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Abstract: Satellite precipitation estimates are crucial for managing climate-related risks such as
droughts and floods. However, these datasets often contain systematic errors due to the observation
methods used. The accuracy of these estimates can be enhanced by integrating spatial and temporal
resolution data from in situ observations. Nevertheless, the accuracy of the merged dataset is
influenced by the density and distribution of rain gauges, which can vary regionally. This paper
presents an approach to improve satellite precipitation data (SPD) over Burkina Faso. Two bias
correction methods, Empirical Quantile Mapping (EQM) and Time and Space-Variant (TSV), have
been applied to the SPD to yield a bias-corrected dataset for the period 1991–2020. The most accurate
bias-corrected dataset is then combined with in situ observations using the Regression Kriging (RK)
method to produce a merged precipitation dataset. The findings show that both bias correction
methods achieve similar reductions in RMS error, with higher correlation coefficients (approximately
0.8–0.9) and a normalized standard deviation closer to 1. However, EQM generally demonstrates more
robust and consistent performance, particularly in terms of correlation and RMS error reduction. On
a monthly scale, the superiority of EQM is most evident in June, September, and October. Following
the merging process, the final dataset, which incorporates satellite information in addition to in
situ observations, demonstrates higher performance. It shows improvements in the coefficient of
determination by 83%, bias by 11.4%, mean error by 96.7%, and root-mean-square error by 95.5%.
The operational implementation of this approach provides substantial support for decision-making
in regions heavily reliant on rainfed agriculture and sensitive to climate variability. Delivering more
precise and reliable precipitation datasets enables more informed decisions and significantly enhances
policy-making processes in the agricultural and water resources sectors of Burkina Faso.

Keywords: gauge precipitation; TAMSAT estimates; merging approach; Empirical Quantile Mapping;
Regression Kriging; Burkina Faso

1. Introduction

Rainfall in West Africa, especially in the Sahel region, plays a fundamental role in
shaping agricultural practices, water resource management, and food security. The Sahel,
characterized by its semi-arid conditions, depends significantly on the rainy season to
support agricultural productivity and the livelihoods of people [1,2]. Therefore, fluctuations
in precipitation patterns can have severe impacts on agriculture. Indeed, the agricultural
calendar is predominantly dictated by the seasonal distribution of precipitation. The types
of crops that can be cultivated, their planting times, and harvest periods are influenced
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by water availability [3]. Hence, the variability and change in precipitation patterns can
lead to crop failures, reduce food availability, and pose significant risks to food security
in West Africa. In this context, timely and accurate precipitation forecasts are vital to
enable farmers to adjust their practices in response to predicted changes in precipitation [4].
Despite its importance, obtaining accurate and high-resolution precipitation data remains
challenging, particularly in regions with a sparse and unevenly distributed ground-based
observation network. Indeed, the decline in rain gauge observations and inconsistent
reporting across West Africa creates temporal inconsistencies and sampling errors in rainfall
data [5]. To address these challenges, satellite precipitation estimates are often used to
improve coverage. However, these data often suffer from biases and errors due to the
indirect nature of the measurements.

Satellite estimates are subject to random error, which is inherent in measurement
records, and systematic bias related to post-processing algorithms and procedures [6,7]. As
described by [8], this systematic difference between satellite and terrestrial observations is
known as bias. The bias is highly dependent on the location, topography, season, and hydro-
climatic characteristics of the study area [9]. Thus, satellite datasets must be adjusted before
being used as input data for impact study models or other applications [10]. Several bias
correction techniques have been developed in an attempt to improve satellite precipitation
datasets (SPDs) and are discussed in detail in numerous publications [11–14]. Each bias
correction approach has its strengths and weaknesses. Indeed, the literature suggests that
while bias correction methods can be tailored for specific uses, achieving a universally
superior method is challenged by the inherent complexities and contextual dependencies
of bias characteristics. Thus, the ongoing assessment and development of bias correction
methodologies remain essential to address specific analytical requirements efficiently [15].
Therefore, attempts at evaluating the performance of different bias correction methods have
not yielded a universal best bias correction technique [16]. However, some studies reported
that the distribution-based approach has been more successful in reproducing precipitation
than both linear and non-linear approaches. Among these methods, Empirical Quantile
Mapping (EQM) reveals higher performance, remains the most widely used bias correction,
and is also known to be the most effective. For instance, an evaluation of various bias
correction methods in climate models highlighted EQM’s effectiveness in reducing biases,
particularly for frequency-based indices and seasonal mean precipitation, showing its
robustness in different climatic conditions [17]. However, this approach is highly sensitive
to calibration periods, highlighting the importance of careful methodological application to
ensure successful outcomes [18]. Among the dynamic methods, the Time and Space Variant
(TSV) performed better in the majority of evaluation studies [16,19]. TSV enhancement is
recognized for its capacity to significantly improve the spatial accuracy of precipitation
measurements [20]. Although the bias correction process improves satellite-derived data
accuracy, merging satellite data with rain gauge data leverages the spatial coverage of
satellites and the point accuracy of rain gauges, thereby producing a dataset that is superior
to either source alone.

Previous studies have shown that merging approaches have many advantages [21,22].
They integrate the spatial coverage of satellite data with the ground-based high temporal
measurements and improve the temporal consistency, thereby ensuring that the merged
dataset accurately reflects local precipitation patterns. Among various merging techniques,
Regression Kriging (RK) stands out as a particularly effective method for combining satellite
and gauge data in regions with uneven rain gauge distribution [23,24]. RK’s strength lies
in its hybrid approach that combines deterministic regression modeling with geostatistical
interpolation, allowing it to capture both large-scale trends and local spatial variations in
precipitation patterns [25,26]. This dual approach is especially valuable in the Sahel region,
where precipitation patterns show strong spatial heterogeneity and where rain gauge net-
works are sparse and unevenly distributed [5]. Indeed, the accuracy of the merged dataset
can be limited by the density and distribution of rain gauges, which are regional or country-
specific [27,28]. Moreover, while integrating ground-based precipitation measurements
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with satellite data is advantageous, the specific method of incorporating gauge data can
significantly impact the quality and accuracy of the final rainfall estimates [29].

In this regard, this study presents a merging approach aimed at accounting for the
quality and availability of ground-based precipitation observations and the need for cali-
bration and validation of satellite estimates against ground-based observation data in West
Africa. Unlike many studies that merge satellite and gauge data directly, this approach first
evaluates SPDs and applies bias correction techniques to reduce systematic errors before
the merging process. Using Burkina Faso as a regional focus, this approach aims to provide
accurate and high-resolution precipitation data for impact studies in West Africa, thereby
supporting decision-making processes. This work is divided into four sections. Section 1
focuses on the study area, while Section 2 addresses data and methodology. The results are
presented in Section 3, and Section 4 discusses these results, summarizes the key findings
of this study, and offers some perspectives.

2. Materials and Methods
2.1. Study Area

Burkina Faso is a landlocked country in West Africa of more than 274,000 km2 located
in the tropical region within latitudes 9◦20 and 15◦05 north of the Equator and between
longitudes 5◦30 west and 2◦20 east. The country is surrounded by six countries: Mali
to the north and west; Niger to the east; Benin to the southeast; Togo to the southeast;
Ghana to the south; and the Ivory Coast to the southwest. Burkina Faso has a tropical
climate characterized by two seasons: wet and dry [30]. These seasons are influenced by the
movement of two dominant winds: the rain-bearing southwesterly winds and the cold, dry,
and dusty northeasterly winds, commonly known as the Harmattan period. Precipitation
varies significantly, ranging from an average of 350 mm in the north to over 1000 mm in the
southwest (Figure 1). The rainy season lasts an average of 5 months, from May to September,
but its duration is shorter in the northern part of the country. Temperatures show great
seasonal variations and diurnal amplitudes. Average temperatures are highest in March,
April, and October and lowest in November, December, January, and February [31,32].
During the dry season, from December to May, the mean maximum temperatures range
from 34 ◦C to 41 ◦C, while the mean minimum temperatures range from 16 ◦C to 26 ◦C.
In contrast, during the rainy season, the diurnal temperature range decreases, and the
mean maximum temperatures are approximately 30 ◦C to 36 ◦C, while the mean minimum
temperatures vary between 20 ◦C and 25 ◦C [30].

2.2. Rain Gauge Measurements

Daily precipitation data from 140 rain gauges, covering the period from 1 January 1981
to 31 December 2023, were obtained from the National Meteorological Agency of Burkina
Faso. From the precipitation dataset, quality control at the rain gauge station level was
carried out to identify outliers, missing values, and inconsistent station coordinates. Stations
with significant gaps (more than 5%) of data during the study period were excluded from
the dataset. As a result, 97 stations were found to be reliable, with relatively consistent
records for the period of 1991–2020. Figure 1 illustrates the location of the selected rain
gauge stations, highlighting their uneven spatial distribution.
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2.3. Satellite Rainfall Estimates from TAMSAT

Precipitation data from version 3.1 of the satellite-based precipitation estimation
system developed by the Tropical Applications of Meteorology using SATellite data and
ground-based observations (TAMSAT) from the University of Reading in the UK were
retrieved for merging purposes (available at https://www.tamsat.org.uk (accessed on
6 May 2024)). The TAMSAT approach for deriving precipitation data is based on identifying
potentially rain-producing clouds by their cold temperatures at the top. This is achieved by
deriving cloud top temperatures from METEOSAT thermal infrared (TIR) imagery provided
by EUMETSAT. The time during which a pixel remains colder than a given temperature
threshold is accumulated over 10-day (TAMSAT Version 2.0) or 5-day (TAMSAT Version 3.1)
periods to create the Cold Cloud Duration (CCD) data. Rainfall estimates for periods of
10 days (dekadal) or 5 days (pentadal) are then calculated using a linear regression between
ground-based observations of precipitation and CCD, as shown in Equation (1) [33].

pcp = a0 + a1 × CDD (1)

where pcp represents rainfall for a 10-day or 5-day period, and the parameters a0 and a1 are
found through calibration using rain gauge data.

The performance of TAMSAT v3 compared to TAMSAT v2 is detailed in [34]. In
addition, a former study by [35] indicated a good agreement in reproducing the precip-
itation pattern over Burkina Faso. Although TAMSAT benefited from worldwide data
collection through the network of the Global Telecommunications System (GTS) of the
World Meteorological Organization [36], ref. [5] pointed out that in West Africa, primarily
synoptic stations report through the GTS network, which represents only a small fraction
of the total rainfall monitoring network in the region. For instance, in Burkina Faso, the
National Meteorological Agency operates only 10 synoptic stations out of 134 observation

https://www.tamsat.org.uk
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stations [35], representing less than 10% of rain gauge data reported through the GTS. This
limited data representation poses significant challenges for TAMSAT’s ability to capture
comprehensive rainfall patterns, suggesting that the integration of additional observational
stations could substantially enhance the model’s accuracy and utility for regional climate
monitoring and forecasting applications.

2.4. Merging Approach

A merging approach algorithm is proposed for combining satellite precipitation
datasets (SPDs) with in situ gauge precipitation data for Burkina Faso. The merging
algorithm consists of three main steps: (1) quality control of rain gauge observations,
(2) bias removal in the TAMSAT dataset based on rain gauge observations, and (3) merging
the bias-corrected satellite dataset with the rain gauge observations to produce an improved
quality daily dataset. The flowchart of the merging approach is presented in Figure 2.

Climate 2025, 13, x FOR PEER REVIEW 5 of 20 
 

 

𝑝𝑐𝑝 = 𝑎 + 𝑎ଵ × 𝐶𝐷𝐷 (1)

where 𝑝𝑐𝑝  represents rainfall for a 10-day or 5-day period, and the parameters 𝑎 and 𝑎ଵ are found through calibration using rain gauge data. 
The performance of TAMSAT v3 compared to TAMSAT v2 is detailed in [34]. In ad-

dition, a former study by [35] indicated a good agreement in reproducing the precipitation 
pattern over Burkina Faso. Although TAMSAT benefited from worldwide data collection 
through the network of the Global Telecommunications System (GTS) of the World Mete-
orological Organization [36], ref [5] pointed out that in West Africa, primarily synoptic 
stations report through the GTS network, which represents only a small fraction of the 
total rainfall monitoring network in the region. For instance, in Burkina Faso, the National 
Meteorological Agency operates only 10 synoptic stations out of 134 observation stations 
[35], representing less than 10% of rain gauge data reported through the GTS. This limited 
data representation poses significant challenges for TAMSAT’s ability to capture compre-
hensive rainfall patterns, suggesting that the integration of additional observational sta-
tions could substantially enhance the model’s accuracy and utility for regional climate 
monitoring and forecasting applications. 

2.4. Merging Approach 

A merging approach algorithm is proposed for combining satellite precipitation da-
tasets (SPDs) with in situ gauge precipitation data for Burkina Faso. The merging algo-
rithm consists of three main steps: (1) quality control of rain gauge observations, (2) bias 
removal in the TAMSAT dataset based on rain gauge observations, and (3) merging the 
bias-corrected satellite dataset with the rain gauge observations to produce an improved 
quality daily dataset. The flowchart of the merging approach is presented in Figure 2. 

 

Figure 2. Flow chart describing the steps of the satellite–rain gauge data merging approach.

2.4.1. Quality Control

The availability of quality precipitation records in the current climate situation is of
great importance in the merging process. However, many weather observation networks
belonging to National Meteorological services do not always have reliable systems that
guarantee the availability of long-term series of quality precipitation [37]. Errors can
arise from various sources, such as a problem with the rain gauge, observer reading, data
digitization, format conversion, or file manipulation and importation. In this study, a basic
quality control consisting of detecting physically impossible or abnormal data [38,39]. The
process encompasses the verification of the geographic coordinates of the stations, the
detection of false zeros, and temporal and spatial outliers. Station coordinate checking
allows for identifying duplicate and implausible coordinates, as well as stations located
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outside of the study area. Verifying the geographic coordinates of the stations is important
as the coordinates will later be used to extract satellite data [33]. Quality control was
applied to the precipitation data obtained from the National Meteorological Agency of
Burkina Faso.

Detection for false zeros involves checking for an incorrect report of zero precipitation
during the rainy season for rainy season months. The source of false zeros is often ambiguity
in the coding of days without observations (missing values) and days without precipitation
(zero values) when digitizing paper records [33]. To check for false zeros, the percentage
of zero values for each month at the target station is calculated and compared with the
average percentage of zero values for the same month at neighboring stations.

Outlier checking has been performed by several authors as part of the station data
quality control procedure [9,40,41]. A temporal check is conducted for each month to ensure
that each observed value is consistent with the climatological data of the station [37]. Any
suspect or aberrant values detected by this test are reported and must be carefully checked.
A spatial check is performed by comparing each daily value of a given station with the
values of neighboring stations recorded on the same date in order to verify whether the
extreme values observed are the result of extreme climatic events [37]. Extremely high or
low values, which differ significantly from the values recorded by neighboring stations, are
set to missing values.

2.4.2. Bias Adjustment

Two bias correction schemes, namely Time and Space Variable (TSV) and Empirical
Quantile Mapping (EQM), were applied to obtain bias-corrected daily precipitation time
series at any point in the domain of interest [42]. Both methods are further evaluated to
select the method that best corrects the TAMSAT data. Several studies demonstrated that
TSV and EQM methods perform best in reproducing precipitation [35,43–45].

EQM is a distribution-based technique method that matches the cumulative distribu-
tion function (CDF) of the biased SPDs to the CDF of the rain gauge observations using a
transfer function H. It uses the empirical nonparametric CDF without any assumptions
about the precipitation distribution. For a given satellite precipitation value pcpsat, the
corrected precipitation pcpcor can be expressed as Equation (2). As the most widely rec-
ognized and recent technique in bias correction of SPDs, QM has been implemented in
several studies for the bias correction of regional climate models [43,46,47] and satellite
precipitation estimates bias correction [6,10,48]. This method is used to correct the mean,
standard deviation, and quantiles of SPDs to the mean, standard deviation, and quantiles
of the rain gauge observations [6]. The transfer function, also called the correction function,
is constructed to shift the distribution function of biased SPDs to the rain gauge distribu-
tion [42]. To implement the QM method, two empirical CDFs are calculated with historical
precipitation. One CDF of biased SPDs and the second of the rain gauge observation for
each day-of-the-year, in each observation station. The method for calculating empirical
CDFs is described by [49]. The value of CDFs at each quantile is replaced by the CDF of the
rain gauge observations, as illustrated in Figure 3 [12,50].

pcpcor = H
(
pcpsat

)
(2)

H(pcpsat) = CDF−1
gauge[CDFsat(pcpsat)]

CDF(pcp) = P(P ≤ pcp) =
∫ pcp

−∞
f(x)dx

CDF−1(p) = min x : P(X ≤ x) ≥ p

where pcpcor is the corrected satellite precipitation, pcpsat is the uncorrected satellite pre-
cipitation, H(·) is the transfer function, CDFsat(·) is the Cumulative Distribution Function
(CDF) of satellite precipitation, CDF−1

gauge(·) is the inverse CDF of gauge precipitation, P is
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the random variable representing precipitation, f (x) is the probability density function of
P, and p is a probability value in [0,1].
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Time–space variable (TSV) bias correction addresses bias at the pixel level (i.e., variable
in space) and on a daily scale (i.e., variable in time). It relies on the use of the bias correction
factor (B fTSV) calculated for each gauge station. In this method, it is defined as the ratio
of the sum of the gauge observations to the satellite estimations. To apply a correction
that considers spatial and temporal variability in the biased SPDs, the bias factor at the
station locations is interpolated to the grid of the gridded data using the inverse distance
weighting (IDW) method to cover the entire study area. We followed the approach of [51]
in the same study area, which showed good interpolation results using IDW. The adjusted
SPDs are generated by multiplying the entire domain of raw SPDs by this correction factor
value interpolated for the respective time windows [52].

When working with daily data, a fixed time window is chosen to account for temporal
variability in the bias factor. A time window of either 7 or 10 days is recommended
to allow sufficient accumulation of precipitation for bias calculation and to minimize
discrepancies between satellite and in situ precipitation estimates [44]. In this study, a
centered time window of 10 days has been implemented. Additionally, bias correction
factors are calculated using only wet days with cumulative precipitation greater than or
equal to 1 mm. In cases where both the gauge and satellite have zero values for a given
day, correction is not applied, and the satellite estimates are set to 0 mm [10]. The equation
for the multiplicative daily bias factor at a gauge location (B fTSVs,j ) is expressed as follows
in Equation (3):

B fTSVs,j =
∑N

y=1

(
∑

j+⌊w/2⌋
t=j−⌊w/2⌋ Gs,t,y

)
∑N

y=1

(
∑

j+⌊w/2⌋
t=j−⌊w/2⌋ Ss,t,y

) (3)

where B fTSVs,j is the bias factor for day j at a station s, y ∈ [1, N] represents the year index
from 1 to N (total number of years over the considered period), w is the centered time
window size, Gs,t,y is the gauge observation at station i on day j of year y, and Ss,t,y is the
satellite estimation at station i on day j of year y.

2.4.3. Merging Based on Regression Kriging

Regression Kriging (RK) is a hybrid spatial prediction technique that combines a
deterministic model (i.e., a simple or multiple linear regression model) with a statistical
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model (i.e., ordinary Kriging) of prediction residuals [23,24]. The regression component
addresses systematic biases in satellite estimates, while the Kriging component accounts
for local spatial variations. In this process of merging satellite and precipitation data, the
first step involves establishing a deterministic relationship between gauge measurements
and satellite estimates at gauge locations. This is accomplished through a linear regression
model (Equation (4)). The established regression relationship is then applied to satellite
data at ungauged locations s0 to obtain initial precipitation estimates (Equation (5)). This
step provides a first-order correction of satellite estimates based on their relationship with
gauge measurements. Next, the residuals at gauge locations are calculated, and ordinary
Kriging is applied to interpolate these residuals to ungauged locations. Finally, the merged
precipitation estimate at any location is the combination of residuals at gauge locations
and the first-order correction of satellite estimates [23,25,26,39]. The merged precipitation
equation is presented in Equation (6):

pcpgauge(si) = β0 + β1 pcpsat(si) + ε(si) (4)

p̂cpreg(s0) = β0 + β1 pcpsat(s0) (5)

pcpmerged(s0) =
[
β0 + β1pcpsat(s0)

]︸ ︷︷ ︸
Regression with satellite data

+ ∑ 1i = 1nλi(s0) ·
[
pcpgauge(si)−

(
β0 + β1pcpsat(si)

)]
︸ ︷︷ ︸

Kriged residuals between gauge and satellite

(6)

where pcpgauge(si) represents gauge measurements at the location of gauge station si,
pcpsat(si) represents satellite estimates at gauge locations, β0,β1 are regression coefficients,
ε(si) represents the regression residuals, and ˆpcpreg(s0) represents the predicted precipita-
tion value at an unsampled location s0

2.4.4. Evaluation Metrics

Two evaluations were conducted as part of this study. The first evaluation focuses
on the validation of bias correction algorithms. Bias-corrected data (gridded data) are
extracted at the rain gauge location and compared with the station data. In the second
evaluation, data fusion results are extracted and compared with both bias-corrected data
and station data. The comparisons involved using statistical measures such as mean error
(ME), mean absolute error (MAE), root-mean-square error (RMSE), bias, and the coefficient
of determination (R2) (Table 1). For more details on the chosen measures, see [35]. In
addition, some categorical statistics, including the probability of detection (POD) and false
alarm ratio (FAR), are derived from the daily evaluations [35]. These categorical statistics
(POD and FAR) play a crucial role in the daily evaluations, complementing the standard
statistical measures (ME, MAE, RMSE, bias, and R2) to provide a comprehensive assessment
of the bias correction and the data merging. The POD indicates how effectively the system
can detect actual precipitation events, while the FAR represents the proportion of false
detections relative to the total number of predicted events. These metrics enable a thorough
validation of both the bias correction algorithms and the data merging outcomes.

Table 1. Statistical measure for evaluation.

Statistical Metrics Equation Optimum Value

Root-mean-square error RMSE =

√(
1
N

N
∑

i=1
(Si − Gi)

2
)

0

Mean absolute error MAE = 1
N

N
∑

i=1
|Gi − Si| 0

Pearson’s correlation r = ∑i=N
i=1 (Gi−G)(Si−S)√

∑i=N
i=1 (Gi−G)

2
√
(Si−S)

2 0
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Table 1. Cont.

Statistical Metrics Equation Optimum Value

Bias Bias = ∑N
i=1(Si)

∑N
i=1(Gi)

1

Probability of Detection (POD) POD = H
H+M 1

The False Alarm Ratio
(FAR) FAR = F

H+F 0

where Gi is the gauge precipitation measurement (in mm); G is the average gauge precipitation measurement (in
mm); Si is the satellite precipitation estimate (in mm); S is average satellite precipitation estimate (in mm). H is
the number of hits; F is the number of false alarms; and M is the number of misses.

3. Results
3.1. Quality Control Results

From an initial network of 140 rain gauges distributed across Burkina Faso (Figure 4a),
quality control procedures eliminated 43 stations (31% of the original network), resulting
in 97 stations with reliable records for the period of 1991–2020 (Figure 4b). These retained
stations demonstrate high data quality, with the majority achieving 98–100% completeness
in their daily precipitation records. The quality control assessment reveals no distinct
geographical patterns in data reliability, as stations with varying levels of completeness
(95–100%) are dispersed throughout the country. While the quality-controlled network
maintains adequate spatial coverage for most of the country, there are notable spatial
disparities: the central region (around 2◦ W) shows a higher density of stations, whereas
the eastern region (0◦ to 2◦ E) exhibits significantly sparse coverage.
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3.2. Bias Correction of TAMSAT Daily Precipitation

EQM and TSV are the two methods applied to remove the bias from TAMSAT V3.1
daily datasets. Datasets were compared before and after bias correction with the observa-
tions to identify the most effective bias correction method, specifically the one that best
reduces the systematic errors in the SPDs for the study area. Validation used statistical
indicators such as the root-mean-square error (RMSE), mean error (ME), bias, coefficient of
determination (R2), probability of detection (POD), and false alarm ratio (FAR) to assess
the difference in accuracy between EQM and TSV bias correction methods. These results
are presented in Table 2. The best values of each of these statistics are highlighted in bold.
These metrics show that the quality of the two bias-corrected datasets improved compared
to the uncorrected dataset. However, EQM outperformed TSV on all metrics except FAR.
Indeed, the results revealed that EQM reached a much better R2, with a value of 0.76 against
0.55 for TSV. It also showed superior performance in terms of ME, bias, RMSE, and POD.



Climate 2024, 12, 226 10 of 18

However, its FAR value of 0.59 was slightly higher than that of TSV (0.58), meaning that
TSV was slightly more reliable in predicting true positives than EQM.

Table 2. Comparison of bias correction methods using summary statistics against the observed data.

Metrics TAMSAT
Uncorrected EQM TSV

EQM
Improvement

(%)

TSV
Improvement

(%)

R2 0.53 0.76 0.55 19.40 1.00

Bias 0.88 0.97 0.93 10.30 5.70

ME −0.30 −0.08 −0.17 72.30 43.3

RMSE 26.49 25.71 26.49 3.00 0.03

POD 0.85 0.86 0.85 1.30 0.10

FAR 0.60 0.59 0.58 2.30 3.60

Overall, while TAMSAT underestimated the extreme daily precipitation (Figure 5a),
TSV (Figure 5b) and EQM (Figure 5c) showed a better capture of the annual cycle of the
average daily precipitation. Moreover, among the two bias correction methods, EQM
performed better in capturing the local maximum of the annual cycle of precipitation,
which occurs at the end of the wet season.
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Figure 5. Comparison of average daily precipitation between TAMSAT corrected by TSV (b) and
EQM (c) with reference from in situ observations (a).

The Taylor diagram presented in Figure 6 combines several key statistical measures
into a single, interpretable figure and offers a comprehensive visualization of how effec-
tively the two bias correction methods perform when applied to the original TAMSAT
dataset. The diagram displays three statistics: the root-mean-square error (RMSE), the
correlation coefficient (R), and the standard deviation (SD). The results show that both
correction methods are valid choices for improving TAMSAT estimates; however, the EQM
method considerably enhanced the uncorrected dataset. The EQM point is closer to the
reference point, indicating that EQM achieved a higher correlation (greater than 0.85),
appropriate SD (closer to 1), and lower centered RMSE (approximately 0.5 mm/day) than
TSV for the considered period.

When considering the wet season from May to October, Figure 7 demonstrates that
both bias correction methods successfully improve the TAMSAT rainfall estimates, bringing
them closer to reference values. Both methods achieve similar RMS error reduction with
higher correlation (approximately 0.8–0.9) and a normalized standard deviation closer
to 1. However, EQM generally demonstrates more robust and consistent performance,
particularly in correlation and RMS error reduction. While TSV provides effective bias
correction, it shows more temporal variability in its performance. The superiority of EQM
is most evident in the months of June, September, and October.
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Figure 6. Taylor diagram illustrating the statistics of inter-comparison between three datasets:
uncorrected, TSV corrected and EQM corrected for the period of 1991–2020.
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3.3. Bias Correction of Extreme Daily Precipitation

The evaluation of bias correction for extreme precipitation values, covering the period
from 1991 to 2020, was conducted to assess not only the overall effectiveness of the models
in correcting these extreme values but also to identify the most effective correction method.
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Extreme values refer to high quantiles (threshold set to the 90th percentile) of a statistical
distribution from observations. Based on the rainy events over the considered period,
512 recorded precipitation events were found to be above the 90th percentile. The statistics
presented in Table 3 show that the two bias correction methods significantly reduced the
biases of extreme precipitation. However, the most effective bias correction method was
EQM, as it significantly enhanced the R2, ME, RMSE, and bias. The comparison between
datasets corrected by EQM and TSV, based on the annual cycle of the occurrence and value
of the extreme precipitation, is illustrated in Figure 8. It was observed that, among the
two methods, the TSV method did not efficiently capture the extreme values in the time
series of the extreme precipitation.

Table 3. Comparison of bias correction methods in adjusting extreme precipitation.

Metrics TAMSAT
Uncorrected EQM TSV

EQM
Improvement

(%)

TSV
Improvement

(%)

R2 0.004 0.406 0.002 >100 50

Bias 0.726 0.883 0.808 26.63 11.3

ME −3.710 −1.580 −2.597 57.41 30.0

RMSE 9.521 6.011 9.443 36.87 0.81
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3.4. Merging of Bias-Corrected and In Situ Observation Datasets

The Regression Kriging (RK) method was applied to the bias-corrected datasets ob-
tained by EQM. Table 4 summarizes the results of the statistical analysis. The analysis
showed that the merged dataset was more accurate than the bias-corrected dataset by all
measures, as the coefficient of determination and bias were about 0.97 and 0.98, respectively.
The bias-corrected dataset had the largest ME in absolute value and a much larger RMSE
than the merged dataset. With a POD of 0.99 compared to 0.86 for the bias-corrected
dataset, the merged dataset detected precipitation events better with a lower false alarm
rate (FAR = 0.01). The RK merging approach improved the correlation by 83%, the bias by
11.4%, the mean error by 96.7%, and the RMSE by 95.5%.

Figure 9 provides an overview of the improvement made by merging the bias-corrected
datasets with the rain gauge data. In Figure 9a, the unmerged dataset corrected by EQM
showed underestimations of the daily precipitation for rainy events with the lowest or
highest precipitation measurements. After the merging was performed (Figure 9b), a
significant improvement was observed. The merged and in situ datasets showed a more
accurate match, indicating that the merged dataset fully captured the annual cycle of the
daily precipitation.
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Table 4. Statistics on daily merged precipitation.

Metrics TAMSAT
Uncorrected

Bias Corrected
(Unmerged) Merged Dataset Final

Improvements (%)

R2 0.53 0.76 0.97 83.02

Bias 0.88 0.97 0.98 11.36

ME −0.30 −0.08 0.01 96.67

RMSE 26.49 25.71 1.18 95.54

POD 0.85 0.86 0.99 16.47

FAR 0.60 0.59 0.01 98.33
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Figure 9. Average daily precipitation from TAMSAT satellite data corrected using (a) EQM method
and (b) merging the bias-corrected datasets with rain gauge data using the merging approach, both
compared with ground-based observations.

3.5. Spatial Distribution of Merging of Bias-Corrected and In Situ Observation Datasets

Merging precipitation products are analyzed to examine the merge method’s ability to
effectively combine two databases over three key periods, i.e., early season, mid-season,
and late season. As a case study, Figure 10 depicts the precipitation pattern for 7 May 2010
(Figure 10a–c), 29 July 2010 (Figure 10d–f), and 6 October 2010 (Figure 10g–i), correspond-
ing to three rainy events during the early season, mid-season, and late season in 2010,
respectively. Overall, when in situ observations are merged with TAMSAT estimates
(Figure 10c,f,i), the spatial distribution of precipitation is well captured, regardless of the
considered periods. However, we observed that while the location of rainy events from in
situ observations in the early and mid-seasons (Figure 10a,c) is well captured by satellite
estimates (Figure 10b,h), the precipitation amount is underestimated in some locations.
Among the three considered dates, TAMSAT estimates performed better on the mid-season
date, but this performance is still lower than that of the merged dataset.
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Figure 10. The spatial distribution of the merging for rainy events on 7 May 2010 (top), 29 July 2010
(middle), and 6 October 2010 (bottom). These three periods correspond to the early season, mid-
season, and the end season of the wet season, respectively. Dataset sources are station observations
(a,d,g), original TAMSAT data (b,e,h), and merged products (c,f,i).

4. Discussion

This paper focuses on enhancing the accuracy of satellite-derived precipitation data
through bias correction and merging techniques, using Burkina Faso as a case study. This
region is critical for agriculture and water resource management due to its semi-arid
conditions and reliance on the rainy season [30,53]. Overall, it addresses a significant
challenge in meteorological and agricultural research: the crucial role of rainfall in agricul-
tural productivity, water resource management, and food security in the semi-arid Sahel
region [53,54]. It also highlights the potential to improve capabilities for monitoring and
managing climate-related risks, such as droughts and floods. By examining the efficacy
of bias correction and merging techniques across Burkina Faso, this research aligns with
the scientific community’s efforts to address the limitations posed by sparse and uneven
distributions of ground-based observation networks [33]. The study’s approach of first
applying bias correction techniques to SPDs before merging them with ground-based data
represents a methodological advancement.

The application of bias correction techniques, notably Empirical Quantile Mapping
(EQM) and Time and Space Variant (TSV), demonstrates the importance of correcting
systematic errors in satellite precipitation datasets (SPDs). The results indicate that EQM
outperforms TSV in key statistical metrics such as R2, ME, RMSE, and POD, except for the
FAR. This outcome aligns with previous studies that highlight the superior performance of
distribution-based approaches over linear and non-linear methods in accurately capturing
precipitation patterns [16,19]. These results reinforce the argument that EQM, despite its
straightforward approach, effectively addresses the biases inherent in satellite-derived
precipitation estimates, making it a powerful tool for improving the quality of SPDs.

Rainfall data from gauges are point measurements, unlike satellite remote sensing
data, which provide a spatial distribution of precipitation. Therefore, merging is essentially
a method that leverages the strengths and mitigates the weaknesses of both remote sensing
and rain gauges, resulting in better outcomes than using either method alone, as shown in
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this study and confirmed by other studies [21,22]. This study highlights the considerable
added value of merging bias-corrected SPDs with rain gauge data. While some studies
have focused solely on bias correction [43,50] and others on directly merging in situ data
and satellite data [40,55], the proposed dual approach not only enhances spatial coverage
but also improves the temporal consistency of the resultant dataset, thus more accurately
reflecting local precipitation patterns. These outcomes corroborate the advantages of
merged approaches as documented in the previous literature, particularly concerning the
integration of both spatial and temporal measurements [21,22]. Consequently, it has led to
the widespread adoption of merging techniques in various regions, including India [56],
South Korea [57], China [58], America [59], Europe [60], and Africa through the Enhancing
National Climate Services (ENACTSs) [33].

With the Sahel’s agriculture and water resource management highly dependent on
rainfall, the ability to provide accurate, high-resolution precipitation data is crucial. From
a broader perspective, improved SPD accuracy can significantly support the validation
of climate models and anticipate and mitigate the adverse impacts of weather conditions
in agriculture and water resources through enhanced agricultural decision-making. For
instance, enhanced precipitation data are vital for activities such as crop planning, irriga-
tion scheduling, water allocation and conservation, and developing and implementing
adaptation strategies [3,5,61].

Despite the added value of the proposed merging approach, certain limitations must
be acknowledged. The accuracy of the merged dataset is influenced by the density and
distribution of rain gauges, which can vary regionally [19]. Additionally, while EQM and
TSV have shown effectiveness in bias correction, the search for a robust method is still
ongoing. As a perspective, future research could explore the integration of additional
data sources, such as radar or reanalysis data, to further refine precipitation estimates.
Incorporating radar data might provide high-resolution spatial and temporal information,
which can be particularly valuable in capturing localized rainfall events that rain gauges
might miss [38]. Moreover, extending the study to other regions with different climatic
conditions could contribute to validating the robustness of the proposed method, thereby
supporting climate research and resource management strategies in varied climatic zones.

5. Conclusions

In conclusion, we have proposed an approach that combines rain gauge observations
with satellite precipitation estimates on a daily time step to improve the accuracy of pre-
cipitation data. This methodology involves the quality control of rain gauge observations,
bias correction of the TAMSAT dataset, and the implementation of the Regression Kriging
technique to merge the best bias-corrected dataset with rain gauge observations. The
performance of the merged precipitation data has been statistically evaluated through
comparisons with historic rain gauge datasets. The results indicate that EQM outperforms
TSV in key statistical metrics, and the analysis of the merged precipitation data underscores
the considerable added value of integrating bias-corrected SPDs with rain gauge data.
Therefore, the proposed dual approach not only enhances spatial coverage but also im-
proves the temporal consistency of the resultant dataset, thereby more accurately reflecting
local precipitation patterns. The operational implementation of this approach provides
substantial support for decision-making in regions heavily reliant on rainfed agriculture
and sensitive to climate variability. By yielding more precise and reliable precipitation
datasets, it enables more informed decisions and significantly enhances policy-making
processes in the agricultural and water resources sectors of Burkina Faso.
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