribute to the early detection of potential errors
and ensure a robust codebase for the ML pipeline. By incorporating
quality assurance aspects, all team members are empowered to address
potential issues and provide smooth executability of the ML pipeline at
all times.
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4.3.2 Feature Branches

As soon as the development team envisages a new feature3 or the need 3: „Feature“ in this context follows the
SE terminology of Lenarduzzi et al. 2021:
„A distinguishing characteristic of a soft-
ware item“

arising from altered requirements, a feature branch is created, adhering
to the established concept of traditional software projects (Chacon et al.
2014). Usually, this need is documented in an issue within the SCM
application, and the feature branch, exemplified in Figure 4.4 by commit
A1 , is generated. The branch where the implementation takes place
is at the level of code-focused branches. In this process, the developer
generates a new feature flag along with the necessary parameters and
implements the new feature, utilizing the development dataset.
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Figure 4.4: Git workflow with
Experiment-Branches.

After every push commit, the runner verifies the ML pipeline’s correct
executability, checking out the development dataset for the code execution.
Analogous to a CI pipeline in classic software development, static code
checks and unit tests are conducted here as well. The rapid executability
using the development dataset provides the author with swift feedback
about the success of the CI jobs. However, the training results of the ML
pipeline are irrelevant. Hence all services used in the project to track
experiments remain deactivated.

Once the developer is convinced that the problem described in the issue
has been solved, they initiate a merge request. Such requests enable other
team members to provide feedback and review the code before it flows
into the main branch and morphs from commit A2 into Version 0.2 .
While the focus of the feature branch remains code-centric, data-related
considerations – such as improvements in model performance or data
quality tests – are handled separately in a dedicated branch namespace,
which will be discussed in the following section, ensuring that these
aspects are addressed before the final merge.

As illustrated by the example of the first feature branch, it can sometimes
suffice to merely implement and test the function, enabling other team
members to build upon the latest features as quickly as possible. In
certain cases, combining various features might be necessary to gen-
uinely enhance the ML model’s performance. As the project follows the
code structure outlined in Section 4.2.2, it is entirely conceivable that
several developers are simultaneously implementing different functions
in various branches.

Sometimes, the implementation of certain functions in an AI project
necessitates their execution on the entire dataset, and this even before
the implementing team member initiate a merge request. This case is
exemplified in Figure 4.4 within the second feature branch B1 . In this
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scenario, the developer decides to initiate an experiment and branches
out with the corresponding code version into one or more experiment
branches.

4.3.3 Experiment Branches
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ent
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Related phases in the AL development
life cycle: The experiment stage links the
development iteration to the ML itera-
tion.

Certain tasks in an AI project are experimental in nature (cf. 3.3.2). While
the widespread way of implementation for data science related jobs
takes place in notebooks (Rule et al. 2018), in the proposed concept a
custom branch namespace will be introduced. This special category of
branches, called „Experiment Branches“, runners execute the ML pipeline
on full datasets and not only on development datasets as is traditionally
the case. This expands the testing space and potentially provides more
representative results.

An exemplary situation is the implementation of a new model architecture
by a data scientist. The executable code is implemented in the feature
branch B1 . The next step would be to train and evaluate the new model’s
performance. This is where the experimental branch becomes relevant.

The data scientist creates one or more branches in the experiment names-
pace and configures the ML pipeline according to the specific needs of
the test. This is done by enabling the feature flag and setting appropriate
parameters in the configuration files. Each of these experiment branches
can focus on specific aspects of the ML pipeline. For example, one experi-
ment might be specifically reserved for hyperparameter optimization,
while another might enable additional data augmentation.

Once a configuration is set, for example, as illustrated in the commit C1 ,
this triggers the runner to access the full datasets. If the ML pipeline
execution is complete, the runner stores the artifacts on the data using
the data versioning system. Consequently, it is ensured that all boundary
conditions – from the data version to the code version to the execution
environment – are documented for each artifact.

This concept can additionally be used for feasibility experiments. These
provide the developers with preliminary evaluative feedback regarding
the feasibility and potential efficacy of the current function under con-
sideration. In such cases, it might be helpful to trigger proof-of-concept
experiments. In doing so, the focus shifts from fine-tuning the model to
roughly evaluating ML performance. If an experiment fails, as visible in
the example of commit D1 , the overhead of a merge request and code
reviews is avoided. This saves downstream resources and allows for more
efficient use of development time.

4.3.4 Release Branch
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Releasing a version exits the develop-
ment iteration.

Suppose the results of an experiment outperform the current leading
model or a completed feature is to be released. In that case, merging from
the main branch to the version branch is initiated. Throughout this phase
of the model life cycle, the implemented code as well as the produced
artifacts, are subject to thorough inspection and assessment by additional
team members.
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In the scenario, illustrated in Figure 4.5, the acceptance of the merge
request of version 1.0 triggers the activation of a new runner on the
release branch. Due to the caching feature of a data versioning tool, this
runner can restore and reactivate the artifacts from an experimental
run on the data storage. Should errors or undesired states occur during
or after the deployment, proven, corrective measures from traditional
software development can be applied, such as reverting the release
branch to an earlier commit. The same applies to model versions in case
of a later concept deviation. The release branch provides traceability
for the entire development team, allowing recourse to already released
versions of a model registry.

We establish an additional specialized branch type to accommodate the
continuous dynamics of data and code within a data-centric AI project.
This new branch exists on the data-focused layer of the project and
serves as a code-based version twin of the release branch. This is of
particular importance as it allows maintaining synchronized versioning
of code and data, which is essential for the traceability and repeatability
of experiments. To make the concept more concrete, we continue the
example, where the development team decides to go live with version
1.0 .

4.3.5 Production Environment
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Upon the team’s consensus to transition
a version to a production environment,
this action aligns with the deployment
stage of the AL development life cycle.

The branch referred to as production branch is defined as the mirrored,
deployed code version of a branch that references a possibly newer
version of the corresponding data artifacts. This state is achieved by the
consistent use of runners that, in the context of continuous training, are
used to transfer the data artifacts to the data storage after execution of
the ML pipeline and to transfer the version reference of the hashes back
to their production branch. Depending on the purpose of the application,
this can result in this branch potentially running ahead of all branches
under development.

Build upon the example of experiments presented in Section 4.3.3, focus-
ing on the colored blue branch and demonstrating that the experimental
branches can be used to reconfigure the ML pipeline. This approach is
evident in Figure 4.5, where the development team directly branches off a
new branch E1 from the main branch into the experiment namespace to
modify the configuration file. Now, we utilize the previously mentioned
synergy between the caching function of the data versioning tool and the
reuse of artifacts in the other direction. When a runner is triggered in an
experiment branch, it can fetch the current version of the data reference
file from the production branch and download all existing data artifacts
from the data storage.

The code of the experiments will be executed with the actual data,
providing the development team the opportunity to make decisions
based on consistently traceable and reproducible results. As mentioned,
runners triggered by the transmission of an experiment branch should, by
default, activate an experiment tracking service. This workflow makes the
development team’s decision to reconfigure transparent and reproducible
at any time.
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Figure 4.5: Git workflow with production
environment
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Implementing simulations in the production environment takes it fur-
ther, especially in applications with AL or online ML. Here, it is not
enough to switch from development datasets to complete datasets. Rather,
the runner of the experiment branches must be able to verify the up-
dated, published data version. This process is depicted from commit
F1 , where the development team, for instance, implements a new model
architecture.

The data scientist initiates a branch at G1 to evaluate performance under
production conditions into the experiment namespace. This time, an
automation is activated, ensuring that the runner always uses the latest
version from the production environment. This mechanism allows for
realistic tests with current data, thus providing immediate insight into
the performance of the current system version under real conditions. The
experiment branch can coexist parallel to ongoing development. Suppose
the team decides to make further changes to the code. In that case,
the branching workflow remains the same: a merge request is derived
from F2 , and the newer version of the ML configuration is propagated
through the merge in the main branch as version 1.2 , which is provided
via the release branch in the production branch.

4.4 Git Workflow for Active Learning

Implementing an AL project underscores the dynamic nature of code,
data, and model since the continuous iteration of retraining and data
annotation results in a fast-paced character of the resulting artifacts. The
concepts presented in Section 4.2 can be applied to AL projects, and the
branching workflow shown in Section 4.3 can be adapted.

To illustrate this, Figure 4.6 depicts the workflow for an AL project in
which the production branch has been renamed to the „AL Branch“.
It represents the version twin of the currently deployed model. This
AL Branch is a direct reflection of the deployed branch but with a
critical difference: it integrates the latest data version containing new
annotations.

To achieve this, we deploy runners in our CI pipeline. Yet, these runners
manage two essential functions:



4.4 Git Workflow for Active Learning 97

Feature

Experiment

Main

Release

AL

 F
ul

l D
at

as
et

(s
)

De
v-

Da
ta

se
t(

s)

New Features

ML (Re)-

Configuration

Co
de

 fo
cu

se
d

Da
ta

 fo
cu

se
d

Figure 4.6: Git workflow for an active
learning project. The AL Branch repre-
sents the production environment. While
the runners in the code-focused branches
check out the dev dataset, the execution
of the ML pipeline in the data-focused
branches will be performed on the full
datasets.

▶ They transfer updated data artifacts — those enriched with the
latest annotations — into data storage upon completion of the ML
pipeline.

▶ They update the version reference of the data artifacts, represented
as hashes, to reflect these changes in the production branch.

Again, this approach ensures that the production branch has a lead in
data versions over all branches that are still in development, according to
the application’s requirements. Moreover, this separation between the
AL Branch and the release branch not only allows a structured process
for integrating new software features but enables the development team
to roll back to a previous model version if there is a concept drift or in
the event of a deterioration in performance.

Furthermore, the workflow depicted in Figure 4.6 clarifies the concept
of code- and data-focused branches. While the workflow for feature
branches A remains as described in 4.3.2, the example of feature branch
B could now correspond to implementing a new QS. The developer
branches from feature branch B to an experiment branch C , where
the runner checks out the current version of the annotated dataset to
evaluate the QS in a simulation.

Suppose the development team wants to test a QS or the performance of
automated data labeling in parallel with regular production operations.
In that case, this is possible using the live experiments described in
4.3.5. For this purpose, a data scientist can branch off an experiment
branch D and make the respective configurations for the selection
strategy or semi-supervised learning. In the example from Figure 4.6,
the data scientist decides again to incorporate the current data from the
production environment into his experiment. This allows for realistic
testing with existing data and provides immediate insights into how
the model would behave under live conditions. Again, the example
shows how the potential merge into the main branch manifests if the
configuration made in the experiment leads to the desired behavior of
the model.
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This procedure fulfills two essential properties concerning transparency:
first, the experiments conducted are comprehensible for the entire de-
velopment team. Second, the reproduction of results is possible at later
points in time, even if the data situation has changed again due to the
advancing project process. Regarding the working method, the proposed
workflow additionally offers the advantage that the experimental tasks of
the development teams are structured, which is particularly relevant for
more extensive projects since the results of experiments already carried
out may be visible and reusable for other team members.
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4.5 Evaluation

The proposed process methodology is evaluated according to the three-
phase concept outlined in Figure 4.7. Both the theoretical orientation and
the practical suitability are considered.

theory-focused
practice-oriented

Literature Based Approach
Section 4.5.1

Expert Interviews
Section 4.5.2

Metadata Analysis
Section 4.5.3

Assessment of compliance with 
best practices of Serban et al. (2020)

Conducting eight semi-structured interviews with
people from the industry on the proposed concepts

Retrospective evaluation of technical indicators of two
real-world projects, developed under the proposed concepts

Figure 4.7: Evaluation concept for the
engineering methodology proposal

To assess the practicality of the introduced basic concepts and workflow,
the evaluation of the proposed methodology occurs in three phases.
In the initial phase (4.5.1), a comparison with existing literature is con-
ducted, providing a benchmark against best practices. For the secondary
assessment (4.5.2), the results of interviews are utilized to bring in a
practice-oriented evaluation from industry experts. The tertiary step
(4.5.3) involves the metadata analysis of two projects in which the
methodology was applied.

4.5.1 Literature Based Approach

To evaluate the proposed principles and the branching workflow, we rely
on the best practices collected from literature by Serban et al. 2020. The
authors focus on peer-reviewed publications that suggest, compile, or
validate proven SE practices for ML. Their method resulted in 29 best
practices that are categorized into data, training, coding, deployment,
team, and governance.

We will briefly discuss the catalogue of practices compiled by Serban
et al. 2020, categorizing the extent to which the proposed engineering
process methodology is capable of integrating the identified best practices
and the degree they are inherently supported (through categorisation:
fulfilled, achievement supported, and not prevented). For each best practice
identified, we will first name and outline the practice itself, followed
by an discussion evaluating how well the methodology addresses it.
Suppose a best practice is not yet fulfilled per se. In that case, we will
explore the necessary prerequisites that teams need to meet to effectively
apply the principles and procedures within the concept, identifying areas
for potential improvements in the process.

Data.1

Achievement supported by 4.2.1
Use sanity checks for all external data sources. All data sources
incorporated into the AI project should be systematically checked for
plausibility and correctness. These checks aim to identify and rectify
errors, inconsistencies, or quality issues in the data at an early stage before
they are used for model training or inference. This ensures that the ML
model is built on reliable and valid data, which is a pivotal prerequisite
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for the performance and reliability of the resulting models.(Polyzotis
et al. 2018; Breck et al. 2019; Baylor et al. 2017; Google 2023b)

The implementation in practice involves various steps. Live logging
and monitoring can set up automated testing routines and define data
validation rules. Referring to the stated requirements for the development
dataset (cf. 4.2.1), the described module of an Dev-Dataset Creator could
encompass this logic and cover checks e.g., for missing values, unexpected
formats, value ranges, or statistical anomalies, for example. As described,
this process is ideally automated and regularly imports all data sources.
Assert statements that check for thresholds or permissible formats can
be integrated into this module. The concept described can therefore
have a positive effect on the fulfillment of this best practice during
the development phase. However, further steps are necessary for full
implementation, particularly in the application to be implemented.

Data.2

Achievement supported by 4.2.1
Check that input data is complete, balanced and well distributed.

This practice aims to ensure that the data used to train the model are
complete and represent a representative sample. Therefore, the data
should not have biases, such as by having an even distribution of classes
in classification tasks, and should adequately reflect the variability of the
real-world context for which the model is being developed.(Baylor et al.
2017; Breck et al. 2017b; Breck et al. 2017a; Polyzotis et al. 2018; Sculley
et al. 2015)

In gerneral, different measures are necessary to implement this prac-
tice. Through data exploration and analysis, the distribution of data
is reviewed (cf. 3.3.2). Furthermore, data preprocessing related tasks
contribute to this, for example, fixing potential imbalances in the data
(cf. 3.3.2). Again, the fulfillment of this best practice is not inherently
ensured by the application of the presented methodology. Nevertheless,
the requirements for the development dataset mentioned in Section 4.2.1
contribute to the engineering team’s continuous engagement with data
completeness and distribution since the development dataset provided
for implementation and in the code-focused branches mirrors the distri-
bution of the full datasets, including potential faulty data. This approach
encourages the team to develop an awareness of dealing with the given
data quality during the implementation phase.

Data.3

Fulfilled by 4.2.1, 4.2.2
Write reusable scripts for data cleaning and merging. Standardizing
data cleansing and merging processes is recommended to ensure these
tasks are performed efficiently, consistently, and transparently. This is
particularly important when scaling projects involving multiple develop-
ers and when data processing steps occur at various points within the
project (Polyzotis et al. 2018). We consider this best practice to be fully met
by adhering to the presented data- (4.2.1) and code principles (4.2.2).

Data.4

Achievement supported by 4.2.1, 4.6
Ensure data labeling is performed in a strictly controlled process.

Requirements are typically set for the data annotation process, such as
implementing quality controls (Roh et al. 2021). This entails procedures
and guidelines to ensure the accuracy and precision of the annotations
that are used for training supervised ML models. Controlled processes
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may include, for example, regular checks and multiple annotations to
ensure the reliability of data labels (Alonso 2015; Bernhardt et al. 2022).

Although many of these aspects are examined in greater depth from the
system perspective in Chapter 5, the proposed SE process is an enabler to
fulfill this established best practice. Following the data principles (4.2.1),
the consistent versioning of all artifacts positions the development team
to ensure the necessary consistency, such as implementing the process
of multiple annotations. Through the introduction of an AL loop and
implementation using the AL branch, this development process can be
traced throughout an AL project (4.4).

Data.5

Achievement supported by 4.2.1,
4.2.3

Make datasets available on shared infrastructure (private or public).

This pertains to data storage on a shared infrastructure, which enables
efficient resource use, enhanced collaboration, and more accessible data
exchange. Data should be stored on platforms available to all involved
developers, adhering to security and privacy regulations. This approach
facilitates data management and supports the reproducibility of artifacts
by allowing project team members to access existing datasets or previously
created artifacts such as extracted features or trained models (Khomh
et al. 2018; Zha et al. 2023). By adhering to the proposed automation
principles (4.2.3) and the infrastructure outlined in Figure 4.3, this best
practice is fulfilled.

Training.6

Achievement supported by 4.3.3
Share a clearly defined training objective within the team. Empha-
sizing the significance of clearly defined and communicated training
objectives for the ML model within the team stands at the core of this best
practice. All participants, including those in non-technical roles, should
have a common understanding of the specific outcomes and performance
indicators to be achieved by the ML model. This clarity enhances the
alignment of activities and contributes to decision-making, which ideally
is supported by the entire team, thereby improving collaboration and
ensuring that the results achieved are in line with the goals defined for
the project.(Lazzeri 2019; Zinkevich 2019)

We do not see this best practice as inherently fulfilled by following
the introduced engineering process; however, the concepts presented
contribute positively to enhancing communication within the develop-
ment team and providing the necessary traceability to document training
progress. This is particularly evident concerning the experiment branches
(4.3.3) and the recommendation to use an experiment tracking service in
the data-focused branches, enabling continuous review of the training
objectives.

Training.7

Achievement supported by 4.2.2, 4.3
Capture the training objective in a metric that is easy to measure

and understand. To objectively assess the progress of the model’s
learning process, it should align with the practice of clearly defined
training objectives, which are concretized in a performance metric for
evaluating the ML model. This metric should be both easy to measure
and straightforward to understand. The choice of metric significantly
depends on various factors, but primarily on the type of problem, the
algorithm aims to solve. To regard this best practice as fulfilled, additional
efforts should be made to make the results, for instance, in dashboards
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and reports, easily interpretable.(Lazzeri 2019; Microsoft 2020; Zinkevich
2019; Google 2023b)

While the concepts presented have no direct influence on this, we argue
that the project structure introduced in Section 4.2.2 ensures the imple-
mentation of a uniform evaluation process over the entire project. This
ensures measuring the model’s performance is standardized and trans-
parent for involved team members when using the proposed branching
workflow (4.3) and experiment tracking services.

Training.8

Achievement supported by 4.2.1,
4.2.3
Enhance 4.3.1, 4.3.2

Test all feature extraction code. This best practice underscores the
necessity of thoroughly testing the code for extracting features4 from raw

4: „Feature“ in this context follows the
ML terminology of Lenarduzzi et al. 2021:
„A characterizing variable found in the
input data to a ML model. Predictions
about the data can be made after gaining
insight from these features (training).“

data. Since the quality and reliability of feature extraction directly affect
the performance of the ML pipeline, this code must function correctly.
Tests should ensure that the corresponding functions and modules lead
to consistent and accurate results under various conditions and are robust
against input errors and data anomalies.(Breck et al. 2017b)

As described in Section 4.2.1, the proposed development dataset can
serve as a basis for regression testing, which the development team can
expand to outline the feature extraction code. Furthermore, suppose unit
tests are implemented for this code. In that case, the proposed concept
provides for the CI runners to automatically execute these routines on
feature- and main branches upon every commit (cf. 4.3.1, 4.3.2), ensuring
the correct and robust operation is verified even on edge-case samples in
the development dataset. Additionally, having the development dataset
available in the local development environment encourages the team
to implement the necessary test routines, as they are urged to let the
data flow through all steps of the ML pipeline throughout the entire
development life cycle.

Training.9

Fulfilled by 4.2.1, 4.2.2
Assign an owner to each feature and document its rationale. Every
feature from the dataset should have an assigned owner responsible for
its development. The logic, including the rationale for selecting a feature
and the method of its calculation, should be meticulously documented.
Adhering to this best practice enhances traceability, accountability as well
as transparency and simplifies the management of features throughout
the life cycle of the ML model, as each feature has clearly defined
points of contact and documentation. The consistent use of code- and
data versioning, along with implementation in feature- and experiment
branches, ensures the fulfillment of this best practice.(Zinkevich 2019)

Training.10

Achievement supported by 4.2.2,
4.2.3

Actively remove or archive features that are not used. In AI projects,
complexity reduction of the model and more efficient resource use can
be achieved by cleaning and maintaining feature sets, which includes the
removal or archiving of features that have become unused or irrelevant.
Furthermore, a tidy feature space can improve the interpretability of the
model.(Sculley et al. 2015; Zinkevich 2019)

To achieve this best practice, further techniques are usually necessary,
which can be integrated into the presented concepts. For instance, if fea-
ture importance techniques are implemented in the automated pipeline,
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these routines will be executed in the CI runners, facilitating regular re-
views by the development team. The modularization of the ML pipeline,
as well as the versioning of artifacts, contribute to making an informed
and traceable decision for the team regarding the features used and
documenting this process.

Training.11

Fulfilled by 4.2.2, 4.3
Peer review training scripts. Within the process of AI projects, training
scripts that are used for the development of ML models should be
reviewed by one or more additional team members before being deployed
to production (Breck et al. 2017a). This practice aims to detect errors early,
enhance the quality of the code, and ensure that the methodology and
logic behind the training process are correctly implemented. Moreover, a
peer review process encourages knowledge sharing and collaboration
within the developer team. We consider this best practice inherently
fulfilled in reference to Sections 4.2.2 and 4.3 of the proposed engineering
method.

Training.12

Fulfilled by 4.2.3, 4.3.3
Enable parallel training experiments. The provided platforms should
enable the team to simultaneously run multiple training experiments for
models. This allows for the testing and comparison of various hypotheses
and configurations at the same time and enables the parallel implemen-
tation of the project and the modules of the ML pipeline by several
team members. Both aspects contribute to enhancing the efficiency of the
development process.

We consider this best practice fulfilled as described in Section 4.2.3 and
by managing experiments in separate branching namespaces (4.3.3),
assuming that the provided infrastructure resources have the necessary
capacities.

Training.13

Achievement supported by 4.2.3
Enhance 4.3.3, 4.3.4

Automate hyper-parameter optimisation and model selection. This
best practice focuses on automating processes related to hyperparameter
tuning and thereby selecting the best model. Typically, techniques are
used that efficiently determine the best combinations of hyperparameters
to improve the model’s predictive performance.(Hutter et al. 2019)

It is not inherently fulfilled, but the proposed workflows can support its
implementation. On the one hand, using different CI/CD/CT runners
ensures that optimization routines are executed only when, for example,
an experiment is launched, or the development team decides to release a
new model version. Another aspect is that redundant hyperparameter
optimizations can be skipped, which, considering the typically computa-
tionally intensive nature of these processes, can significantly impact the
project’s productivity. Using a SCM application in combination with a
data versioning tool, the shared data storage, as well as different runners
for CI, CD, and CT, ensures that already computed artifacts are not
recreated and are loaded upon re-execution in the ML pipeline (cf. 4.2.2).
This approach ensures that existing infrastructure resources are used
efficiently.
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Training.14

Fulfilled by 4.3.5
Continuously measure model quality and performance. Trained mod-
els should be regularly analyzed, and performance metrics measured.
This continuous evaluation of quality and performance contributes to
identifying potential issues and enables the engineering team to make
adjustments to ensure the desired functionality during development and
after deployment.(Zinkevich 2019; Google 2023b)

The concepts described a necessary minimum to fulfill this best practice.
As mentioned in 4.3.5 the experiment tracking service is enabled by
default in the CI/CD/CT runner used for the production branch. This
ensures that each execution of the ML pipeline in the production environ-
ment provides the development team with newly calculated performance
metrics. However, this can be supplemented with advanced monitoring
tools for even more enhanced performance tracking.

Training.15

Fulfilled by 4.3.3
Share status and outcomes of experiments within the team. In large AI
projects with multiple team members, as in traditional software projects,
the formation of knowledge silos should be avoided. This is particularly
true for the experiments conducted. Transparent communication about
the status and outcomes of experiments promotes collaboration. It allows
team members to learn from each other and helps ensure that decisions
are made based on complete and up-to-date information.(Lazzeri 2019)

With the proposed experiment branches and the use of runners that
transmit results to the experiment tracking service, we consider this best
practice to be fully met. Even though this best practice is technologically
fulfilled through the collaborative development process, it should en-
compass the necessary communication culture regarding experiments,
which could be supplemented by additional appropriate measures such
as regular meetings.

Training.16

Fulfilled by 4.2.1, 4.2.2
Use versioning for data, model, configurations and training scripts. A
crucial aspect of the reproducibility of results and tracking all artifacts
created during an AI project is managing relevant code components,
including datasets, models, and configuration files, using version control
systems (Hummer et al. 2019; Van Der Weide et al. 2017; Washizaki et al.
2019). Furthermore, this approach contributes to creating a transparent
working method and provides an organizational basis for meeting goals
related to accountability by documenting who made which changes and
when. This best practice is met by the concepts presented, particularly in
Section 4.2.1 and 4.2.2.

Coding.17

Achievement supported by 4.2.1,
4.2.3

Run automated regression tests. The automated execution of regres-
sion tests is designed to ensure that new changes in the code, data,
or model do not negatively affect the existing functionality of the AI
system. This procedure integrates continuous checks to see if updates or
improvements cause unexpected errors or performance declines. As with
traditional software projects, this consistent quality assurance contributes
to maintaining the system’s stability over time.(Breck et al. 2017b; Google
2023b)
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Implementing a comprehensive testing concept for AI projects involves a
multitude of steps, such as integrating a test plan and creating test cases for
the ML pipeline, which concern data, code and the model itself. Therefore,
merely establishing the proposed development process does not imply
fulfilling this best practice. However, the concepts again contribute to its
implementation. As described in Section 4.2.1., the automatically created
development dataset can be used in runners to perform regression
tests. This strategy promotes the implementation of test cases with the
data flow through the ML pipeline, as the potentially high number
of possible permutations of ML pipeline executions can be realized in
the regression tests using the development dataset. Additionally, the
synergies of combining SCM and data versioning tools regarding their
artifact caching can be utilized for these tests, where previously tested
combinations of configurations and data and code versions can accelerate
the involved routines.

Coding.18

Fulfilled by 4.2.3
Use continuous integration. The process of continuously merging
code changes into a shared repository, followed by automatic builds and
tests, is a practice from the DevOps concept. In AI projects, continuous
integration includes source code integration and data and model changes
(Breck et al. 2017b). This process promotes collaboration within the team
and thus helps maintain high software quality. This best practice is fully
met by using CI runners as an integral part of the automation principle
(cf. 4.2.3).

Coding.19

Achievement supported by 4.2.2
Use static analysis to check code quality. Static code analysis tools
systematically check the quality of the source code without executing
it as a program. This method makes it possible to identify issues such
as syntax errors, stylistic inconsistencies, potential anomalies, or even
security vulnerabilities. In large software projects, static code analyses
help improve the code’s clarity, maintainability, and reliability, which is
particularly important for the code of the ML pipeline given the often
complex data processing and modeling tasks.(Gomes et al. 2009)

We align with the argumentation of the best practice Coding.17, which
states that while the introduced concepts may not cover the tasks of
static code analysis, they do support its implementation in the project.
Particularly, the code structure proposed in Section 4.2.2 highlights the
necessity of using such tools, for instance, to ensure a consistent coding
style across the various components of the ML pipeline. As described
in Section 4.3.2, static code analyses can be executed at every commit
triggered in a CI runner, providing developers with feedback on the
status of their code changes. Depending on the convention, successfully
passing this code analysis can be a mandatory condition for a merge
request into the main branch, ensuring the desired high quality remains
in the main branch.

Deployment.20

Fulfilled by 4.2.3, 4.3
Automate model deployment. Deploying the trained ML model into
the production environment should be automated. This includes using
tools and techniques that allow for the development team’s rapid, efficient,
and minimally manual transfer of models into operational use. From
a process perspective, such automation avoids delays, contributing to
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the high readiness and scalability of the AI system (Arnold et al. 2020).
Additionally, this approach moves towards end-to-end reproducibility
(Van Der Weide et al. 2017). This best practice is fulfilled by following
the described principles in Section 4.2.3 and the proposed branching
workflow (cf. 4.3).

Continuously monitor the behavior of deployed models. Once trained
ML models are deployed into the production environment, it is a best
practice to monitor them to assess their behavior and performance con-
tinuously. This monitoring typically includes capturing metrics related
to model performance, such as the error rate on data in the real-world
environment (Baylor et al. 2017). As described in Section 3.3.4, continuous
monitoring is crucial to promptly respond to issues like data drift, model
obsolescence, or changing requirements.

Deployment.21

Achievement supported by 4.3.5

This best practice significantly overlaps with the aspects described in
Training.14. While continuous measurement of model quality and per-
formance primarily focuses on the training process of ML models, the
continuous monitoring of the deployed model’s behavior shifts, for
example, to emerging concept drifts. In practice, it is advisable to use
comprehensive methods and implement them using powerful monitor-
ing tools, where the concept of a separate production branch (cf. 4.3.5)
can serve as an enabler.

Deployment.22

Achievement supported by 4.3
Enhance 4.3.5

Enable shadow deployment. This best practice refers to a technique
where a specific version of the software and/or model is operated in
parallel to an existing version in production, without actually intervening
in the deployment process. In AI projects, for instance, the new model
version receives the same input data as the currently deployed model.
However, the predictions and performance are only recorded and ana-
lyzed, not used for the actual action of the AI system. This method allows
for testing and evaluating the performance and stability of a new release
candidate under real conditions without affecting the running system or
user experience.(Olston et al. 2017; Baylor et al. 2017; Van Der Weide et al.
2017; Washizaki et al. 2019)

Implementing this best practice requires further steps at the system level,
such as separate logging and the integration and evaluation of necessary
feedback loops. However, from a process perspective, this can be achieved
with an additional, separate production branch. This branch adheres to
the concept of shadow deployment and does not impact the running
system but rather represents an additional mirrored twin of the release
branch. Unlike the production branch or a long-lived experiment branch,
e.g., used for live experiments, the data streams in this new production
branch are used solely for observation and analysis.

Existing logic and tools for performance measurement, such as the
experiment tracking service, provide the opportunity to compare the
performance of models in different branches. If the results are satisfactory,
a gradual transition can be implemented by merging the desired (model-)
version in the described workflow from Section 4.3.4 from the release-
to the production branch. This approach allows for careful monitoring
and evaluation of the new version in a real-world environment without
disrupting ongoing operations, ensuring a risk-aware transition.
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Deployment.23

Achievement supported by 4.3.3
Enhance 4.3.3

Perform checks to detect skews between models. To identify discrep-
ancies or shifts (known as „skews“) between training and production
models, it is best practice in AI projects to regularly review any differences
between the training data and real-world data from the production envi-
ronment. This approach enables early detection of data shifts, overfitting,
or model obsolescence, thereby positioning the team to take appropri-
ate countermeasures, such as retraining the model.(Baylor et al. 2017;
Zinkevich 2019; Google 2023b)

Again, the close connection with the best practices Training.14 and De-
ployment.21 is evident. Unlike best practice Deployment.21, which aims
to assess whether models already released in the production environ-
ment are functioning as expected and thus considers the occurrence of
anomalies and errors, the review of skews between models explicitly
attempts to identify potential inconsistencies between training models
and the production model. To fulfill this best practice, the described
concepts of experiment branches, described in Section 4.3.3 can be used.
They allow, using the experiment tracking service and the calculated
performance metrics of the model version from the release branch, to
compare the model performance of a newly trained model with the
currently deployed model in the production environment in a traceable
way.

Deployment.24

Fulfilled by 4.3.4
Enable automatic roll backs for production models. Implementing
mechanisms that enable automatic reversion to a previous version of
an ML model empowers the development team to respond swiftly,
for instance, if the currently live model exhibits unexpected issues or
performance drops. This best practice mainly contributes to the stability
and maintenance of the reliability of AI systems (Zaharia et al. 2018).
Automatic rollbacks ensure that in the event of emerging errors or
problems, a switch can be promptly made to a proven, stable model
version, thereby minimizing potential negative impacts. This best practice
is fulfilled by the proposed branching workflow and the characteristics
of the release branch, which allow for seamless transitions back to earlier,
stable versions of the model when necessary.

Deployment.25

Achievement supported by 4.2.1,
4.2.2, 4.2.3, 4.3.5

Log production predictions with the model’s version and input data.

Detailed logging of the predictions made by an ML model in the pro-
duction environment, along with information about the model version
and the input data, enables comprehensive traceability of model deci-
sions. This approach is fundamental for analyzing model performance
and potential troubleshooting, as well as for complying with regulatory
requirements, and it forms the basis for the team to understand the
causes behind specific predictions made by the model in the production
environment.(Hummer et al. 2019; Sridhar et al. 2018)

Typically, explicit steps are necessary on the system side to fulfill this
best practice. In addition to implementing a comprehensive logging
system, integrating the required logic into the ML pipeline and the
structured metadata storage are prerequisites. Nevertheless, the concepts
described from a process perspective contribute in different ways to
fulfilling this best practice. First, the consistent versioning of data and
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code versions is an integral part of the methodology. Secondly, the
described infrastructure provides the basis for storing the necessary
prediction logs (cf. Section 4.2.3). The dedicated production branch, as
described in Section 4.3.5, can serve as the starting point for logging the
version of the model and input data.

Use a collaborative development platform. This best practice focuses
on using platforms and tools that support and enhance collaboration
within the development team. Such platforms, often provided by cloud
service providers, offer the necessary toolchain comprising version
control, collaborative code editing, issue tracking, CI/CD processes, and
experiment tracking services. This approach targets coordinated and
collaborative work on a project, as well as communication and technical
knowledge exchange (Booch et al. 2003; Storey et al. 2017). As mentioned
in Section 4.2, the described concepts are agnostic regarding the choice
of tools. Using the defined concepts and workflows takes account of
collaborative cooperation as the core idea of this best practice.

Team.26

Achievement supported by 4.3

Team.27

Achievement supported by 4.3
Work against a shared backlog. It has proven effective in software
projects for developers to access and work from a shared list of tasks,
known as a backlog. This backlog contains all planned features, im-
provements, bug fixes, and other tasks relevant to the project. This
approach aims to ensure that all team members work towards the same
objectives, with clearly defined priorities and a transparent and efficient
workflow.(Sedano et al. 2019; Schwaber et al. 2020)

Although the described development methodology lays the foundation
for working with a shared backlog, the team culture contributes a
significant part to fulfilling this best practice. The defined branching
workflow can promote fulfilling this best practice, especially when
branches are linked to an issue, as recommended, and integrated into the
backlog to provide a clear overview of pending tasks and their status.

Team.28

Achievement supported by 4.2, 4.3
Communicate, align, and collaborate with multidisciplinary team

members. As described in Section 3.4, teams for AL projects, or more
generally for AI projects, comprise members with diverse expertise
and backgrounds. The best practice focused on the communication and
collaboration of these teams is again significantly dependent on the team
culture. For example, effective collaboration in these multidisciplinary
teams involves exchanging ideas, knowledge, and the various perspectives
inherent in different roles (Faraj et al. 2000).

Several aspects are conducive to fulfilling this best practice. These include
shared communication channels, which can especially be implemented
with appropriate tools. Other vital aspects are workshops, training
sessions, an open team culture, and regular interdisciplinary meetings.
Therefore, the proposed concepts do not per se fulfill this best practice
but can provide significant added value. Suppose the technical team,
which consists of different roles, follows the agile development approach,
implements the infrastructure setup described in Figure 4.3, and works
according to the proposed branching workflow. In this case, collaboration
is centered around a central location for information exchange. While
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software engineers might work on planned changes to the application
code in feature branches, ML-related tasks, such as those handled by
a data scientist, can utilize experiment branches and the experiment
tracking service to record their progress and communicate the results to
the entire development team in a status meeting.

Enforce Fairness and Privacy. This best practice emphasizes the need
to consider and enforce principles of fairness and data protection at all
stages of the development and deployment of ML models. This includes
implementing measures to prevent biases and avoid discrimination, as
well as ensuring that the collection, processing, and use of (training-) data
respect individuals’ privacy and comply with applicable data protection
policies.(Breck et al. 2017b; Google 2023b)

Governance.29

Fulfillment is not prevented.

The fulfillment of this best practice means that further steps must be taken,
ranging from fairness analyses and tests to extensive data protection
measures like data encryption and anonymization. We argue that the
described concepts do not hinder the implementation of these measures.
Instead, they contribute positively by promoting feedback mechanisms
and continuous improvement, two essential aspects relevant in enforcing
fairness and data protection.

Table 4.1: Aggregated representation of best practices, collected by Serban et al. 2020 and their satisfaction regarding the presented
concepts: + + +matches a complete fulfillment. Scores ++ and + are intended to provide an evaluation of whether the proposed process
methodology is an enabler for achievement. For the best practice marked with 𝑜, the proposed methodology is no enabler, but in our
view the, compliance would not be hindered.

Nr. Title Fulfillment

Data-1 Use sanity checks for all external data sources ++
Data-2 Check that input data is complete, balanced and well distributed ++
Data-3 Write reusable scripts for data cleaning and merging +++
Data-4 Ensure data labeling is performed in a strictly controlled process ++
Data-5 Make datasets available on shared infrastructure (private or public) ++

Training-6 Share a clearly defined training objective within the team +
Training-7 Capture the training objective in a metric that is easy to measure and underst. +
Training-8 Test all feature extraction code ++
Training-9 Assign an owner to each feature and document its rationale +++
Training-10 Actively remove or archive features that are not used +
Training-11 Peer review training scripts +++
Training-12 Enable parallel training experiments +++
Training-13 Automate hyper-parameter optimisation and model selection ++
Training-14 Continuously measure model quality and performance +++
Training-15 Share status and outcomes of experiments within the team +++
Training-16 Use versioning for data, model, configurations and training scripts +++
Coding-17 Run automated regression tests ++
Coding-18 Use continuous integration +++
Coding-19 Use static analysis to check code quality ++

Deployment-20 Automate model deployment +++
Deployment-21 Continuously monitor the behaviour of deployed models ++
Deployment-22 Enable shadow deployment ++
Deployment-23 Perform checks to detect skews between models ++
Deployment-24 Enable automatic roll backs for production models +++
Deployment-25 Log production predictions with the model’s version and input data ++

Team-26 Use a collaborative development platform ++
Team-27 Work against a shared backlog ++
Team-28 Communicate, align, and collaborate with multidisciplinary team members ++

Governance-29 Enforce fairness and privacy 𝑜
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Summary. To enable a final evaluation of the process methodology
based on best practices from the literature, the results are presented in
aggregated form in Table 4.1.

We have reviewed (a) which of the available aspects are fully met by
the presented concepts, (b) whether additional measures are required to
satisfy established best practices, or (c) are not feasible. As indicated in
Table 4.1, we consider

▶ (a) 10 out of 29 best practices as inherently fully met. Most of these
best practices fall within the category of Training.

▶ (b) 18 of the 29 best practices are not per se fulfilled by implementing
the concepts. However, the proposed development methodology
can be a facilitator for their implementation. While some of the
best practices, such as Training-8, Deployment-22, or Deployment-
23, can be met by extending the concepts, further steps in the
development process, for example, through suitable tooling, are
necessary for best practices Training-6, Training-7, and Training-10.

▶ (c) The proposed concepts impede none of the 29 best practices
in their implementation. In other words, Teams following the
development process are not prevented from adhering to the
specific best practices, although additional methodological steps
are required to achieve full compliance.

4.5.2 Expert Interviews

In MLOps research, significant importance is attributed to the indus-
try’s perspective and the academic world. As demonstrated by Giray
2021, expert interviews have been utilized to find answers to practice-
oriented questions in the field of SE for ML projects. This method has
been employed in other studies within this research domain, such as
by Kreuzberger et al. 2023 and Steidl et al. 2023. Inspired by this ap-
proach, which underscores the relevance of industry feedback in this
discipline, we decided to integrate this tactic into evaluating the proposed
concepts.

Our approach includes the involvement of industry experts to discuss
and evaluate the development methodology for data-centric AI projects
that we propose. For this purpose, professionals from various industries
and company sizes were selected, as shown in Table 4.2, to cover as
diverse a perspective as possible with different industrial requirements
and experiences. The eight participants held different technical roles
and, in some cases, leadership positions. The company sizes ranged from
Small and Medium Entrepreneurs (SMEs) with fewer than 500 employees
to large corporations with more than 100,000 employees.

Table 4.2: Profiles of interviewees No. Role/Position Industry (Employees)
𝛼 SE Team Lead Technology (> 100k)
𝛽 SE Quality Manager Technology (< 500)
𝛾 AI Project Manager R&D (≈ 30k)
𝛿 Data Scientist R&D (≈ 2k)
𝜖 Head of AI Consulting (< 500)
𝜁 ML Engineer Consulting (< 500)
𝜂 Data Scientist Automotive (> 100k)
𝜃 Head of AI Automotive (> 100k)
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Interview procedure

Prior to the interviews, participants were sent preparatory materials.5 5: The materials are available under
https://github.com/ds-lab/slidesThese consisted of slides that explained the key concepts and the proposed

workflow. The goal was to provide participants with a foundation for
understanding and to enable a critical assessment of the proposed
method.

The interviews themselves were conducted online as 60-minute face-
to-face conversations. Here, the semi-structured interview technique
facilitated a free-flowing yet content-directed conversation.

The conversation was structured in three phases:

▶ (1) The first phase, which was intended to last about 25 minutes,
served to create the profile of the interview participant. They were
asked about their current team role, their position, and their job
activities. In addition, they were questioned about their experience
in AI projects and the scale of these projects.

▶ (2) In the subsequent phase, which took about 10 minutes, the
method was presented, and open questions regarding the princi-
ples of code, data, and automation, as well as the branch-based
workflow, were clarified. This step was to ensure that the partici-
pants understood these.

▶ (3) In the third phase of the interview, which was planned to last
25 minutes, the participant was asked to evaluate the introduced
concepts. As inspiration, the following three guiding questions
were provided in the interview materials:

• For which MLOps principles do you see a technical debt
enabler through the presented development approach?

• How do you evaluate the proposed development methodol-
ogy according to process requirements?

• Where do you see the biggest gaps and opportunities for you
and your team?

We used the data collected from the conversations for a qualitative
analysis, which will be discussed later. First, we will address some
observations that emerged from the first phase of the interviews.

Inventory of AI project maturity levels

In the traditional SE context, maturity models often play a vital role in the
categorization of projects. These models provide a framework to measure
a project’s progress and maturity level across various degrees, which, in
turn, allows for analysis and comparability. For this purpose, different
maturity levels for ML projects were initially collected and classified. The
maturity models from Microsoft Corporation 2021, Google 2023a, and
John et al. 2021 were consulted and organized into the structure proposed
by Liker 2004 along the dimensions of people, process, and technology.

Figure 4.8 provides an overview of the different aspects of AI project
maturity levels in a triangle where each axis represents a different
dimension according to Liker 2004. The color-coded levels represent the
various developmental stages of AI projects. Level 1 corresponds to an
initial project phase where most work is done manually, progressing to

https://github.com/ds-lab/slides
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Figure 4.8: Project maturity levels along
the dimensions of people, process and
technology: Aspects based on AI/ML
project maturity models from Microsoft
Corporation 2021, Google 2023a, and
John et al. 2021 were, according to Liker
2004, divided into three dimensions: peo-
ple, process and technology. The levels
increase from level 1 (= early project stage,
most manual) to level 4 (= highest ma-
ture, fully automated).
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level 4, which corresponds to a fully matured project with aspects of a
fully developed stage.

In the first phase of the interview, participants were asked to provide a
self-assessment of their organization and the projects they had conducted.
Table 4.3 presents the results of this survey, with the assessment reflecting
a subjective perception and not based on strict criteria. Nevertheless,
this information is relevant to gaining insight into the status quo of the
interview partners and taking their experience level into account when
evaluating the methodology.

Table 4.3: Inventory of project maturity levels and self-assessment of interviewees. Interviewees were asked at the beginning of the
interviews to use the table to rank the maturity of their projects.

Technology Process People

L
e
v
e
l

1

Poor SCM 𝛾,𝛿 Ad Hoc Development 𝛿 Knowledge Silos
Untracked Artifacts 𝛽,𝛿 Manual Handwork 𝛾 Poor Communication
No Automation 𝛿 Stand-alone solutions 𝛾,𝛿 No Priority-Awareness
Manual Build 𝛾,𝛿,𝜖 „Trail and error“ Low Innovation

L
e
v
e
l

2

Standardized SCM 𝜖 Requirement Management 𝜖 Semi-Cooperative 𝛿

Artifact Management Tools 𝛾 Manual Release 𝛿,𝜖,𝜁 Written Knowledge
Monitoring Tools 𝛾,𝜖,𝜁 Modularity 𝜖 Regular Communication
Standardized Builds Manual Testing 𝛾,𝛿,𝜖 Innovation by Requirement 𝛽,𝜖

L
e
v
e
l

3

Integrated Monitoring 𝛽,𝜂,𝜃 Agile Development 𝛽,𝜁 Knowledge Management 𝛽,𝛾
Toolset Integration 𝜁,𝜂,𝜃 Autom. Deliveries Fast Feedback-Loops 𝛼,𝜁

Analytic Tools 𝛽,𝜂,𝜃 Integrated Reporting 𝛽,𝜁,𝜂 Continuous Education 𝛽

Autom. Builds 𝜁 Integrated Testing 𝛽,𝜁,𝜂 Innovation Strategy 𝛿

L
e
v
e
l

4

Pipeline as product 𝛼,𝜁 Lean Development 𝛼,𝜂,𝜃 Inter-Team Transfer 𝛼,𝜖,𝜁,𝜂,𝜃

Fully Automated 𝛼 Continuous Deliveries 𝛼,𝛽,𝜂,𝜁 Consult other Teams 𝛽,𝛾,𝛿,𝜖

Integrated Resilience 𝛼 Predictive Pipeline Ownership Mindset 𝛾,𝛿,𝜖,𝜁,𝜂,𝜃

Autom. Test-Envs 𝛼,𝛽,𝜂 - Maintenance 𝛼 Innovation as Vision 𝛼,𝜁,𝜂,𝜃
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Notably, interviewees from the R&D sector concurred on data science-
driven processes, and technological aspects were aligned with a lower
maturity level. For example, a Data Scientist (𝛿) and an AI Project
Manager (𝛾) reported ’poor SCM’ and ’manual build’, indicating initial
challenges in software configuration management and build processes.
These initial challenges were mirrored in the process domain through
’ad-hoc development’ and ’stand-alone solutions’, reported by these
R&D sector interviewees, pointing to a lack of structured development
processes.

This observation aligns with the study of Serban et al. 2020, who found
in a quantitative survey of 𝑛 = 350 respondents that adopting their
identified practices, which were discussed in Section 4.5.1, was most
prevalent in tech companies. At the same time, the organization type
„Research“ exhibited the lowest implementation rate.(Serban et al. 2020)

At level 2, the introduction of ’standardized SCM’ and ’artifact man-
agement tools’ by the Head of AI in consulting (𝜖) and the AI Project
Manager (𝛾) reflects a move towards more regulated and tool-supported
environments. Similarly, the SE Quality Manager in technology (𝛽) and
the Head of AI (𝜖) noted improvements in ’requirements management’
and ’modularity’ within the process domain, suggesting an evolution
towards more refined development practices.

At level 3, approaches become apparent with ’integrated monitoring’ and
’automated builds’, specified by Data Scientists in the automotive industry
(𝜂 and 𝜃) and the ML Engineer (𝜁). ’Agile development’ and ’integrated
testing’ were indicated at this level by the SE Quality Manager (𝛽) and
the ML Engineer (𝜁), indicating maturity in adaptive and continuous
integration practices.

The highest maturity level 4 reveals a highly advanced state, where
’pipeline as product’ and ’fully automated test environments’ are indi-
cated by the SE Team Lead in technology (𝛼) and the Head of AI in
automotive (𝜃), pointing to a fully matured and automated project envi-
ronment. In the people dimension, ’ownership mindset’ and ’innovation
as vision’ are attributed to various roles, including the Head of AI in
consulting (𝜖) and the Data Scientists in automotive (𝜂 and 𝜃).

The distribution of the eight interviewees appears balanced across
technology- and process-related implementations. However, a signif-
icant portion attributes a higher maturity level to person-related factors.
This investigation, limited to a small group of respondents, suggests that
methodological issues in developing AI projects at the time of the survey
predominantly prevail in process- and technology-related approaches
rather than human-centric work practices.

Quantitative analysis of the assessment through expert interviews

As mentioned in the interview procedures, following the presentation
of the proposed methodology and the clarification of questions by the
interviewees, the participants were asked to assess the applicability
in their practical work during the third phase of the interview. Here,
stimulated by the three questions provided, they were to address aspects
concerning people, process, and technology in their feedback.
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People. In the analysis of the interviews, statements from participants
focusing on the aspects of the people dimension revealed a crucial
importance of team dynamics and collaboration in the context of AI
project development methods.

Firstly, candidate 𝜖 underscored the significance of exchange within
the team, emphasizing that solitary work on projects is not an option.
They highlighted the necessity of communication within the team and
with clients to develop a deeper understanding of domain knowledge.
These considerations illustrate the need to foster an environment where
knowledge exchange is paramount, aligning with the maturity levels of a
collaborative culture where knowledge transfer and shared visions play
a key role.

Moreover, 𝜖 viewed the proposed methods and processes as a solid
foundation for discussion within the team, to be tailored to specific needs
and team dynamics. They conceded that only certain concepts of the
proposed methodology are relevant for most of their projects, suggesting
that team collaboration could be enhanced by adopting and adapting
concepts necessary for a specific project. 𝛾 concurred, emphasizing the
general need to select methods according to team size and pointing out
the importance of scalability and flexibility of processes to suit different
team structures and project scopes.

𝜁 brought forth an argument related to the developer dataset, advocat-
ing that the approach can simplify the developer’s work as it obviates
the need to manage the complexity of larger datasets. They proposed
that significant data changes ideally trigger an automatic update of this
developer dataset, creating an ergonomic environment for development
while maintaining awareness of data dependencies. This approach under-
scores the necessity of practical, developer-oriented solutions that strike
a balance between easy development and the underlying complexities
of ML projects. This could lead to strengthened collaboration among
heterogeneous roles, as the often very different working methods of data
scientists and software developers could be harmonized.

Process. From the process-related perspective, candidate 𝜖 reflected
the tendency for a discrepancy between established processes and those
actually practiced. They stressed the need for robust processes that sup-
port both the ML pipeline and experimental aspects. 𝜖 advocates for
pragmatic and straightforward approaches, which, from their experi-
ence, function well even in challenging tasks and high-pressure project
situations. However, a weakness they noted in the shown concepts and
workflows was the added complexity, especially concerning the proposed
automation principles, a sentiment echoed by 𝛿.

In contrast, 𝜁 highlighted the advantages of automation principles,
suggesting they make the process less prone to errors and improve
consistency. 𝛾 spoke to the importance of structured development and
testing processes for efficient and targeted work, especially in larger
teams. They mentioned the benefit of a branching workflow that allows
for parallel work with different data configurations and experiments,
enabling the testing of various scenarios early in the project phase.
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𝛿 pointed out that standardized processes might be a disadvantage
during exploratory project phases, such as feasibility studies, potentially
limiting developers who prefer more individualized approaches. 𝜁 con-
curred, noting that the outlined automation principle and consistent use
of CI/CD/CT runners could lead to additional effort, which might neces-
sitate infrastructure setup changes when unforeseen requirements arise.
𝜖 suggested that aside from experiment branches, a kind of laboratory
environment for notebooks should be provided for data science-driven
tasks.

On the topic of implementation for smaller projects with team sizes of
fewer than five members, 𝛽, 𝛾, 𝛿, 𝜖, and 𝜁 expressed skepticism. They
highlighted the considerable overhead in the initial phase as a critical
concern, given that small AI projects are often still proof of concepts
today.

As a project progresses, 𝛾 and 𝜁 acknowledged that the workflow with
dedicated experiment branches offers the advantage of being transparent
for the team while being isolated from the main development. 𝛾 praised
the concept of integrating automated testing routines into CI/CD/CT
runners, which could be used for model validation steps. 𝜁 commended
the rapid feedback facilitated by quick iterations using a developer dataset
optimized for running ML pipeline code swiftly.

𝛼 advanced the discussion on the data principle, proposing that differ-
ently sized development datasets could allow for an additional integration
test, where multiple CI/CD/CT runners could be triggered in parallel by
a commit, each checking out development datasets of varying sizes up to
the full datasets. This approach compromises between rapid feedback
for developers and testing on complete datasets.

Lastly, 𝛽, in their role as SE Quality Manager in consulting, emphasized,
„Software quality is crucial. It starts with structured planning,“ endorsing
the proposed concepts of code principles as fundamentally sensible.

Technology. Focusing on the aspects of technology, the interviewees
provided feedback on technical approaches and the challenges of man-
aging and versioning data in the context of data-centric AI projects.

Candidate 𝜖 recognized the presented technical approaches as relevant
and crucial for achieving reproducible results, emphasizing the signifi-
cance of tools that assist in data management and versioning, especially
in dynamic scenarios such as AL projects with an evolving set of labels.

Both 𝜖 and 𝜁 noted the importance of maintaining a clear overview
of the different versions and experiments. They pointed out that as
the complexity and number of experiments and versions increase, the
challenge arises to establish a consistent reference between all elements
efficiently and swiftly. In the context of scalability, 𝛼 and 𝛽 concurred
that for large projects, the multitude of experimental branches could be
confusing when running in parallel with other branches.

𝛾, 𝛿, and 𝜁 emphasized the necessity for the developer dataset to be
as representative as possible to create realistic development conditions.
𝛾 mentioned that while ML results do not depend on it, an inaccurate
developer dataset could misdirect the project if the development team
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relies too heavily on it as a basis for developing ML pipeline code and
other non-ML-related application code.

Hence, 𝛼, 𝛽, 𝛾, and 𝜖 believe that the proposal to use a developer dataset
is fundamentally sound but stresses the importance of focusing on
the requirements for selecting suitable instances. The general idea of
providing minimal datasets for development on the developer client or
within a developer container appears promising.

𝛿 reported that the significant challenge in the technological implemen-
tation of concepts is the lack of expertise of the team members: „Usually,
the technologies are available, but people are needed to set it up, maintain
it, etc., and to support it.“

𝛽 stated, „In AI projects, the major hurdle is to conduct data manage-
ment and administration, particularly in terms of revision, security, and
traceability,“ which would be significantly improved by artifact manage-
ment arising from the proposed principles. 𝛽 further emphasized that
AI projects are very specific and heavily dependent on the respective
domain. The same applies to selecting technology decisions: „Technology
is so fast-moving that focusing on one toolchain might be a dead end.“
However, the concepts presented were considered agnostic enough to
allow using different tools.

Summary. Through the interviews of eight experts from the industry,
it became evident that the proposed methodology establishes a solid
foundation for developers of data-centric AI projects, particularly when
regular feedback is envisaged, as in the case of integrating an AL-loop.
The demonstrated principles on data, code, and automation address
challenges concerning the resulting dynamics in artifacts while simulta-
neously increasing transparency and collaboration in teams composed
of diverse technical roles.

The requirements mentioned for the development dataset offer poten-
tial for discussion. Moreover, it is observed that adopting all concepts,
especially in terms of automation, introduces an inevitable overhead
into a project, which can outweigh the benefits, particularly in the early
exploratory phase.

Overall, the different perspectives collectively indicate that while the
overarching methodology provides a structure, its application must be
attuned to the specific facets of team interaction, the details of project
requirements, and the practical aspects of workflow management. How-
ever, all interview participants agreed that teams benefit most from the
provided principles by improving traceability.

4.5.3 Metadata Analysis

In extension to the evaluations from Section 4.5.1, where the engineering
methodology proposal were analyzed for its alignment with estab-
lished best practices, and the inclusion of industry experts through
semi-structured interviews in Section 4.5.2, the third part focuses on a
particularly practical evaluation perspective. For this purpose, the two
projects, which are detailed in Chapter 6, were closely examined.
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Within the utilized SCM application GitLab, data was collected over the
course of the project’s duration, which could be accessed using an API.
This approach enabled the retrieval of metadata from repositories and
the analysis of metrics from the CI/CD/CT runners. This is a common
method to evaluate the duration of pipelines and their success rates over
time (GitLab 2023).

The introduced branching workflow and the establishment of separate
branch namespaces allowed for the segregation of pipeline statistics for
different branches, followed by subsequent calculations. These results
aim to assess the efficiency of the pursued developmental principles.

While the technical implementation of the skin image analysis use case,
as well as of the ECG signal classification use case, which will be both
detailed in Chapter 6, differ significantly in terms of the ML pipeline, and
this must be kept in mind when comparing the two projects, there are
further technical specifications that apply uniformly to both projects. In
both projects, the CI/CD/CT runners were hosted on a GPU server. For
data versioning, we integrated DVC (Iterative 2020) and MLflow (Zaharia
et al. 2018) to track experimental tasks. The technical and organizational
differences that impact the statistics of each use case are outlined below.

Project-specific Characteristics, affected the Implementation of the

Skin Image Analysis Use Case

Two GPUs were available for model training in the project where the ML
pipeline for skin image analysis was implemented. These GPUs could
process various tasks in parallel and were exclusively available to the
team during the implementation phase. Data management, including the
storage of raw data and all other computed artifacts, such as preprocessed
data and trained models, was realized with a file server and SSH access.

A total of 16 developers contributed to this project. The experienced core
team consisted of five developers in various roles, applying the described
development method for the first time. We determined the size of the
development dataset to be 100 samples. This quantity was selected to be
large enough to encompass instances of each class for training-test splits
yet small enough to execute the ML pipeline code on the developers’
client computers within a reasonable timeframe.

The analysis of the CI/CD/CT pipelines, as depicted in Figure 4.9, reveals
that over a 12-month period, a total of 1,850 jobs were executed, with the
majority triggered in feature branches or the main branch. As illustrated
in the right part of the figure, using the development dataset proved
advantageous.

Developers received feedback on whether the pipeline had failed in an
average time of 6.36 minutes. In cases of successful pipeline execution,
results were available within an average of 18.58 minutes. Notably, this
marks a significant time-saving compared to the average execution time
of experiment branches, which was 179.87 minutes (factor 28) for failed
executions and 391.11 minutes (factor 21) for successful ones.

Considering the substantially higher number of pipeline executions on
code-focused feature- and main branches, the concepts emphasize the
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Figure 4.9: Overview of runner execu-
tion metadata in the skin image analysis
use case project. Within the CI pipelines,
a total of 1,850 jobs were executed, pri-
marily in feature- and main branches.
The average execution time of the jobs
(right bar chart) indicates a significant
difference between feature- and experi-
ment branches, with developers benefit-
ing from fast feedback during develop-
ment iterations.
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promotion of agility for the development team, especially in optimizing
time and computational capacities.

Project-specific Characteristics, affected the Implementation of the

ECG Signal Classification Use Case

In the project implementing the ML pipeline for ECG signal classification,
we adapted the infrastructure to meet the increased complexity and
requirements of the use case. This time, four GPUs were exclusively
available to the team, capable of parallel processing various tasks. An S3
bucket was used as the data remote, storing and exchanging raw data,
preprocessed data, trained models, and other computed artifacts.

A total of 19 developers contributed to this project. Following the identical
engineering methodology proposal, the core team remained unchanged
from the skin image analysis project, thus capitalizing on initial learning
experiences. In this project, the development dataset again comprised 100
samples assembled from various data sources to meet the specifications
outlined in Section 4.2.1.

Figure 4.10 presents the analysis of the CI/CD/CT pipelines over an 18-
month observation period. A total of 3,048 jobs were triggered, including
automated nightly retraining of the model on the production branch.
For this project, we recorded the job execution time on the main branch,
intended for integration tests, highlighting resource savings from using
development datasets.

Figure 4.10: Overview of runner execu-
tion metadata in the ECG signal classi-
fier use case project. In this project, 3,048
CI pipeline jobs were executed, includ-
ing automated nightly retraining of the
model in the production environment.
The feedback cycles for developers were
significantly shortened through the im-
plemented concepts, as evidenced by the
average job execution times shown in the
right bar chart.
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Despite runners checking out entire datasets in both the production and
experiment branches, a clear difference in execution time was observed.
This discrepancy can be attributed to the use of experiments for more
complex simulations and the fact that the datasets in the production
environment did not change daily, allowing the deployment of the already
trained model without modification.

Significant time savings were evident in the feedback cycles. In feature
branch implementations, the average execution duration of failed jobs
was 3.30 minutes – a factor of 149 compared to experiments. For successful
jobs, the average duration was 6.34 minutes, a factor of 156 compared to
experiment branches.

This project is another example of successfully adapting the development
methodology to an data-centric AI project, demonstrating how the
principles can lead to considerable efficiency and productivity gains.

Using the principles and development workflow, both time and compu-
tational resources were saved while enhancing the agility of the develop-
ment team through rapid feedback cycles. The concepts proved beneficial
for project quality assurance: Integration tests for the ML pipeline within
a CI/CD/CT job on the main branch provided feedback to the team
within an average execution time of about 166 minutes for passing the
test stage, with the ML pipeline running using the development dataset
and various hyperparameter combinations.

Conclusions from the Metadata Analysis

Adopting the introduced engineering methodology in both projects
proved advantageous for agility and team collaboration. Due to the project
and code structure, multiple developers could simultaneously implement
new features and initiate experiments. Including the development dataset
and using different runners led to significant differences in the execution
times of the CI/CD/CT pipelines, enabling rapid iteration during code-
focused implementation and considerable resource savings throughout
the projects.

However, in the practical application of these principles, some aspects
cannot be overlooked. Firstly, there are substantial requirements for the
development dataset, as its creation can be challenging due to often very
heterogeneous data sources. Furthermore, it may become necessary to
maintain different development datasets of various sizes.

Furthermore, the other principles, such as using runners for conducting
experiments or practicing modular coding, represent an inevitable over-
head for team members who need to become more accustomed to this
way of working. The team requires a member capable of setting up the
necessary infrastructure, and every team member must be familiar with
both code and data version control systems. Developers or data scientists
unfamiliar with a data version control system will face a steep learning
curve and frequent pitfalls, such as overly large merge requests. Feature
branches will likely require a different configuration than the best model,
for example, fewer training epochs to facilitate the rapid feedback loop.
These different configurations necessitate additional management.
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In addition to enhancing traceability, which was confirmed in the evalua-
tion through expert interviews, the teams can benefit from rapid feedback
cycles once the concepts have been implemented. Transparent collabora-
tion is enabled for members of various technical roles, which, combined
with established best practices from agile software development, leads
to positive effects in the project.

4.6 Summary

This chapter introduces an approach for developing data-centric AI
systems. Guidelines have been presented to assist engineering teams
in effectively structuring a project, especially when it progresses from
a feasibility study to a mature one. A focus is placed on harmonizing
the collaboration of different team members as well as managing data
and code versioning to enhance traceability and enable teams to track
resulting artifacts, such as trained models, throughout the entire life
cycle.

To this end, three principles were introduced which concern the handling
of data, the code and project structure, and in terms of automation, a min-
imal infrastructure and the use of runners for CI/CD/CT. Additionally,
the development methodology proposes a branch-based workflow that
introduces different namespaces for branches which fulfills functions
with a stronger focus on either data or code.

Finally, the concepts are evaluated through a three-stage process, initially
discussing the fulfillment of best practices from the scientific litera-
ture in detail, followed by assessing practical suitability through expert
interviews. A metadata analysis provides a technical perspective, evalu-
ating two projects in which the proposed development practices were
implemented.

The presented methodology approach, including its principles, combined
with the branching workflow, serves as a process guide for engineering
teams, which can be used independently of the tools employed to fulfill
requirements in developing trustworthy AI systems.
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In the implementation of AL projects, the importance of a structured
framework increases as concepts of trustworthy AI, such as transparency
and traceability, become relevant. The dynamic nature of artifacts, driven
by continuous learning and evolving datasets, necessitates implementing
techniques for tracking data provenance, versioning code, data, and
models and applying methods for model interpretation and stakeholder-
specific UIs. Traceability in the sense of consistent versioning of all
artifacts is a crucial MLOps principle that significantly contributes to
the compliance and trustworthiness of an AI system (Kreuzberger et al.
2023).

However, currently available AL frameworks often lack the integration
of concepts that increase transparency and traceability, which become
necessary for a comprehensive understanding and replication of the
learning process from a systemic perspective. This Chapter introduces
LIFEDATA, an innovative framework for traceable AL projects, developed
as part of a BMBF project1 of the same name.

1 Reference number 031L9196B
Alongside a conceptual description, the framework comprises open-
source software consisting of a core framework and a project template,
aiming to enhance the transparency in AL projects.

LIFEDATA presents a novel approach that enables researchers and
practitioners to comprehend the learning process, from training sample
selection to an interpretable ML model output, thereby improving the
overall understanding of the ML model’s behavior. The following Chapter
will present the technical design of LIFEDATA and provide a structured
approach to AL projects.

In addition to the concepts first presented in the publication Stieler et al.
2023b, the associated open-source software, which is implemented in
Python, essentially consists of two elements that are published under the
GitHub repositories:

▶ https://github.com/ds-lab/lifedata

The core framework with various interfaces, a database, and a
web-based UI for annotations.

▶ https://github.com/ds-lab/lifedata-project-template

The project template, which LIFEDATA users can use as a starting
point for creating an AL project. It provides boilerplate code for
data scientists and enables the initialization of AL project instances
with the required framework structures.

https://github.com/ds-lab/lifedata
https://github.com/ds-lab/lifedata-project-template
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5.1 Related Work

One of the first AL frameworks implemented in Python, introduced in
2017, is Libact. Libact is distinguished by its modularized design, which
allows for the integration and customization of one’s own QSs and
ML models implemented in Scikit-Learn through uniform interfaces. In
addition to integrating popular QSs, it supports the Active-Learning-by-
Learning (ALBL) meta-algorithm introduced by Hsu et al. 2015, which
validates different QSs in real-time with the goal of selecting the most
effective strategy.(Yang et al. 2017)

ModAL, introduced in 2018, is another modular AL framework. In ad-
dition to its flexible and expandable design, ModAL allows for rapid
prototype development and easy customization through its out-of-the-
box implementation of various QSs, qualifying ModAL for simulations
and integration in real AL projects. ModAL is characterized by its straight-
forward, object-oriented design and is fully compatible with scikit-learn
models and workflows.(Danka et al. 2018)

ALiPy, released in 2019, is a Python-implemented toolbox for AL. The
framework includes 20 QSs as well as its own approaches, like "AL with
Noisy Oracles," demonstrating a focus on simulations. ALiPy is modular
like Libact and ModAL and independent of model type, but is primarily
used for conducting experiments. To this end, the framework supports
various settings and includes methods for evaluating results. Its AL
experiment module executes a classical AL loop with fixed batch-size
and bounded cost, resuming failed experiments using checkpoints and
allowing computation of various performance metrics.(Tang et al. 2019)

While Libact, ModAL, and ALiPy exclusively implement the logic around
the AL loop, the SMART framework, published by Chew et al. 2019, covers
the aspect of data annotation. In addition to user prompts for one or
more human oracles, SMART provides an administrative dashboard with
visualizations and metrics, which enable evaluations such as inter-rater
reliability.

The BaaL framework, introduced in 2020, integrates Bayesian methods
and addresses common real-world problems such as annotation errors
and dataset imbalance. The query techniques specifically implemented
in BaaL, like partial uncertainty sampling, allow for a data-centric view
of model uncertainty, which is particularly relevant for AL projects with
DL models.(Atighehchian et al. 2020)

DeepAL, by Huang 2021, is a Python framework for AL that focuses
explicitly on DL models. Like Libact, ModAL, and ALiPy, its architecture
is modular, but DeepAL can only integrate ML models implemented
in PyTorch (Paszke et al. 2019). Furthermore, it aims to test various
pool-based AL scenarios and supports a range of QSs similar to BaaL,
including Bayesian methods.

Introduced in 2022, cardinal stands out for its metrics focus and ad-
dresses the resource intensity of AL simulations. It aims to provide
insights through metrics rather than merely improving QSs, addressing
implementation needs that other packages may not cover. This modular
framework assists data scientists in selecting appropriate QSs for their
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use cases by efficiently calculating and logging metrics through cached
experiments.(Abraham et al. 2022)

The research community has already introduced various open-source
frameworks in the AL landscape. These provide valuable tools for im-
plementing AL projects in Python and simulating learning processes to
investigate the efficiency and effectiveness of model training. In addition
to tools specialized in simulations, others focus on providing an extensive
interface for data annotation.

Despite their similarities, such as the support of various QSs and flex-
ibility through their modular architecture, these frameworks differ in
their specific functions, supported scenarios, and design philosophies,
as indicated in the comparison shown in Table 5.1. While the three most
popular frameworks ModAL, Libact, and ALiPy, aim for broader and
more flexible applications, other frameworks, like DeepAL and BaaL,
offer specialized solutions for certain types of ML models. SMART is
the only Python-implemented AL tool to provide an annotation inter-
face, while Cardinal offers features to streamline resource-intensive AL
experiments.

By integrating traceability and interaction concepts, LIFEDATA differs
from the currently available AL frameworks. It includes versioning
technologies and an interface for annotations, taking into account the
origin of the labels. Before focusing on the system perspective, the
following section provides a process-oriented depiction of the workflow
for AL projects that utilize the LIFEDATA framework.
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Table 5.1: AL framework comparison.∗All frameworks provide differently implemented sampling algorithms and usually can be extended
with custom QSs. Regarding the category, ’other’ refers to the integration of proposals by the framework authors, primarily meta-based
strategies. ∗∗Cardinal implements a caching logic for temporary storage of artifacts and metrics.

L
i
b
a
c
t

M

o
d
A
L

A
L
i
P
y

S
M

A
R
T

B
a
a
L

D

e
e
p
A
L

C
a
r
d
i
n
a
l

L
I
F
E
D
A
T
A

Re
fe

re
nc

e

H
su

et
al

.
20

15

D
an

ka
et

al
.

20
18

Ta
ng

et
al

.
20

19

C
he

w
et

al
.

20
19

A
tig

he
hc

hi
an

et
al

.2
02

0

H
ua

ng
20

21

A
br

ah
am

et
al

.2
02

2

St
ie

le
re

ta
l.

20
23

b

O
pe

n
So

ur
ce

Re
po

si
to

ry

h
t
t
p
s
:
/
/
g
i
t
h
u
b
.
c
o
m
/

n
t
u
c
l
l
a
b
/
l
i
b
a
c
t

h
t
t
p
s
:
/
/
g
i
t
h
u
b
.
c
o
m
/

m
o
d
A
L
-
p
y
t
h
o
n
/
m
o
d
A
L

h
t
t
p
s
:
/
/
g
i
t
h
u
b
.
c
o
m
/

N
U
A
A
-
A
L
/
A
L
i
P
y

h
t
t
p
s
:
/
/
g
i
t
h
u
b
.
c
o
m
/

R
T
I
I
n
t
e
r
n
a
t
i
o
n
a
l
/
S
M
A
R
T

h
t
t
p
s
:
/
/
g
i
t
h
u
b
.
c
o
m
/

b
a
a
l
-
o
r
g
/
b
a
a
l

h
t
t
p
s
:

/
/
g
i
t
h
u
b
.
c
o
m
/
e
j
0
c
l
6
/

d
e
e
p
-
a
c
t
i
v
e
-
l
e
a
r
n
i
n
g

h
t
t
p
s
:
/
/
g
i
t
h
u
b
.
c
o
m
/

d
a
t
a
i
k
u
-
r
e
s
e
a
r
c
h
/

c
a
r
d
i
n
a
l

h
t
t
p
s
:
/
/
g
i
t
h
u
b
.
c
o
m
/

d
s
-
l
a
b
/
l
i
f
e
d
a
t
a

Py
th

on
Ve

rs
io

n

3.
6

3.
5

3.
4

3.
8

3.
8

3.
8

3.
5

3.
10

Q
ue

ry
Sc

en
ar

io

Po
ol

Po
ol

,
St

re
am

Po
ol

Po
ol

Po
ol

Po
ol

Po
ol

Po
ol

La
be

lin
g

O
ra

cl
e

Si
m

ul
at

io
n

Si
m

ul
at

io
n

Si
m

ul
at

io
n

H
um

an

Si
m

ul
at

io
n

Si
m

ul
at

io
n

Si
m

ul
at

io
n

Si
m

ul
at

io
n,

H
um

an

Se
m

i-
Su

pe
rv

.
Le

ar
ni

ng

no no no no ye
s

no no ye
s

Q
Ss
∗

ra
nd

om
,o

th
er

,
in

fo
rm

at
iv

e,
re

pr
es

en
ta

tiv
e

ra
nd

om
,o

th
er

,
in

fo
rm

at
iv

e,
re

pr
es

en
ta

tiv
e

ra
nd

om
,o

th
er

,
in

fo
rm

at
iv

e,
re

pr
es

en
ta

tiv
e

in
fo

rm
at

iv
e

ra
nd

om
,

in
fo

rm
at

iv
e,

re
pr

es
en

ta
tiv

e,
hy

br
id

ra
nd

om
,o

th
er

,
in

fo
rm

at
iv

e,
re

pr
es

en
ta

tiv
e

ra
nd

om
,

in
fo

rm
at

iv
e,

re
pr

es
en

ta
tiv

e

ra
nd

om
,

in
fo

rm
at

iv
e,

re
pr

es
en

ta
tiv

e,
hy

br
id

M
L

Fr
am

e-
w

or
ks

Sc
ik

it-
Le

ar
n,

Sc
ik

it-
Le

ar
n

Sc
ik

it-
Le

ar
n,

TF

Sc
ik

it-
Le

ar
n

Py
To

rc
h

Py
To

rc
h

Sc
ik

it-
Le

ar
n

Sc
ik

it-
Le

ar
n,

TF
,

Py
To

rc
h

A
nn

o-
ta

tio
n

G
U

I

no no no W
eb

-
ba

se
d

no no no W
eb

-
ba

se
d

La
be

l
Pr

ov
e-

na
nc

e

./
.

./
.

./
.

ye
s

./
.

./
.

./
.

ye
s

M
L

Pi
pe

lin
e

O
rc

he
st

ra
-

tio
n

no no no no no no no ye
s

A
rt

ifa
ct

Tr
ac

ki
ng

no no no

La
be

ls
,

M
od

el

no no no
∗∗

C
od

e,
D

at
a,

La
be

ls
,

M
od

el

M
et

ric
s

Tr
ac

ki
ng

no no no ye
s

no no no
∗∗

ye
s
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https://github.com/NUAA-AL/ALiPy
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5.2 Overall Process

Central components and key actors are discussed in Figure 5.1, represent-
ing an integration of process-oriented and system-oriented viewpoints. It
illustrates four main areas: Machine Learning, Labeling, Monitoring, and
Exploitation, as well as three phases: Inception, Active & Semi-Supervised
Learning, and Termination Assessment.

Machine Learning Monitoring

Inception

Exploitation

Labeled Data
& Provenance

Trained
Models

Model
Training

Model
Registry

Dashboard
GUI

Labeling
Annotator

Annotation
GUI

Active- & 
Semi-Supervised Learning

Data Scientist Domain Expert

Unlabeled
Data

Seed
Data

Retraining & Recreation

Termination Assessment

Model- & 
Data Report

Query
Strategy

ML
Model

Model
Training

Model
Registry

Query
Set

Metrics
& Meta Data

Evaluation
& Validation

Figure 5.1: Process outline in an active
learning project with LIFEDATA.

The Inception phase marks the starting point in Machine Learning and
is positioned on the left side of the figure. Here, data scientists lay
the groundwork for a pool-based scenario by assembling a corpus of
unlabeled data. This can be supplemented with seed data, if available.
As detailed in Section 3.2, this dataset consists of pre-labeled samples
that can provide a foundational basis for training the ML model.

Further included in the Inception phase of Figure 5.1 are the components
„ML Model“ and „Query Strategy“, which together form the framework
for „Retraining & Recreation“ . These two elements lead to creating
the queryset, which comprises the samples to be labeled in the current
iteration. The bidirectional arrow connecting the Machine Learning area
with the Labeling phase illustrates the provisioning of the Query Set for
the labeling phase. In this phase, the acquisition of annotations occurs,
provided either by human annotators via the Annotation Graphical User
Interface (GUI) or automatically as pseudo labels in a semi-supervised
learning scenario.

These newly generated labels are then recursively utilized for the re-
training of the model in the subsequent AL cycle. In parallel, there is
a pathway to the Monitoring area, where the effects of each training
iteration are analyzed. This central area of the framework is responsible
for collecting metrics and metadata. This information is made available
to data scientists and domain experts to inform them about the state and
performance of the model, as well as the progress of data annotation.
Data scientists use the metrics and metadata to fine-tune the model and
the QS, while domain experts have access to this information through
a Dashboard GUI. The Dashboard includes results of the ’Evaluation &
Validation’ component, which encompasses methods for model interpre-
tation and thus forms a crucial building block for promoting transparency
and therfore trustworthiness.

The labeled data and their provenance, along with the trained models,
are the essential components of the Exploitation phase, located on the



128 5 Framework Design Approach

right side of the figure. They, along with the evaluation and validation
information, feed into the final assessment, which contains vital artifacts
such as model and data reports and summarizes the project outcomes.

5.3 Core Framework

In the following section, the process view will be transformed into an
reference architecture, which is displayed in Figure 5.2 and depicts its
two key elements, the core framework, and the project instance.

Essentially, the LIFEDATA core framework is built in four layers and
provides two interfaces, which for ease of overview, are colored green.
Beginning with the top layer, a detailed introduction to each component is
presented, elucidating their functionalities and interrelationships within
the overall system.

Figure 5.2: Reference architecture of ac-
tive learning projects using LIFEDATA.
The structure of the core framework
(green) is displayed above the project
instance. All code modules and config-
uration files (yellow) are versioned by
a source code version control system,
while the linked artifacts (blue) are man-
aged by a data version control system.
* = Component is part of the provided
project template.
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5.3.1 User Management and Interfaces

AL projects typically involve several actors with diverse technical skills.
Section 3.4 categorizes these actors along the developmet life cycle into
technical and non-technical roles, including data scientists, annotators
and domain experts as presented in Figure 5.1.

As the definitions of these roles suggest, each actor within the project
requires access to various functionalities and data. To meet the different
requirements of these stakeholder, the LIFEDATA core framework has
implemented both a Command Line Interface (CLI) as well as a WEB-API,
which are subsequently described in more detail.

Command Line Interface (CLI)

The CLI serves as the primary entry point for stakeholders in technical
roles and offers a range of commands for controlling the project instance.
It has been implemented using the Python package Click, known as the
„Command Line Interface Creation Kit“ (The Pallets Projects 2014), and
enables interaction with various functions of the core framework, an
overview, which is provided in Table 5.2.
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Table 5.2: Overview of available commands integrated in LIFEDATA’s CLI.

Command Option Description

init Creates a project instance using the LIFEDATA project template.
Expected argument: project_name

start
Main function that performs a full startup of all LIFEDATA services.
Optional argument: dev_option: activates development functions, which
provides extended exception handling and options to reload services.

backend Starts the backend service.
annotationsui Starts the annotation GUI service.
db Starts the database service.

load Provides functions for loading samples into the database
and for importing a queryset.

samples Creates entries for training samples in the database to make them
available for annotation.

queryset Load entries of the produced queryset into the database.
dump Enables the export of data for data backup and transfer to the project instance.

labelstate Exports the labeled data as JSON file.

analyse Provides functions for basic statistical analysis
related to the annotations and trivial data manipulations.

label_frequency Queries the frequency of the labels.
label_cooccurrence Creates a heat map showing the coefficients of coexistence of the labels.
label_correlations Calculates the label correlations.

The use of the CLI is immediately available to the user after installing the
lifedata Python package. To illustrate this more concretely, this section
describes an excerpt of the commands that can be executed via the CLI
and correspond to a typical project sequence, as shown in Table 5.2.
Starting with the command

lifedata init <project_name>

the project instance detailed described in Section 5.4 can be created using
the project template. Listing 5.1 displays a segment of its implementation.
The function is decorated with the @click.argument("project_name")
decorator, indicating that the CLI command expects a project name
specified by the user as an argument. Using Cookiecutter (Greenfeld
2013), a cross-platform command-line utility, a project repository is
created at the path specified in line 16.

Once the project instance is initialized, the services provided by the
framework can be started using the CLI command start. Invoking
the main command begins with the backend, the database, and the
Annotation GUI, launching all necessary services. However, it is possible
to specify which service to start with an option - a feature that becomes
useful for distributing services in later deployment. For example, running
the command

lifedata start db

will start the provided database described in the Data Persistence Layer.
As seen in Table 5.2, functions are available within the load command
group that creates entries of the samples to be annotated in the database.
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Listing 5.1: Code snippet of the CLI logic
for initializing a project using the project
template.

1 # /lifedata/cli/init.py
2 from pathlib import Path
3 import cookiecutter
4

5 # ...
6 @click.argument("project_name")
7 def init(
8 project_name,
9 # ...

10 ):
11 """
12 Setup an AL project using LIFEDATA's project template
13 """
14 path = Path.cwd() / project_name.lower()
15 print(f"Creating project in {path} ...")
16

17 cookiecutter(
18 "https://github.com/ds-lab/lifedata-project-template",
19 no_input=True,
20 extra_context={
21 "project_name": project_name.lower(),
22 },
23 )
24 # ...

On the other hand, the dump command group includes logic that can
be used to export information from the database to make it available in
other components, such as the ML service of the project instance.

Additional commands include analyse, which performs basic evalua-
tions through a predefined database query, allowing the CLI user a quick
analysis, for example, of the number of given labels.

Web-Application Programming Interface (WEB-API)

The WEB-API covers various functions regarding authentication, data
processing, user interaction, and system integration. By defining dif-
ferent endpoints, various services and functionalities of LIFEDATA are
accessible to external requests.

Authentication mechanisms in LIFEDATA are realized through integrat-
ing the Identity and Access Management tool Keycloak, which covers
user management (Keycloak Authors 2023) Within the WEB-API, JSON
Web Tokens (JWT) functions are implemented, which Keycloak provides
as an Authentication Response to grant the user access to requested
resources. The defined authentication pipeline extracts the JWT, decodes
it, and validates the user identity and their permissions.

As shown in Figure 5.2, the WEB-API extends over the subsequent layers.
Given that the logic implemented therein is to be made available to other
components, there is a provider that offers these as a web service using
Representational State Transfer (REST).

An overview is presented in Table 5.3, which further gives a brief
description. For a better orientation, the table is organized into the four
layers of the LIFEDATA core framework, highlighting the specific aspects
addressed by each.

To further elucidate the implementation, we will continue with the next
layer.
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Table 5.3: Overview of REST-API methods by layer provided in LIFEDATA. This overview categorizes methods into LIFEDATA’s core
framework layers User Management, Annotation Persistence, and Data Persistence as well as Project Persistence, detailing their role in
authentication, sample handling, and system configuration within the LIFEDATA core framework.

Layer Method Description

U
s
e
r

M
g
m

. provide_auth_token_decoder Retrieves a token decoder based on
project settings, for the token-based authentication processes.

provide_authentication_service
Configures an authentication service,
reliant on functionalities like the database session,
event dispatcher, and token decoder.

A
n

n
o
t
a
t
i
o
n

D
o
m

a
i
n

provide_annotator Provides annotator information based on the authentication service.

provide_sample Provides the sample, dependent on a database session,
annotator, event dispatcher, and sample data repository.

provide_sample_repository Initializes and provides a repository for samples
within the project scope.

provide_queryset_db_repository Initializes a query set repository,
enabling data querying mechanisms.

provide_annotation_db_repository Establishes a repository for managing
database-stored annotations.

provide_annotation_count Calculates and provides the count of annotations based on
annotator information and the annotations database repository.

provide_label_metadata Retrieves label metadata in accordance with
the label configuration.

D
a
t
a

P
e
r
s
i
s
t
e
n

c
e

provide_db Initializes a database session, ensuring life time management.

provide_load_sample_display_data Helper function that takes a sample_id and
returns the corresponding sample data from the annotation widget.

provide_queued_samples Provides queued samples, depending on dependencies such as
annotator information and the annotations repository.

provide_sample_db_repository Sets up a repository for handling samples
within the database.

provide_db_sample_state Determines and provides the state of a sample in the database,
using dependencies on sample and annotation repositories.

provide_domain_controller Configures a domain controller,
based on database session and event dispatcher.

provide_event_dispatcher Creates an event dispatcher,
utilizing a database session dependency for event management.

P
r
o
j
e
c
t

P
. provide_project Loads the project configuration,

facilitating project-specific operations.

provide_model_training_service Establishes and provides a model training service, contingent
on project configuration and annotation repository.

5.3.2 Annotation Domain Layer

The LIFEDATA core framework includes an annotation domain layer
placed between the user- and the data corpus. It serves as bridge between
these two entities and allows for the modeling of associations between
labels and samples. Thus, the Annotation Domain Layer provides an
abstraction that enables the definition of structured and semantic rela-
tionships between information about annotators, labels, and samples.

Data Classes. A core concept of the Annotation Domain Layer, the
so-called data classes, specifies the structure of the defined entities above.
For example, the data class Annotation describes how annotations
are represented, while the data class Annotator outlines the attributes
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AssignedSampleRequested

annotator_id:   str
event_name:   str
sample_id:    str

AnnotatorCreated

annotator_id:   str
event_name:   str

AssignmentCancelled

annotator_id:   str
event_name:   str
sample_id:    str

ConsolutationRequested

event_name:   str
queue_name:  str
requested_by:  str
sample_id:    str

NextSampleRequested

annotator_id:   str
event_name:   str
query_method:  str
sample_id:    str

SampleAnnotated

annotator_id:   str
event_name:   str
labels:      List[str]
sample_id:    str

SampleAssigned

annotator_id:   str
event_name:   str
sample_id:    str

SampleSkipped

annotator_id:   str
event_name:   str
sample_id:    str

Event

event_name: str
recorded:   datetime

EventDispatcher

dispatch(event: Event): None

EventRepository

record(event: Event): None

_events

Figure 5.3: Class diagram of events in LIFEDATA. Each class represents an event that can occur during the annotation process, with the
clas „Event“ serving as the base class with shared attributes „event_name“ as well as a timestamp. The „EventDispatcher“ manages the
flow of these events, while the „EventRepository“ is for recording them.

associated with an annotator. Each data class is designed to capture all
information relevant to the entity.

Listing 5.2 shows an example implementation of the data classAssignment,
which includes the attributes annotator_id, sample_id and a timestamp
set in created. It might be extended with additional attributes if required,
however, this definition is sufficient for the example. Data classes can be
defined using the @dataclass-decorator. As shown in the code snippet,
they provide typing and the assignment of default values for fields
during instantiation (line 11).

Listing 5.2: Defintion of the dataclass
„Assignment“ in Python.

1 # lifedata/annotations/assignment.py
2 from dataclasses import dataclass
3 from datetime import datetime
4 from datetime import timezone
5 #...
6

7 @dataclass
8 class Assignment:
9 annotator_id: str

10 sample_id: str
11 created: datetime = field(default_factory=lambda:

datetime.now(timezone.utc))↩→
12

13 #...

Events. An integral paradigm of LIFEDATA is ensuring traceability,
which runs through the subsequent layers and is supported by event
definitions in the annotation domain layer. This ensures that users’ actions
on the data corpus are traceable by recording what actions users have
performed on the data while interacting with it, such as during the
annotation phase. These event definitions are summarized in a class
diagram, which is shown in Figure 5.3.

To better understand the significance of events and data classes, let’s
stay in the example and examine the implemented logic for the sample-
annotator assignments in the Annotation Domain Layer. This function-
ality is crucial for managing the interaction between annotators and
samples. It allows the assignment of new labels to samples and assigns
samples to specific annotators.
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The logic that implements the assignment of samples and annotators is
defined in the AssignmentService class, a snippet of which is shown in
Listing 5.3. As with the REST-API call provide_sample (cf. Table 5.3),
the class dependencies EventDispatcher, SampleProjectRepository,
and AssignmentRepository are initialized when creating an instance.

The method get_sample(...) returns a sample_id while ensuring that
the sample is assigned to the annotator. To this end, it first checks existing
assignments, ensuring an active assignment exists for the specified
annotator and updates it if necessary. If no active assignment exists for
the annotator, a new assignment is created, and corresponding events
are triggered through the event_dispatcher.

Although Listing 5.3 does not show the complete implementation of
the AssignmentService, the concept of events and data classes is il-
lustrated in the get_sample(...) method. After the assignment is cre-
ated in line 23, and added to the assignment repository in line 24,
the SampleAssigned event is triggered in line 26 before returning a
sample_id.

Skip 
Sample

Annotate
Sample

Request
Consultation

Sample
Annotated

Sample
Requested

Assign Sample
to Annotator

Timeout

Simplified flowchart showing the course
of a sample-annotator relationship in
LIFEDATA.

The implementation of the logic for assigning annotations follows the
same scheme, using the defined data class for Annotation and the cor-
responding events. Another aspect of the Annotation Domain Layer
is handling sample skipping and additional label requests. This func-
tionality is crucial to support flexible annotation scenarios, such as AL
with multiple views as described by Muslea et al. 2006, or to implement
mechanisms for multiple annotations of specific samples by different
annotators to investigate inter- and intra-annotator agreement.

Regardless of the annotation scenario, the definition of events ensures
the recording of annotator interactions and thus establishes the data
provenance of the annotations to ensure transparency and traceability.
This information primarily converges in the next layer, which will be
examined subsequently.

5.3.3 Data Persistence Layer

AL systems involve dealing with fluctuating data. Therefore, a mechanism
for storing the associated information is indispensable to ensure the
traceability of labels. To address this need, a data persistence layer has
been established in the LIFEDATA core framework, the central element
of which is a relational database. To ensure the reliability and scalability
of the database, LIFEDATA employs a container-based approach that
isolates the database from project-specific dependencies.

Object Relational Mapping. Crucial in the data persistence layer is
providing information on samples, labels, user information, and event
logs, making it a key component in data provenance. A key element
is the management of database interactions. This is achieved through
the implementation of SQLAlchemy, an Object Relation Mapper (ORM)
and Python SQL Toolkit (Bayer 2012). This abstraction toolkit facilitates
database operations by leveraging the SQL expression language in
conjunction with generative Python expressions.
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Listing 5.3: Excerpts from the „Assign-
ment Service “ implementation. The class
„AssignmentService “ encapsulates the
core functionality of sample assignment
within the sample-annotator relation-
ship. It is initialized with the „Assign-
mentRepository“, „SampleProjectRepos-
itory“ as well as „Event-Dispatcher“ and
shows the integration of events within
the method „get_sample()“.

1 # lifedata/annotations/assignment.py
2 from .events import EventDispatcher
3 from .events import SampleAssigned
4 # ...
5

6 class AssignmentService:
7 def __init__(
8 self,
9 event_dispatcher: EventDispatcher,

10 sample_repository: SampleProjectRepository,
11 assignment_repository: AssignmentRepository,
12 ):
13 self._events = event_dispatcher
14 self._assignments = assignment_repository
15 self._samples = sample_repository
16

17 def get_sample(self, annotator: Annotator) -> Sample:
18 # ...
19

20 sample_params = self._assignments.query_for_sample_id(annotator)
21 sample_id = sample_params["sample_id"]
22

23 assignment =
Assignment(sample_id=sample_id,annotator_id=annotator.id,)↩→

24

25 self._assignments.add(assignment)
26 self._events.dispatch(SampleAssigned(sample_id=sample_id,

annotator_id=annotator.id))↩→
27 return self._samples.by_id(sample_id)
28

29 # ...

Data modeling is likewise implemented as part of the data persistence
layer. This involves defining the structure of the data within the database
using SQLAlchemy’s declarative base. Relevant data classes from the
annotations domain layer map in the data persistence layer to a class of
the database modeling, which in turn corresponds to a database table, in
which each column corresponds to a class attribute. In Listing 5.4, we
revisit the example of the assignment entity, where the code snippet now
shows the data modeling of the data persistence layer.

The data model demonstrates how the data structure for the assignment
is maintained down to the database level, with the attributes directly
correlating to the database columns. This begins with naming the corre-
sponding table in the database in line 6, and defining the columns in lines
8-11. While lines 9-11 correspond to the attributes of the Assignment data
class in the Annotation Domain Layer, additional database specifications
are made when modeling in the data persistence layer.

This code snippet furthermore shows how the relationships between
the entities in the database are modeled. Line 13 establishes the relation-
ship between database tables, in this example, the relationship between
Assignment and the associated class Sample. This is a bidirectional re-
lationship, meaning that in the Sample class, a corresponding property
that refers back to the Assignment class and is named assignment must
exist, enabling navigation and data access from both sides of the rela-
tionship. The resulting database schema of the relational database at
the initialization of a LIFEDATA project is given in Figure 5.4, which
provides an overview of the various tables along with their columns and
relationships to each other.

However, the use of the ORM approach in LIFEDATA facilitates interac-
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1 # lifedata/persistence/models.py
2 from .database import Base
3 # ...
4

5 class Assignment(Base):
6 __tablename__ = "assignment"
7

8 id = Column(Integer, primary_key=True, index=True)
9 annotator_id = Column(String, index=True)

10 sample_id = Column(String, ForeignKey("samples.id"), index=True)
11 created = Column(DateTime, default=func.now())
12

13 sample = relationship("Sample", back_populates="assignments")
14

15 # ...

Listing 5.4: Definition of the „Assign-
ment“ data model within LIFEDATA’s
Data Persistence Layer. The class „As-
signment“ specifies the attributes of the
data class and inherits from „Base“, the
central database configuration. Each at-
tribute corresponds to a column of the
„assignment“ database table.

samples

str(PK)  id

dt    created

annotationsqueue

num(PK) id

str    sample_id
str    queue_name
str    requested_by
dt    created

annotations

num(PK) id

str    sample_id
str    annotator_id
arr[str]  labels
dt    created

assignment

num(PK) id

str    sample_id
str    annotator_id
dt    created

skippedsamples

num(PK) id

str    sample_id
str    annotator_id
dt    created

scheme_version

num(PK) version_num

eventlog

num(PK) id

str    name
json   payload
dt    recorded
dt    stored

annotators

str(PK) id

str    name
str    email

queriedsamples

num(PK) id

str    sample_id
num   query_index

Figure 5.4: Initial database schema in
LIFEDATA.

tion with the database and supports versioned database migration. The
version control of the database schema is evident in the scheme_version
table, allowing for schema modification during the project’s duration
to meet dynamic project requirements without interrupt the existing
database structure and implementing changes in a traceable manner.

Repository Pattern. To achieve an abstraction of the data layer, the core
framework adopts the repository pattern, decoupling data access in the
data persistence layer from the rest of the logic. To this end, six different
repositories are implemented, each tailored to a specific type of data or
objects. Each of these repositories addresses a distinct entity: annotations,
annotators, assignments, events, queryset, and samples.

Continuing with the example of assignments, we look at Listing 5.5.
The implementation includes several methods, each relevant for specific
operations related to assignments. For instance, there are methods for
creating new assignments or retrieving specific assignments.

During instantiation, the DBAssignmentRepository repository is ini-
tialized with a database session. This session setup is detailed in a
dedicated configuration, as discussed in the ORM section. Addition-
ally, the initialization includes instances of QuerySetDBRepository and
MachineLearningService. This configuration showcases the pattern of
interactions among subsequent system components.

The method _instantiate(...) converts the implemented database
model of the Assignment class into objects of the Annotation Domain
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Listing 5.5: Excerpt of the extended „As-
signment Repository“ implementation
as part of the data persistence layer.
The defined class „DBAssignmentRepos-
itory“ is initialized with references to the
database session, „QuerySetDBReposi-
tory“ , and „MachineLearningService“.
It includes methods for instantiating as-
signment objects of the corresponding
dataclasses and for querying samples
based on the annotator, integrating up-
dates from the ML service as required.

1 # lifedata/persistence/assignment_repository.py
2 # ...
3 class DBAssignmentRepository(AssignmentRepository):
4

5 def __init__(
6 self,
7 db: Session,
8 queryset_db_repository: QuerySetDBRepository,
9 machine_lerning_service: MachineLearningService,

10 ):
11 self._db = db
12 self._queryset_db_repository = queryset_db_repository
13 self._machine_lerning_service = machine_lerning_service
14

15 def _instantiate(self, model: models.Assignment) -> Assignment:
16 return Assignment(
17 annotator_id=model.annotator_id,
18 sample_id=model.sample_id,
19 created=model.created,
20 )
21

22 def query_for_sample(self, annotator: Annotator) -> dict:
23

24 sample_id =
self._queryset_db_repository.query_for_sample(annotator)↩→

25 # ...
26 if sample_id is None:
27 status = self._machine_lerning_service.ml_update()
28 # ...
29 # ...

Layer, concretizing the separation of these two implementations. The
minimal excerpt of implementing the method query_for_sample(...)

illustrates a crucial aspect of the sample-annotator assignment. If the
existing queryset is empty, the ML service is called at this point to request
new samples for annotation. The related logic for occurs in the project
instance, which is connected to the core framework through the next
layer.

5.3.4 Project Persistence Layer

To integrate LIFEDATA into any AL project, the Project Persistence Layer
serves as a bridge between the core LIFEDATA framework and the
external AL project, aiming to facilitate the integration of functionalities
and interoperability between the AL project and LIFEDATA. This is
achieved through a component containing functions for interacting with
the acrshortML pipeline and handling artifacts.

At its core, the Project Persistence Layer includes functions for triggering
or re-triggering the entire ML pipeline or parts of it. These functions are
necessary in scenarios where new samples are required for labeling or
when the ML service needs to be updated with the latest data annotations.
An example of this is illustrated in Listing 5.5, where a relevant function
is invoked in line 27 when a sample is requested for assignment to an
annotator.

To synchronize the core framework with the acrshortML project, the
Project Persistence Layer further defines functions for managing the
artifacts associated with executing the ML service. This includes tasks
such as exporting the current labelstate from the database and importing
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query sets, which include samples that have been selected by the QS and
are ready for annotation.

The interface between the core framework and the project instance in this
layer encapsulates these functionalities and simplifies the integration
process into the AL project. While the logic for APIendpoints and data
views is defined in the core framework, the implementation can be
tailored to the specific AL project and is manifested, as shown in Figure
5.2, in the LIFEDATA Aonfiguration within the project instance.

5.4 Project Instance

In addition to the core framework, the second essential part in LIFEDATA
is the project-specific structure, summarized as the LIFEDATA Project
Instance in Figure 5.2. As depicted, the framework mandates that all code
modules are managed through a source code version control system. The
computed artifacts, such as the trained model or the generated query set
for a specific data state, are managed by a data version control system.

A project instance represents the specific implementation of an AL project
based on LIFEDATA. For their initial creation, LIFEDATA provides a
project template, guiding developers in adapting the structure to their
specific use case. The entry point for this process is demonstrated in
Listing 5.1, which showcases the related CLI logic involving downloading
the provided template and creating a new project.

LIFEDATA’s project template employs Git (Chacon et al. 2014) as a
distributed version control system, and DVC (Iterative 2020) is provided
to synchronize the source code and resulting data versions. Using these
two version control tools allows for adopting the development approach
introduced in Chapter 4, thereby providing a foundation for tracking
changes, managing branches, and facilitating collaboration among several
engineers involved in the project.

Starting with the yellow-highlighted section of Figure 5.2, which reveals
a project structure incorporating multiple components, the template pro-
vides functionalities for data import, the ML pipeline, and the annotation
widget. Further components streamline the development, deployment,
and management of a LIFEDATA project, and we will detail them in the
following section.

5.4.1 Basic MLOps Components

Within the part managed by the Source Code Version Control System,
there are code modules that serve primarily for the development and
operation of the LIFEDATA project. In the reference architecture, they
are arranged in a sequence, positioned directly below the core framework
and above the data-processing components, with the LIFEDATA Config-
uration spanning three levels, illustrating the interrelation between the
core framework and the AL project.

Section 5.3.4 indicates that project-specific implementations and functions
are defined within this LIFEDATA Configuration, bridging the core
framework and the AL project. The project template includes functions
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for retraining the model on a specific data version, which may occur, for
instance, after new labels have been added to the training set following
an annotation iteration. Moreover, the data import and export to and
from the core framework are implemented on the side of the AL project,
meaning that annotation information extracted from the core framework’s
database is imported into the AL project, while a function for exporting
the created query set ensures that it is available for the components
of the core framework upon creation. In other words, the LIFEDATA
Configuration implements the specific logic that, for example, saves the
labeling status exported from the annotation database into a file readable
by the ML pipeline or triggers the corresponding execution of the ML
pipeline when called.

The execution of individual elements of the ML pipeline is managed by
the Orchestration Component, which coordinates the various modules.
It thus represents a central part of the operational process within the
project instance, ensuring that the sequence of operations is structured
and timely. It schedules tasks and monitors their progress, while the
CI/CD/CT Component is responsible for automating the creation of
training, tests, and deploying the resulting artifacts. This includes both
the software and AL-related artifacts, such as the query set and the
trained ML model. Within the CI/CD/CT Component, instructions for
the runners introduced in Section 4.2.3 can be defined, such as a nightly
retraining of the ML model or performing its automated deployment.

Another component of the project template includes the Infrastruc-
ture Utilities, which encompass tools and scripts necessary for the
infrastructure-related tasks of a project. This consists of the provisioning,
monitoring, and scaling resources, such as GPU usage. They are always
highly dependent on the hardware or cloud platform used and, therefore,
require customization for the specific AL project, just like the libraries
for model training.

Furthermore, the LIFEDATA project template includes a Package Man-
agement realized through virtual environments in Anaconda for the
project’s software dependency management (Anaconda Inc. 2016). This
ensures the system is built with the correct versions of libraries and pack-
ages, guaranteeing its consistency and reproducibility across different
environments and platforms.

5.4.2 Data Import

Adjacent to the code module area highlighted in yellow in Figure 5.2,
there lies the section managed by the data version control system, colored
in blue. This system tracks various data stages, from raw data through
computed artifacts to extracted label sets, which are interim stati of data
annotations.

As mentioned in Section 4.2.1, the integrated data version control system
DVC operates on the principle of computing hashes for managed files and
directories and storing these as version numbers in configuration files. For
this purpose, raw data are held in a storage system and represented within
the project by placeholder files, which, in addition to the computed hash
values, further define specifications, dependencies, and output entries.
Since these placeholder files are managed by Git, versioning of both code
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and data states is always ensured, even when the actual datasets are not
checked into the project.(Iterative 2020)

This feature allows, through the integration of DVC within a LIFEDATA
project, to interlink multiple repositories. DVC refers to this concept as a
„Data Registry“, a kind of data management middleware, by setting up
a repository for versioning datasets that contain the required metadata
and their complete change history (Iterative 2023a). The LIFEDATA
project template adopt this concept, outsourcing tasks that typically
occur in the data development pipeline with ETL processes to a separate
repository, which is tracked by Git and DVC. This approach offers several
advantages, such as making these data available for other projects,
reducing the complexity and dependencies between individual projects,
and, in line with Section 3.3.1, utilizing cleaned data in the AL project.

For importing data into the LIFEDATA project, DVC provides various
options, enabling data to be loaded from different storage systems using
protocols such as S3 or SSH. These are made available in adapters,
thereby supporting a range of cloud providers and self-hosted storage
types (Iterative 2023b). DVC downloads the target files or directories and
tracks them within the LIFEDATA project. If the data source changes,
for instance, new unlabeled data is added to the project, these can be
updated at a later stage - a process that might occur either manually or
during each iteration of the ML pipeline’s execution.

Once the data is checked in, it becomes available in the LIFEDATA project
as the initial Raw Data stage and can be consumed by the ML pipeline.

5.4.3 Machine Learning Service

An ML pipeline typically consists of individual steps that are executed
in a specific order. It is a proven practice to divide these steps within
a pipeline (O’Leary et al. 2020), ensuring the structured execution of
individual tasks while considering their dependencies. The ML pipeline
will be formed by making each stage dependent on another, i.e., defining
the output of one stage as the input for another.

This principle is followed in the LIFEDATA project template. The ML
pipeline defined therein begins with separate steps for data preparation,
model training, querying, as well as evaluation and validation, as can
be seen in Figure 5.2. Each step of the ML pipeline is initially abstractly
implemented, thereby being independent of the underlying ML problem
and -framework.

Reflecting the code principles described in Section 4.2.2, the various
steps of an ML pipeline are commonly realized through individual code
modules configurable via parameters. Typically, each stage takes in data,
executes the code using the provided parameters, and produces an output
as artifacts.

By integrating DVC (Iterative 2020), the ML pipeline in a LIFEDATA
project can be internally represented as a graph, with nodes being stages
and edges being directed dependencies. Representing the ML pipeline as
a Directed Acyclic Graph (DAG) allows for implementing systems with a
sequential execution flow. Eliminating repetitions between ML pipeline
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Figure 5.5: Initial ML pipeline definition
provided as a Machine Learning Service
in an LIFEDATA project instance. The
nodes of the DAG represent the stages of
the ML pipeline, and the edges indicate
their dependencies.
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stages avoids loops between two steps, implying the topological property
of the DAG.

This architecture allows for the modularization of the ML pipeline on
the one hand. Due to its linear ordering, it requires that there can be no
circular relationships between one or more ML pipeline steps on the other.
For this purpose, the ML pipeline is provided in a LIFEDATA project
as a ML service that triggers the execution of the required modules by
the orchestration component. The definition of the original ML pipeline,
including all its stages and dependencies, is illustrated in Figure 5.5. The
nodes of the DAG represent the stages of this ML pipeline, while the
edges display their dependencies on each other.

Starting with the stages of „Data Raw“ and „Label Set“, which each
checks the version of the database and annotation statuses and generates
a report, follows the phase of data splitting. In addition to the otherwise
typical proportional division into training-, test-, and validation-data,
the LIFEDATA project template provides methods for static splitting to
ensure that the test dataset is not used for training the model throughout
the entire project phase. This is achieved by generating and versioning
indices for the respective datasets.

The arrangement of data preprocessing after data splitting enables
the separate preprocessing of training-, test-, and validation-data. For
example, the vectors required for normalization are calculated in isolation
on the respective datasets, thus avoiding data leakage and enabling
realistic simulations through statistical independence, even if the datasets
change throughout the AL project.

Subsequently, the model training stage is defined, which depends on the
preprocessed data and transitively on the phase of data division. The
stages are directly connected as an additional dependency to enable the
evaluation and validation of a trained model on the test data. Creating
non-transitive relations between the ML pipeline stages of label states
to query and pseudo-labeling enables their execution independent of
retraining the model. Thus, a model version can be in use for an arbitrarily
long time.

To gain a more detailed understanding of the implementation of the ML
pipeline in a LIFEDATA project, the query module serves as a predestined
running example.

Listing 5.6 demonstrates the relevant part of the ML configuration. Here,
a separate class is defined for each stage of the ML pipeline. It specifies
the available parameters and defines paths for code and data artifacts. If
certain parameters should be associated with a submodule, it is advisable
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to follow this structure and define them in an inner class. Parameters
that apply across multiple stages, on the other hand, are set outside of
each class, as demonstrated by the example of RANDOM_STATE. When used
correctly, this example ensures that imported libraries, such as NumPy
(Harris et al. 2020), scikit-learn (Pedregosa et al. 2011; Buitinck et al. 2013),
TensorFlow (TF)(Martín Abadi et al. 2015), and PyTorch (Paszke et al.
2019), are initialized with the same random state, even when they are
called from different modules in LIFEDATA.

1 # mlconfig.py
2 from pathlib import Path
3

4 root = Path(__file__).parent.absolute()
5

6 RANDOM_STATE = 123
7

8 def absolute_path(relative_path: str) -> Path:
9 return root / relative_path

10

11 #...
12

13 class QUERY:
14 QUERY_SET_FILE = "data/query/queryset.csv"
15 QUERY_BATCH_SIZE = 200
16 QS_STRATEGIES = ["uncertainty", "random"]
17 QS_RATIO = [2,1]
18

19 class UNCERTAINTY:
20 CONFIDENCE_THRESHOLD = 0.9
21 #...
22

23 #...

Listing 5.6: Example configuration of the
query stage.

This implementation allows for access to a unified configuration from each
code module along the ML pipeline. For example, in the code module of
the Query stage, the value for the size of the queryset, namely the number
of samples selected for annotation by the QS, can be accessed through
mlconfig.QUERY.QUERY_BATCH_SIZE, as set in the configuration file. The
source code’s version control system enables systematic comparison of
different configurations and settings, forming the basis for consistent
reproducibility of the resulting artifacts.

Another aspect regarding computed artifacts, evident from Listing 5.6, is
the handling of paths within the LIFEDATA project instance. The project
structure proposed in 4.2.2 suggests creating a dedicated location for
data artifacts within the project, parallel to the code modules for each
stage of an ML pipeline. In the ML configuration, the paths are defined
along with an appropriate method for determining the absolute path
in relation to the configuration file. This approach allows for platform-
independent execution without the need to adjust the path specifications
in the code modules, for instance, both on the developer’s client and in
the CI/CD/CT runner that, for example, executes the ML pipeline in a
cloud instance.

As mentioned, it is necessary to define all tasks in all stages and their
dependencies and configurations within the ML pipeline to enable their
automated execution. This definition is managed by DVC (Iterative
2020), specifying inputs and outputs at each step as well as potential
dependencies, thus ensuring that the creation of all artifacts is transparent
and reproducible. Some use cases may require adjustments to the original
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ML pipeline design from Figure 5.5, such as adding or removing certain
stages. To achieve this flexibility, these stages and their dependencies can
be identified and adjusted to the definition of the ML pipeline by the
data scientist.

We continue with the example of the Query module as an essential part
of the ML Service. It facilitates the selection of samples for annotation and
enables the automatic generation of query sets. It uses one or more QSs to
select samples whose annotation is intended to lead to the desired model
change. Typically, QSs utilizes the ML model. Hence, their execution
occurs post-training. This condition is illustrated in Listing 5.7, which
shows the relevant excerpt from the ML pipeline definition.

Listing 5.7: Query stage in ML pipeline
definition.

1 vars:
2 - mlconfig.py
3

4 stages:
5 #...
6 query:
7 cmd: python myproject/query/query.py
8 deps:
9 - ${LABEL_STATE.UNLABELED_FILE}

10 - ${LABEL_STATE.LABELED_FILE}
11 - ${MODEL_TRAINING.MODEL_FILE}
12 - myproject/query/
13 outs:
14 - ${QUERY.QUERY_SET_FILE}
15 params:
16 - mlconfig.py:
17 - QUERY
18

19 #...

The described structure is as follows: Given a valid ML configuration, the
individual stages are defined. The command to be executed is specified,
as well as the associated dependencies in the form of paths to code
and data artifacts. In the case of the Query module, this involves files
containing information about the samples, regardless of whether they
are already labeled or unlabeled. Moreover, the trained model and the
entire project folder of the corresponding Query module, containing all
code files, are required.

The calculated artifacts consist of a list of samples the QS selected
and stored under the corresponding output path. Additionally, the
class of the relevant phase from the ML configuration is specified. If
any of the specified artifacts produced by a particular stage change,
or if a reconfiguration requires the recreation of individual artifacts,
the relevant parts are calculated and stored by triggering the Machine
Learning Service. Thus, changes can be, for example, a new model version
or a change to the source code or its configuration. As described, this
effect is achieved through the DAG architecture in combination with the
integrated data versioning system. It encompasses all modules across
the entire ML pipeline in the LIFEDATA project instance.

In addition to the query stage, which generates the set of samples to
be labeled, the modules for generating pseudo-labels, as well as for
evaluation and validation, are defined as possible end steps of the
ML pipeline. While the step of generating pseudo-labels enables the
realization of semi-supervised learning scenarios, the step of evaluation
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is intended for calculating model metrics. For a deeper analysis of the
trained model, the implementation of XAI methods is placed in the
validation phase. These methods are meant to facilitate the interpretation
of model predictions.

The architecture of the ML pipeline in the LIFEDATA project instance
ensures that the artifacts created by these steps, whether they are calcu-
lated model metrics or generated model interpretations, always depend
on the versions of the respective models and training data. Consequently,
these outputs, further tracked by the data version control system, can be
used for a UI or reporting purposes.

5.4.4 Webinterface Components

As described in Section 5.3, LIFEDATA provides web-based GUIs for do-
main experts. Their project-specific implementation is heavily dependent
on the use case and summarized in the reference architecture of the AL
project in Figure 5.2 as „Webinterface Components“ .

Annotation Widget. The annotation of samples by a human oracle
within a web-based GUI allows for easy and efficient labeling of samples
by multiple annotators. To ensure that LIFEDATA is agnostic to labels
and data types, an Annotation Widget has been designed to enable Data
Scientists to implement a wide range of pool-based AL scenarios.

The connection between the Annotation Widget in the project instance
and the core framework is realized through the REST-API, the methods
of which are listed in Table 5.3. The provided Backend Service offers an
interface for receiving labels and transmitting samples to be displayed
in the Annotation GUI. Thus, seamless communication between the
project instance and the core framework is ensured. The flexibility in
customizing the rendering process ensures that users can tailor their
annotation process to their specific requirements.

To achieve runtime-performant yet highly flexible web-based frontends,
as needed for annotating training data, LIFEDATA offers an out-of-the-box
implementation based on the JavaScript library React (Meta Open Source
2013). The rendering for the respective data type, as well as labeling tools
such as class selection or provision of tools for measurement or marking,
can be implemented within the Annotation Widget in the project instance
itself or replaced by a third-party app.

Dashboard. As an additional web-based GUI, the AL project in LIFE-
DATA offers a dashboard. This component is designed to consolidate all
relevant information and provide domain experts with key metrics about
the learning progress of the ML model, as well as crucial indicators of
the current status of the annotation process.

The modular architecture of the ML pipeline, with its evaluation and
validation phases, is essential for the implementation of monitoring and
reporting. For the straightforward implementation of the dashboard
component in LIFEDATA, the integration of the experiment tracking
service MLflow is foreseen. MLflow simplifies the process of tracking
experiments, parameters, and results, thereby enhancing the system’s
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overall monitoring capabilities. This is accomplished through a metric
tracking API provided for Python. The metrics calculated in the ML
pipeline are sent to the MLflow server, which consists of a relational
database and a web interface.(Zaharia et al. 2018)

For more complex use cases, the artifacts tracked by the data versioning
tool can themselves be utilized to display in a custom UI. With the
integration of DVC (Iterative 2020) into LIFEDATA, a Python API is
further available for reading results stored and tracked during the
execution of the ML pipeline, such as a table-file with performance
metrics of the ML model from a defined remote storage. These can then,
for example, be used for a custom UI implementation.

5.5 Limitations

While LIFEDATA provides a structured approach to managing AL
projects, it’s essential to acknowledge its inherent limitations to provide
a balanced and realistic understanding of its applicability and areas for
potential enhancement.

A primary limitation of LIFEDATA’s design is its suitability primarily for
pool-based AL scenarios. It excels in environments where a large pool of
unlabeled data is available for selective querying but is not inherently
designed for stream-based scenarios where data arrives sequentially, and
decisions about labeling must be made on-the-fly. Adapting LIFEDATA
for stream-based scenarios would require significant modifications to
its underlying architecture and workflow, including real-time decision-
making capabilities and a more dynamic model updating process.

Through the integration of DVC (Iterative 2020) in the project template,
LIFEDATA employs a DAG architecture for its ML pipeline, which
presents its own challenges while offering several advantages in terms
of modularity and clarity. The DAG architecture facilitates a clear and
manageable sequence of operations, ensuring that each step is logically
ordered and dependencies are maintained. This structure is particularly
beneficial for simpler ML pipelines where the flow from data preparation
to model training and evaluation is relatively linear and straightforward.
However, as ML pipelines become more complex and involve numerous
interdependent steps, the DAG architecture can become a limitation.
Complex pipelines with multiple stages or concurrent processes can
be challenging to represent and manage within a strictly linear DAG
structure. Furthermore, this limitation impacts the parallelization of
tasks. While DAGs can inherently handle some parallel operations, the
rigid, non-cyclic nature of DAGs means that they might not efficiently
utilize all available computational resources or optimally parallelize tasks
that have complex interdependencies, posing a scalability concern. For
more complex projects, alternative techniques for data version control,
supplemented by additional tools as orchestration components, may be
required.

Furthermore, the engineers using LIFEDATA’s web-based GUIs must
handle the deployment. This involves setting up a server- or cloud
environment and ensuring fulfillment of CI/CD principles, security, and
compatibility across different platforms and devices. The deployment
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process can be complex and time-consuming, requiring users to develop
web deployment expertise.

Setting up a LIFEDATA project, despite the provided project template,
therefore involves considerable effort. The template offers a kick-start
by establishing a structured environment with predefined components
and workflows. However, the complete integration and customization to
a specific ML problem, as well as the implementation of an annotation
interface, require substantial upfront work. While this flexibility allows
the framework to be tailored to specific tasks and requirements, meaning
that a significant level of implementation is necessary at the beginning
of an AL project with LIFEDATA.

This generalization vs. specialization dilemma is a crucial aspect: While
the project template supports prominent ML frameworks like TF (Martín
Abadi et al. 2015), PyTorch (Paszke et al. 2019) and frameworks who
follow the Scikit-Learn-API(Pedregosa et al. 2011), the model code must be
implemented from scratch, and the same applies to the data preprocessing
and QSs included in the template. Their logic needs to be implemented,
whereas other AL frameworks provide a range of common QSs out-of-
the-box. While this makes LIFEDATA highly agnostic and usable for
different data formats, it requires a significant amount of implementation
by the data scientist using it.

Moreover, the LIFEDATA framework’s concepts are primarily tailored to
classification problems and do not inherently support sequence labeling
or regression tasks. This specialization means that while it supports
a range of classification scenarios, such as binary or multi-label classi-
fication, its applicability to other types of ML tasks is limited. Users
looking to tackle sequence labeling, regression, or other non-classification
tasks would need to significantly customize or extend the framework,
potentially undermining the benefits of its out-of-the-box functionality.

Despite these limitations, LIFEDATA has a critical advantage: by integrat-
ing concepts of traceability, reproducibility, and explainability, it paves
the way towards trustworthy AI development with an AL loop. The
following Chapter 6 presents two real use cases in which the framework
concept is applied, demonstrating the feasibility of AL projects with
LIFEDATA.
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5.6 Summary

The LIFEDATA framework presented in this chapter has been developed
to implement AL projects in the spirit of AI development by incorporating
transparency and traceability. LIFEDATA includes technical components
for code and data versioning that enable users to comprehensively trace
the learning process from selecting training data to interpreting model
results in an AL project.

The framework further includes multiple interfaces, a relational database
for storing annotations including their origins, and a web-based user
interface that facilitates data annotation by human oracles.

This framework consists of open-source software implemented in Python
and available on GitHub. It is divided into two main parts: a core
framework and a project template, which serves as a starting point for
new projects and as a template for implementing AL projects. Both
components are designed to be data- and algorithm-agnostic, supporting
a wide range of use cases.
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To establish the connection between the LIFEDATA framework intro-
duced in Chapter 5 and the development methodology discussed in
Chapter 4, this chapter investigates the technical feasibility of applying
the framework in two specific use cases within the life sciences. The life
sciences provide an ideal testing ground, as they are typically associated
with high risks and underline the need for trustworthy AI. Moreover,
this domain highlights specific challenges that are characteristic of AL
projects:

a) Imbalanced Data. There is an unequal distribution of samples
across different classes. Related challenges potentially affect the
model and the annotation process, as the majority classes dominate
the dataset. (Ertekin et al. 2007b; Ertekin et al. 2007a; Aggarwal et al.
2020)
Section 6.1.3 addresses the challenge of unbalanced datasets by
using a dataset for simulations that is dominated by a majority
class. This illustrates the impact on model training and annotations
in an imbalanced class context.

b) Costly Annotations. A high level of qualification is required to
annotate the data, often involving a long period of education for
the annotator. This circumstance additionally increases the labeling
costs, since the time of the human oracle represents a rare resource.
(Freeman et al. 2021; Bernhardt et al. 2022)
Section 6.2.3 addresses this issue by extending the query module to
examine annotation efficiency in a multi-label classification context,
which further increases the complexity and, thus the effort required
for annotations.

c) High Quality Labels. In addition to the specialized knowledge
of domain experts, the degree of accuracy regarding the assigned
annotations significantly influences the model’s performance in
the real-world. In many cases, the quality of the resulting model
is directly tied to the quality of the labels it is trained on. (Alonso
2015; Northcutt et al. 2021)
In Section 6.2.4 this is emphasized by a study with human an-
notators that examines self-agreement and agreement between
annotators as a indicator of annotation reliability.

Furthermore, this chapter explores the key aspects of the technical
implementation and adaptability of the LIFEDATA framework in the
aforementioned projects, emphasizing its significance for ensuring the in-
tegrity of ML artifacts. This examination serves as a demonstration of how
the framework, as discussed in Chapter 5, as well as concepts presented
in Chapter 4 can be applied effectively in real-world scenarios.

These two use cases were carried out within the LIFEDATA project,
funded by the BMBF1. Parts of the results were published in Stieler et al. 1: Reference number 031L9196B
2023b.
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6.1 Skin Image Analysis

Skin cancer, particularly melanoma, continues to be a type of cancer
with a globally high incidence rate, which is on an increasing trend
(Riker et al. 2010). Early detection significantly improves the chances of
survival, and as a result, the use of AI-based skin image analysis has
gained considerable attention in the research community in recent years.
For instance, the International Skin Imaging Collaboration (ISIC) has
conducted various ML Challenges, during which promising results for
AI-based skin image analysis were published (Celebi et al. 2023).22: An overview is available

by the published results from
the ISIC Challenges: https:

//challenge.isic-archive.com

The analysis of images of skin lesions, anomalies of the skin that manifest
in various forms of changes, can involve different steps, each subject to
extensive research. These include preprocessing and feature extraction
as well as segmentation to determine relevant image areas, for example,
delineating the affected lesion on the skin.(Li et al. 2022)

The third crucial step for diagnostic support is the classification of
skin lesions (Brinker et al. 2018; Adegun et al. 2021). While traditional
classification methods use pixel- or region-based techniques to extract
features, which are then processed by classifiers like Support Vector
Machines, recent developments in AI research demonstrate that the use
of DL models, particularly CNNs (Haggenmüller et al. 2021; Shetty et al.
2022), in processing and classifying images of skin lesions has proven to
be superior to traditional methods, and even to dermatologists in specific
classification tasks (Esteva et al. 2017; Tschandl et al. 2020).

Despite the progress, there are still several challenges (Goyal et al. 2020).
One of these is the limited amount of available, high-quality, and labeled
data for training such DL models for skin lesion classification. Thus, the
following case study on skin image analysis focuses on simulating the
AL workflow.

The goal is to investigate whether the annotation effort in a scenario of
a DL-based skin lesion classifier can be reduced and thus make data
labeling more efficient. For this purpose, we simulate the human oracle by
providing the true label through a lookup in an already labeled dataset,
which is explored in the following section.

6.1.1 Data Basis

Given the considerable attention paid to applications in the field of AI-
based skin image analysis, numerous initiatives have emerged in the past
that have compiled various publicly accessible datasets. The systematic
review by Wen et al. 2022 presents a comprehensive evaluation of these
resources and emphasizes their significance as benchmarks for algorithm
performance comparisons.

One of the datasets introduced is HAM10000, a collection of dermato-
scopic images created as part of the „Human Against Machine“ research
(Tschandl et al. 2020) to overcome the limitations of earlier collections of-
ten characterized by small size and limited diversity, focusing on specific
types of lesions.(Tschandl et al. 2018)

While some datasets concentrate on specific lesion types, HAM10000
encompasses 10,015 images of various lesions categorized into seven

https://challenge.isic-archive.com
https://challenge.isic-archive.com
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Class Description

NV Melanocytic nevi, benign neoplasms of melanocytes, is by far
the most prevalent group in the dataset.

MEL Melanoma, a malignancy from melanocytes with various forms.
BKL Benign keratosis groups similar biological conditions like

seborrheic keratoses and solar lentigo, despite diverse derma-
toscopic appearances and some resembling melanoma.

BCC Basal cell carcinoma, a prevalent form of skin cancer.
AKIEC Actinic Keratoses are treatable, noninvasive squamous

cell carcinoma variants, often precursors to more serious forms
of skin cancer.

VASC Vascular skin lesions in the dataset include a range of diseases.
DF Dermatofibroma is a benign skin lesion typically presenting with

peripheral reticular lines and a central white patch indicating
fibrosis.

Table 6.1: Class description of lesions
within the HAM10000 dataset (Tschandl
et al. 2018).

Variable Description

lesion_id Unique identifier for each lesion
image_id Unique identifier for each image

dx The diagnosis, described in Table 6.1
age The age of the patient
sex Information on the gender of the patient

localization Cathegorical indication of the lesions’ location on the body

Table 6.2: Provided metadata within the
HAM10000 dataset (Tschandl et al. 2018).

groups. These categories are presented in Table 6.1. The images were
collected over a period of 20 years at locations in Austria and Australia.
The acquisition process involved extracting images and metadata from
various sources and originating from different medical diagnostic devices.
To determine the ground truth, dermatologists applied various diagnostic
techniques.(Tschandl et al. 2018)

Before the dataset’s publication, the images underwent manual histogram
correction to optimize quality (Tschandl et al. 2018). Figure 6.1 illustrates
three randomly selected samples. All images are in JPG format with a
resolution of 450x600 pixels in the Red-Green-Blue(RGB) color space.
Furthermore, the dataset contains metadata, the characteristics of which
are outlined in Table 6.2. It indicates that multiple images may exist for a
unique lesion.

Figure 6.2 displays the frequency of observed classes, the distribution
between lesions, and the number of images for a unique lesion in the
HAM10000 dataset. A notable overrepresentation of the class nv is
evident, allowing for the investigation of QSs for frequent and rare
classes concerning simulated data annotation.

The metadata exploration is further visualized as statistics in Figure 6.3,
containing information on the population’s demographic. Age data is
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Figure 6.1: Examples of lesion images
from the HAM10000 dataset published
by Tschandl et al. 2018. The coordinates
indicate the dimensions of the original
sample shape of 450x600 pixels.
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Figure 6.2: Class- and lesion distribution
of the samples within the HAM10000
dataset (Tschandl et al. 2018). As evident
from the count of samples, there is a
significant imbalance, with the Nevus
class being overrepresented.
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Figure 6.3: Distribution of samples in relation to the characteristics of the patient population of the HAM10000 dataset (Tschandl et al.
2018). While there appears to be no imbalance in the distribution of classes, there is a noticeable slight underrepresentation of female
patients and a distribution of data across the entire lifespan.

categorized in 5-year intervals, covering the entire lifespan. The median
age is 55 years for male individuals, 50 years for females, and 40 for
persons without gender disclosure.

Although the overall number of women is slightly underrepresented,
the distribution of diagnoses regarding gender and age seems balanced
and shows no significant correlation. However, the authors note that the
dataset includes data from various population groups, with no further
details on ethnic groups and skin types. These limitations are relevant to
the results’ generalizability, as discussed by Wen et al. 2022.

Nevertheless, the dataset is suitable for investigating an AL project with
LIFEDATA: It has proven to be a comprehensively examined dataset,
already used in several ISIC Challenges (Cassidy et al. 2022) as training
data, ensuring comparability of ML pipeline performance. Moreover, the
class imbalance presents a realistic scenario for investigating AL and thus
provides a solid basis for simulating an annotation process.
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6.1.2 Application

The following chapter describes the application of LIFEDATA to the use
case of skin image analysis, utilizing the previously described data foun-
dation. The detailed description of adjustments to the LIFEDATA project
instance (refer to Section 5.4) is provided by illustrating the project setup
and offering a detailed overview of the ML pipeline implementation.

Project Setup

In the implementation of the skin image analysis use case, LIFEDATA’s
project template was utilized and supplemented with components ac-
cording to its reference architecture, as shown in Figure 5.2, including the
MLOps components described in Section 5.4.1 that were not originally
included. Furthermore, an infrastructure was established that adheres to
the principles outlined in Chapter 4.2.3. The architecture of this infra-
structure is depicted in Figure 6.4, including a high-level representation
of each component and their interaction.

As a core system, the SCM application, a GitLab instance, houses the
code repositories for the ETL project and the LIFEDATA AL project per
the project template. Within these repositories, all code modules and
data placeholder files are version-controlled. Further included is the
CI/CD/CT component, which primarily defines the instructions for the
CI/CD/CT runner. Initially, a job is set up to create a Docker image, which,
upon completion, is uploaded as a build artifact to a dedicated image
repository. Subsequent stages of the CI/CD/CT component, defined as
secondary, utilize this to execute jobs for running the ML pipeline in a
containerized environment on the CI/CD/CT -Runner.

The CI/CD/CT runner is installed on a high-performance computer
equipped with two Intel Xeon Silver 4110 (Skylake-EP) 14-core CPUs,
96 GB RAM, one TB SSD, and twelfe TB HDD local storage, as well
as two NVIDIA Quadro P6000 GPUs with 24 GB each. As previously
discussed, the CI/CD/CT runner executes the ML pipeline within a
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within the specific LIFEDATA project in-
stance.
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Docker container, to which a specific directory is mounted as a local
cache for the data artifacts.

DVC manages this cache as content-addressable storage to optimize
data management and differentiates between caching individual files
as well as directories, the latter of which can contain multiple files.
Filenames and directory structures are transformed within these caches:
files are renamed based on their content, and directories are flattened to a
single level. This is done by generating a computed hash value uniquely
representing the content.(Iterative 2024)

Further hosted on the computing server were the data repositories of
both projects. These are specifically storage spaces of a file server used
for distributed storage of various data artifacts. Similar to how the SCM
server serves as a Git remote for code artifacts, these storage locations
were configured as data remotes within the data versioning application.
Following the concepts described in 4.2.3, the jobs within the CI/CD/CT
component designated for executing the ML pipeline were defined such
that all resulting data artifacts, such as the trained model and the query
set, were pushed to the file server after execution and the updated data
placeholder files were pushed to the corresponding branch of the SCM
application as an commit.

Since the storage format within the file server structure is analogous to
that of the DVC-managed runner caches, the data artifacts to be imported
by other jobs from different CI/CD/CT runners if unavailable in the
runner cache. For example, the individual iterations of the AL simulations
were executed sequentially in separate CI/CD/CT jobs, whereby the
status of the label state from the previous iteration could be accessed by
loading the corresponding index file from the data remote. Additionally,
developers involved in the project could access the data managed by DVC
at a common location to download it into their local environment.

Machine Learning Pipeline

The definition of an ML pipeline suggested in the project template was
adapted for the skin image analysis use case, as illustrated in Figure
6.5, which is again illustrated the implemented ML pipeline as DAG,
according to LIFEDATA’s architecture of the Machine Learning Service.
Since no semi-supervised scenario was implemented, the stage intended
to create pseudolabels has been removed. Another significant change
compared to the initial ML pipeline definition of LIFEDATA is the
addition of a new stage, namely ’Encoding’, which is placed between
the model training and the query stage. The specific implementations in
each stage are presented below to give a more detailed understanding of
the design of the ML pipeline.

Data Raw. As described in Section 5.4.2, the project template from
LIFEDATA suggests outsourcing the raw data used to a separate project
where data engineering tasks occur. In simple terms, these tasks encom-
pass the ETL process. Contrary to a real-world scenario, the data from
the HAM10000 dataset do not require any particular transformation, as
they are intended for research use and are already in a uniform format
without any damaged samples.
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To demonstrate the adaptability of the LIFEDATA project instance, the
HAM10000 dataset, in its raw state, was nonetheless outsourced to a
separate repository. Following this concept, in this implemented ML
pipeline stage, the placeholder file for the version of the raw dataset is
specified. This ensures that artifacts calculated during the project runtime
by downstream stages of the ML pipeline remain consistent as long as the
raw data or metadata do not change, and thus, the hash value specified
in the placeholder file remains valid.

Label State. The annotation process was implemented through a code
module in the experiment utilities, designed to simulate a human oracle
in a real-world scenario. Upon successful execution of the query module
within the Machine Learning Service, and consequently the entire ML
pipeline, the labels for samples selected by the designated strategy were
retrieved from the provided metadata. For recording the labeling status of
each sample, the Label State stage, furnished by LIFEDATA, was utilized.

Within this stage, the index files, representing pools of annotated and
unannotated samples, were modified by the code module’s logic, operat-
ing independently from the ML pipeline managed by the data versioning
system. This modification of the input data (new labels) necessitates
re-computing subsequent stages in the ML pipeline, contingent upon ac-
tivating the Machine Learning Service via a specific call. This mechanism
represented individual iterations within the AL cycles.

Data Splitting. To ensure a reliable assessment of QSs and the model,
the training dataset was proportionally sampled as follows: 70% of the
samples were used for training the model. During the training process in
the Model Training stage, 10% of the data were allocated for validation to
prevent potential overfitting using early stopping methods. The remaining
20% of the data were reserved as a test dataset for evaluating the model’s
performance.

Since multiple samples from a single lesion are present in the HAM10000
dataset, the sampling method of the project template was extended for
this use case. A specific logic ensured that different samples of the same
lesion_id were grouped before being divided into training-, validation-,
and test-datasets. This ensures that samples from the same lesion are
kept together and prevents test set leakage, where a sample from a lesion
is assigned to different datasets. As a result of this ML pipeline stage,

Data Raw

Data Splitting

Preprocessing

Model 
Training

Query

Evaluation

Validation

Label State Encoding

Figure 6.5: ML pipeline definition of the LIFEDATA project instance applied to the skin analysis use case. The initial structure has been
adapted by removing the stage for semi-supervised learning. A separate stage for encoding has been added.
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index files for the three datasets were created, ensuring consistent data
sampling across multiple AL iterations.

Preprocessing. In the preprocessing stage, logic was implemented
to scale the provided image files to a desired size. The chosen model
architecture, described in more detail in the next stage, required an input
size of 224x224 pixels, which is why these parameters were applied in
the conducted experiments. The resulting artifacts of the code module
within the preprocessing stage, concretely resized images using the ’crop’
method, were stored. This meant that this computation step could be
skipped in different experiments and across multiple AL iterations with
the same configuration by retaining the already preprocessed image files
in the subsequent stages of the ML pipeline. This approach significantly
improved efficiency by eliminating the need to repeat the preprocessing
step.

Model Training. In this stage, the preprocessed data were loaded into
the model. The DenseNet101 model architecture (Huang et al. 2017) was
implemented, backed by its application in numerous other studies (Jeong
et al. 2023). The settings for batch size, number of epochs, and learning
rate were parameterized, and optimization in this context yielded an
optimal configuration of BATCH_SIZE=8 and LEARNING_RATE=0.001.

Figure 6.6: Fitting process of the skin
image classifier during model training.
The graph presents aggregated perfor-
mance metrics across epochs, illustrating
the model’s learning progression with
categorical accuracy and loss for both
training and validation sets.
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Accuracy (𝑎𝑐𝑐) is defined as the ratio of
the sum of 𝑇𝑃 (=True Positives) and 𝑇𝑁
(=True Negatives) to the total number of
cases examined.

𝑎𝑐𝑐 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
where 𝐹𝑃 are False Positives, and 𝐹𝑁

False Negatives. This metric quantifies
the proportion of correct predictions in
relation to the total number of model
predictions and is suitable for measuring
during the training progress but not for
evaluating model performance.

Figure 6.6 illustrates the training process of the model, with the training
and validation metrics plotted across epochs. While the lines correspond
to the average value of the respective metric over three runs, the shadow
reveals the calculated standard deviation. Notably, the average sweet
point across can be identified between epochs 9 and 10, indicating that
the model reached a balance between learning and generalization before
becoming over-fitted.

In-memory augmentation provided by TF (Martín Abadi et al. 2015), the
ML framework used, was employed. This augmentation, executed on-the-
fly while loading image data into the model, expanded the training data
using the strategies „Rotation“, „Shift“, „Zoom“, and „Flip“. The Adam
optimizer (Kingma et al. 2015) was used with Categorical Crossentropy (cf.
2.3) as loss function. An early stopping function utilizing the validation
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dataset was implemented to end the model training prematurely if there
was no improvement in prediction performance on the validation data.
The trained model files were stored in this stage, enabling them to be
consumed as artifacts in subsequent stages.

Encoding. A separate code module calculates similarity vectors of
samples within the Encoding stage in the ML pipeline, which is placed
within the DAG after the model training and before the query stages.
Various methods exist for determining essential similarity values in image
files, including generating image representations by activating the last
fully connected layer of the trained model. The resulting representations
are then transformed into vectors, allowing for comparison based on
their Euclidean distance (Sener et al. 2018).

This approach is further used by Beluch et al. 2018 to implement their
density-based QS. Separating this stage from the QS stage offers two
advantages: Firstly, the calculation of vectors is performed only as re-
quired, i.e., in ML pipeline configurations where the density-based QS is
specified. Secondly, the determined vectors are stored as tracked data
artifacts and made available to the query code module.

Query. To ensure an evaluation of different QSs, three QSs were im-
plemented in the skin image analysis use case: Random serves as a
baseline, while the other two represent prominent approaches - one
information-based and the other representation-based:

▶ The Random based sampling strategy selects samples without fol-
lowing a specific pattern, thus providing a basis for benchmarking
with other strategies.

▶ Uncertainty based sampling, which belongs to the information-
based QS, selects samples where the model exhibits the highest
uncertainty value in predictions, mainly focusing on those instances
where the prediction is the „least confident“ (Lewis et al. 1994a, c.f.
2.1.3).

▶ Graph density based sampling, proposed by Ebert et al. 2012, has
been implemented as a representation-based QS. As previously
described, this strategy focuses on the underlying data distribution
and chooses samples, ideally avoiding repetitive dense regions, to
achieve a diverse selection.

The parameterized size of the desired query set allows being specified in
the ML pipeline configuration, following LIFEDATA’s project template,
just like the respective QS. As an output, this stage produces a data
artifact in the form of a CSV file, which contains entries of image_ids, the
query set of samples that the applied QS has selected.

Validation. In the validation stage, various model interpretation algo-
rithms were implemented in the use case of skin image analysis. The
results are presented in detail in Chapter 7.
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Figure 6.7: Confusion matrix of the
trained skin image classifier. The
heatmap depicts the normalized aggre-
gated values, providing an analysis of
the model’s predictive accuracy on the
test set for each class, with darker shades
representing higher probabilities of class
predictions. Predicted Class

Tr
ue

 C
la

ss

AKIEC BCC BKL DF MEL NV VASC

AKIEC

BCC

BKL

DF

MEL

NV

VASC

0

0.2

0.4

0.6

0.8

0.42 0.16 0.21 0.01 0.08 0.12 0.0

0.04 0.71 0.1 0.02 0.03 0.09 0.01

0.03 0.03 0.69 0.01 0.04 0.2 0.0

0.09 0.14 0.06 0.49 0.01 0.21 0.0

0.02 0.01 0.15 0.0 0.35 0.45 0.01

0.0 0.01 0.03 0.0 0.01 0.95 0.0

0.0 0.02 0.0 0.0 0.02 0.02 0.94

Aggregated Confusion Matrix (Normalized)

Table 6.3: Aggregated model perfor-
mance metrics of the skin image clas-
sifier. The table showcases the Precision,
Recall, 𝐹1-Score, and sample count for
each class, with error margins of three
runs.

Precision Recall 𝐹1-Score # Samples

AKIEC 0.59 ± 0.13 0.42 ± 0.06 0.49 ± 0.04 62
BCC 0.71 ± 0.1 0.71 ± 0.1 0.71 ± 0.07 99
BKL 0.61 ± 0.11 0.69 ± 0.05 0.64 ± 0.05 204
DF 0.53 ± 0.11 0.49 ± 0.22 0.50 ± 0.16 24
MEL 0.68 ± 0.08 0.35 ± 0.05 0.46 ± 0.06 226
NV 0.89 ± 0.00 0.95 ± 0.02 0.92 ± 0.01 1355
VASC 0.86 ± 0.14 0.94 ± 0.05 0.90 ± 0.1 27
micro avg 0.83 ± 0.03 0.83 ± 0.04 0.83 ± 0.03 1997
macro avg 0.70 ± 0.05 0.65 ± 0.07 0.66 ± 0.06 1997
weighted avg 0.81 ± 0.02 0.82 ± 0.02 0.81 ± 0.02 1997

Evaluation. The logic for evaluating the trained classifier is imple-
mented in one of the final stages of the proposed ML pipeline. This
step assesses the model’s predictive performance on test samples, which
were previously set aside during the Data Splitting stage. To ensure a
robust performance evaluation, in this setting the entire ML pipeline
was executed three times with different random seeds. The outcomes of
these iterations were then aggregated to mitigate the variability induced
by the training process’s stochastic nature and provide a more reliable
assessment of the model’s performance.

The aggregated results are visualized in Figure 6.7. The normalized
aggregated confusion matrix provides a detailed visual representation
of the model’s classification accuracy across different classes. The darker
cells along the matrix’s diagonal indicate higher predictive accuracy
for the respective classes. For instance, the high values in the cells
corresponding to ’NV’ and ’VASC’ classes imply a strong true positive
rate, while off-diagonal cells highlight instances of misclassification.
The matrix reveals that the model is particularly adept at predicting
the ’NV’ class, with a normalized value of 0.95, but shows a higher
misclassification between the ’MEL’ and ’NV’ classes, as evidenced by
the off-diagonal entries.

Precision, denoted as 𝑃, is the ratio of
true positive predictions to total pre-
dicted positives:

𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
Recall, 𝑅, quantifies the proportion of

actual positives correctly identified:

𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
The 𝐹𝛽-Score, a weighted hamornic mean
of 𝑃 and 𝑅, is given by:

𝐹𝛽 = (1 + 𝛽2) · 𝑃 · 𝑅
(𝛽2 · 𝑃) + 𝑅

where 𝛽 is chosen based on the relative
importance of 𝑃 versus 𝑅. In the case of
𝛽 = 1, these are scored as equal.
Different averages can be calculated for
the resulting metrics 𝑀 = {𝑃, 𝑅, 𝐹𝛽}.
While micro determines the respective
metric 𝑀(𝑦, �̂�) globally based on the
given ground truths set 𝑦 and set of the
model’s predictions �̂�, the macro aver-
age is calculated independently for each
label 𝐿, resulting in a score that does not
take the class frequency into account:

macro-avg =
1
|𝐿|

∑
𝑙∈𝐿

𝑀(𝑦𝑙 , �̂�𝑙)

Conversely, the weighted (wt) average
compensates for label imbalance by scal-
ing each label’s metric relative to its
prevalence:

wt-avg =
1∑

𝑙∈𝐿 |𝑦𝑙 |
∑
𝑙∈𝐿
|𝑦𝑙 | ·𝑀(𝑦𝑙 , �̂�𝑙) Complementing the confusion matrix, Table 6.3 summarizes precision,

recall, 𝐹1-Score, and support for each class, alongside macro and weighted
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averages. The precision column reflects the classifier’s ability to not
mislabel a sample as belonging to a particular class, while the recall
indicates the model’s proficiency in identifying all samples of a class. The
𝐹1-Score offers a balance between precision and recall. The ’# samples’
column reports the number of images for each class in the test set,
which contributes to understanding the weight of each class in the
performance metrics. For example, the class ’NV’ stands out with high
precision and recall, denoting a high classification performance for
this category. The macro and weighted averages provide an overall
performance snapshot, with the macro average treating all classes equally
and the weighted average taking into account the support for each class,
which is particularly useful when class imbalances are present.

Based on these results, the AL part will now be examined in more
detail.

6.1.3 Active Learning Simulation

This section evaluates the effort required for annotation, which is a crucial
factor in enhancing the efficiency of incorporating human feedback into
the AL methodology. The analysis focuses on whether the use of AL
in annotating skin lesion images can reduce the required annotation
effort and identifies which of the implemented QSs is most effective in
preferentially selecting samples of rarer classes over those of the majority
class during the labeling process.

To explore these aspects, experimental simulations of the labeling process
were conducted. As previously discussed in the explanation of the ML
pipeline, this was achieved using a specially developed code module
within the Experiment Utilities designed for LIFEDATA, which provides
annotations in each AL iteration for the samples requested by the QS.
This approach is a common practice in the simulation of AL projects
without using a real human oracle (Ghai et al. 2021). It is important to
note that the laboratory conditions always ensure correct annotations
and do not consider user errors.

The foundation for this was the implementation of the ML pipeline
described in Section 6.1.2. Following the methodology proposed in Section
4.3.3, three sub-experiments were initialized in different experiment
branches. Each sub-experiment simulated the labeling process, assuming
that one of the implemented QSs, with a configured query set size of 400,
is active. To validate the results, each sub-experiment was conducted
with three different random seeds. For the results of the three runs, the
average and standard deviation were calculated.
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Figure 6.8: Average classification perfor-
mance of the skin image classifier.
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Figure 6.9: Skin image classification performance per class. The overview of the 𝐹1-Scores achieved by the classifier for the respective
classes in the annotation process illustrates the impact of different QSs on the model’s predictive performance during the AL simulation.

Using the metadata collected in the MLflow instance, the analysis begins
with examining the predictive performance of the trained model through-
out the labeling process. For this simulation, the 𝐹1-Score3 serves as a3: Unless otherwise stated, macro was

set for the calculation of average values,
where unweighted mean is calculated
without taking the class imbalance into
account.

simplified performance metric. Figure 6.8 illustrates the average 𝐹1-Score
across all classes, plotted against the number of annotated images. The
colored lines represent the averaged value over the three experiments
for each QS, while the shadows indicate the standard deviation. The
figure shows that in the second AL iteration when less than 10% of the
training data were annotated, the average 𝐹1-Score for the experiments
with the uncertainty and density-based QSs was around 0.2. In contrast,
for the experiment with the random-based strategy (green line), it was
approximately 0.4 across all classes.

Further evident in Figure 6.8, the 𝐹1-Score increases for all QSs as the
number of labeled training data grows. However, the uncertainty and
density-based QSs lag behind the random-based sampling until the sixth
AL iteration. In the simulation with the random-based QS activated,
the peak in model predictive performance (0.67) was reached with
about 75% of the training data annotated. The 𝐹1-Scores in experiments
using uncertainty- (0.66) and density-based (0.68) QSs only reached their
maximum after 90% of the training data were annotated. However, it is
observed that the predictive performance of the model, as measured by
the 𝐹1-Score, only marginally increases in all three experiments once 60%
of the training data are annotated. Furthermore, none of the QSs leads to
a significantly different predictive performance of the model after the
conclusion of the simulations.

A more detailed investigation is carried out in Figure 6.9, which displays
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the model’s predictive performance for each class. The plots have a similar
structure, whereby the performance of the classifier for the respective
class is plotted on the ordinate, which is scaled differently in all sub-
diagrams. The nearly maximal predictive performance of the model for
the majority class (NV) is already achieved with 20% of the training
samples annotated, with the performance curve rising most steeply
in the experiment with the activated random-based QS. Therefore, no
significant advantage of a QS can be determined for this class.

However, examining the rarest class (DF) of the HAM10000 dataset reveals
that the uncertainty and density-based QSs result in a significantly higher
predictive performance of the model for this class in the AL iterations
during the period from 20% to 60% of annotated training data, compared
to the experiment with the random-based selection strategy. However,
the high standard deviation should be noted, possibly due to the small
number of training samples for this class.

In summary, none of the implemented QSs in this application scenario
led to a significant difference in the model’s predictive performance. Com-
pared to the random sample selection benchmark, neither the uncertainty-
based nor the density-based QS contributed to a meaningful reduction
in annotation effort.

An evaluation of the query sets generated in the AL iterations is con-
ducted to analyze the implemented QSs in the context of the selected
classes and their frequency distribution. This is made possible by the
established project setup and the integration of the data versioning
system in LIFEDATA, with the artifacts managed by DVC from the data
remote of the AL project being used for targeted analyses.

Figure 6.10 provides an overview of the distribution of classes within
the generated query sets. To increase comparability, these are once again
placed in relation to the proportion of the labeled training data quantity
depicted on the x-axis. The individual classes are identifiable in the
subplots, where the ordinate show the quantity of samples selected by
the QSs in absolute numbers. Similarly, the data is represented using
lines, with the calculated means across the three random seeds and the
shading indicating the standard deviations.

In the evaluation, the class selection of the three implemented QSs is
compared, with the random-based QS serving as a benchmark once
again. The relatively uniform curve trajectories (green line) illustrate an
expected pattern: as the selection is random, approximately the same
number of samples from each class are selected throughout the annotation
process. The respective absolute count reflects the proportion of class
representation in the HAM10000 dataset, in which, as a reminder from
Figure 8.2, the majority class (NV) occurs approximately 60 times more
frequently than the rarest class (DF).

For the Uncertainty-based (blue line) and Density-based (red line) QSs, an
initially unusually high selection of the majority class (NV) is observed
in the class selection, which rapidly decreases during the simulated
annotation process. The analysis of samples from other classes shows
that in the first half of the annotation process, an over-proportional
number of samples are queried for annotation. This suggests that the
model generates more uncertain prediction values for these classes during
this phase.
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Figure 6.10: Query set proportion per class. The subplots showcasing the comparison of implemented QSs during the annotaion
simulation. The graph shows the impact of Uncertainty- and density-based strategies in selecting skin lesion images from rare classes,
demonstrating their advantages over random selection.

Only in the second half of the annotation process does the number of
samples from the majority class (NV) increase, while the curves for the
other classes tend towards zero. This suggests that the samples from the
rarer classes were almost fully annotated at this point, and the remaining
samples mostly belonged to the majority class, as evidenced by reaching
the maximum value of 400, the chosen size of the query set.

In summary, the implemented selection strategies – Uncertainty-based
and Density-based – are equally effective in preferentially selecting skin
lesion images from rare classes. They offer a significant advantage over
random selection, thereby enhancing the targeted acquisition of human
feedback.
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6.2 ECG Signal Classification

Cardiovascular diseases remain the leading cause of global mortality,
with heart conditions such as arrhythmias posing significant health
challenges (Roth et al. 2020). In this context, ECG analysis emerges
as a critical diagnostic tool, enabling the detection of irregular heart
rhythms that may indicate underlying heart conditions. The advent
of AI-supported ECG signal classification has sparked considerable
interest among researchers, evidenced by initiatives like the PhysioNet
Computing in Cardiology Challenges (Goldberger et al. 2000; Alday et al.
2020; Reyna et al. 2021), which have showcased the potential of AI in
enhancing ECG analysis through ML techniques.

ECG signals, which represent the heart’s electrical activity, require
intricate analysis, often involving steps such as noise reduction, feature
extraction, and the segmentation of relevant signal components, e.g.,
identifying the QRS complex, a part of the characteristic ECG curve
representing the electrical activity of the heart’s ventricular muscles.
The subsequent classification of these signals into normal or various
arrhythmic categories is a critical step for diagnostic support. While
traditional approaches to ECG signal classification have relied on manual
feature extraction, recent strides in AI research have demonstrated the
superiority of DNNs, in automating feature extraction and classification
with higher accuracy (Acharya et al. 2017; Bizopoulos et al. 2019; Liu et al.
2021). These models have not only matched but in some cases exceeded the
performance of cardiac specialists in identifying arrhythmias (Rajpurkar
et al. 2017; Hannun et al. 2019), underscoring the potential of CDSSs in
this field.

However, the development of DL-based ECG signal classifiers face
challenges, including the shortage of large, annotated ECG signal datasets
necessary for supervised training of these models. The following case
study on ECG signal classification aims to explore the AL workflow in
this context using LIFEDATA.

By applying LIFEDATA to this use case, it will be re-examined whether
the annotation effort for the training data of a 12-lead ECG classifier
can be optimized through AL, thereby increasing the efficiency of data
labeling. Furthermore, this use case was conducted with real humans in
the loop, meaning that a web interface was provided for annotating the
training data, where medical professionals could provide their feedback.
The setup of this real-world application offers the potential to assess the
efficiency of data labeling enabled by the LIFEDATA framework and
evaluate the traceability of labels it facilitates. Initially, the following
sections will discuss the data foundation and project implementation.

6.2.1 Data Basis

The significant attention the research community has devoted to analyz-
ing ECG data has led to the availability of a comprehensive number of
public datasets containing diverse ECG signals. These datasets serve var-
ious purposes, including long-term ECG, exercise ECG, and recordings
using single lead or multi-channel systems.
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Table 6.4: Relevant data sources with ECG signal data. The given number of samples corresponds to the number of records that meet the
requirements for signal length and resolution as well as belong to one of the observed classes.

Data Source Description # Samples

Chap.Shaoxing Chapman University & Shaoxing People’s Hospital (Zheng et al. 2020b) 9,873
CPSC2018 China Physiological Signal Challenge 2018 (Liu et al. 2018) 3,148
G12EC Georgia 12-lead ECG Challenge 9,266
Ningbo Ningbo First Hospital (Zheng et al. 2020a) 34,391
PTB_XL Physikalisch Technische Bundesanstalt (Wagner et al. 2020) 21,045

Table 6.5: Available metadata of the ECG
records.. Variable Description

sample_id Unique identifier for each record

channel (I-V6) Channel description, including min&max values,
resolution and sampling rate

dx The diagnosis, described in Table 6.6
age The age of the patient
sex Information on the gender of the patient

In the context of demonstrating the LIFEDATA framework for the ECG
signal classification use case, a careful selection of datasets containing
signals from various sources was made. This selection was strictly limited
to samples featuring 12-lead ECG recordings with a minimum duration
of 10 seconds of resting ECGs. Datasets comprising 12-lead resting ECG
samples exceeding a duration of 10 seconds were excluded. Furthermore,
the selection was confined to raw signals with a sampling frequency of
at least 500 𝐻𝑧 and a resolution of at least 16 bits.

The utilized data sources are detailed in Table 6.4, including the number
of corresponding samples. Due to the availability in WFDB format
(Goldberger et al. 2000), additional metadata are available, described
in Table 6.5, which includes information such as the designations of
the twelve channels, the sampling rate, and the range of signal values.
Further provided are the diagnostic labels assigned by cardiologists, the
age, and the gender of the patients.

The most common diagnostic classes to be predicted by the ECG signal
classifier during the course of the use case were defined. The selection of
these classes is presented in Table 6.6, including the abbreviations and
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Figure 6.11: Overview of sample and label frequencies. The occurrence of one or two labels per sample is most common, but there are
samples with up to nine labels. The chart of sample frequency is sorted in descending order, with ’SNR’ being the most common and
’ADV_RD’ the rarest class in the analyzed dataset.
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Class Description

ADV_LD Advanced Leftward Deviation
ADV_LV Advanced Left Ventricular Abnormalities
ADV_RD Advanced Rightward Deviation

AFIB Atrial Fibrillation
AFLUT Atrial Flutter

AV1 First-degree Atrioventricular Block
ICD_NON Non-specific Ischemic

IRBBB Incomplete Right Bundle Branch Block
LAFB Left Anterior Fascicular Block
LBBB Left Bundle Branch Block
L_QT Long QT Interval
PM Pacemaker Present
PVC Premature Ventricular Contractions
RBBB Right Bundle Branch Block

SARRHY Sinus Arrhythmia
SNR Sinus Rhythm
SRB Sinus Rhythm with Bradycardia
SRT Sinus Rhythm with Tachycardia

SVES Supraventricular Ectopic Beats

Table 6.6: Class description of observed
12-lead ECG signal samples within sev-
eral datasets of the PhysioNet Challenge
2021 hosted by Reyna et al. 2021. The
class description modified in reference
to Wagner et al. 2020.

Label Co-occurrence Matrix
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AFIB
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IRBBB

LAFB
LBBB

L_QT PM PVC
RBBB

SARRHY SNR SRB SRT
SVES

ADV_LD  
ADV_LV  
ADV_RD  

AFIB  
AFLUT  

AV1  
ICD_NON  

IRBBB  
LAFB  
LBBB  
L_QT  

PM  
PVC  

RBBB  
SARRHY  

SNR  
SRB  
SRT  

SVES  

7631 113 0 635 534 546 307 358 1394 484 144 51 524 478 252 4205 798 599 289
113 1599 53 109 271 55 45 17 20 30 54 11 65 67 53 252 336 380 100

0 53 1279 130 279 43 53 94 17 10 29 7 89 139 50 260 135 328 33
635 109 130 4507 32 23 254 132 148 170 115 17 383 411 2 37 19 12 18
534 271 279 32 8355 10 455 150 182 171 175 680 588 684 4 25 5 19 23
546 55 43 23 10 3048 102 81 169 176 136 47 177 254 127 732 1011 288 179
307 45 53 254 455 102 1765 21 40 25 40 9 147 22 34 601 138 130 156
358 17 94 132 150 81 21 1812 140 0 85 20 98 83 76 884 171 128 88

1394 20 17 148 182 169 40 140 2186 3 50 20 186 280 58 1275 143 176 129
484 30 10 170 171 176 25 0 3 1325 12 17 104 35 21 405 111 137 56
144 54 29 115 175 136 40 85 50 12 1903 24 115 30 56 133 247 109 116
51 11 7 17 680 47 9 20 20 17 24 1553 79 50 22 12 70 17 30

524 65 89 383 588 177 147 98 186 104 115 79 2976 179 173 761 224 448 191
478 67 139 411 684 254 22 83 280 35 30 50 179 3656 79 502 582 307 166
252 53 50 2 4 127 34 76 58 21 56 22 173 79 3779 636 832 10 103

4205 252 260 37 25 732 601 884 1275 405 133 12 761 502 636 28314 359 236 538
798 336 135 19 5 1011 138 171 143 111 247 70 224 582 832 359 18995 0 560
599 380 328 12 19 288 130 128 176 137 109 17 448 307 10 236 0 9492 720
289 100 33 18 23 179 156 88 129 56 116 30 191 166 103 538 560 720 2737

Figure 6.12: Label co-occurrence matrix.
It shows which label occurs in combina-
tion with which other labels. The color-
ing illustrates that samples labeled with
’SNR’ are often exclusively labeled with
’SNR’.

their meanings. Figure 6.11 displays the frequency distribution of the
classes, starting with the most common class, in descending order. The
distribution indicates a more balanced ratio to the more frequent classes,
although rarer classes are significantly underrepresented, leading to an
imbalance. This is particularly relevant in the context of investigating
QSs.

A distinctive characteristic of this use case is its characterization as a
multi-label problem, where an ECG sample can have multiple true labels.
The distribution of the number of labels per sample is depicted in Figure
6.11, with a dominance of samples with a single label, followed by samples
with two labels. Samples with three or more labels are present, with their
class combinations shown in the label co-occurrence matrix in Figure
6.12.

The analysis of the patient population, as shown in Figure 6.13, shows
a balanced gender ratio. The median age is indicated as (male (m): 63,
female (f):61, unknown (u):68), the lower quartile as (m:51, f:48, u:64), and
the upper quartile as (m:71, f:72, u:72), suggesting an overrepresentation
of patients within this age range. The sample frequency in relation to
demographic information shows a higher incidence of male patients.
Information on ethnic background is not included in the metadata.

As was evident in the skin image analysis use case (cf. 6.1), these limita-
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Figure 6.13: Distribution of samples in relation to patient population. While the demographic characteristics appear balanced, the
histogram of sample count, including gender information, reveals an overrepresentation of male patients.

tions of the data basis must be considered in the generalizability of the
results. However, since the primary goal of applying LIFEDATA is not
on the outcomes of the ML pipeline but on exploring the applicability of
AL and aspects of data annotation, these publicly accessible data sources
are suitable. Firstly, annotations already exist for the data, a significant
portion of which have undergone a quality assessment. Secondly, the
data have proven to be a valuable training basis for numerous research
works, such as during the Physionet Challenges 2020 (Alday et al. 2020)
and 2021 (Reyna et al. 2021).

6.2.2 Application

The following section illustrates the adjustments to LIFEDATA for the
use case of the 12-lead ECG signal classifier. In addition to presenting the
project setup, a detailed overview of the ML pipeline implementation is
provided.

Project Setup

In the implementation of the use case, the LIFEDATA project template
was enhanced with components that are foreseen in the LIFEDATA
reference architecture, namely MLOps components. Additional web-
based components specified by LIFEDATA, such as the dashboard UI,
annotations UI, and the relational database for storing labels provided
by a human oracle, were provisioned to implement a human-in-the-loop
scenario. As a result, this project setup materialized an infrastructure
that embodies the principles detailed in Section 4.2.3.

The architectural schema of this infrastructure is illustrated in Figure
6.14, elucidating the interplay and functionality of each component. For
clarity, it is divided into three zones: Development, Machine Learning/-
Experimentation, and Operations, each housing different infrastructure
components.

As part of the Development Zone, a GitLab instance was employed as an
SCM server, managing the code repositories of both the ETL project and
the LIFEDATA AL project instance. Within these repositories, version
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Figure 6.14: Project setup for the ECG signal classification use case. The figure illustrates a process and system perspective as a fusion
between the components of the LIFEDATA reference architecture (Figure 5.2) and the applied infrastructure concept as described in
Figure 4.3, showcasing the interaction of the individual elements within the specific LIFEDATA project instance. In this setup, the
infrastructure components are managed within clusters to accommodate the increased demands of computation- and data-intensive
processes. The architectural diagram illustrates that these are divided into a development zone, model training / experimentation zone
and an operations zone. The deployment of the container-based components for the annotation and dashboard UI is housed within a
separate cluster.

control is applied to all code modules and associated data placeholder
files. Furthermore, these projects encompass the implementation of a
CI/CD/CT component, which again establishes the instructions for the
CI/CD/CT runner. One of the tasks is creating a Docker image, which is
published as the build artifact to an image repository. This artifact forms
the basis for subsequent tasks, such as running the ML pipeline within a
containerized environment on the CI/CD/CT runner.

The CI/CD/CT runner is deployed on one of two nodes designated for
computation-intensive tasks within Kubernetes Cluster A, equipped with
the appropriate hardware specifications. This includes two Intel Xeon
Silver 4110 CPUs, 377 GB of RAM, one TB of SSD storage, two NVIDIA
Quadro P6000 GPUs, and two NVIDIA Quadro RTX 6000 GPUs, each
with 24 GB of graphic memory. In this use case implementation, the
containers of the CI/CD/CT runners are mounted with a shared directory
used as a local cache, which DVC manages as content-addressable storage
(Iterative 2024).

In addition to the elements above, the infrastructure hosts the data
repositories for the respective projects on a storage-centric node within
the same Kubernetes cluster. This node, equipped with 32 GB of RAM and
12 TB of SSD storage, provides hardware resources for storage-intensive
services within the infrastructure. This includes the Experiment Tracking
Service, which, for this use case, is again realized in an MLflow instance
(Zaharia et al. 2018). The database provided by MLflow for storing metrics
has been integrated into the code modules, making all collected metrics
on the model and query set visible to developers, both in the experiments
and the deployed production environment.

Analogous to the role of the SCM server as a Git remote for code artifacts,



166 6 Use Cases & Evaluation

these storage locations are configured as remote entities within the data
versioning application. The tasks of the CI/CD/CT module, associated
with the execution of the ML pipeline, are explicitly defined to ensure
that all resulting data artifacts, such as the trained model and the query
set, are transmitted to the object storage server - realized through MinIO
(MinIO Inc. 2024) - using the S3 protocol into the respective buckets post-
execution. Similarly, this setup allows the import of artifacts (a specific
version of the trained model or a query set) by various CI/CD/CT
runners in cases where they are not present in the local cache and are
needed for downstream jobs, such as deploying the deployment.

Deployment. As a third area in the operations zone of the infrastruc-
ture diagram, the provisioning mechanisms are realized. Alongside
the automation of the training pipeline, the principles of continuous
deployment are prominently featured. The dedicated Kubernetes Cluster
B within this zone includes Node 3 (Deployment Host), designed to
cover the provision of necessary operational components, including
the relational database for storing annotations and web-based GUIs for
annotations and the dashboard. These services are contained in Pods,
a nomenclature native to Kubernetes (The Kubernetes Authors 2024a),
and are orchestrated to provide functions for storing annotations made
by annotators, as well as for presenting information in the dashboard for
domain experts.

Traefik, as instance of an ingress provider, handles traffic ingress to
these services, which adeptly routes requests to the internal services
(Traefik Labls 2024). Following the LIFEDATA framework, a Keycloak
(Keycloak Authors 2023) instance is deployed as the Identity Provider,
managing users and access control to the respective services. This ensures
that different front-end users (annotators and domain experts) can
authenticate and that the integrity of their input, such as provieded
labels, is ensured.

In this use case, the automated workflow defined within the CI/CD/CT
component involves a scheduled job that runs the LIFEDATA Machine
Learning Service nightly. The CI/CD/CT runner in the production
environment, upon deploying the annotation UI Pod — which further
encompasses the logic of the annotation widget - rolls out the query set
and the preprocessed signal data of the contained sample IDs.

The deployment process begins with initiating a job within the CI/CD/CT
component, which covers the execution of the ML pipeline in the produc-
tion environment. Initially, a database dump from the active annotation
DB is requested using the CLI logic implemented in the LIFEDATA core
framework (see Section 5.3.1) containing the annotations. Upon receiving
the new annotations, the Machine Learning Service is invoked, which
includes the execution of the ML pipeline with the current annotation
status, leading to the training of the model and the generation of a new
query set. After the ML pipeline is executed, the artifacts, including
the updated model and query set, are pushed to the object storage and,
regarding the concept of 4.2.3, the updated data placeholder files were
committed and pushed to the corresponding branch of the SCM server.

The deployment mechanism utilizes the inherent capabilities of Kuber-
netes, implementing a rolling update strategy to ensure that services
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remain available and are version-controlled throughout the deployment
process (The Kubernetes Authors 2024b). This rolling update is exe-
cuted by incrementally scheduling the Pod instances (annotation UI
with the new query set and Dashboard UI with updated information on
annotations and model metrics) on Node 3 within Cluster B.

Dashboard. The implementation of a real-world scenario involving
annotations provided by humans necessitated the deployment of an
enhanced dashboard component for domain experts, allowing for cus-
tomizable analyses. Visualizations were created using Plotly (Plotly Tech-
nologies Inc. 2015), a low-code Python framework for web applications
to achieve this. This framework enables the prepared and user-friendly
display of model results and other relevant metrics within a web-based
UI.

To ensure that the information visible to the user accurately reflects
the specific state of the data and model, such as the daily status, the
Dashboard Pod, which hosts the Dashboard UI, incorporates functions
that allow for direct integration with the version control systems.

Two main concepts underpin the implementation to achieve this integra-
tion:

▶ Version synchronization: Each time the dashboard pod is deployed
or updated, the current or a user-specified commit hash from the
Git repository is retrieved. This ensures that the displayed data and
metrics are synchronized with the respective state of the codebase.
Using the branching strategy described in Section 4.4, for instance,
the productive AL branch or a commit from it, which contains the
repository over the placeholder files tracked by the SCM can be
specified.

▶ Remote Data Fetching: The functions implemented within the
dashboard component are then capable of retrieving data managed
by the data version control system from the object storage. This
allows loading the chosen versions of data and model repositories
that correspond to the commit hash and passing them to the
implemented methods for data evaluation.

Consequently, the dashboard user has control and, therefore, full trans-
parency over which version is checked out to determine results and
conduct analyses at a selected point in time.

Machine Learning Pipeline

The adaptation of the ML pipeline definition proposed in the project
template was adapted for the 12-lead ECG signal classifier use case.
However, the changes were more extensive and can be seen in Figure
6.15, which shows the resulting ML pipeline as DAG.

The step for generating pseudolabels was removed, as no semi-supervised
scenario was implemented in this use case. An additional modification
compared to the original ML pipeline definition by LIFEDATA is the
changed order of the individual steps. Since the raw data does not
fluctuate significantly in this use case, but the annotation status undergoes
more significant dynamics during the realization of experiments for
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Figure 6.15: LIFEDATA’s ML pipeline definition applied to the ECG signal classification use case. Again, the semi-supervised stage has
been dropped, and the order of the initial pipeline was modified by moving the preprocessing stage, which is highly computationally
intensive and less fluctuating in this use case, closer to the beginning of the ML pipeline. Additional adjustments were implemented in
separate stages for generating vectors, used for representation-based QSs.

data labeling, the computationally and time-intensive preprocessing
procedures were placed before the data splitting stage. This ensures that
the pre-processed signal data is kept available for a frequent execution of
the ML pipeline. Further changes included the insert of additional stages
Encoding and Embedding for generating vecotrs, used for representation-
based QSs. The specific implementations in each stage are presented
below to provide a more detailed understanding of the ML pipeline.

Data Raw. As described in Section 6.2.1, multiple data sources with ECG
signal data are utilized to realize this use case. Following the proposal of
the LIFEDATA project template (see Section 5.4.2), the extraction of raw
data from publicly accessible databases occurs in a separate ETL project.
In this project, code modules with routines for filtering the relevant
12-lead ECG signals in their raw state by duration, class, and quality
regarding resolution and sampling frequency are implemented.

For the remaining, for this use case selected, raw 12-lead ECG signals,
a version (calculated hash value the ETL pipeline’s output) is created
according to the data repository concept, which is referenced as a place-
holder file in the Data Raw stage of the implemented ML pipeline of the
LIFEDATA AL project and is automatically imported using DVC during
the execution of the ML pipeline.

Label State. According to the project template of LIFEDATA, in the
Label State stage, index files describing the raw data’s labeling state are
being created, thus enabling the reproducibility of individual AL cycles.
Contrary to the use case of skin image analysis (see Section 6.1), where
the labeling process is exclusively simulated through a dedicated module
within the experimental utilities, the annotation in the use case of the
12-lead ECG signal classifier occurs in a real scenario by human experts.

The components provided by LIFEDATA, including the web-based anno-
tation UI and the relational database, integrate into the labeling process
for storing annotations provided by human oracles. In the production
environment, the index files created in the Label State stage are updated
through a database dump of the relational database containing the an-
notations. Since this task, similar to the approach in experiments where
the code module simulates the annotation process, occurs independently
of the ML pipeline managed by the data versioning system, any change



6.2 ECG Signal Classification 169

in the input data (new labels) leads to a recalculation of the subsequent
stages of the ML pipeline that depend on the current labeling state. This
ensures that subsequent artifacts (e.g., the trained model) constantly
reference a managed and, therefore, reproducible labeling state.

Preprocessing. In the preprocessing stage of the ML pipeline tailored
for 12-lead ECG use cases, the methodology deviates from logic, e.g., for
image preprocessing. To enhance the quality of the raw signals, this stage
includes the implementation of filtering and normalization processes
adapted for signal data.

The application of a baseline filter aims to remove very low frequencies
caused by physiological phenomena such as patient movements or
respiratory effects. This step minimizes signal distortions that could
obscure the medically relevant ECG signal. Using a notch filter eliminates
artifacts in the raw signal that could be present due to power line
frequencies, considering frequencies of 50, 60, 100, and 120 𝐻𝑧. The
application of a bandpass filter excludes frequencies outside defined
ranges. This filtering focuses the analysis on relevant frequency bands
and significantly reduces possible background noise.

Furthermore, the preprocessing stage optimizes the signal’s amplitude
values, adjusting the values after removing outliers based on the lower 2%
and upper 98% percentiles. Additionally, consultations with cardiologists
have determined that standardizing the sampling rate to 400 𝐻𝑧 is
feasible, resulting in 4,000 values for a 10-second signal length. This
resolution provides a balanced ratio between capturing detailed signal
characteristics and reducing the input data volume for model training. The
resulting preprocessed signals are pushed as output to object storage and
used both for display in the annotation UI and as input for downstream
stages of the ML pipeline.

Data Splitting. Implementing the data splitting stage encompasses
two splitting strategies to ensure reliable evaluation of QSs and models.
During the execution of experiments (simulated annotation process),
the training dataset is sampled proportionally as follows: 70% of the
samples are used for training the model. For validation, 10% of the data
are utilized during the training process in the Model Training phase to
prevent potential overfitting through early stopping mechanisms. The
remaining 20% of the data are reserved as a test dataset for measuring
the model’s performance.

For the production environment, the logic of the static test set provided
in the LIFEDATA project template is employed. This involves defining
the sample IDs through a separate index file, which is statically defined
and does not change and therefore ensures that these IDs are consistently
allocated to the test pool in each execution of the ML pipeline, regardless
of the rest of the configuration. The size of the test dataset in production
is set to 20% of the total data. From the remaining 80% of annotated data,
a proportional split of 10% for validating model performance during
the training process is conducted in each execution of the ML pipeline.
The calculation of model metrics at the end of the model (re-)training is
performed on the static test dataset, allowing for a consistent comparison
of models and QSs across annotation iterations. In both splitting strategies,
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index files are created as the output of this stage, which indicate the
assignment of the samples to the train, test and validation datasets.

Model Training. In this stage of the ML pipeline, a code module loads
the data into the model, and the algorithm is adjusted accordingly. The
model architecture implemented is a combination of a CNN and RNN
for predicting ECG signal data, as proposed by Xu et al. 2020. This model
architecture consists of two convolutional layers with 5x5 kernels and
ReLU activations, followed by four residual blocks, two bidirectional
short-term storage layers (biLSTM), and two fully connected layers (Xu
et al. 2020).

The settings for the hyperparameters batch size, number of epochs,
and learning rate were parameterized, and optimization on the utilized
data basis yielded an optimal configuration of BATCH_SIZE=32 and an
initial LEARNING_RATE=0.00 08. The NAdam optimizer (Dozat 2015) was
implemented, and the Binary Cross Entropy loss function was used.

Figure 6.16: Fitting process of the ECG
signal classifier during model training.
The graph presents aggregated perfor-
mance metrics across epochs, illustrating
the model’s learning progression with
various metrics for both training and val-
idation sets.
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The accuracy score can be calculated as
an indicator of the model prediction per-
formance during model fitting (see 6.1.2),
whereby the function returns the partial
quantity accuracy in the multi-label clas-
sification problem. In the strictest case,
this corresponds to the Exact Match Ratio
(𝐸𝑀𝑅), given by:

EMR =
1
𝑛

𝑛∑
𝑖=1

𝐼(𝑦𝑖 = �̂�𝑖)

where 𝐼(𝑥) is the indicator function and
results to 1 for a full match of all labels
in a prediction �̂� with the ground truth
𝑦, or 0 otherwise.

Figure 6.16 shows the model’s fitting curve during the training phase. The
plotted metrics correspond to the average value of three runs initialized
with different random seeds. Again, the shadow reveals the calculated
standard deviation. As seen in Figure 6.16, the average sweet point
is reached around epoch 20. An early stopping function utilizing the
validation dataset was implemented using the TF library to terminate
the model training prematurely if the prediction performance on the
validation data did not improve (Martín Abadi et al. 2015). The value of
EPOCHS was initially set to 50 in each ML pipeline execution, whereby
the early stopping function could halt the training earlier if necessary.

Similarly, the learning-rate scheduler provided by TF, which dynami-
cally adjusts the learning rate between epochs, was implemented. The
„ReduceLROnPlateau“ strategy, where the learning rate is reduced once
a defined metric fails to improve, was chosen.

The trained model file was saved during this phase to be used as an
artifact in subsequent stages.
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Figure 6.17: Confusion matrix of the trained ECG signal classifier. Due to the multi-label problem, values are specified on a class-wise.
The values are normalized, and the color scale employs green to signify high values for True Positives and True Negatives, while lower
values are represented in a reddish hue. Conversely, for False Negatives and False Positives, the color scale is applied in the opposite
manner, indicating the performance and accuracy of classifications within the model visually.

Evaluation. In the evaluation stage of the ML pipeline, a code module
is deployed to assess the prediction performance of the trained classi-
fier using the test dataset set aside during the data splitting stage. To
ensure a robust evaluation of performance, the entire ML pipeline was
executed three times with different random seeds, and the results were
aggregated.

As seen in Figure 6.17, the confusion matrix is subdivided class-wise
for the multi-label case. This implies that for each class being observed,
there is a 2 × 2 matrix in the figure, showing the normalized values of a
binary classification of the model, indicating how well the model predicts
the presence (positive, POS) or absence (negative, NG) of the respective
label. The rows represent the values concerning the actual class (Ground
Truth), and the column values represent the predicted labels.

For example, looking at the ’ADV_LD’ matrix, the model correctly predicts
the non-existence of the class in a sample (TN) 93% of the time. In 47%
of cases, the model fails to predict a class when it exists (FN). The color
scale is chosen so green indicates a high error-free result (TP and TN),
while reddish coloring indicates a lower error-free value. The scale is the
opposite for erroneous results (FP and FN). Thus, green 2 × 2 matrices
suggest high model accuracy for this class, while matrices with yellow
and red fields indicate classes with high misclassification by the model.

In addition to the confusion matrix, Table 6.7 lists the calculated values
of Precision, Recall, and 𝐹1-Score, as well as the number of available
ECG samples in the test dataset for each class. The aggregated metrics
presented in Table 6.8 include micro-, macro-, and weighted average
values for metrics that can be calculated for multi-label classifiers.

The evaluation stage creates plots as artifacts for evaluating the model,
as well as the calculated metrics and classification report, which can be
loaded by the dashboard pod routines during deployment.
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Table 6.7: Classification report of the
ECG signal classifier. The table show-
cases the Precision, Recall, 𝐹1-Score, and
sample count for each class, with error
margins of three runs, illustrating the bal-
anced evaluation of the ECG signal clas-
sifier across the investigaded classses.

Precision Recall 𝐹1-Score # Samples

ADV_LD 0.62 ± 0.03 0.52 ± 0.01 0.57 ± 0.02 1,891
ADV_LV 0.01 ± 0.01 0.01 ± 0.01 0.02 ± 0.01 86
ADV_RD 0.60 ± 0.02 0.55 ± 0.07 0.57 ± 0.03 82
AFIB 0.94 ± 0.00 0.88 ± 0.00 0.91 ± 0.00 730
AFLUT 0.71 ± 0.07 0.52 ± 0.16 0.59 ± 0.07 34
AV1 0.63 ± 0.00 0.48 ± 0.01 0.54 ± 0.01 384
ICD_NON 0.38 ± 0.01 0.08 ± 0.02 0.13 ± 0.03 379
IRBBB 0.65 ± 0.00 0.63 ± 0.08 0.64 ± 0.04 538
LAFB 0.82 ± 0.01 0.75 ± 0.07 0.78 ± 0.04 782
LBBB 0.93 ± 0.01 0.86 ± 0.04 0.89 ± 0.02 259
L_QT 0.12 ± 0.10 0.17 ± 0.10 0.12 ± 0.10 53
PM 0.96 ± 0.00 0.78 ± 0.04 0.86 ± 0.02 144
PVC 0.82 ± 0.01 0.85 ± 0.00 0.83 ± 0.00 590
RBBB 0.81 ± 0.03 0.90 ± 0.01 0.85 ± 0.01 259
SARRHY 0.64 ± 0.01 0.53 ± 0.00 0.58 ± 0.00 370
SNR 0.94 ± 0.00 0.96 ± 0.00 0.95 ± 0.00 8,054
SRB 0.74 ± 0.02 0.50 ± 0.00 0.60 ± 0.01 307
SRT 0.87 ± 0.02 0.89 ± 0.01 0.88 ± 0.02 394
SVES 0.34 ± 0.04 0.26 ± 0.03 0.30 ± 0.03 192

Table 6.8: Aggregated model perfor-
mance metrics of the ECG signal clas-
sifier. The table shows calculated the
metrics Precision, Recall, 𝐹1-Score,𝑀𝐶𝐶
and 𝐽𝑆𝐶, each for three ML pipeline runs
in micro, macro and weighted avarage.

micro macro weighted

Precision 0.84 ± 0.00 0.65 ± 0.00 0.82 ± 0.00
Recall 0.80 ±0.01 0.58 ± 0.01 0.80 ± 0.01
𝐹1-Score 0.82 ± 0.01 0.61 ± 0.01 0.81 ± 0.01
𝑀𝐶𝐶 0.81 ± 0.01 0.59 ± 0.01 0.55 ± 0.02
𝐽𝑆𝐶 0.70 ± 0.01 0.49 ± 0.01 0.72 ± 0.01

Based on the results of the evaluation stage, which detail the prediction
performance of the ECG classification model on the entire dataset, they
can again be used as a benchmark for AL simulations in Section 6.2.3.

Related to Gorodkin 2004, the Matthews
Correlation Coefficient (MCC) for the
multiclass case is definable using the
confusion matrix 𝐶 with 𝐾 classes:

𝑀𝐶𝐶 =
𝑐 × 𝑠 −∑𝐾

𝑘
𝑝𝑘 × 𝑡𝑘√

(𝑠2 −∑𝐾
𝑘
𝑝2
𝑘
) × (𝑠2 −∑𝐾

𝑘
𝑡2
𝑘
)

while 𝑡𝑘 , 𝑝𝑘 , 𝑐 and 𝑠 are intermediate
variables defined as:
𝑡𝑘 =

∑𝐾
𝑖
𝐶𝑖𝑘

𝑝𝑘 =
∑𝐾
𝑖
𝐶𝑘𝑖

𝑐 =
∑𝐾
𝑘
𝐶𝑘𝑘

𝑠 =
∑𝐾
𝑖

∑𝐾
𝑗
𝐶𝑖 𝑗

The MCC yields a value within the in-
terval [−1,+1], whereby an MCC of +1
signifies an impeccable prediction con-
gruent with the test dataset, whereas a
value of 0 is indicative of a classification
outcome akin to random chance.
As formulated by Jaccard 1901, the Jac-
card Similarity Coefficient (JSC) can be
applied for an multilabel classification
case and measures similarity between
a ground truth label set 𝑦 and the pre-
dicted label set �̂�:

𝐽𝑆𝐶(𝑦, �̂�) = |𝑦 ∩ �̂�||𝑦 ∪ �̂�|

The JSC spans a continuum from 0 to 1,
where 1 denotes a perfect match and 0
means no match between predicted and
ground truth sets.

Validation. In the validation stage, various model interpretation algo-
rithms were implemented. The results are presented in detail in Chapter
8.

Encoding. To realize the density-based QS proposed by Beluch et al.
2018 in this application, the Encoding stage of the ML pipeline incorporates
a dedicated logic for the computation of similarity vectors of samples.
The method for generating sample representations, despite ECG signal
data presenting different characteristics and structures from image data,
can be applied to the used model architecture from Xu et al. 2020. By
activating the last fully connected layer of the trained model, the output
is transformed into vectors.

These vectors facilitate a comparison based on their Euclidean distance,
adapting the technique described for determining essential similarity
values of training samples in the implementation of the ML pipeline of
the skin image analysis use case (see 6.1.2) (Sener et al. 2018). Storing
calculated vectors as tracked data artifacts makes them immediately
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accessible during the execution of the query module, thus streamlining
the querying process.

Embedding. To realize a cluster-based QS, an additional ML pipeline
stage, Embedding, was introduced, implementing a separate code module
for generating embedding vectors of the trained model using parametric
Uniform Manifold Approximation and Projection (UMAP). This tech-
nique, proposed by Sainburg et al. 2021, transforms high-dimensional
data into a lower dimension, aiming to preserve the key structures of the
data.

The embedding vectors generated in this stage are utilized by the cluster-
based QS, which is defined as a subsequent stage in the ML pipeline for
the effective grouping of similar data points. Like the encoding vectors,
storing the embedding vectors as tracked data artifacts ensures quick
availability during the execution of the Query module.

Query. Given the complexity of the ECG signal classifier use case, which
involved a larger dataset and a greater number of classes compared to the
previous use case from Section 6.1.2, additional QSs were implemented
to handle these challenges more effectively. The five selected QSs were
chosen to provide a diverse set of approaches, and the hybrid QSs strike
a balance between informativeness and representativeness in the query
process.

▶ The implementation of a Random based sampling was adopted. It
selects samples without following a specific pattern, thus providing
a basis for comparison with other QSs in this application case.

▶ For information-based QS, the implementation of Uncertainty based
sampling was further adopted. This strategy selects samples for
which the model exhibits the highest uncertainty in its predictions,
following the least confident approach by Lewis et al. 1994a (c.f.
2.1.3).

▶ As a representation-based QS, the approach proposed by Zhdanov
2019, utilizing k-means clustering, was implemented. Using the
vectors stored during the Embedding stage, 𝑘 clusters are formed.
Samples are then selected based on their maximum distance from
the cluster center.

▶ The Density Weighted Diversity (DWD) based sampling proposed
by Wang et al. 2021 was implemented as a hybrid QS, selecting
samples based on both informativeness and representativeness.
By weighing the diversity of samples against their density, this
strategy achieves a balance between exploring the input space and
exploiting dense areas.

▶ To balance the conflicting aspects of representation-based and
information-based QSs, another hybrid QS, QueryMerging, was
implemented. As shown in Algorithm 1, QueryMerging queries
individual batches for each selected query function and then
merges them according to the desired ratio. The final query set is
proportionally mixed, taking into account the original ranking of
individual samples in each query set.

This Query stage outputs a data artifact as a CSV file containing a
configurable number of entries of sample_ids from the query set of
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Algorithm 1: QueryMerging. The query set B of size 𝑛 would be
assembled using the set of query functions Q in ratio 𝑅. U is the
unlabeled data pool and 𝑓 is the model.
Input: 𝑄 ← set of 𝑘 query functions

𝑅← set of query strategy ratios
𝑛 ← size of the query set
U← the unlabeled dataset
𝑓 ← the model

Output: B= {𝑠1 , 𝑠2 , ..., 𝑠𝑛}
ensure: 0 < 𝑛 ≤ |U|
initialize: 𝑏1 , 𝑏2 , ..., 𝑏𝑘 ← ∅ and 𝐵← {𝑏1 , 𝑏2 , ..., 𝑏𝑘}

1 foreach query function 𝑞𝑖 ∈ Q do

initialize: 𝑞𝑖
𝑓

2 // acquire samples to temporary batches
3 𝑏𝑖 ← 𝑞𝑖

𝑓 (U, 𝑛)
initialize: 𝑗 ← 0, B← ∅

4 // assemble the query set
5 do

6 // Choose samples from each batch based on the given ratio
7 𝑖 ← arg max𝑅
8 𝑚 ← 𝑅𝑖
9 b← ∅

10 foreach sample 𝑠𝑙 ∈ 𝑏𝑖 do

11 // add samples to query set only once
12 if 𝑠𝑙 ∉ B then

13 b← b∪ 𝑠𝑙
14 𝑗 ← 𝑗 + 1
15 // stop after sufficient sampling
16 if |b| = 𝑚 then

17 break

18 B← B∪ b

19 𝑅𝑖 ← 0
20 while 𝑗 < 𝑛;

samples selected by the applied QS. As described in Section 6.2.2, this
artifact is loaded by the annotation widget of the annotation UI pod
during deployment, making these samples available for the human oracle
to annotate. For the simulation case, the query set file is read by the
code module of LIFEDATAs experiment utils, whereby the sample’s
annotation is automatically generated by looking up the true label in
each AL iteration.

6.2.3 Active Learning Simulation

Applying LIFEDATA in this use case, along with the availability of a fully
annotated dataset, initially allowed for the investigation of the annotation
process’s efficiency without involving human feedback. To evaluate
the AL process for an ECG signal classifier, the focus was on whether
the application of AL in annotating ECG signal data could reduce the
required annotation effort and determine which of the implemented
QSs would be most effective in preferentially sampling rare classes over
majority classes during the annotation process.
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Figure 6.18: Classification performance
of class ’SNR’.

The experimental approach simulated the labeling process to explore
these aspects. It is important to note that the simulation was conducted
under laboratory conditions, where the true label was determined by
lookup, ensuring error-free annotation and excluding user errors.

The ML pipeline described in Section 6.2.2 formed the basis for imple-
menting the simulation. Again, by following the methodology proposed
in Section 4.3.3, sub-experiments in various experiment branches were
initiated, each simulating the annotation process under the assumption
that one of the implemented QSs with a configured query set size of 2,500
is active. The hybrid QS QueryMerging defined in Algorithm 1 was initial-
ized with the Q functions of the information-based QS uncertainty based
sampling, and the representation-based QS k-means in the balanced ratio
of 𝑅 = [1 : 1]. To validate the results, each sub-experiment, analogous to
the approach in the ML pipeline implementation, was conducted with
three different random seeds. The results of these runs were calculated
for average and standard deviation.

The analysis of the predictive performance of the trained model through-
out the annotation process is facilitated using the 𝐹1-Score, which serves
as a simplified performance metric. Figure 6.18 presents the average
𝐹1-Score for the majority class ’SNR’ in relation to the absolute number
of annotated ECG signals. The colored lines represent the average value
across the three sub-experiments for each QS, while the shaded areas
indicate the standard deviation. Notably, the maximum predictive per-
formance of the model for the ’SNR’ class is achieved with a dataset of
less than 30,000 labeled samples, corresponding to less than 50% of the
data. This observation applies to all investigated QSs. None of the QSs
resulted in a significantly different predictive performance of the model
at the end of the simulations.

Figure 6.19 allows for a more detailed examination of performance per
class. It shows the progression of 𝐹1-Scores achieved by the model for
the remaining 18 classes depending on the proportion of annotated data.
Although the development of the 𝐹1-Score in most classes correlates with
the number of annotated data, it is noticeable that the ’ADV_LV’ class is
rarely correctly predicted at any point in time.

Moreover, the diagrams illustrate the different capabilities of the model
in terms of its predictive ability for the respective classes. While some
classes (such as ’AFIB’, ’PVC’, ’SRB’) achieve high 𝐹1-Scores early and
thus appear easier to learn for the chosen model architecture in this setup,
other classes (such as ’ICD_NON’, ’LAFB’) show low performance values
or greater variances (e.g., ’AFLUT’). This observation may be attributable
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Figure 6.19: ECG signal classification performance per class.



6.2 ECG Signal Classification 177

Proportion of “SNR”-Samples in the Queryset

0 10k 20k 30k 40k 50k 60k 70k

0

500

1000

1500

2000

Random

K-means

Uncertainty

Uncertainty_K-means

DWD

Query Strategy

Number of Labeled Samples in the Training Data Set

Sa
m

pl
e 

Co
un

t

Figure 6.20: Query set proportion of class
’SNR’.

to a higher complexity of the inherent patterns of these classes or to the
low number of existing samples.

A comparison of the QSs for this use case reveals that none of the
implemented approaches result in a significant efficiency increase in
the model’s achievable predictive performance. The model appears to
exhibit similar learning behavior across all QSs throughout the simulated
annotation process, indicating that no QS led to a notable difference in
the model’s predictive performance.

To evaluate the AL iterations concerning the implemented QSs and class
selection, analyses of the frequency distribution of the created query sets
are conducted. This is facilitated again by the established project setup
and the integration of the data version control system into LIFEDATA,
allowing the query sets created in the simulated AL iterations to be
downloaded and evaluated as artifacts from the data remote.

Figure 6.20 initially provides an overview of the proportion of the queried
class SNR within the various QSs. In this particular use case, the intuition
is to minimize the selection of this class to the greatest extent feasible.
Considering annotation costs and the high performance of the classifier
for this class, the goal is to present the human annotator with other
classes in the data labeling process as much as possible.

In Figure 6.20, the sample count (ordinate) is set in relation to the number
of labeled samples in the training dataset (abscissa). The blue line,
representing random sampling, serves as the baseline, corresponding to
random selection. It is observed that the four other implemented QSs
offer a significant advantage over random sampling. Only after about
halfway through the annotation process does the proportion of samples
with the class ’SNR’ in the query set increase, indicating that the samples
of the other classes were annotated by this point, which is why the
frequency distribution curve for the class ’SNR’ rises.

The remaining 18 classes are compared in Figure 6.21. The individual
plots are similarly structured and show the proportion of each specified
class in the query set throughout the simulated annotation. Here, the
curves of the rarer classes show the expected opposite trend. In the first
half of the annotation process, the proportion of samples of almost every
class is higher than random-based sampling. It steadily decreases with
an increasing proportion of the total labeled training data volume. An
exception is the classes ’SRB’ and ’SRT’, which show a similar trend curve
to ’SNR’, possibly explained by the generally higher total proportion of
these classes in the dataset, which is evident from the scaling of the x-axis
of these subplots.
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Figure 6.21: Query set proportion per class.
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Comparing the different QSs, the DWD-based sampling, for example,
for the classes ’ADV_LD’, ’ADV_RD,’ and ’PVC,’ shows a significant
advantage, as the proportion of these classes in the query set of the first
iterations is considerably higher compared to the other QSs. For the
class ’AFLUT’, the frequency distribution of the query set suggests that
uncertainty-based sampling offers a clear advantage.

In summary, the implemented QSs are equally suitable for ECG signals
and offer a significant advantage in selecting rare classes over random-
based sampling. In the simulation, only the classes ’SRB’ and ’SRT’
deviate from this observation, likely due to their high proportion in
the dataset used. Since the implemented QSs perform differently, the
choice of which to use depends on which classes should be prioritized.
The DWD QS provides a balanced advantage by achieving a preferred
selection for several rare classes early in the annotation process.

6.2.4 Human-in-the-loop Study

While the simulation-based analysis has demonstrated the effectiveness of
various querying strategies, highlighting the efficiency in the annotation
process, the focus in the subsequent section shifts to an equally critical
element of the AL learning cycle: human-provided annotation. Here, we
focus on the integrity and consistency of the labels provided by human
annotators in this AL setup.

Study Design and Implementation. Figure 6.22 illustrates the method-
ological approach of the designed study. Initially, a cardiology expert
identified representative ECG signals using the QS DWD. The class
selection was increased from the original 19 to a total of 40 classes,
which were categorized by the domain expert into superclasses („general
diagnosis“) and subclasses („specialized diagnosis“). These manually
selected samples formed the static test set, which was systematically
integrated into the annotators’ workflow over four months.

Domain Expert

Annotator A

Annotator B

Annotator C

Annotator D

ECG
Data

Static
Sample

IDs
Query

Set

Over Annotation Sample Injection

Query
Strategy

ML
Model

Model
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Labeled Data
& Provenance

Query Labeling
Manual Testset

Creation

Recreation

Figure 6.22: Implementation of the inter-
and intra-annotator agreement study. At
the beginning of the study, a domain
expert created a manual test set. The
samples from this test set were added
to the query set by four annotators over
a period of four months. The collected
labels were then available for evaluation.

The four annotators involved, all similarly qualified with a degree in
human medicine, labeled these samples along with others from the
dynamically generated query set. The annotators were not informed
that these samples had been manually selected for annotation, so they
assumed they were annotating samples selected by the model’s QS, as
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usual. Each of the four annotators was presented with 40 samples from
the static test set for re-annotation in each of the four consecutive months.
In addition, the annotators had access to an annotation guide in the
GUI provided by LIFEDATA, which included detailed guidelines for
assigning possible classes.

To replicate the process shown in Figure 6.22 in the functionality of
LIFEDATA, the API to the core framework was extended with a method
for querying the static test set, whose function was implemented in
the data persistence layer, specifically in the DBAssignmentRepository

(see Listing 5.5). This extension enabled the targeted injection of the
static sample_IDs, which are managed in an index file within the project
instance, thus ensuring that each annotator was presented with these
ECG signals for labeling in the GUI during their monthly annotation
activity.

Analysis. The information on labels and provenance that accumulated
during the study period was collected in LIFEDATA’s relational DB
and subsequently analyzed using the DB export function provided by
LIFEDATA. To assess label quality, the metric introduced by Krippen-
dorff 1970, Krippendorff’s Alpha, was used - a reliability coefficient
that enables quantifying the degree of agreement among given labels,
thereby determining the reliability of annotations generated in the AL
environment.

Krippendorff’s Alpha (𝛼) (Krippendorff
1970) is defined as:

𝛼 = 1 − 𝐷𝑜
𝐷𝑒

where 𝐷𝑜 is the observed disagreement,

𝐷𝑜 =
1
𝑁

∑
𝑐,𝑐′

𝑁(𝑐, 𝑐′) · 𝛿2(𝑐, 𝑐′)

and𝐷𝑒 is the expected disagreement due
to chance:

𝐷𝑒 =
1

𝑁(𝑁 − 1)
∑
𝑐,𝑐′

𝑁(𝑐)·𝑁(𝑐′)·𝛿2(𝑐, 𝑐′)

Here, 𝑁 is the frequency of samples,
𝑁(𝑐, 𝑐′) is the number of values in the re-
sulting coincidence matrix for the classes
𝑐 and 𝑐′. 𝛿(𝑐, 𝑐′) is a difference function.
For the multi-label case, we can use the
𝐽𝑆𝐶 as defined in 6.2.2, which gives us
the function with:

𝛿(𝑐, 𝑐′) = 1 − |𝑐 ∩ 𝑐
′|

|𝑐 ∪ 𝑐′|

Krippendorff’s Alpha facilitated the determination of both inter-annotator
agreement and intra-annotator agreement. Inter-annotator agreement
measures the consensus among annotators and was assessed by compar-
ing the labels assigned to the same samples by different annotators. In
other words, inter-annotator agreement describes the degree to which,
for example, Annotator A and Annotator B agree on a label for a sample.

Intra-annotator agreement, referred to as ’self-agreement’, evaluates the
consistency of labels that a sample is given by the same annotator across
different annotation iterations, i.e., the deviation, for example, of the
labels given to a sample by Annotator A to the same labels given to the
same sample by Annotator A upon re-labeling.

Results. The systematic evaluation of the submitted annotations over a
period of four months yielded the agreement values listed in Table 6.9. A
consistent pattern in agreement was observed in both the subclass and
superclass level assessments. The Alpha inter-values for subclasses were
in the range of 𝛼 = 0.33 to 𝛼 = 0.34, while the values for superclasses
were slightly higher, ranging between 𝛼 = 0.35 and 𝛼 = 0.37. Although
the values showed consistency over the months, suggesting that the
annotators’ agreement remained stable over time, the moderate values
indicate the difficulty of achieving high agreement in this annotation task,
which may be reflected by the minimal differences between superclass
and subclass - hinting at a high degree of complexity, precision, and
inherent interpretive space of ECG signal data.

In examining the agreement between annotators, as depicted in Table 6.10,
there was measurable variance among the annotators, with values ranging
from 𝛼 = 0.56 to 𝛼 = 0.63 for subclasses and between 𝛼 = 0.57 and
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Month

Annotated

samples

Alpha inter

(subclass)

Alpha inter

(superclass)

1 160 0,34 0,36
2 160 0,33 0,36
3 160 0,34 0,37
4 160 0,33 0,35

Table 6.9: Inter-annotator-agreement of
the four annotators.

𝛼 = 0.63 for superclasses. Annotator A and Annotator B showed higher self-
agreement with Alpha intra-values ≥ 𝛼 = 0.60. Conversely, Annotator C
and Annotator D demonstrated slightly lower agreement. These deviations
could point to differences in individual annotators’ labeling consistency
or their interpretation of the annotation guidelines.

Annotator

Alpha intra

(subclass)

Alpha intra

(superclass)

Annotator A 0,62 0,62
Annotator B 0,61 0,63
Annotator C 0,56 0,57
Annotator D 0,56 0,57

Table 6.10: Self-agreement of the four
annotators.

Krippendorff’s Alpha can be interpreted in such a way that 𝛼 = 1 indicates
perfect agreement. In contrast, 𝛼 = 0 denotes no agreement comparable
to what could be achieved by chance. Conversely, a negative value
𝛼 < 0 suggests systematic disagreement, implying that the annotators
consistently annotate differently. (Krippendorff 2011)

However, as mentioned by Passonneau 2006, the evaluation of Krip-
pendorff’s Alpha leaves open what value of reliability is good enough
and what decisions can be derived from it. Since there is no universally
applicable threshold, it is, therefore, difficult to determine which value is
acceptable for conclusions.(Passonneau 2006)

In summary, the assessment of Inter- and Intra-Annotator Agreement
using Krippendorff’s Alpha metric shows a higher agreement among
annotators compared to the agreement between different annotators.
Annotators tended to be more consistent with themselves than with other
Annotators, which could be attributed to the annotation task requiring a
subjective judgment despite the labeling guidelines. Overall, the results of
the calculated Krippendorff’s Alpha values suggest a moderate reliability
of the annotations.
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6.3 Summary

This chapter described the application of the LIFEDATA framework to
realize AL projects in two life sciece use cases.

In Section 6.1 a scenario was demonstrated in which an ML pipeline is
used to train a skin image classifier. Dermatoscopic images from the
HAM10000 dataset (Tschandl et al. 2018) were leveraged, with the initial
ML pipeline proposed in the LIFEDATA project template being tailored to
fit this specific application. This involved incorporating a logic for image
data preprocessing and implementing a DNN based on the DenseNet201
architecture (Huang et al. 2017).

The resultant classification model was evaluated through multiple it-
erations of experimental ML pipeline runs. Three distinct QSs were
implemented to probe the facets of the AL loop. Simulations highlighted
that employing uncertainty or density-based sampling, in contrast to
random selection in the annotation process, led to more strategic queries,
thereby effectively harnessing human resources in case of a highly imbal-
anced dataset.

LIFEDATA’s architecture was instrumental in fostering a robust and
scalable project setup. Consistent code and data artifact versioning
ensured all experiments’ reproducibility. Furthermore, it enables the
assessment of compute-intensive AL simulations by making the requisite
data artifacts accessible in data repositories and within the experiment
tracking service.

This was emphasized in the application of LIFEDATA to the second use
case in Section 6.2, in which a scenario was implemented with an ML
pipeline aiming to classify multi-label arrhythmia in ECG signal data.
Multiple suitable 12-lead ECG datasets were carefully selected from the
PhysioNet Challenges 2020 (Alday et al. 2020) and 2021 (Reyna et al. 2021)
for this use case. Subsequently, a DNN model employing an architecture
proposed by Xu et al. 2020 was trained.

The architecture of the ML pipeline was expanded to incorporate the
necessary logic for preprocessing the raw signals, along with additional
steps that enable the efficient implementation of (besides information-
based) representation-based QSs. Furthermore, the query module was
enhanced by introducing a hybrid QS, which was evaluated in AL
simulations regarding the efficiency of the annotation process.

The provision of a GUI for annotating samples and the realization of
a customized dashboard GUI, which visualizes metrics of the annota-
tion process, facilitated the implementation of a labeling scenario with
real humans in the AL cycle. A study investigated the reliability of
the annotations by calculating the degree of inter- and intra-annotator
agreement.

The increased complexity of this project required an adaptation of the
infrastructural setup, where the components provided by the LIFEDATA
project instance could be extended. This demonstrated the adaptability
of the framework and its ability to scale with increasing requirements.
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In the pursuit of implementing trustworthy AI systems, the aspect
of explainability regarding the functioning of deployed models leads
to the concept of XAI, which aims to translate a system’s outputs or
decisions into a form understandable by humans. In this context, domain-
specific approaches in XAI play an increasingly important role as they
enable the development of explanation methods tailored to the specific
characteristics of particular application fields (Murdoch et al. 2019).

An example where the need for XAI becomes apparent was shown
in Section 6.1, situated in the application field of AI-based CDSS in
medical diagnostics for the classification of skin lesions. Such CDSS
often utilize complex ML models, which pose challenges in interpreting
their decisions. The complexity and opacity of these models can make it
difficult for users to understand and verify the diagnostic suggestions
provided by the CDSS (Lucieri et al. 2022).

Here, just like the model itself, explanations must be adapted to the
problem to be useful for the specific application case (Miller 2019). The
integration of domain-specific knowledge, as illustrated by dermatology,
enables dermatologists to explain the decisions of AI systems in a manner
understandable from their relevant perspective.

The following chapter introduces a domain-specific concept for this
purpose, first presented in the publication Stieler et al. 2021. This approach
synthesizes the interpretable ML method LIME, proposed by Ribeiro
et al. 2016, with the human-applied ABCD rule, a diagnostic procedure
for differentiating between melanocytic and non-melanocytic skin lesions
(Stolz et al. 1991).

As introduced in Section 7.3, the perturbation algorithm of LIME is modi-
fied along two of the dimensions of the ABCD rule. To validate the degree
of significance of the explanations, medically irrelevant perturbations
are introduced in addition to the medically relevant dimensions. Section
7.4 demonstrates the application to a black-box model and formulates
hypotheses about its predictions. The observations are presented in
Section 7.5 and subsequently discussed in Section 7.6. First, Sections 7.1
and 7.2 briefly overview related works and their methodology.
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7.1 Interpretable Machine Learning in Skin

Image Analysis

In the skin image analysis domain, the interpretability of ML models is a
crucial factor for fostering acceptance and trust among dermatologists
and patients in AI-supported diagnostic procedures. The uniqueness
often lies in the complex decisions of algorithms applied in a field where
visual pattern recognition and subtle nuances of morphology are decisive.
XAI methods allow for subtly examining features an ML model considers
in its predictions.

An example of implementing an XAI method in AI-supported skin image
analysis is provided by Winkler et al. 2019, who visualized the outputs
of a trained CNN using saliency maps (Simonyan et al. 2014). They
found that annotations made by doctors on dermatoscopy images could
influence the ML model’s predictions. These artifacts introduced by
doctor interaction led to the ML model learning features relevant to the
Melanoma class, thereby not learning the medically relevant concept.

Although most XAI methods are possible without domain-specific adjust-
ments and can increase the interpretability of model predictions, various
works show that integrating medical expertise into implementing XAI
can increase acceptance and understanding. Wang et al. 2022 highlighted
the added value of incorporating medical knowledge into the conception
of XAI models. They show that the effectiveness of XAI applications
depends on the technical implementation as well as on integrating this
knowledge into model explanations.

The application of domain-specific features in developing a transparent
ML model for melanoma diagnosis is further investigated by Gareau et al.
2020. Their approach is based on the use of Imaging Biomarker Clues
(IBCs) to provide better interpretability for doctors. In their study, an
ensemble model was trained using 38 IBCs that quantify visually relevant
features, representing intuitive visual clues that enable doctors to validate
the model’s diagnostic decisions based on visible and understandable
characteristics.

Lucieri et al. 2020 investigated the interpretability of a DL-based skin
lesion classifier using Concept Activation Vectors (CAVs, Kim et al. 2018).
They examined whether an ML model learns and uses disease-related
concepts similar to those described and used by dermatologists, with
results suggesting that the model indeed utilizes disease-related concepts
in prediction.

The study by Khater et al. 2023 focuses on implementing XAI techniques
using SHAP (Lundberg et al. 2017) in decision tree-based models trained
with extracted features. SHAP was used to post-hoc indicate the impor-
tance of the features used in the model’s predictions, such as pigment
network and count of different colors in the lesion.

The application of Class Activation Mapping (CAM, Zhou et al. 2016)
to highlight diagnostically relevant areas in histological images was
implemented by Jiang et al. 2021. This approach, shown by Mridha et
al. 2023 in the form of Gradient-weighted Class Activation Mapping
(GradCAM, Selvaraju et al. 2017) on dermatological images, aims to
enhance the interpretability of the CNN models trained by the authors.
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Figure 7.1: Local model output interpretations of the DNN-based classifier. Correct model predictions of two test samples are analyzed
by three different model interpretation methods. Colored overlays indicate the degree of importance in relation to the predicted class.

This interpretation mechanism is limited to CNN models, using the
gradient flowing into the last convolutional layer to highlight regions in
the image that are important for prediction.

Randomized Input Sampling for Explanations (RISE) is a model-agnostic
approach for generating local explanations for image data based on the
principle of occlusion. Random masks are generated to cover image
areas, pixels, for a specific pattern. To create an explanation, the pattern
is occluded with these masks, and model predictions are determined.
Results are combined by calculating the importance of each pixel of the
input image in relation to the resulting classification.

Xiang et al. 2020 implemented the LIME approach introduced by Ribeiro
et al. 2016 in their ML pipeline for classifying skin lesions. As highlighted
in this chapter, this surrogate model-based method generates a dataset
of perturbed instances for the sample to be explained. Predictions of
the perturbed data using the black-box model are weighted, and an
interpretable local model is trained.

For image data, this involves occluding parts of a specific pattern, typically
selecting such parts with superpixels, by default using the Quick-Shift
algorithm (Vedaldi et al. 2008), which can lead to the generation of
potentially unusable areas in the medical context (Schallner et al. 2020;
Magesh et al. 2020). This challenge was further found by Xiang et al. 2020,
noting that such a model interpretation method can show meaningful
areas in a given sample but may lack specificity for both machines and
humans.

Figure 7.1 applied three methods to a DNN model, GradCAM (Selvaraju
et al. 2017), RISE (Petsiuk et al. 2018), and LIME (Ribeiro et al. 2016), each
in their standard implementations without domain-specific adjustments.
Although the model’s classification for the two test patterns shown
is likely correct, the explanation outputs show a fatal correlation: For
Sample 2, relevant areas of a melanoma are marked. Sample 1 shows a
nevus, and the important areas for the model lie outside the lesion. A
critical feature seems to be the skin, not contributing to the prediction.

The simple application of such model interpretation methods in an AI
system already demonstrates their potential. Rather than relying solely
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on prediction, the results provide insight into how the underlying model
arrived at its decision. However, all these outputs from various methods
only show image areas, the significance of which can vary greatly. There
is a clear lack of domain-specific contexts: interpreting the results of these
methods requires significant training for professionals. Hauser et al. 2022
conclude in their systematic review on XAI in skin cancer recognition the
importance of collaboration with dermatologists for developing specific
XAI methods to be used in AI-supported CDSSs.

7.2 Dermatologist’s Human Approach

There are a variety of methods for diagnosing melanoma through human
pattern recognition, with visual inspection often being the initial step in
evaluating skin lesions. Over time, dermatologists and non-specialized
physicians have established and applied various approaches.

Pattern Analysis focuses on identifying recurring patterns in skin lesions,
requiring deep experience and understanding of the patterns in benign
and malignant lesions. This technique introduced by Pehamberger et al.
1987 allows for a differentiated assessment by identifying specific pattern
structures, though its complexity demands the interpretation of a wide
array of patterns.

The CASH method, an acronym for Color, Architecture, Symmetry, and
Homogeneity, provides a structured approach to visually evaluating
skin lesions. Proposed by Henning et al. 2007, it analyzes the lesion’s
overall appearance based on specific characteristics. While enabling
comprehensive evaluation, CASH necessitates thorough training for
practical application, with outcomes largely dependent on the user’s
experience.

Some factors used in the CASH method trace back to the 7-Point Checklist,
developed by MacKie 1984. This method encompasses seven specific
criteria to identify a melanoma, including three major features (Atypical
Pigment Network, Blue Whitish Veil, Atypical Vascular Patterns) and
four minor ones (Irregular Streaks, Irregular Dots, and Spots, Regression
Structures, Irregular Diffuse Pigmentation), with a higher total score
indicating a higher melanoma risk.Sensitivity (𝑆𝑒) quantifies the ability of

a test to correctly identify patients with
a specific disease. It is calculated in the
same way as the precision given in 6.1.2:

𝑆𝑒 = 𝑃 =
𝑇𝑃

𝑇𝑃 + 𝑇𝑁
whereby in the medical context a high
sensitivity is of decisive importance for
the early detection of diseases and the
minimization of misdiagnoses. Speci-
ficity (𝑆𝑝) evaluates the accuracy of a
test in confirming the absence of a dis-
ease. Defined as

𝑆𝑝 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
it indicates the accuracy of the test in
avoiding FP results. High specificity en-
sures that patients without the disease
are correctly identified.

Friedman et al. 1985 proposed a method that further developed the idea
behind the CASH method into a framework aimed at self-assessment
by laypeople. This framework was later evolved into the widely known
ABCD rule of dermatoscopy by Stolz et al. 1991, which was evaluated
multiple times, including by Nachbar et al. 1994 and Rigel et al. 2010,
reporting a sensitivity of ≈ 84% and specificity of ≈ 83.5%.

While the works of Annessi et al. 2007 and Rigel et al. 2010 provide a
comprehensive comparison of the classification performance achievable
by various human-based approaches, Gareau et al. 2020 compare these
methods against several machine-augmented pattern recognitions, show-
ing the ABCD rule outperforms most other human- as well as ML-based
approaches on the ROC curves.

As outlined by Nachbar et al. 1994 the medical algorithm for visually
distinguishing between melanocytic and non-melanocytic lesions relies
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on a multivariate analysis of four criteria, each scored semi-quantitatively
to assess the likelihood of melanoma:

▶ A Asymmetry: A lesion is examined along two perpendicular
axes to determine its symmetry. A score of 0 indicates symmetry
along both axes, 1 for asymmetry in one axis and 2 for asymmetry
in both axes.

▶ B Border: The abrupt cutoff of the pigment pattern at the lesion’s
border is assessed. The lesion is divided into eight segments, with
a point added for each segment displaying an abrupt cutoff.

▶ C Color: The presence and variety of colors within the lesion are
evaluated, with potential colors including white, red, light and
dark brown, blue-gray, and black. The color score ranges from 1
(single color) to 6 (six different colors).

▶ D Differential Structure: This criterion considers the variety of
structural components visible in the lesion, such as a pigment
network, homogeneous areas, dots, globules, and streaks. The
score can range from 1 (one structure type) to 5 (five different
structure types).(Nachbar et al. 1994)

In simplified terms, the lesion is examined for all four criteria separately.
The higher the score of a criterion applies to the lesion, the more likely it
is to be classified as melanocytic. The sum of the scores finally leads to a
diagnosis.

From this we conclude the ABCD rule is particularly suited for use
as a human-friendly explainability method for two reasons: First, this
approach not only leads to accurate classifications, it is easy to understand
for humans, which means that it can be applied by physicians and to a
certain extent by patients themselves. Second, the characteristics used to
classify the lesion can be scored independently. Conversely, this has the
effect that the four ABCD dimensions can be studied independently. In
theory, adding or removing features in the dimensions directly impacts
the classification.

7.3 Explainer for Skin Image Classifier

The following section introduces the integration of a model interpretation
method with the previously presented established medical algorithm
of the ABCD rule, defined by Nachbar et al. 1994, and the approach
suggested by Ribeiro et al. 2016, LIME. The advantage of LIME lies in
its perturbation-based strategy, offering interpretability for image data
across various model architectures.

The essence of LIME’s explanatory power resides in minimizing the
complexity function Ω of the interpretable model 𝑔, where Ω(𝑔) is
inversely proportional to the model’s interpretability to humans, which
is significantly influenced by the number of features, 𝐾.

To establish the practical relevance of this method, the domain-specific ex-
planator combines the theoretical foundations of LIME with the pragmatic
approach of the ABCD rule for assessing skin lesions. The conventional
LIME approach for image data is based on creating a perturbation dataset
by pixel-wise modification, mainly by changing superpixels. Using the
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regularization path (Efron et al. 2004), 𝐾 image regions are selected, and
a binary vector is generated, where 1 indicates the original superpixel,
and 0 indicates a grayed-out superpixel - a procedure that Ribeiro et al.
2016 calls K-Lasso.

Although this method is generally applicable, it fails to capture the
area-specific nuances essential for medical diagnosis. The modified
methodology adjusts the images of skin lesions according to 𝐾 diagnostic
criteria that follow the ABCD rule, an adaptation that preserves the
interpretative strengths of LIME and further embeds it in the specific
assessment framework of dermatologists.

7.3.1 Perturbation Dimensions

In realizing the perturbation logic, a focused assessment of each charac-
teristic ensures that perturbations are restricted to one single dimension
at a time in the input image, preventing alterations in features of another
dimension. This is underpinned by the straightforward quantification
and high diagnostic value, leading to an initial concentration on two
ABCD dimensions: B Boundary and C Color, as they are the most
prominent and objectively measurable markers.

Following research from Fong et al. 2017, two additional dimensions, R
Rotation and S Shift, are incorporated to investigate the explanatory
importance, introducing perturbations in medically irrelevant ways
without affecting medically relevant features.

Figure 7.2 illustrates four dimensions with perturbed images in their
strongest manifestations of each dimension. The image manipulations
were implemented using Scikit’s library for image processing (Van der
Walt et al. 2014), which are artifacts and may look artificial to a human.
However, we have to recognize that the particular characteristic is to be
exaggerated. In the following, we go into detail how the perturbation is
generated.

Figure 7.2: Perturbation dimensions of
the explainer. The original image in the
center is perturbed along medically rel-
evant (blue) dimensions B Boundary
and C Color, as well as medically irrel-
evant (gray) dimensions R Rotate and
S Shift, each in a reinforcing (positive)

and weakening (negative) manner.
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B - Boundary The implementation of the medically relevant dimension
is realized along the negative Boundary direction by extracting the border
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area of the segmentation and drawing a sharply delineated line around
the lesion. The color of this line corresponds to the average color values
of the surrounding image areas and it is ensured that no artifacts arise in
relation to the color which is used. To influence in the positive Boundary

direction, the edge region is extracted from the segment and a Gaussian
blur is added. This causes pixel values to fade into each other and the
transition between lesion and skin is less sharply delimited.

C - Color In the perturbed images of the negative Color dimension,
the area within the segmentation of the lesion is turned into a uniform
color. Possible color irregularities are thus harmonized. The coloring is
transparent such that possible structures in the lesion are kept intact.
Adding random color patches in the lesion area produces variation for
the positive Color direction. They vary in size and color while ensuring
that the color patches are transparent and possible structures remain
recognizable, similar to the procedure towards the negative direction. The
chosen colors correspond to plausible shades of brown, and their RGB
color values were defined by a dermatologist for this implementation.

R - Rotate This perturbation dimension is realized by rotating the
sample by a given range of degrees. The range of values corresponds to
the positive (left) and negative (right) direction. We chose mode ’reflect’
as padding strategy, which mirrors neighboring pixel values along the
vector.

S - Shift An affine transformation is performed to shift the skin image.
The translation parameter indicates the direction, which is increased
with strengthening in the positive (left) or negative (right) direction.
Same as for rotation, ’reflect’ is used to pad the resulting gaps.

7.3.2 Implementation

The agnostic design of LIME enables the integration of the defined
pertubation dimensions B , C , R , S - both in positive and negative
direction. Before we go into the technical implementation, we adapt
LIME’s algorithmic logic, as originally defined by Ribeiro et al. 2016.

Guided Perturbation Sampling.

As described by Ribeiro et al. 2016, an explanation generated by LIME
can be represented by the objective function that minimizes the mea-
sure L( 𝑓 , 𝑔,𝜋𝑥) (cf. 2.26). This measure indicates the infidelity of the
linear model 𝑔 in approximating the complex model 𝑓 within the lo-
cality defined by 𝜋𝑥 . Here, 𝜋𝑥(𝑥′) assesses the proximity between a
perturbed instance 𝑥′ and the original instance 𝑥. The approximation
of L( 𝑓 , 𝑔,𝜋𝑥) in Ribeiro’s proposed algorithm is achieved by sampling
instances weighted according to 𝜋𝑥 , where the weighting reflects the
importance of proximity to the original instance 𝑥.(Ribeiro et al. 2016)

Although random samples are drawn from the input space, the weighting
of these samples is not uniform but is based on their proximity to 𝑥,
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allowing closer samples to contribute more to the model approximation.
The original implementation of LIME assumes random sampling, with
the selective weighting of the samples playing a crucial role in ensuring
the local fidelity of the simplified model.(Ribeiro et al. 2016)

We capitalize on this property by generating a set of 𝑛 perturbed instances
{𝑋′

𝐵
, 𝑋′

𝐶
, 𝑋′

𝑅
, 𝑋′

𝑆
} for each lesion image, represented by 𝑥, so that each

𝑥′
𝐷

is a variant of 𝑥 where one of the B , C , R , S attributes is either
strengthened or weakened. For a given lesion image 𝑥 and a dimension
𝐷 = {𝐵, 𝐶, 𝑅, 𝑆}, the perturbation function𝑃 creates a perturbed instance
𝑥′
𝐷

by enhancing or reducing the feature associated with 𝐷, expressed
as:

𝑥′𝐷 = 𝑃(𝑥, 𝐷, 𝛿) (7.1)

where 𝛿 corresponds to the originally intended weighting measure 𝜋
and assumes a value in range of [−1,+1], indicative of the enhancement
or reduction of the feature 𝐷, and the interval limits are represented as
the strongest expression of the respective dimension.

Generation of Sparse Linear Explanations.

Following the creation of the perturbed samples 𝑋′𝐷, the continuation
of the implementation is based on the methodology of sparse linear
explanations shown by Ribeiro et al. 2016. This step is instrumental
in realizing LIME’s strategy to identify an interpretable model via an
interpretable representation that maintains local fidelity to the complex
black box model. Owing to its sparsity, such a model provides interpretive
insights into the features that significantly influence the predictions of
the complex model for a specific instance.

The sparse linear explanation for a particular dimension𝐷 of the original
instance 𝑥 is captured by the function 𝜉𝐷(𝑥), which is derived from the
optimization problem defined by Ribeiro and adapted as follows:

𝜉𝐷(𝑥) = arg min
𝑔∈𝐺

∑
𝑥′
𝐷
∈𝑋′

𝐷

𝛿( 𝑓 (𝑥′𝐷) − 𝑔(𝑥′𝐷))2 +Ω(𝑔) (7.2)

Here, 𝑔 signifies a linear model from a set 𝐺 of potential models. The
optimization endeavor seeks to uphold local fidelity to the complex model
𝑓 while simultaneously ensuring the simplicity of the surrogate model 𝑔
by employing the complexity measure Ω. The term

∑
𝑥′
𝐷
∈𝑋′

𝐷
𝛿( 𝑓 (𝑥′

𝐷
) −

𝑔(𝑥′
𝐷
))2 quantifies the weighted sum of squared discrepancies between

the predictions of the complex model 𝑓 and those of the linear model 𝑔
across perturbed instances 𝑋′

𝐷
. The weighting factor 𝛿 is linked to the

proximity measure 𝜋𝑥 envisaged in the original formulation, expressing
the distance of 𝑥′ to 𝑥.

To compute 𝜉𝐷(𝑥), we consider the set of perturbed instances 𝑋′𝐷, each
deriving from the image 𝑥 and altered along the dimension 𝐷 by the
perturbation function 7.3.2. These instances form the basis of the input
for the optimization problem proposed by LIME. The outcome of this
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optimization, the sparse linear model 𝜉𝐷(𝑥), approximates the behavior
of the complex model 𝑓 in the local space around the original instance 𝑥,
relying on the features defined by the dimension 𝐷.

7.4 Application

The following describes the practical application of the explainer ap-
proach presented in Section 7.3 for your skin image classifier. In order to
investigate the functionality of the explanation set, perturbed instances
will be generated using sample data, and sparse local explanations will
be generated using a DNN classification model and an local interpretable
model.

The application of the previously described implementation has been
integrated into the use case described in Section 6.1. Specifically, this use
case forms the basis for the selection of the dataset and the structure of the
ML pipeline, with adjustments made to adapt the proposed explanation
approach, which is initially described.

7.4.1 ML Pipeline Adaption and Experimental Setup

The foundation of this study was the HAM10000 dataset (Tschandl
et al. 2018) as described in Section 6.1.1, which was utilized for the
implementation of this research. To reduce the complexity of classifying
skin lesion images, and enabling the applicability of the ABCD-Rule, an
initial delimitation of the problem space was defined. This restriction
involved limiting the selection of classes to two categories: Melanoma
and Nevus. According to Table 6.1 on class descriptions, Nevus denotes
benign neoplasms of melanocytes. In contrast, melanomas are typically
characterized by their asymmetry concerning the distribution of color
and structure, whereas melanomas are defined as malignant neoplasms
that can manifest in various forms (Tschandl et al. 2018).

A second adaptation in the design of the ML pipeline was the modification
of the model architecture. The narrowed data selection allowed for
choosing a less complex model architecture, MobileNetV2 (Howard et al.
2017), which possesses fewer trainable parameters. Furthermore, the ML
pipeline was significantly simplified by disabling data augmentation, thus
limiting preprocessing steps to include scaling, as described in Section
6.1.2. This model architecture has been employed in several studies and
has proven effective for this specific case of skin image analysis (Adegun
et al. 2021).

Nevus Malanoma
∑

# of Samples 1,354 216 1,561
True Positives 1,150 144 1,294
False Positives 203 72 275
𝐹1-Score ≈ 0.91 ≈ 0.57 ≈ 0.74∗

Table 7.1: Evaluation results of the
trained skin image classifier based on the
MobileNetV2 (Howard et al. 2017) archi-
tecture. To ensure that class imbalances
have no influence, ∗ ’macro’ is specified
as 𝐹1 average strategy.

Limiting the scope to a binary classification problem resulted in a selective
data base of 6,705 images for Nevus and 1,113 images for Melanoma
(refer to Figure 6.2 for class distribution of HAM10000). Following the
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data splitting logic implemented in 6.1.2, this dataset was separated into
training and test data in an 80/20 ratio, after which the tailored skin image
classifier was trained to distinguish between nevus and melanomas. The
predictive performance achieved on the test data can be observed in Table
7.1, which, compared to the original implementation of the classifier
with seven classes (refer to Table 6.3), demonstrates enhanced predictive
accuracy, as measured by the 𝐹1-Score, for the Melanoma class.

To circumvent technical challenges associated with segmenting lesion
areas in dermatoscopic images, segmentation data associated with the
dermatoscopic images from Tschandl et al. 2020, provided in hand created
form, was incorporated into the realization of the perturbation logic. In-
cluding segmentation data enables targeted perturbations strictly within
lesion areas in this setup, without necessitating further segmentation
logic.

7.4.2 Hypothesis

The simplification of the problem space to a two-class problem allows for
a focused investigation of the effects of perturbations on the predictions
of the trained model for classifying skin images containing Nevus (nv)
or Melanoma (mel). In this section, hypotheses are formulated based on
the described implementation and the application of the explanatory
approach.

The investigation includes medically relevant features. Positive pertur-
bation 𝛿+ is defined as altering the sample to more closely resemble
a melanoma, whereas negative perturbation 𝛿− involves diminishing
melanoma-like characteristics in the image. Medically irrelevant pertur-
bations 𝛿′ neither remove nor introduce critical features. Defining 𝑦 as
the probability of a given input sample 𝑥 belonging to a particular class,
the study derives hypotheses about the black box model 𝑓 based on
the aggregated predictions �̂� = 1

𝑛

∑𝑛
𝑖=1 𝑓 (𝑥′), with 𝑛 perturbed inputs 𝑥′

related by ∼𝛿:

𝐻𝑎
(𝑛𝑣)
1 Prediction for Nevus will decrease with positive perturbation:

𝐻𝑎
(𝑛𝑣)
1 (𝑥, 𝑥′, 𝑓 ) = {𝑥 ∼𝛿+ 𝑥′⇒ 𝑦 > �̂�}

𝐻𝑎
(𝑛𝑣)
0 Prediction for nevus will increase or remain unchanged with

positive perturbation.
𝐻𝑏
(𝑛𝑣)
1 Prediction for nevus will increase with negative perturbation:

𝐻𝑏
(𝑛𝑣)
1 (𝑥, 𝑥′, 𝑓 ) = {𝑥 ∼𝛿− 𝑥′⇒ 𝑦 < �̂�}

𝐻𝑏
(𝑛𝑣)
0 Prediction for nevus will decrease or remain unchanged with

negative perturbation.

The hypotheses apply universally across all medically relevant dimen-
sions of perturbation. However, their validity is contingent on the specific
input sample, rendering them not independent of the sample’s true class.
In the context of a two-class problem, such as the one being analyzed, the
hypotheses for melanoma {𝐻𝑎(𝑚𝑒𝑙)1 , 𝐻𝑎

(𝑚𝑒𝑙)
0 , 𝐻𝑏

(𝑚𝑒𝑙)
1 , 𝐻𝑏

(𝑚𝑒𝑙)
0 } are appli-

cable in a reversed formulation. This implies that negative perturbations
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should shift the prediction towards a nevus, while positive perturbations
should incline the prediction towards melanoma.

Medically irrelevant dimensions should be independent of both the true
class of the original image and the dimension to which the perturbations
belong. We therefore hypothesize the following:

𝐻𝑐1 The black box model is inherent to medically irrelevant perturba-
tions:

𝐻𝑐1(𝑥, 𝑥′, 𝑓 ) = {𝑥 ∼𝛿′ 𝑥′⇒ 𝑓 (𝑥) = 𝑓 (𝑥′)}

𝐻𝑐0 Perturbation along medically irrelevant dimensions have significant
effects on predictions.

To bridge the theoretical foundation laid out with practical insights, the
following section presents a comprehensive analysis of the formulated
hypotheses through experimental validation.

7.5 Empirical Results

To study the presented domain-specific explainer in more detail, model
interpretations were generated from test samples, focusing on elucidat-
ing the explainer’s performance by analyzing selected samples. High-
confidence true positive cases and low-confidence false negative cases
are illustrated in Figures 7.3 and 7.4. Another selection criterion was that
a significant class flip manifests in at least one dimension.

Each figure is organized as follows: Dimension values are presented as
headings, under which the maximally perturbed images are displayed.
Additionally, for each sample, scatterplots are provided in each dimension.
These plots correlate the black box model’s prediction values, plotted on
the ordinate, with the perturbation’s intensity, depicted on the abscissa.

The prediction scale in all scatterplots is standardized to the range of [0; 1],
correlating with the class associated with the sample. The perturbation
strength is, defined by the limits of 𝛿, scaled between [−1; 1]. Values in
the negative range indicate negative perturbations, while positive range
values correspond to positive perturbations.

Moreover, each scatter plot features a dashed vertical line at the zero
position, demarcating the boundary between negative and positive
perturbations. The classifier’s prediction for the original, non-perturbed
image, denoted by 𝑓 (𝑥), is marked with a red cross on the 𝑦-axis. For every
input sample, a total of 𝑛 = 50 perturbed samples, 𝑥′, were generated,
spanning both negative and positive directions. This approach allows for
a comprehensive analysis of the explainer’s effectiveness across various
degrees of image perturbation, shedding light on the robustness and
reliability of the model under study.

7.5.1 True Positives

The first case examines the model output behavior for correctly classified
samples. The focus is on a domain-specific approach, aimed at addressing
the question: „In which dimensions does the model retain its accuracy?“



196 7 Domain Specific Model Interpretations

Original

Image: ISIC_0033672
True Class: Nevus
Prediction: Nevus (0,966)

Image: ISIC_0028481
True Class: Melanoma
Prediction: Melanoma (0,972)
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Figure 7.3: Overview of the observed model behavior. Two original samples, both correctly classified (True Positives), with their
maximum perturbations for all four explanation-dimensions. Scatterplots under the perturbed images show the prediction of the black
box model, each acquired along the indicated dimension.

This is explored using two selected samples illustrated in Figure 7.3 as a
basis for hypothesis testing.

In the case of Sample 1, it is observed that the model’s prediction within
the medically relevant dimensions of Boundary and Color diminishes
in the context of positive perturbation. This observation leads to the
acceptance of hypothesis 𝐻𝑎(𝑛𝑣)1 and the rejection of 𝐻𝑎(𝑛𝑣)0 . Conversely,
for negative perturbation, hypothesis𝐻𝑏(𝑛𝑣)1 is only accepted for the Color
dimension, as the prediction remains constant. However, in the Boundary
dimension, a different trend is noted: 𝐻𝑏(𝑛𝑣)1 must be rejected in favor of
𝐻𝑏
(𝑛𝑣)
0 , since the prediction neither stagnates nor increases but decreases

at a consistent rate.

The third hypothesis, labeled 𝐻𝑐, focuses on two medically irrelevant di-
mensions. Despite variations in the prediction at individual perturbation
points, a general observation is made that the prediction level remains
high in both positive and negative value ranges. The average prediction
value across all perturbation values is �̂� = 0.931(−0.035) for Rotation
and �̂� = 0.959(−0.007) for Shift, with parenthetical values indicating
deviations from the prediction of the non-perturbed image. Given these
minimal deviations, hypothesis 𝐻𝑐1 is accepted and 𝐻𝑐0 rejected.

For Sample 2, a reversal of the hypotheses’ statements is necessitated, as
the sample represents a melanoma case. Here, the prediction for positive
perturbation is expected to either increase or remain constant, while for
negative perturbation, a decrease is anticipated. This prediction behavior
is confirmed in both medically relevant dimensions of Boundary and Color,
leading to the acceptance of both 𝐻𝑎(𝑚𝑒𝑙)1 and 𝐻𝑏(𝑚𝑒𝑙)1 hypotheses.

Similar to Sample 1, fluctuations in the classifier’s prediction along
the perturbations are noted in medically irrelevant dimensions. Thus,
the average prediction along all perturbation variables is recalibrated,
yielding �̂� = 0.971(−0.001) for Rotation, and �̂� = 0.907(+0.065) for Shift.
The deviation observed in the prediction allows for the acceptance of
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Original

Image: ISIC_0027020
True Class: Nevus
Prediction: Melanoma (0,502)

Image: ISIC_0029363
True Class: Melanoma
Prediction: Nevus (0,540)
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Figure 7.4: Overview of the observed model behavior. Two original samples, both incorrectly classified (False Positives), with their
maximum perturbations for all four explanation-dimensions. Scatterplots under the perturbed images show the prediction of the black
box model, each acquired along the indicated dimension.

hypothesis 𝐻𝑐1 for Rotation, but does not support hypothesis 𝐻𝑐1 for
Shift, resulting in the acceptance of 𝐻𝑐0.

7.5.2 False Negatives

The second case explores model explanations for incorrectly classified
samples, with two test images exemplified in Figure 7.4. In this con-
text, the aim is to elucidate the reasons behind the model’s failure in
classification.

In the positive direction for Sample 3 within the Boundary dimension,
hypothesis 𝐻𝑎(𝑛𝑣)1 is accepted, while 𝐻𝑏(𝑛𝑣)1 is rejected concerning the
negative direction. Conversely, in the Color dimension,𝐻𝑏(𝑛𝑣)1 is accepted.
In this case, the prediction fluctuates above and below the expected
values in the positive direction, thereby contravening the stipulations
of 𝐻𝑎(𝑛𝑣)1 . Nevertheless, this hypothesis is further accepted, considering
that the average prediction in the positive direction is �̂� = 0.318(−0.184),
significantly lower than the prediction of the non-perturbed input image.
When examining hypothesis 𝐻𝑐, it is immediately evident in both Ro-
tation and Shift dimensions that 𝐻𝑐1 must be rejected, as the classifier’s
prediction varies widely across all perturbation variables.

Regarding Sample 4, the analysis indicates that for the Boundary di-
mension, both hypotheses 𝐻𝑎(𝑚𝑒𝑙)1 and 𝐻𝑏

(𝑚𝑒𝑙)
1 must be rejected, as

perturbations in both positive and negative directions lead to a decrease
in prediction. The scenario differs for the Color dimension. Here, hypoth-
esis 𝐻𝑎(𝑚𝑒𝑙)1 is initially accepted due to decreasing prediction values in
the negative area. However, assessing the positive area is less straight-
forward, with values fluctuating. Despite this, given that the average
prediction value �̂� = 0.688(+0.148) is significantly higher than that of
the non-perturbed sample, hypothesis 𝐻𝑏(𝑚𝑒𝑙)1 is accepted and 𝐻𝑏(𝑚𝑒𝑙)0
rejected.
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Similar patterns are observed in the medically irrelevant dimensions
for Sample 3, leading to the rejection of hypothesis 𝐻𝑐1. The prediction
behaviors do not exhibit a clear pattern, possibly indicating the model’s
weak performance for both samples. However, the output from the
explainer remains valuable, providing insights into the model’s lack of
robustness and guiding improvements in both decision-making processes
and model redevelopment.

7.5.3 Aggregation

To further explore the functionality and mechanisms of the domain-
specific model interpretation method presented, this section introduces
aggregated results from the broader dataset, in addition to the analysis
of individual samples, as seen in Sections 7.5.1 and 7.5.2. By synthesizing
interpretations across all test patterns, we aim to provide a macroscopic
view of the predictions made by the trained model. All samples in the
test set were subjected to the guided sampling procedure and, for all
four B , C , R , S dimensions, sets of perturbed images were created in
positive and negative expressions.

Subsequently, sparse linear explanations were generated, and the accu-
mulated predictions of the black box model on these perturbed images
were aggregated using Kernel Density Estimation (KDE). While the top
row displays the results for the Nevus class, the bottom row represents
the results for the Melanoma class. The resulting heatmaps encapsulate
the normalized value ranges and offer, in Figure 7.5, an overview of the
black box model’s predictive behavior across the perturbation strength
spectrum for the four dimensions.
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Figure 7.5: Aggregated model predictions for nevus and melanoma.

The intensity of the color in the heatmaps correlates with the density of
predictions, with darker regions representing a higher concentration of
prediction values. In other words, the representation corresponds to the
overlaid scatter diagrams from Figures 7.3 and 7.4 for all test samples
and have been transformed into heatmaps for better readability using
KDE.



7.5 Empirical Results 199

As observable in all eight depicted heatmaps, there is a clear, concentrated
image of high density at high prediction values. In the medically relevant
dimensions of Boundary and Color, a focused band of high density in
the central region of perturbation strength (𝛿 ≈ 0 ± 0.5) is noticeable.
Yet, while a variability is discernible, the heatmap for Nevus prediction
values in the Boundary dimension shows an exception: Here, the model
seems to lean towards high prediction values in both directions, hence in
this dimension 𝐻𝑎(𝑛𝑣)1 and 𝐻𝑏(𝑛𝑣)0 are discarded, and 𝐻𝑎(𝑛𝑣)0 and 𝐻𝑏(𝑛𝑣)1
are accepted. The same applies to Melanoma in the reverse form.

In the Color dimension, the hypotheses for both classes 𝐻𝑎(𝑛𝑣)1 , 𝐻𝑎(𝑚𝑒𝑙)1 ,
𝐻𝑏
(𝑛𝑣)
1 , and 𝐻𝑏(𝑚𝑒𝑙)1 can be accepted. When the strength of perturbation

reaches its limit values, the density dissipates, indicating variability in
the model’s predictions under more pronounced perturbations. It shows
that predictions decrease with positive perturbation for Nevus, as well
as with negative perturbation for Melanoma.

For the medically irrelevant dimensions of Rotation and Shift, the density
plots exhibit a pronounced band of high density consistent with the per-
turbation strength range. This suggests that predictions are less sensitive
to perturbations in these dimensions and maintain high reliability across
the entire spectrum of perturbation intensity. Thus, we can accept 𝐻𝑐1
and reject 𝐻𝑐0.

The KDE plots provide a nuanced understanding of the model’s behavior
by aggregating the predictions of the black box model across all four
dimensions and perturbation strengths. The density distributions in
this experiment suggest that the trained black box model, after domain-
specific interpretation, appears to consider correct attributes for the
prediction decision in the Color dimension. The attributes associated
with the Boundary dimension do not seem to be of crucial importance for
predicting the class of Nevus. However, the visible prediction fluctuations
with perturbation in medically irrelevant dimensions seem to indicate
that some samples in the test set lie in borderline areas.
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7.6 Discussion

Integrating domain-specific knowledge into a model interpretation
method, as demonstrated by implementing the adjusted perturbation
logic by LIME analogous to the ABCD rule provided by dermatologists,
can pave the way for the accessible interpretability of ML models for
people. In particular, specialized audiences such as doctors, but also
patients, can benefit from such approaches by bridging the gap between
technical complexity and practical applicability.

The empirical results presented in the study offer insights into the
response behaviors of the black-box model to perturbed images, allowing
hypotheses to be made about which features might have been important
for the respective predictions. However, it is crucial to translate this
information into a form understandable to the user. One possibility
is to use bar charts for visual representation instead of scatterplots,
highlighting the importance of individual attributes according to the
ABCD rule, thus enabling a more intuitive interpretation of the results.

The observations on model behavior were based on a single model
instance. It should be noted that results can vary depending on the model
architecture and the training datasets used. The transferability of the
specific changes in the model’s predictions due to perturbations on input
images to different diseases and medical imaging modalities is limited.
The effectiveness of the adapted method is closely linked to the quality
and representativeness of the training data used.

Furthermore, the application of the method was conducted using already
existing lesion segmentations. In real-world scenarios, such segmenta-
tions are often unavailable and would have to be manually provided by
an expert. The possibility of automated segmentation of the image areas
by th ML model exists but introduces an additional step in the processing
pipeline, which may be fraught with uncertainties. Furthermore, it is
essential to reflect on the methodological approach where the pertur-
bation of the input samples occurs successive, while the simultaneous
perturbation of multiple dimensions remains to be investigated.

Another significant aspect in analyzing the empirical results, both qual-
itatively and quantitatively through aggregated values, is the lack of
direct evidence for the correlation between the observed importance of
a feature dimension and its actual value according to the ABCD rule.
To bridge this gap, it appears necessary to develop and implement ad-
ditional metrics that can comprehensively assess the effectiveness and
accuracy of the explanatory approach. This could create a more solid
basis for interpreting ML model predictions in the context of specific
medical guidelines, ultimately contributing to improved patient care.
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7.7 Summary

The skin image classifier in a CDSS can serve as a second opinion for a
dermatologist. To a certain extent, the research community has already
made it possible to realize such tasks today. However, the models imple-
mented in these AI-based systems are limited to generating predictions
without allowing the dermatologist to question the rationale behind the
classifier’s decision-making process. XAI-Methods and interpretable ML
techniques aim to bridge this gap.

The adaptation of LIME for the specific domain of skin image classifi-
cation, with a focus on differentiating between melanoma and nevus,
illustrates a domain-specific approach for local explainability. Thanks
to the model-agnostic architecture of LIME, this approach is suitable
for DNNs as well as for other types of models. A hypothetical scenario
in a decision support system could be that a dermatologist identifies
a lesion as a nevus while the model classifies it as melanoma. This
discrepancy leaves the treating physician (and the patient) in a skeptical
position, raising the question: „Why?“ The presented domain-specific
approach could answer that harmonizing the color in the lesion reduces
confidence in the classifier’s prediction. The doctor might recognize a
color inconsistency in the dermatoscopic image that is not visible on the
lesion itself and thus be able to explain why the classifier erroneously
tended towards a diagnosis of melanoma.

A CDSS either confirms the doctor’s diagnosis or suggests a contrary
diagnosis. In both cases, it proves to be highly beneficial if interpretable,
human-understandable explanations for the predictions can be generated.
Domain-specifically adapted approaches foster increased trust and a
deeper understanding of the system.

Following the current results from Section 7.5, future work could investi-
gate the two remaining medically relevant dimensions, asymmetry and
differential structure, for which the work of Barata et al. 2019 provides an
overview of feature extraction in dermoscopy image analysis. Further-
more, Ali et al. 2020 demonstrate a method to extract these features from
lesions. In line with the findings of Almaraz-Damian et al. 2020, another
potential research endeavor could be to use the data modified by our
explanation component as training data. This would allow for the evalu-
ation of the resulting model’s performance and check if the predictions
follow a different pattern. Moreover, the approach of perturbation-based
explanations, considering both medically relevant and irrelevant features
for diagnosis, may potentially be applied to other medical fields.
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The significance of interpretability in AI systems is increasingly recog-
nized as a human-centric issue, given the pivotal role these systems
play across various domains of life and their escalating complexity. This
realization has led to a multidisciplinary approach that has prioritized
the integration of social science insights with technical advancements
in AI to enhance system transparency and user trust. (Dhanorkar et al.
2021)

Similarly, Miller 2019 and Wang et al. 2019 advocate for the design of AI
systems to mirror human thought processes to enable clearer and more
meaningful explanations. Against this backdrop, Miller 2019 proposes
the paradigm of viewing the field of XAI through a socio-technical lens,
highlighting the inseparability of technical systems from the diverse social
aspects that come into play during their application. In his paper, where
explanation and explicability are further examined from philosophy,
psychology, and cognitive sciences perspectives, he contends that AI
explanations are fundamentally social and evolve through interaction,
emphasizing the need to recognize their dynamic nature to facilitate
real-world applications.

A socio-technical perspective suggests that the need for interpretations
of model outputs - and further, the need for explanations - arises from
interactions between various stakeholders and the AI system itself (Wolf
2019), as well as extends beyond the direct users of the system to include
additional participants. For instance, Gilpin et al. 2018 emphasize the
importance of aligning model interpretations with human semantic
concepts to ensure that explanations are technically accurate as well as
comprehensible and relevant to users’ real-life experiences and knowl-
edge frameworks.

Therefore, integrating model interpretations is interdisciplinary, requir-
ing various stakeholders’ involvement in implementing IML methods.
This chapter introduces an integrative approach to enhance explainabil-
ity in developing trustworthy AI. A structured framework incorporates
diverse stakeholder perspectives into IML implementation, optimizing
accessibility to model interpretations. After introducing this concept in
Section 8.1, Section 8.2 showcases a case study on the technical implemen-
tation of model interpretations for the ECG signal classifier discussed in
Section 6.2. This case study forms the basis for the practical application
of the concept in real-life scenarios. Finally, in Section 8.3, the integration
of various stakeholders into the use case is presented. Three methods for
integrating different groups are presented and applied, and the results
are analysed to gain insights into the different perspectives of model
interpretation and trust in the AI system.

Excerpts of this chapter, such as the XAI-Compass (Section 8.1) and the
results of the focus group discussions (Section 8.3.2), were published as
part of the proposed SocioTechXAI Integration Framework (STXIF) in
Ziethmann et al. 2024.
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8.1 XAI-Compass: A Conceptual Guide for

Stakeholder Engagement

In order to create a conceptual framework for stakeholder engagement
in the field of IML, this section introduces the XAI-Compass, visually
depicted in Figure 8.1. The XAI-Compass is designed as a navigational
tool to guide developers and researchers through the complex landscape
of stakeholder needs and expectations regarding model interpretability.
It complements the AL development life cycle proposed in Chapter 3 by
integrating aspects of interpretable ML, thereby enriching the framework
with a focus on explainability throughout the phases of the AI systems
development.

This instrument structures the multifaceted aspects of stakeholder engage-
ment within the domain of IML. It is based on a 3x3 matrix categorizing
roles, phases, and objectives, as proposed initially by Gleicher 2016 and
later revised by Hong et al. 2020 through survey work in the context
of IML, with the organizational chart in Figure 8.1 recognizable by its
distinctive color palette and use of bold formatting to highlight key
terminology.

Figure 8.1: The XAI-Compass, following
the 3x3 matrix by Hong et al. 2020, offers
a holistic view of stakeholder groups,
AI life cycle stages, and objectives. The
concentric layers illustrate the dynamic
interplay and iterative nature of the roles,
phases, and goals within the ecosys-
tem of IML. Following the color-coding
scheme, three possible touchpoints are
listed on the exterior.
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The outer layer outlines various objectives pursued through model
interpretations, categorized into three core goals (cf. Section 8.1.1). The
intermediate layer details the AI life cycle’s phases, segmented into
Conceptualization and Development, Release and Deployment, as well
as Operation and Maintenance (cf. Section 8.1.2). At the core of the
XAI-Compass, the diagram delineates three primary stakeholder groups,
namely Model Builder, Model Breaker, and Model Consumer, each
associated with specific roles in the XAI process (cf. Section 8.1.3).
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The XAI-Compass abstracts and synthesizes the prevailing discourse in
the XAI research field, aiming to bridge the technical and the multidis-
ciplinary dimensions of integrating IML into AI projects. It provides a
pragmatic framework to address the foundational ’W-Questions’ related
to model interpretations as outlined by Arrieta et al. 2020 - Who is in-
volved, What activities are taking place, When do these activities occur,
and Why are specific interpretability objectives being pursued? Following
Gleicher 2016 and Hong et al. 2020, these questions are directly linked to
the 3x3 structure of the XAI-Compss: Who: Roles, What and When: Phases,
and Why: Goals.

Addressing these questions is crucial for both comprehending stakeholder
perspectives and advancing the development of tailored explanations,
thereby encouraging a more profound contemplation of the various roles
that actors play within the model interpretation narrative. Furthermore,
the XAI-Compass allows for the derivation of potential touchpoints for
stakeholders in various phases, targeting the question of How?. These
touchpoints, and which approaches can be utilized, will be illuminated
in Section 8.1.4.

However, the objectives of the stakeholders regarding model interpreta-
tion will first be examined.

8.1.1 Goals of Model Interpretations

The outermost layer of the XAI-Compass comprises the goals that are
pursued using methods of the IML. Here, technical methods converge
with user-aspired goals pursued with an explanation. These goals are cat-
egorized according to Model Debugging and Improvement, Knowledge
Discovery and Extraction, and Trustworthiness and Confidence.

In the overarching goal of Model Debugging and Improvement, the
objective is to optimize ML models in terms of their predictive perfor-
mance and functional accuracy. IML methods are utilized to gain a deep
understanding of the model mechanics, which enables comprehensive
investigation and analysis (Mohseni et al. 2021). This application of the
methods has an inspecting and diagnostic character, meaning that the
models are dissected with the aim of understanding how inputs are
processed into predictions, thereby paving the way for precise improve-
ments (Bhatt et al. 2020; Hong et al. 2020). In addition to improving
predictive performance, a key element of this goal is the identification
and circumvention of biases (Amann et al. 2020). Here, IML techniques
are crucial as they are capable of highlighting biases and using the
insights gained to correct unwanted (unfair) biases in the data or the
model in a subsequent step. Another focus is on the safety and reliability
of the models, where interpretation tools can be used to conduct tests to
evaluate the model for fairness and robustness and possibly to identify
vulnerabilities (Dey et al. 2022).

Knowledge Discovery and Extraction is the second key goal. Often, due
to the vast volumes of data, not the data itself but the trained model is
used as a source of knowledge, with interpretation techniques being able
to derive new knowledge (Markus et al. 2021; Liao et al. 2022). Another
application is the facilitation of learning, where these tools open new
pathways for education and assist in predicting and understanding
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outcomes (Meske et al. 2022). Furthermore, compliance, such as with the
EU AI Act (European Commission 2024), is another goal, which is why
methods of IML are used to meet legal requirements as well as industry-
specific standards regarding the requirements of explainability.

Trustworthiness and Confidence, as the third main goal, underscores
the significance of IML techniques in the context of trustworthy AI. By
providing model interpretations, the aim is to establish and enhance
acceptance based on the assurance that an ML model’s capabilities align
with the stakeholders’ interests (Mohseni et al. 2021; Laato et al. 2022).
Interpretability allows a sober view of AI decision-making and thus
harmonizes system operations with stakeholder expectations. Curiosity
is driven by the user’s aim to understand the workings of an AI system.
In other words, they pursue the goal of reconciling the outputs of the ML
model with their own mental model of the world (Miller 2019; Markus
et al. 2021). While the methods of interpretability are not directly capable
of this, they can contribute to revealing the meaningfulness of model
outputs, thereby sharpening stakeholders’ perception of correlations and
causalities.

8.1.2 Model Interpretations across the Life Cycle

The traditional phases of the AI life cycle are presented at the middle level,
aim to answer the ’What’ and ’When’ questions. Despite their differences
across various domains and use cases, they are generally divided into
three overarching phases: conceptualization and Development, Release
and Deployment, and Operation and Maintenance. The XAI-Compass
captures the iterative essence of these phases, illustrating how stake-
holders are typically assigned to these stages. Between the role and
phase layers, the feedback loops run counterclockwise, encompassing
experiments, requirements, and feedback.

In an AI system’s Conceptualization and Development phase, fundamen-
tal decisions are already made that affect model interpretations, such
as planning the model architecture. Here, iterative activities that are
analogous to the conceptual phases of the AL development life cycle (cf.
Chapter 3) take place, extending from data engineering to modeling. In
this phase, there is often preemptive collaboration with Model Breakers
and Model Consumers to establish a common understanding that facili-
tates later adoption and trust. In this regard, the primarily active Model
Builders conduct experiments in which results of model predictions are
generated and communicated to the relevant parties (Kaur et al. 2020).

During the Release and Deployment phase, both prototypes and new
model versions are frequently examined using interpretation techniques
focused on instances, features, and model comparisons. Here, validation
strategies may include creating test cases with Model Breakers to ensure
that the models behave as expected, particularly in scenarios representing
edge cases where the models might exhibit uncertainty (Bhatt et al. 2020).
According to the results of the interview-study published by Hong et
al. 2020, in this stage, the reliability of a model and the need to gain
stakeholders’ trust are of utmost importance.

In the phase of Operation and Maintenance, the focus of model inter-
pretation shifts to ensuring the ongoing reliability and relevance of the
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model in the deployed application. This phase is characterized by the
predominant involvement of Model Consumers, which is why this step of
interpretability is more about understanding the system behavior during
direct interaction with new data and use cases. Because non-experts are
primarily involved in this phase, a user-oriented and practical approach
to model interpretations is necessary (Ferreira et al. 2020; Laato et al.
2022).

8.1.3 Stakeholder Groups of Model Interpretations

In the work of Langer et al. 2021 and Meske et al. 2022, various ap-
proaches to categorizing stakeholders and their respective objectives
for an model interpretation were proposed. The XAI-Compass adheres
to the categorization by Hong et al. 2020 and recognizes three primary
stakeholder groups within the model interpretability sphere: Model
Consumers, Model Builders, and Model Breakers. These form the core of
the Compass, describing the diverse actors related to an AI system.

This delineation is not merely categorical but further functional, shedding
light on each stakeholder’s diverse responsibilities and contributions
to an AI system. It is an intentional simplification that streamlines the
complexity of stakeholder engagements into a focused analysis of the
most pertinent phases and goals relative to their roles. Moreover, it
reflects the dynamic nature of stakeholder positions, acknowledging the
fluidity and overlap between these roles. For instance, individuals may
not be confined to a single role; rather, they may transition among roles
depending on the context and objectives at hand, as exemplified by the
color gradients for the entities of a stakeholder group in Figure 8.1.

The listed roles refer to typical terms in the literature. Starting with the
group of Model Builders, approximately representative entities provide
an excerpt from the technical roles defined in Section 3.4.2. These roles
are specifically defined for the AL development life cycle but are equally
relevant for AI projects in general.

Model Builder. This term refers to a group of professionals, such as
Data Scientists and AI/ML Engineers, who are primarily involved in
constructing AI systems. These individuals are tasked with designing,
developing, and integrating ML models into existing systems, processes,
and infrastructure (Hong et al. 2020). Their role is typically technical, and
they possess a deep understanding of AI systems and the underlying
concepts of ML models, encapsulating a group that Mohseni et al. 2021
categorize into XAI target users „AI Experts“ and „Data Experts“, yet
within the concept of the XAI-Compass, they are collectively referred
to as Model Builders. Their expertise thus includes, for instance, the
functionalities and techniques for improving ML models, as well as the
associated knowledge of data preparation activities and the learning
processes of algorithms (Suresh et al. 2021).

A significant part of a Model Builder’s tasks, which usually manifest as
iterative, involves the initial development and refinement of AI systems,
including debugging and improvement processes (Bhatt et al. 2020).
Therefore, they are directly involved in the implementation of the models.
Typically, these stakeholders operate close to the data, ML models,
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and further components of an AI system, requiring deep technical
proficiency in analyzing complex problems and solving them through
coding. Their direct access to various tools and technologies, along with
their specialized training, enables them to conduct detailed investigations
of the AI system and make adjustments.

Model Breaker. This group comprises a range of individuals who
distinguish themselves from Model Builders by their role in evaluat-
ing, validating, and testing AI systems for their alignment with specific
goals and compliance standards. This includes domain experts, produc-
t/project managers (Liao et al. 2020), decision-makers (Wang et al. 2019;
Meske et al. 2022; Laato et al. 2022), and compliance officers, including,
for instance, auditors, regulators, and policymakers as well as ethicists
(Hong et al. 2020). Unlike Model Builders, who work closely with data
and ML models, Model Breakers typically do not engage directly with
the technical aspects, illustrating their non-technical role within the
stakeholder group. This contrast becomes more apparent when con-
sidering the non-technical roles of the provided AL development life
cycle outlined in Section 3.4.1, whose descriptions seamlessly integrate
into the attributes of this group. This leads to a shift in the skill set
towards understanding broader implications and application contexts of
AI. Although they may not possess the deep technical AI knowledge that
the Model Builder stakeholder group does, their expertise is crucial for
assessing whether an ML model achieves its intended objectives through
correct functionality.

Model Breakers have the critical task of acting as a secondary authority
to identify discrepancies or problems within AI systems. They essen-
tially provide a necessary counterbalance to Model Builders and offer
perspectives based on practical domain-specific applications, ethical
considerations, and legal frameworks for AI systems. Their focus on
the broader operational, ethical, and regulatory contexts means that,
while their work is indispensable for the integrity and compliance of
AI systems, it involves less direct interaction with the data and models.
In this role, they are responsible for ensuring that the ML models are
technically sound and align with the overarching goals of the AI system,
the project, or the organization and that they meet the communicated
requirements.(Hong et al. 2020)

Model Consumer. This stakeholder group is defined by individuals
who are the end-users of AI systems and those affected by their decisions
(Meske et al. 2022). It includes a wide range of professionals across various
fields who use AI for decision support, such as hiring, loan approvals, and
medical diagnoses. The group further extends to those directly impacted
by these decisions, such as job applicants, bank customers, or patients
(Hong et al. 2020). In addition, this group includes a broader category
of stakeholders - public audiences - XAI target users that Mohseni et al.
2021 refers to as novices.

In contrast to Model Builders and Model Breakers, Model Consumers
typically lack an in-depth understanding of the underlying technologies
in AI systems. A unique aspect of this group is that their access to
data and models is often limited and generally confined to a superficial,
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results-oriented level to ensure necessary accessibility for those who
usually do not have separate tools at their disposal (Laato et al. 2022).
Therefore, their engagement with AI systems primarily revolves around
the interpretation of outcomes and the applicability of these outputs to
their needs and contexts.

8.1.4 Touchpoints for Model Interpretations

Integrating model interpretations into AI systems introduces distinct
touchpoints for stakeholder groups at various life cycle phases. To effec-
tively engage all stakeholder groups, it’s crucial to tailor the application
of interpretation tools and techniques to these touchpoints, aligning them
with the roles and phases to aid in achieving objectives and facilitating
tailored access and interaction with interpretation methods.

Derived from the XAI-Compass depicted in Figure 8.1, a critical touch-
point for Model Builders emerges during the Conceptualization and
Development phase. As noted, this group possesses deep technical knowl-
edge, enabling them to select and apply suitable methods close to the
data and model. Several renowned methods have been encapsulated in
software packages for integration and adaptation during development.

As Schwalbe et al. 2023 indicate, a single interpretation method often
falls short in elucidating all relevant model aspects, leading to adopting
tool collections that amalgamate multiple interpretation methods within
a unified library. Their review highlights several toolboxes, with popular
open-source projects including IBM’s AI Explainability 360 Toolbox (Arya
et al. 2019), InterpretML (Nori et al. 2019), and Alibi (Klaise et al. 2021). These
toolboxes provide an SDK-like usability, simplifying access to various
interpretation techniques by encapsulating the supported methods and
catering to a diverse technical audience, from beginners to advanced
data scientists and AI/ML engineers.

Another potential touchpoint derived from the XAI-Compass in the
Release and Deployment phase involves Model Breakers. These indi-
viduals might lack the technical capability to access toolboxes yet are
keen on analyzing models using suitable interpretation methods. Besides
model metrics, interpretations at the instance level in counterfactual
scenarios can play a role in examining model behavior and aligning it
with intended goals during this phase.

Reports serve as an appropriate medium, offering a formal touchpoint
for Model Breakers and a low-threshold access in the development and
conceptualization phase, embodying not just reactive but proactive ob-
jectives as well. Utilizing the CI/CD/CT Runner concepts introduced in
Section 4.2.3, for instance, enables automated and parameterized execu-
tion of routines that process implemented interpretation methods within
the ML pipeline, presenting the generated outputs in a report format.
This approach further suits computation-intensive tasks unsuitable for
interactive interpretation, like aggregating multiple interpretation results
across a large dataset.

An additional touchpoint with model interpretations arises in the Opera-
tion and Maintenance phase, involving Model Consumers. In this phase,
where interaction with the AI system and model occurs in real-world
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scenarios, ensuring accessibility to potential model interpretations for
a lay audience is crucial to facilitate context-specific use. This necessi-
tates considering the presentation form in designing the user experience
and UI, whether through visually prepared information e.g., throuh
heatmaps, text, or rule-based explanations.

Besides integrating into the end-user interface, where the underlying
technology and interpretation methodology might be abstracted depend-
ing on the use case, interactive dashboards offer the potential as an
adequate tool for other stakeholder groups at this touchpoint. Along-
side proprietary solutions, such as those in the Azure cloud plattform
(Microsoft 2024), popular open-source projects include OmniXAI (Yang
et al. 2022), ExplainerDashboard (Dĳk et al. 2023), and Shapash (MAIF
Data Scientists 2020). These interfaces enable a dynamic and interactive
selection of interpretation methods and data instances, proving especially
beneficial for participants wishing to present complex matters intuitively.
They provide a platform where users can explore algorithms and data
instances, analyze them, and offer feedback in an explorative manner.

8.2 Case Study

In the following section, a case study is introduced that utilizes the setup
presented in Section 6.2 of a 12-lead ECG signal classification model for
detecting arrhythmias. By employing methods of IML, this case study
serves as a foundation for examining stakeholder integration, presented
in Section 8.3. Before delving into the application of the algorithms, a
brief overview of the current state of research will be provided.

8.2.1 Interpretable Machine Learning for ECG Signal

Classification

In recent years, the area of IML for AI-supported ECG signal data analysis
has gained significant attention for its application in CDSS. In numerous
studies, IML methods have been applied to various model architectures
for different application purposes.

LIME (Ribeiro et al. 2016), as a model-agnostic method, has spread in
this domain as a popular technique. In the context of ECG data analysis,
Abdullah et al. 2023 have further developed LIME for domain-specific
implementation. They propose „B-LIME“, a process that uses bootstrap-
ping to consider the temporal dependencies of the QRS complexes in the
signal data.

Chen et al. 2023 implement LIME within a hybrid framework consisting
of a one-dimensional convolutional neural network fused with a Support
Vector Machine to detect hypertension in ECG data. The LIME results
indicate which specific ECG waveform features contribute to differentiat-
ing between normotensive and hypertensive patients, providing valuable
interpretative assistance primarily tailored for medical professionals.

Hughes et al. 2021 present an application of LIME to a CNN. The authors
trained a model to predict 38 diagnostic classes from 12-lead ECG data.
They leave the pathological relevance of the marked areas open but point
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out that the main advantage of their method lies in processing large
amounts of data. As the authors mentioned, the combination with LIME
could reveal novel ECG correlates by highlighting unexpected LIME
segments, possibly indicating as yet unknown disease mechanisms.

In addition to local explanations, Ivaturi et al. 2021 pursue a dual per-
spective by applying LIME, offering global explanations for the problem
of atrial fibrillation detection from ECG signals. They implement this by
dividing the ECG signals into fixed-length segments and then aggregat-
ing the weights generated by LIME over several samples to infer which
signal area is relevant for predicting atrial fibrillation.

The authors in Rouhi et al. 2021 apply not only LIME but further SHAP
(Lundberg et al. 2017) to their ML models, which were trained to classify
atrial fibrillation in ECG signals. The effectiveness of the SHAP technique
has been elucidated as an enhancement to performance. The results were
used to select features, which were then utilized in a new ML model,
which achieved higher predictive performance than the original ML
model.

Furthermore, Jekova et al. 2022 use SHAP to analyze atrioventricular
synchronization as a diagnostic criterion for atrial fibrillation, with
results indicating that heart rate variability and specific ECG markers for
atrioventricular conduction times significantly influence the predictions
of their ML models.

Angelaki et al. 2021 apply SHAP to analyze the importance and interaction
of clinical parameters and electrocardiographic features in detecting
abnormal left ventricular geometry. They focused on a single class in their
work and determined the importance of parameters such as age, blood
pressure, and various ECG parameters for the diagnosis. Similarly, the
authors Ibrahim et al. 2020 focus on predicting a specific class and show
how Shapley values can be used to identify the features that contribute
most to the classification of myocardial infarction using XGBoost.

The work by Neves et al. 2021 is innovative in incorporating temporal
dependency into ECG time series to make the classification of heartbeats
more explainable using SHAP. In contrast, Agrawal et al. 2022 present a
one-dimensional CNN classifying ECG signals from post-COVID and
healthy subjects. They use SHAP to interpret the relevant ECG sections
and conduct the analysis on both a patient-wise and lead-wise basis.

Furthermore, Zhang et al. 2021 conduct interpretation with SHAP at the
level of individual patients, examining their ML model for classifying
cardiac arrhythmias from 12-lead ECG signals. They extend perspectives
and perform an analysis with SHAP at the population level as well,
allowing the authors to quantify the influence strength of individual
features on the model predictions, thus obtaining a more global view of
the model.
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8.2.2 Implementation

The model for classifying cardiac arrhythmias, as described in Section
6.2.2, was utilized to facilitate the case study. Implementing two IML
methods, LIME and SHAP, was intended to generate various model
interpretations.

LIME. For the use of LIME, Model Builders have access to a dedicated
open-source Python library1. However, natively, it does not provide the1: See https://github.com/marcotcr/

lime, last accessed on 2024-04-02. functionality for perturbation of signal data,which led to an expansion of
the logic during its integration into the ML pipeline described in Section
6.2.2 at the validation stage.

Following the approach by Ivaturi et al. 2021, the logic initially divides a
given ECG signal into segments of fixed, configurable length to account
for the temporal dimension. A random selection of a given number of
signal segments was implemented across the entire ECG signal.

While Ivaturi et al. 2021 describe the application to single-lead signal data,
an extension was added for a cross-lead selection of signal segments. This
approach followed the sliding window principle, capturing the temporal
dependency across the twelve leads by simultaneously selecting segment
sections across all twelve ECG leads.

Figure 8.2: Perturbation dimensions for
LIME signal data for sampling for local
exploration in LIME. The sample (orig-
inal signal) is divided into segments,
which are then perturbed along the pre-
determined strategies. The figure shows
the exemplary selected base segment
(pink background) in its original form,
as well as the output after perturbation
along respective dimensions.
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Implemented Perturbation Dimensions for ECG Signals

In line with the concept from Chapter 7, domain-specific perturbation
dimensions, as depicted in Figure 8.2, were implemented. The figure
shows an excerpt of an unprocessed raw ECG signal with 800 sampling
points from Lead I, corresponding to a duration of 2 seconds at an
underlying sampling rate of 400𝐻𝑧.

Highlighted in pink is an exemplary selection of a 400-sampling point-
wide segment that spans one second. Besides the base signal, four
different signal perturbations are recognizable:

▶ Fixed Value: Assignment of a specific value to the selected segment,
which in this example (here = 0) corresponds to the scenario of
asystole for the marked area.

▶ Noise: Set to random values within the segment, simulating elec-
tronic or sensor noise.

▶ Scaling Amplitude: Changing the values by a given factor, either
decreasing (reduction of amplitude swing, as shown) or increasing
(enlargement of amplitude swing).

▶ Scaling Frequency: Doubling the values (stretched frequency, as
shown, which artificially „widens“ the area) or reducing the values
(compressed frequency, which artificially „narrows“ the area).

https://github.com/marcotcr/lime
https://github.com/marcotcr/lime
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SHAP. SHAP served as alternative method of interpretation, with an
open-source library2 available to Model Builders for this purpose. In 2: See https://github.com/shap/

shap, last accessed on 2024-04-02.alignment with the application of SHAP within the domain of ECG
signal classification proposed by Zhang et al. 2021, Shapley values were
computed, using Expected Gradients as proposed by Sundararajan et al.
2017, at the signal level („Patient-Level“ in the terminology of Zhang et al.
2021) to determine the relevance of individual sample points within the
ECG signal, as observed in Figure 8.3.
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Figure 8.3: 12-lead ECG signal with highlighted shapley values at sample-level. Displayed are normalized signal values of the twelve
leads over 10 seconds. The pink-colored overlay points on the ECG signal mark an increased Shapley value, indicating areas where
specific signal segments are relevant for the models’ (correct) prediction for class „PVC“.

Here, the twelve leads are labeled with their respective lead designations,
and for clarity, the signal values correspond to preprocessed, normalized
ranges. The x-axis delineates the time axis in seconds.

For the selected sample (ID: HR04123 from the PTB-XL dataset, cf. Section
6.2.1), which the trained model predicted to be the correct „PVC“ class
with a probability of 𝑝 ≈ 0.935, regions around the 5-second mark are
significantly highlighted, showcasing characteristic „PVC“ spikes. These
areas, marked in various shades of pink, indicate positive Shapley values
supporting the „PVC“ classification. Conversely, the areas depicted in blue
represent negative Shapley values that counter the „PVC“ classification.
This local observation aligns with the experiments presented by Zhang
et al. 2021, who demonstrated similar findings for another „PVC“ class
sample in their setup.

The implementation extended the calculation of lead-wise Shapley values
to ascertain the relevance of individual ECG leads. The lead-specific
Shapley values calculated for the sample depicted in Figure 8.3 are visible
on the left side of Figure 8.4. This visualization elucidates the significant
influence of leads V2 and V4 on the model’s predictive accuracy, whereas
the influence of leads V1 and V6 is minimal.

Furthermore, determining lead relevance and the direct additivity of
Shapley values facilitate the aggregation of values across the entire test
dataset, a property exploited by Zhang et al. 2021, who refer to this in their
work as „Population-Level Interpretation“. The result of this aggregation

https://github.com/shap/shap
https://github.com/shap/shap
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Aggregated Lead-wise Shapley Values on Dataset-level
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Figure 8.4: Lead-wise Shapley values for 12-lead ECG signals. The left chart provides a lead-wise breakdown for a single sample (local),
illustrating the relevance of each lead to the model’s prediction for the „PVC“ class. The right panel aggregates Shapley values across the
entire test dataset for each lead, enabling a more global model interpretation.

of Shapley values for each true-positive predicted sample on the test
dataset is shown on the right side of Figure 8.4.

The matrix clarifies which leads were significant in various classes. The
same color scheme was selected, meaning that positive Shapley values
(depicted in pink) suggest that a particular lead contributes positively to
the model’s prediction. In contrast, negative values (in blue) indicate a
contrary effect - the more intense the color, the stronger the contribution
to the prediction outcome.

As evidenced by the chart, particularly lead II demonstrates high positive
Shapley values across several classes, suggesting that the signal in this
lead contains key indicators for the model. Other leads, such as aVL
and V1, exhibit mixed or neutral significance. However, on a class-by-
class basis (columns), it is notable that for classes „AFLUT“, „IRBBB“,
and „RBBB“3, lead V1 displays high Shapley values. This observation3: For terms of abbreviations please refer

to Table 6.6 is partially consistent with the findings of Zhang et al. 2021, whose
model does not cover all these classes but whose „Population-Level
Interpretation“ seeks to verify the correlation with clinical procedures of
ECG readings, identifying that this lead exhibits characteristic features
of these classes.

As recently seen, the implementation of both methods, LIME and SHAP,
enables the creation of various interpretations, which can be utilized for
subsequent studies involving stakeholder engagement.
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8.3 Stakeholder Engagement

The following section delves into stakeholder engagement within the con-
text of an AI-based ECG classifier, building on the case study introduced
earlier. The focus is on exploring the different perspectives of various
stakeholder groups as identified in the XAI-Compass.

By conducting three distinct studies, the aim is to gather feedback from
these stakeholders to gain a comprehensive understanding of their views
on the interpretability of the model and how it influences their perception
of trustworthiness. The insights gathered will contribute to a deeper
understanding of how different stakeholders perceive and evaluate the
proposed model interpretations.

8.3.1 Domain Expert Interviews

Including domain experts, primarily in their role as part of the stakeholder
group of Model Breakers, forms the foundation for ensuring trustworthy
AI systems, especially in terms of their explainability. In this context,
expert interviews with subject-matter experts represent an appropriate
qualitative method that bridges the gap between technical innovation
and practical application by providing insights into specific requirements
as well as the relevance of the generated model interpretations.

Study Setup

The study setup focuses on conducting semi-structured interviews with
two heart surgeons from the German Heart Center at the Technical
University of Munich who specialize in analyzing ECGs. The participants,
due to their involvement in an AI research project, were familiar enough
to provide informed statements on the use of model interpretations in
the application context of an ECG signal classifier.

The interviews were conducted remotely with both participants sep-
arately, utilizing the same prepared presentation slides as a basis for
discussion in both interviews. The 90-minute interview was divided into
three main parts:

1) Visual Representations: Participants were shown various visual
representations that had been generated in advance and are dis-
played in Figure 8.5. The representation forms included two estab-
lished and two innovative formats:

a. Values Highlighting: color marking of signal points, as imple-
mented by Agrawal et al. 2022 and Zhang et al. 2021

b. Background Heatmap: color marking as a heatmap, as used by
Abdullah et al. 2023, Hughes et al. 2021, and Van De Leur et al.
2022

c. Coloured Signal: direct coloring of the signal line
d. Bounding Box: insert bounding boxes in relevant areas of the

signal
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Figure 8.5: Comparative visualization techniques for local ECG classification model interpretations. The image shows four subgraphs,
each with leads I, II and III of an ECG signal. Within these subgraphs, the results of the model interpretation are displayed in different
formats. The colour-coded annotations indicate regions within the signal that contribute to the predictive decision process of the model.

Figure 8.5 shows these representation forms in comparison for
an easier overview only for the first three leads. However, the
participants were shown the representations for a 12-lead ECG,
as shown in Figure 8.3. Various colors are not depicted, although
different colors were shown during the interviews.

2) Evaluation of Generated Model Interpretations: In line with
the taxonomy for the evaluation of explanations as proposed
by Doshi-Velez et al. 2017, a human-grounded evaluation was
conducted on the interpretations generated by the AI model. To
this end, participants were presented with various examples of
outcomes produced by the implemented IML methods. These
outcomes included both the visual representations crafted by
the interpretation algorithms and textual information about the
model’s output, such as predicted classes and confidence levels.
Participants were tasked with assessing these outcomes for their
medical significance and were invited to articulate their qualitative
feedback through the „Think Aloud“ method (Lewis 1982).

3) Feedback on Domain-specific Implementation: Interviewees were
given a brief lecture on the functionalities of the implemented IML
algorithms LIME and SHAP. Subsequently, the domain-specific
adaptations of these algorithms were explained. Participants were
then asked to provide feedback on these methods, focusing on
the intuitiveness and relevance, as well as any suggestions for
improving the domain-specific implementation.

Results

The thematic analysis of semi-structured interviews offered insights
into the perception of model interpretations within the context of ECG
signal classification. Both participants acknowledged the relevance of
model interpretations for this proxy task of an AI-based CDSS, albeit
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prioritizing different goals as identified by the XAI-Compass. While
one prioritized „safety“ as the highest goal, viewing „curiosity“ as less
critical but potentially more relevant for patients, the other highlighted
„analysis“ as the top priority in using interpretation mechanisms.

Visual Representation. The heart surgeons provided valuable insights
from the domain experts’ perspective by assessing various visual rep-
resentations of model interpretations. Discussions converged on a con-
sensus that clarity and simplicity in visual representations, as in other
systems, would enhance acceptance in daily practice. Both participants
expressed concerns about the complexity and potential confusion caused
by excessive colors and visual cues.

One participant noted the effectiveness of coloring only relevant areas
and leaving the rest white, reminiscent of using highlighters and pencils
on physical documents - a bridge between traditional and digital notation
methods familiar to many clinicians. Bounding boxes intuitively resem-
bled common practices of circling relevant findings during examinations.
Another participant mentioned this form of representation reminded
them of their medical studies, where textbooks outlined relevant areas
with rectangular boxes.

Another favored method was the bounding boxes, appreciated for their
clarity in delineating relevant sections. However, concerns were voiced
that these boxes might obscure parts of the signal, suggesting a need
for careful implementation to ensure all relevant data remains visible.
The participant suggested overlaying the signal over bounding boxes to
maintain ECG data readability.

Regarding the proxy task of using AI-supported ECG analyses in emer-
gencies, both participants preferred simplicity, noting the heightened
urgency of decision-making. Surgeons preferred visual cues like value
highlighting and bounding boxes over background coloring in such
scenarios. While providing a „clean“ appearance, the colored line of the
signal might demand more attention in stressful situations, conflicting
with the requirement to identify important information quickly.

Evaluation of Generated Model Interpretations. A recurring theme in
evaluating generated model interpretations for selected samples was the
importance of aligning AI explanations with established medical knowl-
edge and diagnostic criteria. The feedback revealed varying reactions to
the results, including cases where model predictions matched or differed
from the diagnosis.

One participant pointed out the challenge of interpreting model pre-
dictions when some clinically relevant criteria were marked but not
consistently correctly. Correctly colored areas would enhance trust in the
model, while marking irrelevant areas could confuse. For correct model
predictions (confirmed by the surgeons in the presented ECG signals),
both noted that the markings from the model interpretations helped
strengthen the understanding of the model’s decision-making process.
However, incorrect predictions reduced trust, even if the color markings
on the signal offered some insight into the error.
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The output of aggregated lead relevance on both sample and dataset
levels was deemed of limited informational value by one participant,
considering it unhelpful to analyze an entire lead or multiple input data
due to its imprecision. The other participant attributed limited importance
to this model interpretation, viewing it from a verifying perspective as
an additional but not particularly useful information source for model
verification.

Feedback on Domain-specific Implementation. The intuitiveness of
interpretation algorithms plays a crucial role in the explainability of
AI systems. One participant found the explanations provided by LIME
very intuitive, while both considered SHAP very intuitive, suggesting a
preference for approaches that align with clinical reasoning.

Both participants reacted positively when discussing domain-specific
adaptations of the implemented IML algorithms. Concerns were raised
about implementing the perturbation logic „Noise“ in LIME. For example,
comparing the effects of perturbations could inadvertently add diagnostic
features indicative of ventricular fibrillation. Both mentioned they would
welcome selectable perturbation strategies, with one adding that choosing
the perturbation segment manually for targeted manipulation to test
model functions would be useful.

Using SHAP, both participants independently expressed interest in
comparing similar classes and different classes, finding the current
random selection of samples for Shapley value computation less medically
relevant. They proposed that calculating feature relevance with samples
of the same class would allow a more focused analysis while selecting
different classes would further provide a medically relevant perspective.
One participant suggested comparing samples classified as arrhythmias
with those of normal sinus rhythm for a comprehensive analysis.

8.3.2 Scenario-based Focus Group Discussions

Focus groups, as described by Kitzinger 1995, are in-depth, open-ended
group discussions where specific questions about a particular topic are
explored, lasting one to two hours. They are seen as a form of group
interviews, where the interaction among participants is emphasized
as a key element, and open conversations are encouraged, allowing
participants to express their opinions and introduce new ideas.

Based on the traditional concept of focus group discussions, scenario-
based focus groups extend this methodology by incorporating specific,
hypothetical, or realistic scenarios. These scenarios serve as stimuli
for the conversation, helping to place participants in concrete, often
more complex situations, which facilitates the generation of specific,
application-oriented insights (Krueger et al. 2014).

Scenario-based focus groups expand and enrich the discussion space, as
participants share their general views and respond to specific challenges
and situations. They are widely used in qualitative research across
various fields, including XAI, where they aid in understanding complex
technologies through realistic scenarios (Johs et al. 2021; Zacharias et al.
2022; Bienefeld et al. 2023).
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Study Setup

In conducting the scenario-based focus group discussions, attention
was centered on two stakeholder groups: Model Builders and Model

Consumers. Two trios of participants were established, each represent-
ing the specified stakeholder groups. Separate online workshops were
conducted with each group, starting with an introduction to the topic
and methodology presentation.

The group of Model Consumers comprised medical students, while the
group of Model Builders were AI Engineers with comprehensive data
science knowledge. Participant group descriptions and self-assessment
data on AI and ECG knowledge gathered from a questionnaire are
detailed in Table 8.1. Medical students uniformly reported a moderate
level of ECG knowledge captured by a categorical variable. In contrast,
AI Engineers indicated having little to no experience in this area. These
reports align with expectations, as were their self-assessments of AI
knowledge, specified on a scale of 1 (lowest) to 10 (highest), where
medical students rated their knowledge significantly lower than AI
Engineers.

Stakeholder Group Model Consumer Model Builder

Participants Medical Students AI-Engineers
Average Age 25.33 42
ECG Experience Moderate Little to None
Average AI Knowledge 3.33 8.33

Table 8.1: Overview of participants in the
scenario-based focus group discussions.

The context was set to the (hypothetical) use of an AI-based CDSS for
diagnosing 12-lead ECGs to specify the discussion’s use case, derived
from the case study presented in Section 8.2. It’s assumed that a trained
ML model is an integral part of an ECG device analyzing ECG record-
ings to make arrhythmia diagnosis recommendations by outputting the
likelihood of corresponding classes.

Ground Scenario. The ground scenario envisioned the clinical appli-
cation of the AI-based CDSS, outlining a workflow where the device is
used to record a 12-lead ECG, and the recording is analyzed using an ML
model to output a diagnostic prediction through rhythm classification.
An ECG sample, as shown in Figure 8.3, classified as „PVC“ by the ML
model, was used as a working example. The recorded ECG signal and
the CDSS-produced „PVC“ diagnosis were provided without additional
data or explanations. When confronted with this scenario, the moderator
invited participants to evaluate the CDSS’s utility based solely on the
information provided, asking, „What are your thoughts on the presented
AI-based 12-lead ECG device?“

Escalation Step 1. Following the initial ground scenario discussion, the
study moved to the first escalation level, building upon the base scenario.
A novel element introduced here was the inclusion of a probability value
in the ECG display immediately following the diagnosis, indicating the
AI’s diagnostic confidence and thus providing a variable explanation.
Secondly, a new layer of visual explanation was added by incorporating
the color codings shown in Figure 8.3, which resulted from calculated
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Shapley values, into the presented ECG signal. This visual interpretation,
created with the SHAP algorithm, offered localized clarification for the
specific ECG sample used in the scenario. Participants were encouraged
to contemplate and discuss the potential of this additional information
layer with the question, „What do you think about this extension?“

Escalation Step 2. Transitioning to the second escalation level, the
provided information was further expanded by disclosing details on the
training dataset, including the number of „PVC“ class samples available
for training and presenting five similar ECG samples of the „PVC“ class
along with their Shapley values. Additionally, Shapley values at the lead
level were visualized as bar charts and provided for aggregating Shapley
values across classes, as shown in Figure 8.4. These details aimed to offer
a comprehensive overview of the model output, with participants again
encouraged to discuss with the question, „What do you think about this
extension?“

Results

The transcriptions were subsequently subjected to exploratory content
analysis and examined based on the focal points of visual representation,
explainability, trust, and suggestions for improvement. The evaluation
revealed differentiated views of the two stakeholder groups, with the core
statements from the discussions of both groups compared for overview
in Table 8.2.

Model Builders Perspective. The group of AI engineers expressed
concerns about the lack of critical information and emphasized the
importance of providing additional data such as precision and secondary
classifications, besides the probability of a diagnosis. Despite lacking
in-depth ECG knowledge, they criticized using a normalized scale for
representing ECG leads, as it obscures diagnostically relevant details like
units of measurement and amplitudes of characteristic peaks.

In the first escalation step, the Model Builders valued the color highlight-
ing of decision-relevant areas as applicable since these areas matched the
signal sections they identified as conspicuous. In the second escalation
step, they discussed the risk of information overload, especially from a
patient’s perspective, who could be overwhelmed by it.

Nevertheless, they desired deeper insights into the training processes and
more detailed information on the training data and model architecture.
Regarding trust, they were initially skeptical about the model’s reliability
due to the limited amount of data presented. They discussed factors that
could strengthen their trust, such as compliance with industry standards
and certifications.

Model Consumers Perspective. The group of medical students pointed
out that comprehensive and accurate diagnosis requires additional
medical information that was missing from the presented visualizations.
They emphasized the importance of receiving further relevant ECG data
such as RR intervals4, alongside the model’s prediction.4: The RR interval is the distance be-

tween two R-peaks in the signal,



8.3 Stakeholder Engagement 221

Table 8.2: Comparative summary of feedback from Model Consumers and Model Builders. This table presents a categorized compilation
of key statements points from Model Consumers and Model Builders on representation, explainability, trust, and suggestions. The
contrasting perspectives highlight areas of consensus and divergence between the two groups regarding the use of a CDSS and the
provided explanations.

Model Consumer Model Builder

R
e
p

r
e
s
e
n

t
a
t
i
o
n [R1] ECG not fully displayed [R5] Missing technical details

[R2] Additional medical data (e.g., RR interval) [R6] Indication of probabilities for
required secondary classification
[R3] Unfamiliar ECG format [R7] Desire for marked signal areas
[R4] Contain partly irrelevant information [R8] Confusion about normalised scales

[R9] Sample-ID irrelevant

E
x
p

l
a
i
n

a
b

i
l
i
t
y

[E1] Need for explanation only in case of [E6] Interest in more performance metrics
uncertainty or inconsitence with CDSS [E7] Highlighting relevant segments helpful
[E2] Visualitation partly distracting [E8] Improved information content
[E3] Partial information overload through visual highlighting
[E4] Colouring is unimportant [E9] Discrepancy in meaning of Shapley values
for simple diagnsoes [E10] Amount of information
[E5] Indication of probability of potentially overwhelming
diagnosis is important

T
r
u

s
t

[T1] Emphasis on own ECG competence [T4] Trust increases with additional information
[T2] Scepticism towards dependence [T5] Visualisations that confirm
on CDSS diagnoses own observations increase confidence
[T3] Knowledge of data quality is crucial [T6] Need for medical knowledge

to understand ECG patterns
[T7] Greater confidence when the
obvious abnormality is recognised

S
u

g
g
e
s
t
i
o
n

s

[S1] Avoidance of abbreviations („PVC“) [S6] Demand for additional
[S2] Colour coding only performance metrics (e.g. 𝐹1 score)
for pathological sections [S7] Provide information on model
[S3] Red should be reserved architecture and training procedure
as color for serious diagnoses [S8] Explicit labeling of probabilities
[S4] IML output could be suitable
for educational purposes
[S5] CDSS should alert if data quality is poor

In the first escalation step, they praised the introduction of a probability
assessment, which clarified the reliability of the diagnosis. In the sec-
ond escalation step, they considered additional information from the
CDSS output as potentially confusing. They recognized the value for
professionals but highlighted the risk of misunderstandings without ade-
quate medical knowledge. They advocated for solid medical education’s
importance in correctly interpreting the data.

Both groups showed interest in model interpretation, illustrating how
the CDSS arrives at its diagnosis. Particularly in complex diagnostic
cases, a detailed explanation was considered helpful in supporting the
evaluation.

Comparison of Perspectives. When perspectives are compared, as
shown in Table 8.2, it becomes apparent that both groups critiqued the
unconventional representation of normalized ECG signals [R3,R8] and
pointed out the irrelevance of certain data, such as the sample ID [R4,
R9]. They agreed that information provided in the second escalation step
could lead to information overload [E3,E10].
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Differences were primarily observed from a technical versus medical
viewpoint. While AI engineers focused on technical aspects, data rep-
resentation, and model performance, demanding additional technical
details to ensure the model’s accuracy and reliability, medical students
valued the information’s medical accuracy and completeness. AI engi-
neers saw XAI as a means to build trust regarding explainability and
trust. In contrast, medical students considered explanations particularly
important in the context of their studies and for assessing the CDSS’s
doubtful predictions, relying on their medical knowledge to evaluate the
diagnosis.

These differences reflect the varied roles and fields of expertise, with
Model Builders adopting the patient’s perspective and primarily fo-
cusing on development, improvement, and usability, whereas Model
Consumers highlighted the clinical utility and educational possibilities
of the technology.

8.3.3 Survey at Workshop

To foster the involvement of a wider audience, a third methodology was in-
tegrated within the workshop on the topic of „Trustworthy AI in Medicine
- from Efficient Data Annotation to Intuitive Model Explanation“ (original
German title: „Vertrauenswürdige KI in der Medizin - von effizienter
Datenannotation bis intuitiver Modellerklärung“), which was conducted
as part of the Science Congress in Ingolstadt 2022 (WIKOIN2022).

This consisted of conducting an interactive live survey in which par-
ticipants were involved through structured questionnaires as part of
the knowledge discovery process. This quantitatively oriented approach
opens up an additional dimension by enabling the generation of over-
arching insights based on the aggregated feedback from participants.
The workshop, which took place on-site and was openly accessible to the
science congress visitors, was divided into three parts. While two of the
three parts focused on AL and data annotation, the first part dedicated
itself to the field of XAI.

Study Setup

The topic was introduced through a presentation contextualizing and
showcasing the application example of the ECG classifier. This encom-
passed both the technical approach and the medical benefits of an ECG
device. The integration of simplified ECG sensors into smartwatches was
discussed to enhance the technology’s accessibility for a broader audi-
ence. For illustration purposes, ECG signals of both normal heart rhythm
and atrial fibrillation were presented, followed by a demonstration using
the output of a professional 12-lead ECG device.

Subsequently, the workshop transitioned into an interactive hands-on
session, inviting participants to partake in a live survey using their
smartphones. This survey was facilitated by the freely available audience
response system VoxVote5, with participants gaining access by scan-5: https://www.voxvote.com/

ning a QR code. Questions, specifically tailored to the presented slides
and initially probing the participants’ professional backgrounds, were
displayed.

https://www.voxvote.com/
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Mirroring the study design of the focus group discussions (as described
in Section 8.3.2), the initial slide showed a 12-lead ECG depicting patterns
of atrial fibrillation, supplemented by a hypothetical output from an
ML model classified solely as „Atrial Fibrillation“ (Ground Scenario). The
pivotal question posed to the audience was: „How much do you trust
the result of the AI?“ Response options ranged from „Fully“, „Strong“,
„Moderate“, and „Weak“ to „No Trust.“

An extension showed the same ECG signal, this time supplemented with
a detailed output of the ML model. This provided deeper insight through
the prediction probability for the primary diagnosis „Atrial Fibrillation
- 99.09%“ and secondary classes „Normal Heart Rhythm - 0.02%“ and
„Other - 0.89%“, complemented by probability values as a bar graph
for verbal explanation (Escalation Step 1). A subsequent slide offered a
visual interpretation of the model through color coding of the Shapley
values, supplemented by information on the relevance of individual
leads (Escalation Step 2).

The second survey focused on differentiating model interpretations.
Based on previous expert interviews, various visualization forms were
presented to a broad audience for clarity assessment. Participants were
confronted with visualizations as depicted in Figure 8.5, with Representa-
tion 1 „Coloured Signal“, Representation 2 „Background Heatmap“, and
Representation 3 „Values Highlighting“ shown on separate slides, query-
ing the understandability of each explanation. Response labels available
were „Fully“, „Well“, „Moderate“, „Hardly“, and „Incomprehensible“.

Throughout the workshop, the presenter was available as a point of
contact, allowing for responses to any question. Each question had an
answering period of approximately one minute until the question was
deactivated. Participants who did not respond were not excluded from
the live survey and could participate in subsequent questions. Retroactive
responses were not possible, as each question was only active for the
duration of its answering period.

Results

The 15 participants’ data set generated during the live survey was captured
using the Audience Response System, allowing for a comprehensive post-
event analysis.

AI Expert (38%)

Computer Scientist (23%)

Layman (8%)

No Answer (31%)

Strong (23%)

Moderate (38%)

No Answer (31%)

Weak (8%)

Fully (8%)

Moderate (31 %)

No Answer (46%)

Strong (15%)

Fully (8%)

Strong (46%)

No Answer (23%)

Moderate (23%)

Background Ground Scenario Escalation Step 1 Escalation Step 2

Distribution of Participants’ Response to the Question: “How much do you trust this AI generated output?”

Figure 8.6: Trust in AI-generated output
across escalation scenarios. This sankey
diagram visualizes the distribution of
participants’ responses related to their
trust levels in AI generated output, ini-
tially segmented by their professional
background.

Figure 8.6 offers insight into the audience’s responses concerning their
level of trust in AI generated results, demonstrated through a 12-lead
ECG classifier case study. The Sankey diagram illustrates the relative
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distribution of responses, categorized by the participants’ professional
backgrounds and sequenced according to the question order used in the
workshop, starting with the baseline scenario and proceeding through
two escalation steps.

In the Ground Scenario, a balanced distribution of responses among the
categories „Strong,“ „Moderate,“ and a smaller proportion of „Weak“
was observed. As the scenarios escalated, the „Strong“ and „Moderate“
proportions diminished. Notably, in the second escalation step, there
was a marked increase in the trust level deemed „Strong“. Moreover, it is
noteworthy that in the Ground Scenario, the mere output of the class with
the highest probability, without any additional information, resulted in
some participants indicating „Weak“ trust. This category disappeared
with the increment of information provided in the escalation steps, with
a corresponding increase in the „Fully“ category. This shift indicates an
increase in trust as more information is made available, with no migration
towards lower levels of trust.

Figure 8.7: Survey result about clarity
of provided explanations. The sankey
diagram shows the participants’ assess-
ments of the clarity of the different
representations provided, differentiated
according to their professional back-
grounds.

Background Representation 1 Representation 2 Representation 3

Distribution of Participants’ Response to the Question: “How clear is the explanation provided?”

AI Expert (38%)

Computer Scientist (23%)

 Layman (8%)

No Answer (31%)

Fully (8%)

Hardly (23%)

Moderate (23%)

Well (23%)

No Answer (23%)

Fully (8%)

Moderate (23%)

No Answer (31%)

Hardly (38%)

No Answer (31%)

Well (38%)

Moderate (23%)

Hardly (8%)

Figure 8.7 presents the distribution of participant responses regarding
the explanations’ clarity. The reactions for Representation 1 („Coloured
Signal“) are heterogeneous, with the audience rating the clarity of the
explanation as „Well,“ „Moderate,“ and „Hardly.“ Only a minority stated
that the representation was „Fully“ clear.

The second form of presentation (Background Heatmap) seemed to
polarize opinions, evidenced by a significant portion (38%) of participants
rating it as „Hardly“ and none as „Well“, suggesting that Representation
2 was overall less comprehensible to the audience. Contrastingly, in
Representation 3 (Values Highlighting), the proportion of „Hardly“
ratings was the lowest, and the proportion of „Well“ ratings the highest.
Although no participants chose „Fully“, this representation appears to
be the most understandable in comparison.

These findings must be viewed with respect to the expertise of the
audience, a large segment of whom self-identified as AI experts or
computer scientists. Given that the workshop took place at a scientific
congress on the subject of AI, this is explainable. Another point of
note is the significant portion of participants who did not provide any
answers, possibly due to various reasons. This could reflect a certain
degree of uncertainty on the part of the respondents or be due to the
user-friendliness of the audience response system.

To conclude, the workshop results show that, taking into account the
professional background of the audience, increased information pro-
vision leads to increased trust. The different representational forms
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of explanations were evaluated variably across all participant groups,
with Representation 3, featuring feature highlighting, offering the most
comprehensible approach.

8.3.4 Discussion and Recap

Reflecting on the studies conducted on stakeholder engagement, it
becomes apparent that involving stakeholders from various disciplines
provides a multiperspective view on the interpretations of the presented
AI-based ECG classifier. However, it is crucial to critically consider that the
context and selection of participants are decisive for the generalizability
of the results.

The expert interviews described in Section 8.3.1, involving two cardiac
surgeons, offer profound insights into the professional requirements
and preferences regarding AI interpretations. Nonetheless, due to the
limited number of participants, these interviews only represent part
of the spectrum of opinions within the stakeholder group of Model
Breakers. While these interviews provide valuable, practical perspectives,
they highlight the limitations imposed by a small sample size.

Scenario-based focus group discussions, as outlined in Section 8.3.2
with the Model Builder and Model Consumer groups, illustrate these
stakeholders’ differentiated needs and perspectives. Despite the potential
of this method, the small group size of only three participants should be
noted, which falls below the ideal group size of four and eight people
(Kitzinger 1995). Additionally, the online execution might impact the
flow of conversation and group dynamics, potentially diminishing the
authenticity and dynamism of the interactions.

The quantitative results of the survey conducted during a scientific
congress on AI (Section 8.3.3) might have been influenced by the spe-
cialized audience. This context-specific participant selection and the
workshop setting may not accurately reflect the views of a broader and
more diverse audience.

Incorporating various stakeholders in these three studies, the investiga-
tion into the perceptions of interpretability of an AI-based ECG classifier
offers the following insights:

▶ Users prefer simplicity. In particular, the medical experts favored
clear and simple visual representations of model interpretations.

▶ Intuition of visualization forms depends on the audience. Vi-
sualization forms such as „Feature Highlighting“ were rated as
understandable by both domain experts and other stakeholders.
Additionally, „Bounding Boxes“ were familiar to medical profes-
sionals from their everyday experience.

▶ Differing priorities in information content. While AI engineers
emphasize technical accuracy, medical students highlight the im-
portance of medical relevance and the clarity of the information
provided.

▶ Increased trust with more information. As more information was
provided, higher levels of trust were observed across all studies.
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▶ Potential for information overload. However, there is a risk of
information overload, particularly when too many technical details
are presented without adequate context.

8.4 Summary

This chapter has examined the integration of stakeholder perspectives
in implementing IML. To this end, the XAI-Compass was introduced, a
conceptual guide for stakeholder engagement that organizes a holistic
view of stakeholder groups, AI lifecycle stages, and goals within the XAI
ecosystem. It serves as a visual tool to structure the core questions about
model interpretations: „Who?“, „When?“, and „Why?“. Additionally,
various touchpoints were identified that aim to answer the question
„How?“.

In a case study, the post-hoc XAI methods LIME and SHAP were adapted
to a 12-lead ECG classifier, and corresponding visualizations were created.
This provided insights into implementing further domain-specific model
interpretations, focusing on three empirical studies involving stakeholder
groups.

Using three different methods - expert interviews, scenario-based fo-
cus group discussions, and a survey conducted at a workshop - the
perspectives and requirements of the stakeholder groups identified in
the XAI-Compass, namely Model Builders, Model Breakers, and Model
Consumers, were illustrated.

The results highlight the crucial need to align model interpretations
and subsequent explanations with human-centered considerations such
as understandability, relevance, and trust. Divergent perspectives may
potentially create tensions, as evidenced by the varying preferences
between medical professionals and technical participants. The trade-
off between technical details and practical usability underscores the
importance of stakeholder-oriented model interpretations.

The integration of stakeholder perspectives in the development and
implementation of model interpretations is essential. The XAI-Compass
provides a framework by identifying potential stakeholder groups, phases,
and goals and proposes possible touchpoints. Engaging various stake-
holders, as demonstrated in the conducted studies, results in improved
acceptance and promotes access to relevant interpretations for all in-
volved, aligning with the requirements for developing trustworthy AI
systems.



V. Conclusion and Outlook
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Throughout this dissertation, the role of AL in the development of
trustworthy AI was examined, introducing various approaches that en-
hance explainability and transparency in processes and systems. These
approaches were evaluated in diverse ways and through various simula-
tions and real-world studies involving human participants.

This final chapter summarizes and conclusively evaluates the three parts
of this dissertation by revisiting the objectives introduced in Chapter 1
and recapitulating them with the findings of this work. Subsequently, an
outlook on future research directions is given.

9.1 Development in AL Projects

This dissertation introduced a revised model for the development life
cycle of AL and a technical workflow designed explicitly for data-centric
AI projects applicable to AL projects. Objective 1 aims to establish a
uniform methodological foundation that enhances transparency and
explainability at the process level in the execution of AL projects while har-
monizing the diverse working methods of heterogeneous team members
to promote efficient collaboration.

The presented AL development life cycle, as described in Chapter 3,
organizes an AL project into phases and stages, providing a structured
approach that merges best practices from traditional software devel-
opment with the particularities of a data-centric project. The life cycle
model is designed to be iterative and agile, accommodating the dynamic
nature of the AL methodology, where data, models, and requirements
can rapidly evolve due to new data and feedback loops. Technical and
non-technical roles typical for an AL project are identified and defined,
each responsible for a specific area of tasks.

A significant contribution of this part of the thesis is the adaptation of
existing life cycle models for AI/ML projects to the AL methodology.
The development life cycle for AL projects thus fills a gap by depicting
a process model with conceptual phases and continuous iterations.
This supports a team in maintaining coherence throughout the project
duration and provides a framework that outlines „what“ is to be done in
each phase and stage of an AL project.

Building on this, several key concepts are introduced as part of the
development methodology proposal presented in Chapter 4. These
include principles related to data, code, and automation, which answer
the question of „how“ by presenting a practical guide for engineering
teams. These principles are designed to be tool-agnostic, thus enabling
application in various technical environments and use cases.

Implementing the proposed practices ensures that all changes in a project
are traceable and transparent, addressing the requirements of trustworthy
AI for transparency. This is achieved through a systematic tracking of
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artifacts throughout the life cycle, which provides a clear view of the
origin and development of each component.

The effectiveness and relevance of the methodology were assessed in
Section 4.5 across several dimensions: alignment with established best
practices in SE, insights from expert interviews, and a meta-analysis of
two project implementations. This comprehensive assessment has shown
that the proposed methodology adheres to best practices and advances
them by promoting a collaborative, agile, and data-centric development
environment.

To conclude, Objective 1 was successfully achieved by presenting a
comprehensive model for the development life cycle and an engineering
workflow that addresses the inherent challenges of AL projects and
fosters a systematic, efficient, and transparent approach to implementing
data-centric AI systems. This foundational methodology serves as a guide
for development teams, empowering them to handle the challenges of
data and model volatility while ensuring that the project remains aligned
with the requirements for process transparency in the development of
trustworthy AI.

9.2 Design of AL Systems

Chapters 5 and 6 explore an AL project from a systems perspective.
Objective 2 focuses on providing a framework equipped with essential
components for effective data annotation as well as ensuring the end-
to-end traceability of artifacts, to facilitate the implementation of AL
systems.

The framework introduced in Chapter 5, LIFEDATA, integrates technolo-
gies for data provenance and artifact versioning. It consists primarily
of two parts, each provided as open-source software. While the core
framework, with its various interfaces and the relational database for
storing annotations, forms the backbone, the generic project template
includes a blueprint containing all key components relevant for executing
an AL project with a focus on traceability. Both the core framework and
the project template are agnostic to data/label types and model types,
aiming to support a wide range of use cases.

The applicability of the LIFEDATA framework was demonstrated in
Chapter 6 through two detailed use cases in the life sciences, each
addressing unique challenges and showcasing the adaptability and
effectiveness of the framework. Concepts from Chapter 4 were further
applied here, illustrating the scalability of system components and
infrastructure setup to meet the specific requirements of the use cases.

ML pipelines with DNNs were implemented for various data types, such
as image and signal data, along with different querying strategies. The
classification performance of the trained models was evaluated using
established methods, and the effectiveness of the querying strategies
was assessed through simulations using public, pre-annotated datasets.
Moreover, in the use case involving ECG signal data, the applicability of
the LIFEDATA framework as a tool for determining annotator consensus
was demonstrated and analyzed in a study with human annotators.
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The results presented in Part III indicate that the LIFEDATA framework
is a practical solution for supporting development teams wishing to
implement AL projects. The two parts of the framework contribute to
achieving Objective 2 by providing a blueprint for developers, integrat-
ing necessary technologies for data provenance and artifact versioning.
Its modularity and data agnosticism support a variety of application sce-
narios and promote the implementation of AL across different domains.
Thus, LIFEDATA contributes towards the realization of trustworthy AI
systems with AL, by addressing the requirement for traceability.

9.3 Interpretable Machine Learning

The third part of this dissertation is dedicated to interpretable machine
learning. In this context Objective 3 aims to improve the accessibility of
model interpretations through domain-specific adaptations and targeted
alignment to the needs of different stakeholders. This addresses the
requirements for trustworthy AI by explainability of systems and the
need to make complex techniques understandable to diverse users.

As a contribution, a domain-specific interpretation algorithm was intro-
duced in Chapter 7. This combines a human-understandable medical
algorithm, the ABCD rule for classifying skin lesions, with a technical
interpretation algorithm for ML models, LIME. This approach aims to
bridge a domain-specific procedure in diagnosing skin lesions and a
post-hoc IML-method to generate explanations that are relevant and
accessible to end-users, especially medical professionals. The feasibility
was demonstrated in a study where a DNN based classifier was trained
to distinguish nevi and melanomas, thus fulfilling the domain-specific
part of Objective 3. The generated results were analyzed using selected
skin lesion images as well as in an aggregated form.

Chapter 8 deals with the integration of stakeholder perspectives into the
model interpretations to address the stakeholder-specific adaption of
Objective 3. The XAI Compass was introduced as a conceptual guide
for stakeholder engagement in the field of IML, structuring stakeholder
groups, phases, goals, and possible touchpoints. In a case study, concepts
of domain-specific adaptations were transferred to the use case of ECG
signal classification. The focus was on different levels of detail and forms
of presentation of model interpretations. Three studies that used vari-
ous interdisciplinary methodological approaches and targeted specific
stakeholder groups examined the relevance of the model interpretations
generated from the case study.

The integrative approach proposed in the dissertation is thus in line with
Objective 3. By adapting model interpretation to the specific domain
and involving various stakeholders, the accessibility and relevance of
model interpretations are enhanced, which is crucial for meeting the
requirements for the explainability of trustworthy AI systems.
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9.4 Future Work

This dissertation has highlighted certain aspects of the role of AL in
developing trustworthy AI that enhance the explainability and trans-
parency of processes and systems, thereby opening up avenues for future
research.

Development in AL Projects. In implementing AI systems with AL,
adapting and expanding the AL development life cycle opens up nu-
merous research opportunities and practical improvements for future
projects. Applying the life cycle model to various use cases could offer the
potential to explore specific roles and processes in different AL scenarios
and enhance the life cycle model.

Similarly to well-known methodologies such as Microsoft’s TDSP (Mi-
crosoft 2020) and CRISP-DM (Wirth et al. 2000), the AL development
life cycle could be expanded into a comprehensive project workflow
guide. This guide could define the process steps, potential tasks, and
the necessary artifacts and reports for each phase. Another expansion
involves implementing quality gates within the AL development life cycle.
These quality gates would serve as checkpoints to ensure compliance
with quality standards, which are particularly relevant in certifying AI
systems.

To enhance the adaptability and efficiency of the proposed development
methodology, future research could address challenges associated with
the initial setup and high maintenance effort. This would involve devel-
oping concepts that simplify the technical and organizational setup and
minimize the maintenance effort for the SE/AI engineering team. Such
approaches include standardizing tools and automating setup processes,
thereby enhancing the principles and workflow, e.g., around a platform
development environment. Finally, there is a further need to expand the
concepts of the development methodology, as revealed by the evaluation
with best practices, which were not fully addressed in their presented
form.

Design of AL Systems. The LIFEDATA framework introduced in this
dissertation opens up a broad spectrum of future research directions. On
the one hand, there are opportunities to apply LIFEDATA in a variety of
additional use cases and domains, utilizing different data types, label
types, and ML model types, which would require adapting the ML
pipeline and other modules of the project template.

On the other hand, the addition and implementation of new, additional
QSs could significantly expand the range of AL scenarios for LIFEDATA.
New QSs, emerging from the specific requirements of different data types
and ML model types, could also adapt or expand the hybrid approach
integrated into LIFEDATA with mechanisms that, for example, alter the
weighting of QSs in real-time to further enhance the efficiency of data
annotation. Furthermore, future research could focus on the generation
of pseudo labels that utilize and expand the semi-supervised learning
implementation of LIFEDATA.
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Another important area of research that could be enriched by the LIFE-
DATA framework is the investigation of inter- and intra-annotator agree-
ments in additional contexts. This includes exploring the impact of
mislabeled data, offering significant research potential that involves
developing methods to handle faulty annotations. The LIFEDATA frame-
work, for instance, could be enhanced with consensus-building strategies
or verification and correction mechanisms, which could also contribute
to the development of trustworthy AI systems with an AL loop.

Additional potential expansions could focus on the LIFEDATA project
template, which can be supplemented with further components tailored
explicitly to different - previously unsupported - AL scenarios, such as
the stream-based approach. This would further increase the application
spectrum of the framework.

Interpretable Machine Learning. IML and XAI remain central and
expansive fields of research that will continue to gain importance in the
future. Longo et al. 2024 describe in their manifesto the open challenges
and future research directions in these areas, some of which relate to the
concepts and subsections addressed in this dissertation.

New domain-specific interpretation methods could build on the ap-
proaches introduced in this work and contribute to improving the ex-
plainability of ML models in additional fields. For instance, the pertur-
bation logic could be adapted to other medical disciplines (e.g., X-ray
imaging), or the concepts could be transferred to other domains. An
important direction for future research in this context is the development
of interpretation methods for new types of ML models, which, in addition
to the problem of image and signal data classification considered in this
dissertation, could also include applications in language processing.

Meanwhile, the introduced interpretation algorithm for the skin image
classifier offers room for expansions. It could be supplemented with
additional dimensions not covered in the initial implementation and
tested in further skin image classifiers.

Regarding stakeholder integration, the exploration of user-specific cus-
tomization possibilities for interpretations and explanations is another
area that justifies future research. By developing techniques that adapt
interpretations to the needs and understanding of various stakeholder
groups, the understanding, trust, and acceptance of AI systems can be
increased. A systematic assessment of the effectiveness of interpretation
methods in terms of decision-making in various application cases is
required. Long-term studies that investigate the use of systems in real
environments could provide valuable insights into the practical effective-
ness and impacts of these technologies. Such studies could help bridge
the gap between theoretical research and practical application, ensuring
that IML methods are not only effective but also reliable in their context
and contribute to the trustworthiness of AI systems.
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