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A B S T R A C T

Introduction: Increased greenhouse gas emissions since the industrial age have led to higher global tempera-
tures and frequency and severity of climate events, such as heat waves, wildfires, floods, and storms. These
changes are adversely affecting human health and increasing disease risk, including risk of allergic diseases.
Further understanding of the environmental factors and the cellular and molecular mechanisms mediating
these increases can assist in developing strategies to adapt to and mitigate climate change.
Materials and Methods: We conducted a scoping review of the literature from 2010 through 2024 using
PubMed and Scopus.
Results: Thunderstorms, dust storms, wildfires, and other climate change factors increase allergies both
directly and indirectly through increases in particulate matter, pollen, migration of disease vectors and
decreases in biodiversity. The epithelial barrier, hygiene, “old friends,” and biodiversity hypotheses have
been put forward to explain the underlying mechanism mediating these increases.
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Conclusion: There is an urgent need to reduce the use of fossil fuels to mitigate climate change and protect
planetary and human health. While international accords such as the 2015 Paris Agreement have been signed
with the aim of lowering greenhouse gases and limiting future global temperature increases, it is clear that
increased efforts are needed to meet these goals. Evidence-based solutions for adapting to the increased
prevalence of allergic diseases and cost-benefit analysis of current mitigation strategies for lowering allergic
diseases are also needed.
© 2024 The Authors. Published by Elsevier Masson SAS. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Global warming
Mitigation
Pollen
1. Introduction

Asthma and allergies are caused by dysregulation of the immune
system leading to inappropriate immune reactions on exposure to
common foods (e.g., milk, eggs, peanut), airborne particles (e.g.,
house dust mites, pollens, animal dander, molds), drugs (e.g., penicil-
lin, vaccines), insect stings (e.g., bees, wasps), or other substances
(e.g., latex, dyes). Examples of allergic diseases include food allergy,
oral allergy syndrome, atopic dermatitis, allergic rhinitis, allergic con-
junctivitis, allergic asthma, eosinophilic esophagitis, drug allergy, and
venom allergy. Food allergy is estimated at 8−11 %, atopic dermatitis
at 10−20 %, allergic asthma at 8 %, and allergic rhinitis between 10
and 40 % of the overall population [1]. Symptoms vary and can range
from mild to life-threatening [1].

Further increases in the prevalence of allergies and asthma are
expected due to the increases in greenhouse gases (GHGs), global
temperatures, and natural and anthropogenic pollutants (e.g., partic-
ulate matter (PM), carbon dioxide, oxides of nitrogen (NOx), sulfur
dioxide, pesticides, microplastics, volatile organic compounds), a con-
sequence of extensive industrialization, modern agricultural practi-
ces, and use of fossil fuels for transportation and energy production
[2]. Currently global temperatures are around 1.1 °C higher than at
prehistorical times and are projected to further increase to between
1.5 °C to 4.4 °C by 2100 [2]. To keep these increases at the lower pro-
jection of 1.5 °C we would need to: (i) make significant reductions in
fossil fuel use; (ii) implement eco-friendly sustainable practices; and
(iii) implement climate justice [3].

Children, pregnant women, the elderly, those with preexisting
chronic diseases or those socio-economically disadvantaged are most
vulnerable to climate change related health risks [4,5]. Socio-eco-
nomically disadvantaged groups such as immigrants with limited
language proficiency, communities of color, indigenous groups, or
outdoor workers on daily wages face the brunt of climate change
because of poor housing infrastructure, proximity to highly polluted
areas or flood zones, increased exposure to heat or air pollutants, or
poor access to medical care [4,5].

Global warming and climate change events impact asthma and
allergies by: (i) changing pollen characteristics (geographical distri-
bution, concentration, season length, and allergenicity); (ii) accelerat-
ing loss of biodiversity; and (iii) increasing the concentration and
toxicity of outdoor air pollutants such as PM, GHGs, and others
through increased incidence of wildfires and sand and dust (SDS)
storms [6-9]. Based on the literature reviewed in this scoping review,
Figs. 1 and 2 depict Climate Change and other factors increasing the
risk of asthma and allergies.

While there is ample epidemiological evidence associating cli-
mate change and allergies and asthma, the climatic factors mediating
these changes and the mechanisms underlying these associations
need further study. As global temperatures and outdoor and indoor
pollution increase steeply, evidence-based mitigation and adaptation
measures are urgently needed to reduce the effects of climate change
on allergies and asthma [10]. Here, we briefly review the pathophysi-
ological mechanisms underlying allergies and asthma, the effects of
climate change-associated environmental factors and exposures on
asthma and allergic disease, and adaptation and mitigation strategies
that may assist in curbing the rising incidence of these diseases.
2

2. Methods

2.1. Aim and research question

This scoping review aims to understand the adverse effects of cli-
mate change on allergic disease and actions needed to best mitigate
these effects.

� How do these factors mediate allergic disease?
� What are the climate factors that affect allergies and asthma?
� What are common adaptation and mitigation strategies and is
there evidence that they effectively decrease allergic disease bur-
den?

2.2. Study protocol and search strategy

Searches were conducted from 2010 through 2024: PubMed
String Search: (“Climate change”[title] or pollution[title] or allerg*
[title] or asthma[title] or immun*[title] or pollen[title] or wildfire
[title] or storm[title] or biodiversity[title] or greenspace[title] or
microbiome[title]) or ((“climate change”) and (mitigation[title] or
adaptation[title] or action[title] or prevention[title])). Scopus search
string (article title, keywords and abstract): ("Climate change" or
“fossil fuels” or “greenhouse gases” or pollution) and (pollen or wild-
fire or storm* or flooding or biodivers* or greenspace or microb* or
mitigation or adaptation or action or prevention) and (health or
allerg* OR asthma). Gray literature and books were identified by
searching Google or Google Scholar.

2.3. Eligibility criteria

Peer-reviewed quantitative, qualitative, and mixed-methods
studies, as well as reviews published since 2010 were considered for
inclusion. Only articles in English were eligible for inclusion. Included
articles addressed the effects of climate change or extreme weather
on allergic disease or addressed adaptation and mitigation strategies
for lowering risk of these diseases.

2.4. Data extraction and analysis

The authors reviewed all the manuscripts found from their overall
search and then grouped them into themes based on the three aims
described above. As the number of manuscripts retrieved were large,
we divided them up amongst the 27 authors to review the papers on
the first round. 506 manuscripts were then recommended for full text
review. We then had groups of 3−4 authors to go through the full text
of the manuscripts, of which 85 were selected. Manuscripts were
excluded due to a combination of any of these factors: editorials or com-
mentary, low impact factor journals (lower than 5), not in English, or
not health or climate change related. Authors further suggested 8 books
andwebsites for inclusion. The final number of records selectedwas 93.

3. Results

We searched for manuscripts using PubMed and Scopus data-
bases. We reviewed 506 full text articles and included 85

http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig. 1. The effects of climate change events on the human exposome and increased risk of asthma and allergies. Susceptible individuals and vulnerable populations increase this
risk.
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manuscripts. At each stage, at least three authors reviewed the
manuscripts. We also identified seven websites and one book chapter
(Fig. 3).

3.1. Mechanism: hygiene, “old friends,” biodiversity, and epithelial
barrier hypotheses

The immune system is vital for maintaining human health. In this
scoping review, the following themes affecting immune dysregula-
tion were identified (1) microbial dysbiosis [11], (2) epithelial barrier
dysfunction [12], and (3) inadequate early life exposure to allergens.
Increased urbanization, hygiene, time spent indoors, antibiotic use,
exposure to toxic chemicals, decreased exposure to biodiverse envi-
ronments (including diverse diets), and lack of physical activity have
been implicated in allergy pathogenesis [13,14].

The hygiene [15], “old friends,” [16] biodiversity [17], and epithe-
lial barrier hypotheses [18] have been put forth to explain the rising
incidence of allergies and asthma. The hygiene, “old friends” and bio-
diversity hypotheses suggest that decreased exposure to common
environmental agents is responsible for inadequate immune training
and increased hyper-reaction. The hygiene hypothesis was first pro-
posed in 1989 and suggested that the rapid rise in childhood allergies
was due to a smaller family size and higher standards of home and
personal hygiene reducing risk of exposure to infectious agents [15].
The biodiversity and “old friends” hypotheses can be seen as an
extension of the hygiene hypothesis. The “Old friends” hypothesis
3

was put forward in 2010. It suggests that decreased exposure to non-
harmful microbes as well as parasites that have co-evolved with
humans leads to immune dysregulation. The “old friends” hypothesis
implicates not just increased hygiene but emphasizes the coevolution
of microorganisms and humans and their role as essential drivers of
the regulatory and anti-inflammatory arm of the immune system
[16]. The biodiversity hypothesis which was postulated in 2011 sug-
gests that biodiversity loss leads to immune dysfunction and disease
[19]. It states that contact with natural environments enriches the
human microbiome, promotes immune balance and protects from
allergy and inflammatory disorders [17]. Microbial dysbiosis has
been shown to affect asthma pathogenesis. For example, airway
infection can lead to the activation and/or dysregulation of inflamma-
tory pathways that contribute to bronchoconstriction and bronchial
hyperresponsiveness; gut microbial dysbiosis can affect immune
development and differentiation and the systemic release of pro-
inflammatory mediators [20,21].

The epithelial barrier hypothesis proposes that increases in expo-
sure to air pollutants and other toxic substances, such as detergents,
household cleaners, packaged food emulsifiers, preservatives, pesti-
cides and microplastics damage the epithelial barrier and increase
penetration of allergens and microbes and increase proinflammatory
reactions. The constant contact with pollutants, which have perme-
ated every aspect of our lives due to industrialization and contempo-
rary living, results in the breakdown of the innate protective barriers
within the skin, respiratory system, and digestive tract [12,22,23].

https://medicalxpress.com/tags/personal+hygiene/


Fig. 2. Factors increasing allergies and asthma and those increasing immune tolerance.

Fig. 3. PRISMA flow diagram of study selection.
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Over the past 60 years, industrialization, urbanization, and techno-
logical advancements have led to significant changes in the expo-
some, which is the measure of all the exposures of an individual in a
lifetime and how those exposures relate to health [19]. This has given
rise to concerns regarding their potential impacts on the health of
both humans and animals. A recent meta-analysis, which examined
22 different chemical inventories from 19 countries, found that more
than 350,000 new substances have been released into our environ-
ments since the 1960 [24]. Unfortunately, the potential health effects
of these substances have not been adequately studied or regulated.
4

Of these approximately 50,000 substances remain undisclosed due to
confidential submissions, while nearly 70,000 have been inade-
quately described, further complicating the challenge at hand [24].

A defective epithelial barrier on affected tissues has been demon-
strated in asthma [25], chronic rhinosinusitis [26], and allergic dis-
eases [27,28]. In addition, many metabolic and autoimmune diseases,
such as diabetes, obesity, inflammatory bowel disease, rheumatoid
arthritis and multiple sclerosis show epithelial barrier damage and
microbial dysbiosis [29]. The epithelial barrier hypothesis is not an
alternative to hygiene and biodiversity hypotheses, rather it includes
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them. Individuals with compromised epithelial barriers often experi-
ence inflammation within their epithelial cells. This condition leads
to the release of various signals that raise an alarm, such as IL-33, IL-
25, TSLP, and several chemokines, which serve as the primary trigger,
attracting proinflammatory cells to the site of the damaged epithelial
barrier. The immune mechanisms contributing to epithelial barrier
dysfunction predominantly involve a type-2 immune response with
the release of type 2 cytokines, such as IL-4 and IL-13, by T helper 2
cells and type-2 innate lymphoid cells leading to the development of
allergic sensitization and reactions. In this context, the immune
response strives to achieve biodiversity by eliminating invading
opportunistic pathogens that have infiltrated the tissues [30,31].

3.2. Climate change-associated environmental factors and exposures
associated with asthma and allergic disease

3.2.1. Biodiversity
Biodiversity is a key factor in maintaining a healthy and function-

ing ecosystem and for human health. Biodiversity was defined by the
United Nations (UN) Biodiversity Convention as the variability among
living organisms from all sources [32]. This includes diversity within
species, between species and of ecosystems. Climate change, continu-
ous deforestation and intensive land use for agriculture and human
habitats have led to loss of biodiversity. Long-term global warming
has also reduced soil microbial diversity [33]. Loss of habitat is
another major factor for species extinction and biodiversity loss. Mil-
lions of species worldwide could face extinction as a result of climate
change in the next few decades. The loss of biodiversity has a huge
impact on human health, both directly and indirectly [34]. Living in
an environment with more biodiversity has been shown to be associ-
ated with less asthma and allergy [35]. A study from Finland found
that biodiversity intervention in yards and playgrounds in daycare
centers enhanced immune regulation and health-associated com-
mensal microbiota [36]. The placebo-controlled, double-blinded
intervention consisted of a playground/sandbox sand enriched with
microbially diverse soil (intervention group) and microbially poor
sand (placebo control group). At two weeks, the skin microbiota was
richer and more diverse in the interventional group compared with
the placebo group. The intervention group also had more immuno-
modulatory effects than the placebo group. These results support the
biodiversity hypothesis of immune-mediated diseases, but longer fol-
low-ups are needed to show clinically relevant prevention of allergic
symptoms [37].

3.2.2. Air pollution
Air pollution is linked to multiple non-communicable diseases in

children including lowbirthweight, asthma, cancer, and neurodevelop-
mental disorder [38]. Global warming contributes to air pollution by
increasing frequency and severity of wildfires and SDS, and increasing
GHGs, pollen and ozone (O3) concentrations. A systematic review of the
literature evaluated concentration-response functions and found com-
pelling evidence that exposures to NO2 and inhalable PM contributed to
risk of asthma development in childhood. Inhalable PM includes those
≤ 10mm (PM10) in diameter [39]. A systematic review found that long-
termexposure toO3was associatedwith a decrease in forced expiratory
volume in one second (FEV1) in children [40]. Inhaled PM2.5 are espe-
cially damaging to developing lungs as they are small enough to enter
lung tissues, thus increasing the PM2.5 oxidative potential [41]. The case
of Ella Adoo Kissi-Debrah, who lived near a heavily congested road in
south London is the first case in which exposure to air pollution has
been recorded as a medical cause of death. She had severe asthma and
died in February 2013, having been taken to a hospital nearly 30 times
over the previous three year [42].

3.2.2.1. Indoor air pollution. Climate change affects outdoor air pollu-
tants, which permeate indoor spaces. Additionally, other air pollutants
5

can be found indoors due to emissions from cooking and heating with
biomass, volatile organic compounds (VOCs) from consumer products,
and allergens (molds, dust mites, and animal dander). Mold spores,
often found in homes with poor infrastructure (leaky roofs, poor venti-
lation, areas with high humidity), can also contribute to indoor air pol-
lution. These pollutants are directly or indirectly a consequence of
climate change. While PM is the major indoor pollutant, indoor gases
such as NO2 and VOCs also have adverse respiratory health effects
[43,44]. Recent studies have found that indoor air pollution from gas
stoves account for about 13 % of childhood asthma in the United States
[45]. Analysis of data from over 3500 participants from the Dutch
PIAMA (Prevention and Incidence of Asthma and Mite Allergy) birth
cohort found that higher exposure to NO2 and PM10 was associated
with a higher incidence of asthma until the age of 20 years [46]. A cross-
sectional National Surveys of Children’s Health (2017−2018) found that
the prevalence of asthma in children whowere exposed to homes with
mold was greater than those in homes without mold (10.8 % versus 7.2
%, respectively) [47].

3.2.2.2. Outdoor air pollution. Outdoor pollutants include industrial
and vehicular emissions as well as pollutants from wildfires and SDS
storms. Exposures to PM, O3, and NOx are related to incidence and
exacerbations of asthma in both children and adults [48]. A review
conducted by the Health Effects Institute found that each 10 mg/m3

increase in NO2 was associated with a relative risk of 1.05 and 1.10 in
children and adults, respectively [49]. Recent reviews have observed
similar elevations in risk for asthma hospitalizations among children
[50]. In Mexico City, the relative risk of asthma-related emergency
hospital admission in adults increased by 3 % for a 10 mg/m3 increase
in PM10, 1 % for a 5 mg/m3 increase in PM2.5 and by 1 % for a 5 mg/m3

increase in NO2 [51].
3.2.2.2.1. Wildfires. Wildfires are growing in size and increasing in

frequency due to climate warming leading to increased number of
trees and infrastructure destroyed [52]. The fires release large quanti-
ties of PM, carbon dioxide (CO2), carbon monoxide, methane, NOx,
formaldehyde, acrolein, polycyclic aromatic hydrocarbons, trace min-
erals and various other toxins into the atmosphere increasing respi-
ratory health effects, including asthma [53]. One study found that
PM2.5 emissions from wildfire smoke is about 10 times more harmful
on children’s respiratory health than from PM2.5 emissions from
vehicles [54]. After the onset of a wildfire in California, there were
increases of approximately 220 % in PM2.5, 20 % in O3, and 151 % of CO
concentration [55]. Wildfires are estimated to contribute to at least
25 % of the PM in the atmosphere [56] and the smoke has been shown
to travel many miles, affecting respiratory health in regions far away
from the wildfire. In a study by Xu et al., PM levels were 10−15 fold
over the 24-hour US standard (35 mg/m3) 1000 kms away from the
wildfire source [57]. Clinical effects of acute and chronic exposure to
wildfire smoke include increases in asthma-related hospitalizations
and emergency department visits [58], decreases in respiratory peak
flow [59], and increased use of dermatological clinics for atopic der-
matitis and itch [60]. Decreases in respiratory peak flow was
observed one year after the wildfire event indicating long-term
effects of wildfire smoke.

3.2.2.2.2. Sand and dust storms. Like wildfires, sand (particles ≥
60mm) and dust (particles < 60mm) storms are increasing due to cli-
mate change [61,62]. A warmer climate with droughts, desertifica-
tion, and land degradation by human activity increase the incidence
and severity of dust storms. In particular, the regions stretching from
the Sahara Desert to the Gobi Desert of China and Mongolia face the
brunt of SDS earning it the name of the global dust belt [63]. SDS vary
widely in composition and contain fine PM2.5, minerals, organic mat-
ter, pathogens, allergens (dust mites, pollen, and fungal spores) and
industrial pollutants [64]. Regions in the global dust belt see an
increase in asthma and hospital admission for asthma [65-67]. For
example, asthma rates in children in Kuwait are greater than that



Fig. 4. Comparison of the annual concentrations of pollen grains (red) and fungal spores (blue) in Seoul for the past 25 years. In contrast to atmospheric fungal concentration, pollen
concentration increased annually during the same period (Reproduced from Choi et al. [88]. No changes were made to the original figure).
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seen in the children in the US (22.4 % versus 7.8 %, respectively [68].
SDS also carry pathogens such as Coccidioides immitis or Coccidioides
posadasii. In recent years, increases in coccidioidomycosis has been
found in the Southwest US, leading to increases in Valley Fever in the
region [69].

3.2.2.2.3. Pollen and other allergen exposure. Increased GHGs, ris-
ing temperatures levels, and other factors have led to alterations in
pollen production in plants including increased pollen quantity,
allergenicity, and longer season during which pollen is released
[6,7,70-72]. Pollen concentrations are estimated to increase further
in the future as temperatures and GHGs increase [73,74]. Earlier flow-
ering of Betula pendula Roth in Augsburg, Germany was associated
with higher temperatures and NO2. However, the pollen season of
Betula spp. frequently did not coincide locally with the flowering
period of Betula pendula, raising questions about the relationship
between flowering times and airborne pollen seasons and on the
rather underestimated role of the long-distance transport of pollen
[75]. Increased allergenicity has been shown to be brought about via
increased nitrification and oxidation due to increased CO2, NO2 and
O3 in the atmosphere [76,77] while increased temperatures and CO2

have been associated with increased pollen production [78]. Studies
show that elevated ambient CO2 levels elicit a strong ragwood-
induced allergic response in vivo and in vitro and that ragwood
extract increased allergenicity, which was dependent on the inter-
play of multiple metabolites [79,80]. Further, urban birch trees,
located next to high-traffic roads with higher NO2 levels, are more
likely to be infected by birch idaeovirus. Increased environmental
stress is thought to lead to more plant viral infections [81].

Increased pollen concentration has public health consequences,
especially for atopic diseases such as allergy and asthma. A systemic
review and meta-analysis found a significant increase in the mean
number of asthma emergency department presentations, which cor-
related with increases of 10 grass pollen grains per cubic meter [82].
Early onset of spring and pollen release is associated with increased
risk of asthma hospitalization and increased pollen allergenicity is
associated with more severe symptoms in allergic individuals
[6,73,83,84]. Weather conditions also aggravate allergy and asthma
during the pollen season. In particular, asthma incidence and severity
are increased during thunderstorms. A systematic review and meta-
analysis found that thunderstorms increased the risk ratio of asthma
events by 1.24 (95 % CI 1.13−1.36) [85]. This phenomenon is termed
thunderstorm asthma. During a thunderstorm, rain and moisture
rupture pollen grains increasing their allergenicity [86].

Airborne fungal spores are associated with respiratory allergies in
humans, and some fungal spores can cause allergic diseases. Environ-
mental and biological factors influence the concentrations of atmo-
spheric spores. Greater fungal growth and allergenic mold spores
have been observed in the floods ensuing thunderstorms. A study in
6

South Korea found that levels of indoor mold were related to the
presence of water damage in dwellings. The adjusted odds ratio of
allergic rhinitis was elevated by over tenfold in the water-damaged
dwellings [87]. However, allergenic fungal sporulation has also been
observed to decrease with desertification and drought (Fig. 4) [88].

3.2.3. Heat stress
Climate change is increasing the frequency of heat waves causing

increased morbidity and mortality [89]. One study found increased
childhood asthma emergency department admissions during heat
waves [90]. Another study explored the effects of temperature and
air pollution exposure during pre- and post-natal periods among pre-
schoolers and found that they are synergistically (and independently)
associated with increased asthma risk in early childhood [91].

3.2.4. Indirect effects of climate change on allergies and asthma
Climate change, affecting water and food insecurity, leads to social

instability and conflicts leading to migration and human displace-
ment. Human migration is generally from rural to urban areas and
the UN predicts that by 2050, 70 % of human populations will live in
urban areas [92], which are associated with greater ambient air pollu-
tion with lower biodiversity leading to higher asthma burden [93].
These factors indirectly affect allergies and asthma. Climate change
has expanded the geographical habitats of certain disease vectors
and migration has led to humans encountering novel allergens and
disease vectors. For example, the geographical expansion of the lone
star tick has led to increased incidence of alpha-gal allergy (also
called red meat allergy) [94]. When the lone star bites a human, it
transmits and sensitizes a person to a sugar called alpha-gal, which is
found in mammalian meat. On consuming mammalian meat, these
sensitized individuals undergo an allergic reaction [95].

3.3. Solutions: Adaptation and mitigation

The WHO estimates that by 2050 half the world’s population will
be affected by allergies and asthma, primarily due to lifestyle changes
and climate change [96]. The Paris Agreement was signed it 2015. It
marked the first truly global treaty and charted a new course in the
effort to combat climate change, requiring countries to make com-
mitments and progressively strengthen them. Its goal was to pro-
mote low-emission and climate-resilient development to halt the
increase in global temperature to well below 2 °C above pre-indus-
trial levels and to ensure that efforts are pursued to limit the temper-
ature increase to 1.5 °C by the end of the century. However, the 2023
report by the Intergovernmental Panel on Climate Change (IPCC)
found that there is more than a 50 % chance that global temperature
rise will exceed 1.5 °C between 2021 and 2040 across certain scenar-
ios. Under a high-emissions pathway, the world may hit this



Box 1 Modifying the exposome through mitigation and
adaptation to prevent allergies and asthma

� Decrease fossil fuel consumption and lower greenhouse
gas emissions.

� Decrease indoor and outdoor air pollution.
� Provide early warning systems for sand and dust storms
and wildfires prediction.

� Increase biodiversity.
� Practice regenerative agriculture.
� Weatherize buildings.
� Increase green spaces to sequester carbon.
� Focus on predominantly plant-based diet.
� Live sustainably (reduce, recycle, reuse, and use local
products).

� Mitigate conflicts by practicing principles of justice,
equity, diversity, and inclusion.
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threshold even sooner (between 2018 and 2037) [97]. There is urgent
and increased need to accelerate adaptation and mitigation strategies
to reduce GHG emissions.

Box 1 lists some of the adaptation andmitigation strategies. Adapta-
tion aims to help society increase resilience to the health effects of cli-
mate change. Mitigation involves reducing GHGs and limiting global
temperatures, the root cause of climate change [98]. Climate change
affects all individuals on earth and international agencies, countries,
national and local organizations as well as individuals need to work
towards solutions to make meaningful progress. Individuals can assist
in reducing their carbon impact in many ways such as reducing fossil
fuel use, reusing, repairing and recycling products, and eating a pre-
dominantly plant-based diet. Transitioning to a predominantly plant-
based diet has the potential to significantly reduce GHG emissions from
food production by 61 % to 73 % [99,100]. It is also associated with
decreased land and water use [101]. Below, we discuss some of the
strategies and provide examples of climate change adaptations andmit-
igations that were identified in this review that have been shown to
lower risk of asthma and allergies.
3.3.1. Adaptation
To protect against adverse health effects of climate change, the

identified literature notes that different adaptation strategies are
needed. These include early warning systems, individual behavior
changes, and infrastructure changes. Although climate change is a
global issue, effects are felt locally and therefore local organizations
need to prepare for extreme climate change events, such as flooding,
heat waves, and air pollution.

Air pollution increases asthma and allergy. Behavioral adaptations
during periods of high air pollution include limiting time spent out-
doors and wearing appropriate masks in order to reduce exposure.
Infrastructure changes include use of air filters in homes to reduce
PM2.5. While reduction in indoor air pollutants with air filters have
been demonstrated, studies have been unable to show significant
decreases in asthma control, quality of life, or measures of lung func-
tion [102,103]. A study by Park et al., however, found that air filters
significantly decreased indoor PM2.5 levels by up to 43 % and that
after 12 weeks, total and daytime nasal symptoms scores were signif-
icantly reduced with a trend towards improvement of childhood
asthma control test scores and mean evening peak flow rates [104].

Global warming is increasing the number of heat waves, which
are associated with increased asthma burden. As temperatures rise,
adaptation to heat stress include alerts systems warning the public of
high temperatures. Behavioral changes to protect against high heat
could include limiting outdoor exposure, drinking adequate amounts
of water, and wearing light colored and loose clothing. Individuals at
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high risk are outdoor workers and those living in urban heat islands
[105,106]. It is estimated that temperatures in urban areas are some-
times up to 10−15 °C higher than in their rural surroundings [107].
Heat islands are created by a combination of heat-absorptive surfaces
(such as dark pavement and roofing), heat-generating activities (such
as engines and generators) and the absence of vegetation (which pro-
vides evaporative cooling) [106].

Another climate change effect is increased flooding and sea level
increase. Infrastructure adaptations include building of gray infra-
structure (e.g., dikes, levees, and seawalls) as well as use of nature-
based solution such as reforestation and use of porous pavements to
decrease water runoff and reduce flash floods. A study found that a
combination of low impact interventions (rain gardens, bio-retention
cells, green roofs, infiltration trenches, permeable pavement, and
vegetative swale) reduced total flood runoff volume by 73.7 % [108].

3.3.2. Mitigation
Mitigation strategies aim to improve planetary health by reducing

GHG emissions or removing them from the atmosphere. Many stud-
ies have evaluated the effectiveness of mitigation strategies or poli-
cies to lower GHGs but only a few studies have further evaluated
health benefits associated with reduced emissions.

The U.S. Regional Greenhouse Gas Initiative (RGGI) is the United
States’ first regional market-based regulatory program designed to
reduce GHG emissions from the electric power sector within the
Northeast. Under the RGGI program, participating states are expected
to reduce their annual CO2 emissions from the power sector by 45 %
below 2005 levels by 2020, and by an additional 30 % by 2030.
Although RGGI is focused on reducing GHG emissions, it also reduces
emissions of other pollutants, such as PM2.5, NOx, and sulfur dioxide
(SO2). NOx and SO2 react in the atmosphere to form PM2.5. Analysis
of data between 2009 and 2014 estimated that this initiative
increased the number of estimated avoided cases of asthma, preterm
births, autism spectrum disorder, and term low birth weight (TLBW)
in RGGI states and neighboring states by 537, 112, 98, and 56, respec-
tively; this reduction is associated with an avoided cost estimate
ranging from $191 to $350 million [109].

A study estimated benefits across a suite of child health outcomes
in 42 New York City (NYC) neighborhoods under the proposed
regional Transportation and Climate Initiative. The benefits varied
widely over the different cap-and-investment scenarios. For a 25 %
reduction in carbon emissions from 2022 to 2032 and a strategy pri-
oritizing public transit investments, NYC would have an estimated 48
fewer medical visits for childhood asthma, 13,000 avoided asthma
exacerbations not requiring medical visits, 640 fewer respiratory ill-
nesses unrelated to asthma, and 9 avoided adverse birth outcomes
per 100,000 children and infants (infant mortality, preterm birth, and
TLBW) annually, starting in 2032 [110].

Another study in Seattle, Washington quantified intervention sce-
narios such as reductions in emission of CO2, NOx and PM2.5 and
health benefits of urban transportation policies promoting electric
vehicles (EV) and walking and bicycling (35 % of gasoline vehicles
were switched to EV, and 50 % of car trips less than 8 kms were
replaced by walking or bicycling) and projected them to the year
2035. The study found that implementing these changes would result
in 30 % less CO2 and lower annual average concentrations of primary
traffic-generated NOx and PM2.5 by 0.32 ppb (13 %) and 0.08 mg/m3

(19 %), respectively. In Seattle, the lower air pollutant concentrations
due to electric vehicle and active transport intervention would pre-
vent 20 cases of incident asthma per year [111].

Another study looked at energy savings, emission reductions, and
health co-benefits associated with green buildings. Based on modeled
energy use, LEED (Leadership in Energy and Environmental Design)-
certified buildings, which come from only 3.5 % of the total commer-
cial building floor space in the United States as of 2016, saved $7.5B
in energy costs and averted 33MT of CO2, 51 kt of SO2, 38 kt of NOx,
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and 10kt of PM2.5 from entering the atmosphere, which amounts to
$5.8B (lower limit = $2.3B, upper limit = $9.1B) in climate and health
co-benefits from 2000 to 2016 in the six countries the study investi-
gated. In the U.S., it was estimated that this avoided an estimated 172
−405 premature deaths, 171 hospital admissions, 11,000 asthma
exacerbations, 54,000 respiratory symptoms, 21,000 lost days of
work, and 16,000 lost days of school [112].

A large study in Shanghai, China, investigated the association
between greenspace surrounding residential addresses and asthma
in children and found that higher residential greenspace exposure
was associated with a reduced risk of asthma in children [113]. A sys-
tematic review found 108 papers that examined greenspace and
respiratory health and found that many studies showed a positive
association between urban greenspace and respiratory health, espe-
cially lower respiratory mortality [114].
4. Discussion and conclusion

Our review highlights key environmental factors caused by cli-
mate change that adversely affect allergic diseases. There is also
greater understanding of the underlying mechanisms by which these
environmental factors mediate inflammation and allergy; however,
further work is needed. There is now agreement of the anthropogenic
causes of climate change and the need to decrease GHG emissions
and there is increased global discussion on ways to meet the 2015
Paris Agreement aims. In 2023, it was clear that meeting the goals
will be a challenge and further efforts to reduce GHG emission by all
countries who signed the accord are needed.

While there is a large body of research that provides evidence of
the beneficial effects of lowering GHG emissions for decreasing air,
water, and soil pollution, their effects on lowering allergic disease is
scarce. There is a large gap in our understanding of needed cost-effec-
tive, feasible, practical, just, equitable, and inclusive action (both
adaptation and mitigation) to lower allergic diseases. Health care
practitioners can expect to see increased incidence of allergies and
asthma and should be prepared to cope with the increase in health-
care burden. They should educate their patients how they can adapt
to these increases in allergies and asthma and also play a role in
adapting and mitigating to climate change.

The strength of our review is the broad literature search, both
peer reviewed and gray literature, comprising any aspect of allergic
disease, climate change, adaptation, and mitigation that could be
affected by climate change. A large international group of authors rig-
orously and comprehensively reviewed the literature. The weak-
nesses of our search were that it only included manuscripts in
English, there is the possibility of bias, there were a limited number
of databases used (PubMed and Scopus), and there was limited
assessment of study quality.

This scoping review has identified some key areas for future
research: (1) Additional research on the most effective adaptations for
community organizations, healthcare providers, and individuals to
implement; (2) While studies have demonstrated that certain adapta-
tion and mitigation strategies are effective in reducing air pollution,
research on the benefits of these strategies on allergies and asthma is
scarce. Even fewer address these solutions with a climate lens.

Climate change has increased the risk of allergies and asthma, and
further increases are expected. Individuals, organizations, and
nations need to work towards adapting and mitigating the effects of
climate change. There is an urgent need to develop sustainable prac-
tices and reduce the use of fossil fuels so that future generations can
enjoy a clean environment. Justice, equity, inclusion and diversity
principles should be followed while addressing environmental issues.
This will require a multidisciplinary, cross-sector, and transborder
approach to change practices and policies at every scale, from global
to local.
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