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Abstract: Background/Objectives: The integration of machine learning into the domain of radiomics
has revolutionized the approach to personalized medicine, particularly in oncology. Our research
presents RadTA (RADiomics Trend Analysis), a novel framework developed to facilitate the auto-
matic analysis of quantitative imaging biomarkers (QIBs) from time-series CT volumes. Methods:
RadTA is designed to bridge a technical gap for medical experts and enable sophisticated radiomic
analyses without deep learning expertise. The core of RadTA includes an automated command line
interface, streamlined image segmentation, comprehensive feature extraction, and robust evaluation
mechanisms. RadTA utilizes advanced segmentation models, specifically TotalSegmentator and
Body Composition Analysis (BCA), to accurately delineate anatomical structures from CT scans.
These models enable the extraction of a wide variety of radiomic features, which are subsequently
processed and compared to assess health dynamics across timely corresponding CT series. Results:
The effectiveness of RadTA was tested using the HNSCC-3DCT-RT dataset, which includes CT scans
from oncological patients undergoing radiation therapy. The results demonstrate significant changes
in tissue composition and provide insights into the physical effects of the treatment. Conclusions:
RadTA demonstrates a step of clinical adoption in the field of radiomics, offering a user-friendly,
robust, and effective tool for the analysis of patient health dynamics. It can potentially also be used
for other medical specialties.

Keywords: radiomics; diagnostic imaging; computer tomography; health dynamics

1. Introduction

Radiomics has experienced rapid growth in the last decade and empowered person-
alized medicine [1,2], especially in the field of oncology [3], by bridging the gap between
radiology and cancer treatment [2,4–8]. Currently, it is extending its influence to various
other medical fields [9]. The image-based computation of biomarkers has the potential to
uncover biological patterns and characteristics that were previously undiscovered [10].

Key elements of radiomics are quantitative imaging biomarkers (QIBs), which serve as
objective measures extracted from an in vivo image to accurately reflect normal biological
or pathogenic processes, or even the body’s response to a particular treatment [11]. In
contrast to qualitative imaging biomarkers, QIBs are particularly suitable for patients’
follow-up treatment. Due to strong advancements in automatic body segmentation and
composition analysis through the recent development of deep learning-based tools, the
effective and reliable computation of QIBs is now possible.
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However, a majority of existing tools are developed for computer scientists and deep
learning specialists. This is a barrier for medical experts who are supposed to use and
apply them clinically [12]. The three main issues are (1) selecting and setting up the right
model, (2) interpreting the resulting data, and (3) trusting the information generated.

Our objective is to create and share a framework for the automatic calculation and
comparison of time-series-based quantitative imaging biomarkers, with low technical
barriers, that are visually comprehensible for medical experts.

2. Materials and Methods

In this section, we introduce our novel framework RadTA: RADiomics Trend Analy-
sis [13]. RadTA is designed for clinical data scientists to conduct time-series-based radiomics
trend analyzes on pre- and post-condition CT volumes. Our framework comprises six
core components: a command line interface for usability, automated structure segmenta-
tion, radiomic feature extraction, the preprocessing of these features, the computation of
radiomic feature deviation, and the evaluation of radiomic dynamics between pre- and
post-condition states. Figure 1 illustrates the workflow diagram of RadTA, providing a
visual representation of the framework’s components and their interactions. The following
subchapters will provide a detailed description of each core component.
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2.1. Command Line Interface

We designed and implemented an automated and streamlined interface to facilitate the
straightforward usage of our radiomics trend analysis pipeline. This interface accepts pre-
and post-condition NIfTI volumes of CT scans as inputs. For the pre- and post-condition
states, users can provide either two volume files or two directories containing multiple
volumes from different patients, each paired accordingly. Our pipeline generates two
main types of output. Firstly, it provides interim results, which include segmentations
and extracted radiomic features. Secondly, it offers evaluation results comprising pairwise
computed differences for each patient and an overall dynamics analysis for each feature
across all patients.

2.2. Structure Segmentation

In radiomics, image segmentation plays a critical role in extracting meaningful features
from medical imaging data. Within RadTA, we utilized two segmentation modules for
reliable medical image segmentation: TotalSegmentator, developed by Wasserthal et al. [14],
and Body Composition Analysis (BCA), developed by Koitka et al. [15].

TotalSegmentator (2023) has demonstrated to be one of the most accurate and reli-
able segmentation models in the literature and represents the current state of the art in
automated body structure segmentation [14]. The segmentation model is based on the
deep neural network-based nnU-Net framework [16] trained on 1228 CT scans and in-
corporates various pre- and postprocessing techniques, like registration and prediction
refinement, to enable broad adaptability. TotalSegmentator is capable of segmenting a
large number of body structures, including the skeleton, organs, cardiovascular system,
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gastrointestinal tract, and diverse muscles, resulting in 117 distinct segmentation masks.
Moreover, TotalSegmentator offers further expansion by supporting the integration of other
models, such as for coronary arteries or lung vessels. This is also fully supported by RadTA.
Complementing TotalSegmentator, the BCA model represents our second segmentation
module, providing an extensive perspective on the tissue composition within CT scans.
This model builds upon the predicted segmentation masks by TotalSegmentator and em-
ploys Hounsfield Unit (HU) thresholds to differentiate tissue types, focusing primarily on
adipose (−190 to +30 HU) and muscular (−29 to +150) tissues. The segmented adipose
tissue is further classified into subcutaneous (SAT), abdominal (VAT), muscular (IMAT),
mediastinal (PAT), and pericardial (EAT) regions, resulting in seven segmentation masks,
alongside bone and muscle masks. Through categorization based on spinal cord levels
(C1–C7, T1–L12, and L1–L5) and whole-body regions (abdominal cavity, thoracic cavity,
ventral cavity, mediastinum, as well as pericardium), BCA yields a comprehensive perspec-
tive on tissue composition, resulting in 203 segmented tissue masks across 29 body regions
in total.

2.3. Feature Extraction

In the domain of feature extraction, Haubold et al. [17] recently introduced BOA:
Body and Organ Analysis. BOA, released in 2023, incorporates TotalSegmentator and BCA
segmentation masks in order to enable the computation of diverse radiomic features. These
features consist of various measurements such as volume in milliliters and the statistical
properties of Hounsfield units (HU), which are described with eight metrics including the
total sum, quartiles (Q1, Q2, Q3), mean, median, minimum, and maximum values for each
segmented anatomical structure. These computed metrics align with IBSI standards [18].
Altogether, with the help of BOA, our pipeline is able to extract 2560 radiomic features
across 320 body structures (117 by TotalSegmentator and 203 by BCA).

2.4. Preprocessing

As refinement is a crucial step in a radiomic analysis pipeline, RadTA focuses on the
inclusion of the only pairwise-existing features present in both pre- and post-condition
scans per patient. Non-pairwise-existent features are automatically excluded from further
analyses for the corresponding patient. Furthermore, to ensure compatibility and allow the
utilization of radiomic features from both segmentation modules, a restructuring process
of the radiomic feature table is conducted. The restructuring involves parsing the data
into a universal tabular data format that can be expressed in common formats such as
CSV, enabling manual insights by users interested in reviewing or analyzing the patient
individual radiomic feature tables. This process streamlines the data structure and provides
accessible radiomic feature tables for each patient.

2.5. Radiomic Deviation Assessment

Within RadTA, the analysis of radiomic deviation between paired volumes involves
computing pairwise absolute and relative differences for each patient. The pairwise abso-
lute differences between pre- and post-condition volumes are computed to directly quantify
the magnitude of radiomic feature changes. Additionally, the pairwise relative differences,
expressed in percentages, are calculated to provide easier insights into proportional devia-
tion between different radiomic patient profiles. Exceptions are made for cases where a
feature is absent in either the pre- or post-condition volume, and if either volume yields a
measurement of zero, the relative difference is automatically excluded from any further
evaluation or set to zero, respectively. These criteria enhance the reliability of the radiomic
trend analyses in the presence of patients when using scans to capture heterogeneous parts
of the body.
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2.6. Evaluation

Deviation trends for each radiomic feature are automatically evaluated using two
methods. As the first evaluation method, macro-averaging of the relative differences is
utilized to represent the overall radiomic dynamics across all analyzed patients. Conse-
quently, in the second evaluation method, a dependent t-test for paired samples is applied
to directly assess the statistical significance of the observed radiomic dynamics based on
the extracted feature scores. The results of the evaluation are presented in a final evaluation
table, providing a platform for detailed individual data analysis. Additionally, an overview
plot is automatically generated by RadTA, incorporating t-test significance as well as rela-
tive differences for all evaluated radiomic features, and highlights the relevant radiomic
dynamics detected between pre- and post-condition states.

2.7. Use Case: Radiomic Health Dynamics in Head and Neck Squamous Cell Carcinoma

For the validation of RadTA, we utilized the HNSCC-3DCT-RT produced by Bejarano
et al. [19] from The Cancer Imaging Archive. The authors collected 3D high-resolution CT
scans of the head and neck regions of 31 head and neck squamous cell carcinoma patients
undergoing radiotherapy. Patients received radiation doses ranging from 58 to 70 Gy.
These were administered in daily fractions of 2–2.20 Gy over 30–35 fractions. The dataset
contains CT scans at pre-treatment (median 13 days before treatment), mid-treatment
(around fraction 17), and post-treatment stages (around fraction 30). The fan-beam CT
scans were obtained from a Siemens 16-slice CT scanner, following the standard clinical
protocol described in [19]. As an experiment, we applied RadTA to compute the radiomic
dynamics between CT scans of pre- and post-treatment. Further patient cohort description
is provided in Table 1.

Table 1. A summary of demographic and clinical characteristics of the HNSCC-3DCT-RT dataset
including patients with head and neck squamous cell carcinoma treated with 3D conformal radio-
therapy.

Characteristic Median (Q1, Q3); n (%)

Patients 31 (100%)

Age 65 (55, 71)
Sex

F 8 (26%)
M 23 (74%)

Cancer staging
I 2 (6.5%)
II 4 (13%)
III 9 (29%)
IVA 16 (52%)

PTV volume (cm3) 133 (40, 261)
Tumor location

Larynx 5 (16%)
Nose 3 (9.7%)
Other 8 (26%)
Tongue 11 (35%)
Tonsil 4 (13%)

Performance status
ECOG 0 12 (39%)
ECOG 1–2 4 (13%)
None 15 (48%)

Chemotherapy medication
Cetuximab only 2 (6.5%)
Cetuximab + Cis/Carboplatin 3 (9.7%)
Cis/Carboplatin only 14 (45%)
None 12 (39%)
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3. Results

We were able to detect several radiomic features, revealing a significant difference
between pre- and post-treatment. This is visualized in Figure 2.
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Figure 2. A generated overview visualization for the HNSCC-3DCT-RT dataset produced by RadTa,
presenting each evaluated radiomic feature in the cervical spinal cord, its average relative difference,
and its deviation significance as color. This is measured by applying a paired t-test between pre- and
post-treatment radiomic feature scores computed.

The subcutaneous (SAT) and muscular (IMAT) fat tissue from levels C3 and C7 re-
vealed patient-wide decreases in the total volume of −15.55% and −11.68%, respectively.
While the total volumes of bone and muscle did not indicate a clear radiomic trend, it was
possible to observe a significant decrease of up to −17.41% in average muscle tissue density
(mean HU). With our findings, we were able to confirm that the application of radiation
doses has a critical and decreasing impact on fat and muscle tissue in the corresponding
head and neck region of a patient, which, as expected, can be attributed to the aggressive
nature of radiotherapy. This is consistent with the data analysis [19].

Runtime Performance Analysis of RadTA

The runtime performance of RadTA was validated using the HNSCC-3DCT-RT dataset,
which comprises pairwise head-to-neck CT scans from 31 patients. Through our runtime
performance experiment, we identified that the inference of the 320 body structures us-
ing the BOA and TotalSegmentator deep neural network models is the most computing-
intensive step of our framework. Results from the experiment showed that, on average,



Diagnostics 2024, 14, 2760 6 of 9

RadTA requires 15 min to process a patient, with a standard deviation of 3 min and a
runtime ranging from a minimum of 11 min to a maximum of 24 min. Further details of
processing duration are illustrated in Figure 3. The hardware resources utilized included
an NVIDIA Titan RTX with 24 GB VRAM, an Intel(R) Xeon(R) Gold 5220R CPU @ 2.20GHz,
and 32 GB RAM. Notably, it was observed that a GPU VRAM of only 8 GB is sufficient.
Moreover, we noted that the overall runtime of RadTA can be drastically improved with
increasing numbers of patients through parallelization with multi-processing.
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represented through the file size sum of pre- and post-therapy volumes for the HNSCC-3DCT-RT.

4. Discussion

We present the RadTA framework for the organ and body feature evaluation based on
the timely corresponding CT series of patients. RadTA is designed as an easy-to-integrate
CLI application, supporting local deployment in existing applications and workflows.
Only a few parameters (e.g., the CT series) and technical requirements are necessary for
the application. With such low hurdles, we invite medical experts to add RadTA data-
driven features as additional information for decisions in treatment planning. With limited
personnel and time resources in CT diagnosis, the findings are focused on pathologies and
a specific question; in this case, the regression of the tumor. RadTA’s data-driven approach,
on the other hand, offers the possibility of using additional information that is already
available from the CT scans, examining it to assess clinical relevance in clinical studies and
implementing it in routine diagnostics. Clear feature computation can add a more data-
driven approach, thereby supporting medical professionals with useful information, as
illustrated in Figure 4. To improve interpretability, our analysis relies on radiomic features
and statistical testing rather than black-box deep neural network models. This design
choice ensures a closer alignment with clinical practice by providing clear, data-driven
insights that clinicians can easily understand and trust. By prioritizing transparency and
statistical robustness, our approach addresses key challenges associated with the lack of
interpretability in black-box AI systems, a critical factor in fostering trust and promoting the
model’s adoption in clinical environments. RadTA offers a visual presentation of the data
based on the significance of the calculated trends in order to counteract the AI black box [20]
and provide a clear and comprehensible interpretation of the data. Reproducibility was a
key focus of this framework’s development. We selected TotalSegmentator and BOA as the
core tools due to their popularity, open-source nature, and expected long-term support.
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RadTA uses chronological CT series to calculate health dynamics based on the patient’s
progression. The HNSCC-3DCT-RT dataset from the Cancer Imaging Archive is used to
evaluate the features and performance. The dataset provides CT series taken during
pre-treatment, mid-treatment, and post-treatment from oncological patients treated with
definitive radiation therapy or concurrent chemoradiation therapy. The measured organ
and body feature evaluation shows the drastically visible impact of the therapy on the
radiomic features, like the reduction in fat and muscle tissue. The overarching physical
degradation could be observed in all patients on the basis of the radiomic features, as
stated in the dataset description [19]. Our results are consistent with the current literature,
such as the study of Salmanpour et al. [21]. The authors used reproducible radiomics
features to predict the survival of head and neck cancer patients. The study shows stable
prediction results using various radiological modalities in a traditional oncological use case.
However, organ and body feature evaluation is also used in other specialties, as the study by
Klontzas et al. [22] demonstrates. The authors use consecutive whole-body CTs to perform
the post-mortem interval estimation based on radiomic health dynamics. The prediction
results are equal and stable compared to the previously described study and highlight the
versatility of organ and body feature evaluation. Abler et al. [23] propose an entire cloud-
based system for physician-driven radiomics in order to foster the integration of radiomics
tools into the clinical workflow. This system provides a broad stack of functionalities, but
consists of various open-source applications and relies on a self-developed PACS. In direct
contrast, RadTA has a simpler structure and has no system dependencies that would hinder
local integration.

However, it is subject to three limitations. The current implementation only al-
lows a pairwise comparison of CTs. Its extension to multi-series comparison would be
desirable—although the benefits are debatable. There are probably only a small number of
patients with a high number of CT examinations, as repeated CT scans should be avoided
wherever possible due to the associated radiation exposure. With the technical development
of computer tomographs and the associated reduction in radiation, shorter examination
times and increasing indications, a sharp increase in the number of CT scans is expected in
the future.

The second limitation relates to the comparison of the individual features. The sig-
nificance of the individual feature trend is determined by a t-test. Since RadTA calculates
well over 100 features, it experiences the multiple comparisons problem. As an intuitive
countermeasure, RadTA provides two p-values (0.01 and 0.05) to allow interpretation.
Another approach to counteract this problem is the Bonferroni correction [24], which will
be implemented in the future.

The third limitation results from the execution time—this could lead to an application
running on a normal PC only as a background process, results are not available ad hoc.
As time is one of the most valuable resources in health care systems, high-performance IT
systems could solve this issue.

The measured organ and body feature evaluation provided by RadTA shows promis-
ing results in the traditional oncological use case, but also enables the support of other
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clinical scenarios not related to oncology. By automatically registering the images, CT
series with a different body window and protocols can be compared. Due to the large
number of retrospective radiological images now available [25], new research aspects in
other medical specialties can be examined. For example, patients undergoing transcatheter
aortic valve implantation receive preprocedural CT scans in planning the procedure. These
can be compared with other CT examinations of the patient in question and provide valu-
able information about the patient’s condition. This could be used, for example, to plan
nutritional or physiotherapeutic interventions in the accompanying therapy.

5. Conclusions

The proposed open-source framework RadTA significantly advances radiomics by
automating the analysis of patient health dynamics through CT comparisons. Due to
the use of advanced segmentation models with comprehensive feature extraction, RadTA
provides automatic radiomics trend analysis. Its accessible design targets both clinicians
and data scientists and improves clinical usability. The results of the HNSCC-3DCT-RT
dataset confirm the effectiveness of the RadTA within an oncological use case but can also
be used in other medical fields. RadTA is the first step in integrating machine learning into
medical diagnostics and promises a transformative impact and broader clinical applications
within patient care. Further research regarding different imaging modalities could further
advance the field and could open the door to other clinical applications, e.g., in cardiac
magnetic resonance imaging.
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