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Giovanni Morana q,2, Ulrike Löbel a,2, Shivaram Avula r,2,
Brigitte Bison s,2, Maarten Lequin f,2, Kristian Aquilina a,2 , Ulrich Thomale t,2, Pelle Nilsson d,2,
Sami Bui-Quy Abu Hamdeh d,2, Torsten Pietsch u,2 , Pascale Varlet v,2, Thomas S. Jacques a,c,2,
Pieter Wesseling w,2, David Jones x,2, Uri Tabori y,2, Anirban Das y,2 , David Mulligan z,2,
Francesca Kozmann aa,2, Christof M. Krammab,2

a Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
b Pomeranian Medical University, Szczecin, Poland
c UCL GOS Institute of Child Health, London, UK
d Uppsala University, Uppsala, Sweden
e Uppsala University Children’s Hospital, Uppsala, Sweden
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1 Elwira Szychot and Géraldine Giraud are both first authors
2 The work was completed by aurhors on behalf of SIOP HGG Working Group

Contents lists available at ScienceDirect

EJC Paediatric Oncology

journal homepage: www.journals.elsevier.com/ejc-paediatric-oncology

https://doi.org/10.1016/j.ejcped.2024.100210
Received 23 September 2024; Received in revised form 8 December 2024; Accepted 16 December 2024

EJC Paediatric Oncology 5 (2025) 100210 

Available online 27 December 2024 
2772-610X/© 2025 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

https://orcid.org/0000-0002-1598-7018
https://orcid.org/0000-0002-2771-9889
https://orcid.org/0000-0001-8219-9807
https://orcid.org/0000-0003-1486-1736
https://orcid.org/0000-0002-5506-2001
https://orcid.org/0000-0003-4344-8174
https://orcid.org/0000-0003-3916-7767
https://orcid.org/0000-0003-1311-9214
https://orcid.org/0000-0003-1776-9556
https://orcid.org/0000-0002-4992-3231
https://orcid.org/0000-0001-7015-5196
https://orcid.org/0000-0003-0763-6506
https://orcid.org/0000-0001-7653-9529
https://orcid.org/0000-0002-5017-926X
https://orcid.org/0000-0002-1598-7018
https://orcid.org/0000-0002-2771-9889
https://orcid.org/0000-0001-8219-9807
https://orcid.org/0000-0003-1486-1736
https://orcid.org/0000-0002-5506-2001
https://orcid.org/0000-0003-4344-8174
https://orcid.org/0000-0003-3916-7767
https://orcid.org/0000-0003-1311-9214
https://orcid.org/0000-0003-1776-9556
https://orcid.org/0000-0002-4992-3231
https://orcid.org/0000-0001-7015-5196
https://orcid.org/0000-0003-0763-6506
https://orcid.org/0000-0001-7653-9529
https://orcid.org/0000-0002-5017-926X
mailto:Elwira.Szychot@gosh.nhs.uk
www.sciencedirect.com/science/journal/2772610X
https://www.journals.elsevier.com/ejc-paediatric-oncology
https://doi.org/10.1016/j.ejcped.2024.100210
https://doi.org/10.1016/j.ejcped.2024.100210
https://doi.org/10.1016/j.ejcped.2024.100210
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejcped.2024.100210&domain=pdf
http://creativecommons.org/licenses/by/4.0/
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A B S T R A C T

Paediatric high-grade gliomas (pedHGGs) are highly invasive brain tumours accounting for approximately 15%
of all central nervous system (CNS) tumours in children and adolescents. The outcome for these tumours is
generally poor with 5-year survival rates of less than 20%. Despite improved biological insights into pedHGGs
and the promise of more effective therapies, little progress has been made in the effective treatment and the
outcome of these tumours over the last four decades. Much of the evidence for the use of chemotherapy in
pedHGGs is extrapolated from adult data, and the evidence for its use in the paediatric population is still weak.
This guideline was written by members of the SIOPE HGG Working Group as part of the European Standard
Clinical Practice (ESCP) Project. The guideline aims to integrate available evidence-based and expert opinion-
based information to assist healthcare professionals in the management of pedHGGs and in an attempt to pro-
vide equity in healthcare reflecting the varying resources of each European country.

1. Introduction

Paediatric high-grade gliomas (pedHGGs) are highly invasive brain
tumours accounting for approximately 15% of all central nervous sys-
tem (CNS) tumours in children and adolescents. The outcome for these
tumours is generally poor with 5-year survival rates of less than 20%
[1]. They represent significantly different biology compared to their
adult counterparts, and it is now understood that they represent a het-
erogeneous group of tumours rather than just one entity, a fact that has
recently been further acknowledged in the 5th edition of the 2021 WHO
CNS tumour classification [1,2].

Despite the historical existence of a significant number of prospec-
tive clinical trials for children with pedHGGs, there has been little
improvement in patient outcomes over the past 4 decades. Until now,
following surgery and adjuvant radiotherapy, temozolomide-containing
regimens have been standard practice among paediatric neuro-
oncologists, and also used as a control arm in clinical trials, with most
care providers aiming to ultimately enrol pedHGG patients into inves-
tigational clinical trials [3–5].

The general challenges for the design of early clinical trials in
pedHGGs are 4-fold: intertumoural heterogeneity and molecular
pathway redundancy; lack of currently actionable alterations in a large
proportion of patients; small subsets of patients for each given biology
and target expression; issues with drug delivery due to poor blood–brain
barrier penetration [6].

This guideline was written by members of the SIOPE HGG Working
Group as part of the European Standard Clinical Practice (ESCP) Project.
The guideline was reviewed by board members of the European Refer-
ence Networks (ERNs) and the European Society for Paediatric Oncology
(SIOPE) and finally approved for publication in the SIOPE members’
portal, exclusive to SIOPE members.

As patients with pedHGGs do not have access to the same level of
care in all countries, and treatment varies across different institutions,
the guideline aims to integrate available evidence-based and expert
opinion-based information to assist healthcare professionals in the
management of pedHGGs and in an attempt to provide equity in
healthcare reflecting the varying resources of each European country.

2. Classification and previous management approach

High-grade gliomas (HGGs) are aggressive tumours (defined as CNS
WHO grade 3 or 4) exhibiting glial differentiation. The types of HGG
seen in children can be found under several broad groups:

2.1. Diffuse midline glioma H3K27-altered

H3K27-altered diffuse midline gliomas (DMGs) represent 10% of
brain tumours and 70% of HGGs in children. These tumours arise in the
midline structures of the brain (pons, thalamus, spinal cord). Most tu-
mours carry a variant in H3K27 resulting in loss of H3K27 trimethyla-
tion (H3K27me3), and this genetic mark is associated with a uniformly

fatal disease course, independent of tumour location [7,8].
H3K27-altered DMGs were acknowledged as a new entity in the WHO
2016 classification and have been subdivided in the recent 2021 clas-
sification into different subtypes: a predominant group presenting his-
tone H3 mutations (H3.3 p.K28M (K27M)-mutant, and H3.1 or 3.2 p.
K28M (K27M)-mutant), often associated with PDGFRA and MYC am-
plifications [2]. A smaller group of DMG lack H3 mutation, rather show
global epigenetic changes consistent with mutant through EZHIP over-
expression [2,9]. Furthermore, an additional group with H3K27me3 loss
and frequent EGFR gene alterations has been described [10]. All
H3K27-altered DMGs share Polycomb Repressor Complex 2 (PRC2) in-
hibition and are therefore classified together in the WHO classification
2021 [11]. A small subgroup of HGGs that occur in the midline showing
amplification of MYCN (GBM-MYCN) is now re-classified separately
within the group of diffuse paediatric-type HGG, H3-wildtype, and
IDH-wildtype, subgroup pedHGG MYCN [2,12].

DMGs have historically been treated in the same way as hemispheric
gliomas, although the Children’s Oncology Group (COG) study ACNS-
0126 of temozolomide (TMZ) adjuvant to RT (TMZ-RT) in hemi-
spheric pedHGGs and DMGs concluded that there is little justification for
using TMZ in DIPG (now known as pontine DMG) [13]. The study by
Cohen et al. was not randomized to radiotherapy only but showed
TMZ-RT not to be inferior/superior to the preceding CCG-9941 study
that employed intensive pre-radiation chemotherapy and
hyper-fractionation. Interestingly, a large analysis of 1130 DIPG patients
by the SIOPE and International DIPG registries revealed that any neo-
adjuvant or adjuvant systemic therapy (mostly TMZ-based) in addition
to radiotherapy (RT) correlated with longer survival in both univariable
and multivariable analyses. This had also previously been observed in
retrospective analyses by Wagner et al. where a better median overall
survival (OS) (11.3 months) was observed in DIPG patients treated with
adjuvant chemotherapy following RT compared with patients treated
with RT alone (9.5 months; P= 0.03) [14]. Likewise, in a retrospective
analysis by Kebudi et al. patients receiving adjuvant TMZ or other
chemotherapy (lomustine, vincristine) after RT, had a significantly
higher survival than those treated with RT only [15]. This has also been
shown in other studies using neo-adjuvant intensive chemotherapy
[14–17]. However, none of these studies address a well-defined
H3K27-altered DMG subgroup and, as non-randomized studies, might
be subject to bias. In the Herby randomized trial for non-brainstem
midline pedHGGs, survival with H3K27M-mutation was equally poor
(8.0 months OS) with no superiority of bevacizumab added to TMZ-RT
[5,18]. In 2014, an adaptive design protocol (BIOMEDE 1.0 trial) was
developed for DMGs H3K27-altered. In this study, most patients
received a treatment assumed to specifically target a biological abnor-
mality identified on the biopsy. The three drugs administered were
erlotinib, dasatinib and everolimus (NCT02233049). None of these
targeted agents was shown to be superior to the other, with a median OS
of 10.0, 10.5 and 11.9 months, respectively [19]. Everolimus was chosen
as a ‘standard arm’ for the subsequent BIOMEDE 2.0 trial because of
fewer side effects [7].
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Both, the SIOPE and International Diffuse Intrinsic Pontine Glioma
Registries (https://dipgregistry.eu and https://dipgregistry.org) created
in 2012 have made a major contribution towards understanding this
challenging disease and have been broadened to all DMGs in 2022 and
2019, respectively. The registries ensure prospective data collection and
help develop new approaches to treating DMGs.

2.2. Hemispheric pedHGGs

Hemispheric pedHGGs represent 5% of brain tumours and 30% of
HGGs in children. These include H3G34R/V diffuse hemispheric glioma,
paediatric-type high-grade glioma and infant-type high-grade glioma, as
classified in the 2021 WHO classification of CNS tumours. From the
United States, the first prospective, randomized clinical trial, CCG-943,
for children with HGG was published in 1989 by the Children’s Cancer
Study Group (CCG) and showed a significant improvement in outcome
of radiotherapy followed by procarbazine/chloroethyl-cyclohexyl
nitrosourea [lomustine]/vincristine chemotherapy (PCV), over radio-
therapy alone, after maximal safe surgery [20]. Five-year OS rates of
43% (± 9%) and 17% (± 7%) were reported for RT/PCV vs RT,
respectively. In the follow-up RCT CCG-945 study, the RT/PCV regimen
was compared to eight-drugs-in-1-day (8-in-1) chemotherapy with no
significant difference between the arms, with a 5-year OS of 36%
(± 6%) [21]. Gross total resection (>90%) was found to be an impor-
tant prognostic marker for survival. Overexpression of O6-DNA
methylguanine-methyltransferase (MGMT) was strongly correlated with
adverse outcomes in both arms of the CCG-945 study [22]. Of note, a
later central review of the pathology of the CCG-945 study indicated that
30% of patients were low-grade gliomas misclassified as HGGs, result-
ing in an adjusted OS rate of 22% (± 3%) for HGG in CCG-945 [23].
Unfortunately, this neuropathological reanalysis was not performed for
the CCG-943 study.

In a pivotal trial (2000–2002), the alkylating agent TMZ was intro-
duced in adult glioblastoma patients. Single-agent TMZ, when admin-
istered during and after RT, significantly prolonged event-free survivals
(EFS) and OS in adults with glioblastoma compared with RT alone [24].
While methylation of the MGMT promoter was confirmed as a prog-
nostic marker, the predictive value for benefit from TMZ has not been
prospectively demonstrated for paediatric patients as in the adult setting
[25,26]. In analogy to the experience with TMZ in adults, the COG study
ACNS0126 employed TMZ concurrently with RT and showed an equal
survival outcome to the previous CCG-945 study, with a 3-year EFS and
OS of 11± 7% and 22%± 5%, respectively. TMZ treatment showed
less toxicity compared to previous CCG trials [13]. The role of lomustine
added to TMZ was investigated in the subsequent ACNS-0423 study that
resulted in better 3-year EFS and OS rates of 22± 8% and 28± 8%
respectively, most pronounced for patients with methylation of the
MGMT promoter and non-GTR patients however, at the expense of
increased toxicity [27]. Likewise, in adult GBM patients with MGMT
promoter methylated tumours, the CeTeG/NOA-09 study
(NCT01149109) showed TMZ combined with lomustine to be superior
to TMZ alone [28]. This study was performed in a selected group of
MGMT-methylated patients, as a prior pilot study had indicated that no
benefit of adding lomustine to TMZ was observed in
MGMT-unmethylated, MGMT-expressing tumours [29]. In contrast,
another non-randomised phase 2 trial (UKT-03) suggested lomustine
-TMZ plus RT to be superior to temozolomide chemoradiotherapy in
newly diagnosed glioblastoma with methylation of the MGMT promoter
(MGMTp). However, the previous paediatric trial HIT-HGG-2007
showed that only 8 out of 183 (4.4%) patients had a confirmed
MGMTp hypermethylated tumour and only 22 out of 183 (12.0%) pa-
tients had a moderately methylated MGMTp. The majority (83.6 %) of
pedHGGs showed an unmethylated MGMTp, which did not affect sur-
vival in the setting of TMZ-RT-based therapy. This suggests that, unlike
in adult patients, MGMTp methylation status in children is not associ-
ated with survival outcome (Christof Kramm, paper submitted).

The most recent COG HGG trial, ACNS0822, compared two different
experimental arms with vorinostat or bevacizumab during RT with a
control arm with TMZ during RT. The study was initially planned as a
“pick-the-winner” phase II design to be advanced into phase III testing,
but the study was permanently closed in 2014 during phase II, as no arm
showed any clear superiority over TMZ/RT [30]. The addition of bev-
acizumab to a backbone of TMZ/RT (Herby trial) failed to improve EFS
and OS in non-brainstem pedHGGs [5]. Post-hoc analyses of the mo-
lecular characteristics of the patients included in this trial, however,
seem to indicate that the addition of bevacizumab might provide some
benefit to certain subgroups of pedHGGs, including hypermutated and
BRAF-V600E mutated pedHGGs [18].

The use of pre-irradiation chemotherapy has been evaluated in a
phase II approach, where 4 courses of neo-adjuvant ifosfamide, carbo-
platin, and etoposide (ICE) chemotherapy were given followed by
hyperfractionated RT (1.1 Gy twice daily for 30 days) and 4 courses of
ICE adjuvant therapy. This study showed low toxicity and 5-year
progression-free survival (PFS) of 56% and OS of 67%. Brainstem tu-
mours in this study did not benefit from this approach [31]. Further-
more, in patients with pedHGGs treated on the German HIT-GBM-C
cooperative group study with intensive chemotherapy during and after
RT (cisplatin, etoposide, and weekly vincristine during
radio-chemotherapy, with one cycle of cisplatin, etoposide, and ifosfa-
mide during the last week of radiation, and subsequent maintenance
chemotherapy followed by oral valproic acid), survival was better than
that seen in prior HIT-GBM studies in the subgroup of patients with HGG
who had undergone gross total resection (5-year OS rate 63% vs 17%
for the historical control group, P= .003, log-rank test). Molecular data
were not provided, however, rendering the data difficult to interpret
[32].

The German cooperative group is currently conducting the HIT-
HGG-2013 trial (DRKS-ID:DRKS00012806) comparing the combina-
tion of TMZ and valproate with historical data from their previous
studies, HIT-HGG-2007 (NCT03243461), using single agent TMZ.

Other studies are exploring the role of an immune checkpoint in-
hibitor, nivolumab, in management of HGGs, i.e. the French NIVOGLIO
phase I/II trial is investigating the combination of nivolumab with TMZ
and radiotherapy in children and adolescents with newly diagnosed
HGG (NCT04267146).

2.3. Infant-type hemispheric HGG

Infants with HGG have long been known to show better survival
compared with older children and an improved outcome both with
chemotherapy after surgery and, if necessary, delayed radiotherapy.
Infants with malignant astrocytoma treated with the 8-in-1 regimen
used in the CCG-945 study were reported to have a 3-year PFS and OS of
36% and 51% respectively, markedly better than older children treated
with this regimen in combination with RT [33]. In parallel, from 1986 to
1996, the Baby POG I study reported cases cured with 24 months of
chemotherapy alone using prolonged alternating chemotherapy con-
sisting of two cycles of cyclophosphamide and vincristine followed by a
third cycle of cisplatin and etoposide. The study reported 5-year PFS and
OS of 43% and 50% for the 18 pedHGG patients [34]. With the French
chemotherapy-only BBSFOP protocol, an 18-month schedule of seven
cycles of three drug pairs (carboplatin-procarbazine, cisplatin-etoposide
and vincristine-cyclophosphamide) in pedHGG patients under the age of
5 years, a 5-year PFS of 35.3% and OS of 58.8% were observed [34]. In
the UKCCSG/SIOP CNS 9204 trial, infants with non-brainstem HGG
were treated with courses of carboplatin/vincristine, high-dose metho-
trexate/vincristine, cyclophosphamide monotherapy and cisplatin
monotherapy, resulting in PFS and OS rates of 13.0% and 30.9% [35].

There has been emerging evidence that different biology may be a
major contributing factor to the survival differences between infant and
paediatric HGGs. A large proportion of infant patients, especially those
under 2 years of age, were shown to have tumours molecularly distinct
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from those in older children, and the group ‘Infant-type hemispheric
glioma’ is now recognized in WHO CNS 2021. These studies also indi-
cate a role for targeted therapies in this patient group, as driving
targetable molecular alterations have been defined such as gene fusions
involving ALK, ROS1, NTRK1/2/3, and MET [36,37].

3. Diagnostic process

3.1. Imaging

Magnetic resonance imaging (MRI) is the mainstay for a compre-
hensive evaluation of the neuroaxis, and it is vital to include the whole
brain and spine at baseline and in case of suspected progression.

Recommendations on essential MRI sequences for brain and spine
imaging, tumour measurement, post-operative residual tumour defini-
tions and response criteria are included in the SIOPE MRI guidelines for
imaging patients with CNS tumours and in the Standard Clinical Practice
Recommendations published by the Imaging Working Group [38,39].

3.2. Role of CSF analysis

CSF collection is not routinely performed for pedHGGs. It may
become relevant in the context of liquid biopsies, but currently, this is
not the standard.

3.3. Biopsy in pontine DMGs

The diagnosis of pontine DMG (pDMG) is conventionally made based
on the combination of a typical clinical presentation and the well-
described radiological findings on MRI. Tumour tissue is not consid-
ered necessary for diagnosis and management unless there are atypical
features with respect to patient age, presenting signs and symptoms,
duration of symptoms, or neuroradiological appearances. Over the
years, this has led to considerable debate among neurosurgeons and
oncologists [40,41]. The paucity of biological tissue accounts for the
poor understanding of the molecular biology of pDMGs, and potentially
the lack of therapeutic progress, relative to other tumours [42].

Several studies have shown that biopsy of pDMG is safe in

experienced hands [42–44]. A large meta-analysis evaluated 735 biopsy
procedures in paediatric brainstem tumours and found an overall diag-
nostic success rate of 96.1%; the rates for permanent morbidity and
mortality were both only 0.6% [44]. Surgical adjuncts such as naviga-
tional robotic technology increase accuracy and safety [45,46].

In studies such as BIOMEDE and INFORM, biopsy was mandatory,
and the tumour tissue obtained yielded sufficient material for detailed
molecular investigation, with very low rates of adverse events [47,48].

It is hoped that as new clinical trials and potential therapeutic op-
tions emerge, the value of biopsy in identifying the molecular sub-
groups, defining prognosis, and assessing trial eligibility will be
reappraised [49]. It is now accepted that for most clinical trials a biopsy
will be requested for suspected pDMG as per the study protocol since the
procedure is now widely disseminated in many neuro-oncology centres
without life-threatening complications.

Outside of a clinical trial when a diagnosis of DMG can be based on
typical neuroradiological imaging appearances, biopsy can be consid-
ered following discussion with families about relative benefits of
confirmatory histopathology, possible molecular targeting given
emerging evidence for prolonged PFS/OS in some subgroups of DMG,
and possible future research applications of left over tissue sample. In
those circumstances when atypical tumour appearances are present on
images, a biopsy is recommended.

3.4. Neuropathological diagnosis

For the exact classification of pedHGGs and the exclusion of histo-
logical mimics, the diagnostic methodology should include immuno-
histochemical assessment of cell lineage and surrogate protein markers
for genetic alterations (including immunohistochemistry with anti-
bodies against mutant proteins and epigenetic histone marks) as well as
molecular pathological techniques to identify genetic alterations on
DNA and/or RNA level and to establish epigenetic profiles for
methylation-based tumour classification. Most pedHGG entities are
defined by the presence/absence of specific genetic alterations and can
also be identified by their characteristic methylation profiles.

The following algorithm based on WHO CNS 2021 may help to
further molecularly characterize pedHGGs [2, 7, 50, 51]:

Histology DIFFUSE HIGH-GRADE GLIOMA

Location Hemispheric Midline Any

Age group Adolescents Adolescents Infants < 2 years (Pre)school children (Pre)school children
IDH status IDH-wildtype IDH-mutant IDH-wildtype IDH-wildtype IDH-wildtype
Histone 3 status H3.3 G34R/V H3-wildtype H3-wildtype H3 K27me3 loss:

H3.3 K27M/K27I mutant
or
H3.1/H3.2 K27M mutant
or
EZHIP overexpression or
EGFR altered (see below)

H3-wildtype

RTK status PDGFRA mutation/
amplification

 ALK or
ROS1 or
NTRK1–3 or
MET fusion

EGFR ex20ins mutation or
other EGFR alterations
(mostly in thalamic/
EZHIP cases)

PDGFRA/EGFR/MET
amplification

Mismatch repair status
(if MMR deficiency
suspected)

No PMS2, MLH1,
MSH2, MSH6 IHC
loss

No PMS2, MLH1,
MSH2, MSH6 IHC
loss
PMMRDIA

No PMS2, MLH1, MSH2,
MSH6 IHC loss

No PMS2, MLH1, MSH2,
MSH6 IHC loss

MMR associated HGG: loss of
expression of at least one of
mismatch repair proteins

Methylome Distinct profile Distinct profile Distinct methylome profile,
also for non-ALK/ROS/MET-
NTRK cases

Can help detect EZHIP OE
DMGs

For further subtyping (pedRTK1,
pedRTK2, MYCN)

Integrated diagnosis Diffuse hemispheric
glioma,
H3 G34-mutant,
CNS WHO grade 4

Astrocytoma
IDH-mutant
CNS WHO grade 3/4

Infant-type hemispheric
glioma,
H3-wildtype and IDH-
wildtype,
No CNS WHO grade

Diffuse midline glioma,
H3 K27-altered,
CNS WHO grade 4

Diffuse pediatric-type HGG,
H3-wildtype and IDH-wildtype,
CNS WHO grade 4
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Additional molecular tests become necessary for other glioma types
that enter the differential diagnosis of pedHGGs. Examples are “adult-
type” IDH-mutant astrocytomas which can also occur in older children/
adolescents and pleomorphic xanthoastrocytoma for which diagnostic
testing for homozygous CDKN2AB deletions and BRAFV600E and other
MAP kinase alterations are recommended. DNA methylation profiling
adds an important layer of information to confirm neuropathological
diagnoses, provide information on subtypes of H3- and IDH-wildtype
HGG, and identify molecular or histological mimics of pedHGGs.

In infant-type hemispheric gliomas (but also in other pedHGG sub-
types), appropriate RNA-and/or DNA-based analysis for specific gene
fusions (i.e., ALK, ROS1, MET, NTRK family) may help to identify
possible candidates for targeted therapy.

Molecular/immunohistochemical assessment of mismatch repair
genes (MLH1,MSH2,MSH6, PMS2) or assessment of tumour mutational
burden (TMB) may help to identify patients with (germline) mismatch
repair deficiency, which could indicate a rationale for immune check-
point inhibitor treatment. We recommend the use of IHC for the MMR
genes in cases with clinical suspicion of a constitutional mismatch repair
deficiency syndrome (CMMRD) [51], which may also include IDH
mutant pedHGG.

High-grade IDH-WT diffuse glioma may occur in children with Li-
Fraumeni syndrome [52].

Where adequate molecular testing is not available to determine the
type of pedHGG, the term ‘High-grade gliomas, NOS’ should be used.

4. Treatment

Management of pedHGGs in the context of cancer predisposition
syndromes is outside of the scope of this guideline but will be addressed
in the first revision of this guideline in view of the emerging evidence
that these patients benefit from immunotherapy.

4.1. Surgery

The goal of surgery in hemispheric pedHGGs is to achieve a maximal
resection whenever possible without causing lasting and disabling
neurological deficits. Experience from adult HGG suggests that gross
total resections increase PFS [53,54]. If tumours are widespread or
localised in eloquent non-operable regions of the brain such as pons, a
biopsy is recommended to verify histologic and molecular genetic di-
agnostics, which can be achieved by microsurgery, neuroendoscopy, or
navigated, stereotactic or robotic needle biopsy. The surgical strategy
follows basic techniques for resection. Advances in surgery are primarily
related to technical developments that facilitate maximal safe resection,
i.e. intraoperative MRI, intraoperative ultrasound and 5-ALA
fluorescence-guided surgery [55,56]. Awake surgery is difficult in the
paediatric population but in selected cases it could be used to increase
safety when operating near eloquent areas [57].

4.2. Corticosteroids

Corticosteroids are commonly used in children with symptomatic
CNS tumours [58]. The benefit of corticosteroids is recognized in case of
raised ICP and in preparation to surgery, under radiotherapy and in long
term palliative symptomatic treatment, but their use should be restricted
as corticosteroids reduce the permeability of the blood-brain barrier and
might impair the anti-tumour immunity [59].

4.3. Radiotherapy

4.3.1. Diffuse paediatric-type high-grade glioma, H3-wildtype and IDH-
wildtype and Diffuse hemispheric glioma H3 G34-mutant [5,20,21,27,
60–62]

The optimal dose and volume of irradiation have never been studied
prospectively or retrospectively. In the past, recommendations for

radiotherapy were based on adult experience despite different radio-
logical presentation, biology, and outcomes.

After maximal safe surgery, a delay of less than 4–6 weeks is rec-
ommended before the start of radiation therapy [63].

Dose:

o According to multi-institutional studies, local radiotherapy is pro-
posed for patients ≥ 3 years, with a dose of 54 Gy + /- a boost of
5,4 Gy (1,8 Gy/fraction) to residual disease [64].

o In the case of Intensity Modulated Radiation Therapy, a simulta-
neous boost can be proposed to optimize the dose to healthy tissue
(54 Gy/1,8 by fraction and 60 Gy/2 Gy by fraction).

Target Volume [65]:

o Regarding irradiation volume, Gross Total Volume (GTV) is defined
as surgical cavity plus postoperative residual disease on T1-contrast
(or T2 Flair for non-enhanced tumours).

o Clinical Total Volume (CTV) is GTV plus a margin of 15mm limited
by natural anatomic barrier. In the case of a non-enhancing tumour,
the CTV margin could be reduced to 10mm.

o Planning Target Volume (PTV) is CTV plus geometric expansion of
2–5mm according to institutional policy.

Data regarding re-irradiation in patients with non-pontine DMG are
scarce. Retrospective data suggest that re-irradiation is safe and can
offer good palliation of symptoms. Optimal dose, fractionation dose and
volume are unknown [66,67].

In adults, a median dose of 35 Gy in 10 fractions in association with
bevacizumab has been shown to be safe but without improvement in
survival. Another retrospective study from Combs et al. has shown
similar results with 36 Gy (2 Gy/fraction) in stereotactic conditions. In
these reports, the target volume is defined as GTV plus a margin for PTV
[66, 68, 69].

4.3.2. Diffuse midline glioma H3K27-altered
In childhood, diffuse midline gliomas H3K27-altered (DMGs) are

mainly located in the pons followed by thalamic location and rarely in
the spinal cord.

For non-pontine DMG, limited data are available about specific
treatments. Currently, recommendations for radiation therapy are the
same as for other diffuse paediatric-type high-grade gliomas.

For pontine DMG, the recommendations are as follows:
Although rapid initiation of radiation therapy is desirable, the

‘optimal delay’ (if needed) between diagnosis and the start of radio-
therapy is unknown. Short delay (within 2 weeks) does not improve
overall survival [63,70].

Dose and fractionation:

o The standard dose of radiation therapy is 54 Gy in 1,8 Gy by fraction
(5 fractions a week) for all DMG.

o For patients with pontine DMG, hypofractionated treatment is
proven to be non-inferior to conventional fractionation [71–76]. The
most used scheme is 39 Gy in 13 fractions (3 Gy/fraction in 2,5
weeks) without concomitant systemic therapy. Hypofractinated
radiotherapy is an option to reduce the treatment burden in children
particularly those with Lansky scale of 50–70 with significant
neurological symptoms such as pyramidal tract dysfunction or
disequilibrium.

o There is no role of hyperfractionated radiotherapy in the manage-
ment of diffuse intrinsic pontine glioma [7, 77, 78].

Target volume [79]:

o GTV is defined by a combination of the T1-contrast, T2 and Flair
abnormality.
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o CTV include GTV plus a margin of 10mm limited by natural
anatomic barriers such as bony calvarium and tentorium.

o PTV is CTV plus geometric expansion of 2–5mm according to insti-
tutional policy.

Re-irradiation of pontine DMG (pDMG) [67, 69, 80, 81–86]
There is evidence that re-irradiation in pDMG patients improves

survival and symptoms in more than 2/3 of patients. The best candidates
are patients with a response to initial treatment and after at least 3
months since the first irradiation course.

Dose: Re-irradiation dose, volume and fractionation are variable
according to the different institutions. Some data suggest that ≥ 20 Gy
(1,8–2 Gy/fraction) is slightly more effective in terms of symptom
improvement. More data is needed to determine if a dose up to 36 Gy
could offer additional benefit.

Target Volume: PTV is usually GTV plus a margin of 2–5mm with a
limited margin for CTV, at the discretion of the radiation oncologist, in
the absence of consensus.

4.3.3. Infant–type hemispheric glioma
Age
For the infant subgroup, we chose the age cut-off of 2 years in these

guidelines, based on the neuropathological diagnosis even though the
treatment age groups are usually defined with an age cut-off of 3 years
[36,37].

Infant HGG is usually managed with surgery and systemic treatment
(chemotherapy and/or target therapy). Radiation therapy is rarely
considered in the treatment strategy considering the severe late effects
in infants. Radiotherapy is an option for relapse in selected cases (ac-
cording to patient age, the previous treatment and molecular subtype).

No specific recommendation is therefore available for this rare entity
[34, 35, 86–90].

4.3.4. Spinal cord high-grade glioma [27,85,91,92]
High-grade glioma arising from the spinal cord is very rare in the

paediatric population. H3K27 alterations are very frequent in this
location (50–80%) [87,92–94]. The delivered radiotherapy dose is
usually lower compared to intracranial tumours because of the spinal
cord’s tolerance to radiotherapy.

Dose: 45–50.4 Gy (1,8 Gy/fraction) according to the length of the
involved spinal cord and neurological status.

Target Volume: There is no agreement, and treatment is based on
experience from intracranial high-grade glioma with a CTVmargin up to
20mm in the CC direction.

4.3.5. Metastatic DMG
For all DMGs (including pontine), CSI (36 Gy in 20 daily fractions of

1.8 Gy) with a boost to the primary tumour and macroscopic metastases
(18 Gy in 10 daily fractions) to a total dose of to 54 Gy, in case of met-
astatic disease at the time of diagnosis, is an option.

In case of metastatic relapse (≥50% of patients with thalamic le-
sions) after previous radiotherapy, a CSI of 36 Gy in 20 fractions could
be offered.

5. Chemotherapy

Despite biological insight into pedHGGs and the promise of more
effective therapies, little progress has been made in the effective treat-
ment and, hence, the outcome of these tumours in the last four decades.
Much of the evidence for the use of chemotherapy in pedHGGs is
extrapolated from adult data, and the evidence for its use in the paedi-
atric population is weak. To date, only a few randomised trials have been
performed involving newly diagnosed pHGGs with sizeable patient
numbers that have demonstrated a benefit from adjuvant chemotherapy
[20,21]. Although most children receive adjuvant chemotherapy, the
optimal regimen to offer patients with newly diagnosed pedHGGs has

not been established.
Given there is no clear indication to support one approach over

another, the SIOPE HGGWorking Group conducted a pan-survey aiming
to establish the current management approaches of pedHGG in Europe.
Based on the practice in 33 countries, an attempt was made to achieve a
consensus on the management of these tumours using a Delphi method
[95]. Forty-three recognized neuro-oncology experts from 33 countries
were invited to participate in the Delphi process between December
2021 and March 2022. Voting and responses were collated using a
web-based survey [96].

5.1. Diffuse paediatric-type high-grade glioma, H3-wildtype and IDH-
wildtype and diffuse hemispheric glioma H3 G34-mutant

A concomitant daily administration of temozolomide (TMZ) with
local radiotherapy followed by adjuvant chemotherapy with TMZ has
been widely adopted by the paediatric neuro-oncology community
throughout Europe as the preferred treatment option for pedHGGs. Sixty
per cent of the Delphi participants agreed that the recommended
treatment regimen is chemoradiation with TMZ followed, after a TMZ
treatment break of approximately 4 weeks, by 6–12 cycles of TMZ,
irrespective of MGMT promotor methylation status.

Treatment should begin approximately 4 weeks after cranial surgery.
Alternatively, after irradiation, patients should be enrolled on a clinical
trial when available.

Recommended chemoradiation regimen:

1. During the chemoradiation treatment phase: Daily continuous TMZ
(75mg/m2/d) starting concomitantly with the first radiation fraction
and ending with the last radiation fraction (see details in radio-
therapy section).

2. During the TMZ adjuvant treatment phase: Temozolomide (150 –
200mg/m2/d) x 12 cycles:

• 1st cycle 150mg/m2/days 1–5, escalated to 200mg/m2/days 1–5
from the 2nd cycle onwards depending on the tolerance during the
1st cycle

• Cycle length = 28 days

The above regimen, commonly referred to as the ‘Stupp regimen’,
has been based on the first randomized study to demonstrate significant
survival benefit when adjuvant chemotherapy was added to radio-
therapy in adult patients with newly diagnosed GBM. This trial
demonstrated an improvement in the median and 2-year survival, a
benefit that lasted throughout 5 years of follow-up [97].

Subsequently, the efficacy, safety, and tolerability data from the
completed large single-arm Phase II COG study ACNS0126 provided
support for the use of radiotherapy with concomitant and adjuvant TMZ
in newly diagnosed pedHGGs [13]. Although the efficacy results did not
demonstrate a clear advantage of this regimen over other chemotherapy
agents in subsequent trials [21,62], the favourable safety profile and
excellent tolerability of this regimen have nevertheless resulted in its
continued acceptance by both physicians and patients.

Thirty per cent of the Delphi participants would support the man-
agement of hemispheric HGG using concomitant and/or adjuvant TMZ
as the backbone but would consider adding lomustine based on the COG
ACNS-0423 trial due to the findings of the difference in survival between
the cohort of patients withMGMT-overexpressing tumours in ACNS0126
and ACNS0423 [27]. In this trial, children with a newly diagnosed
localised pedHGG underwent radiotherapy with concurrent TMZ
following maximal surgical resection. Adjuvant chemotherapy consisted
of up to 6 cycles of lomustine 90mg/m2/day on day 1 and TMZ
160mg/m2/day on days 1–5 every 6 weeks. Cycles were repeated every
42 days upon bone marrow recovery [27].

The hypothesis was that the dual-alkylator regimen might help to
overcome MGMT-mediated resistance by depleting MGMT. However,
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this remains of debate as the study was non-randomized and MGMT
immunohistochemistry is controversial in comparison to the MGMT
methylation status. Moreover, the significance of MGMT expression in
predicting response to alkylating agents in pedHGGs is unknown.

As for pedHGG driven by germline or somatic DNA replication repair
deficiency, including both mismatch repair and/or polymerase-
proofreading deficiency, focal irradiation is recommended [98]. TMZ
should be avoided in those circumstances, but lomustine can be
considered as an adjuvant therapy [99,100]. Moreover, immune
checkpoint inhibition is well established to improve survival at pro-
gression for these hypermutant gliomas [101] and may be considered a
frontline treatment for some patients with favourable genomic and im-
mune biomarkers [102].

5.2. Recurrent/progressive hemispheric high-grade glioma, H3-wildtype
and IDH-wildtype patients and diffuse hemispheric glioma H3 G34-mutant

There is currently no standard of care for the treatment of recurrent/
progressive hemispheric HGG. All patients should be fully restaged and
assessed before consideringmanagement options to allow delivery of the
most appropriate treatment. The available evidence for the selection of
specific treatment strategies for the recurrent/progressive hemispheric
HGG is limited and mostly based on retrospective cohort studies on
heterogeneously treated patients.

Members of the SIOPE-BTG and the GPOH were surveyed on thera-
peutic options for recurrent/progressive paediatric and adolescent HGG
[103]. Based on the results of this survey, SIOPE HGG Working Group
recommends surgical resection, if feasible, at the time of rela-
pse/progression combined with molecular pathology to identify poten-
tial targeted therapy, such as BRAF/MEK inhibitor, anti-EGFR therapy,
CDK inhibitor. Patients should be enrolled into clinical trials if available.

Given the lack of international cooperative trials for recurrent/pro-
gressive hemispheric high-grade glioma, it is reasonable to combine
conventional multimodal treatment concepts, including re-irradiation,
with targeted therapy based on molecular genetic findings [103,104].

5.3. Diffuse midline glioma H3K27-altered

Currently, there is no available evidence for the selection of specific
chemotherapy treatment strategies for DMG H3K27-altered. Therefore,
the mainstay of treatment is radiotherapy (see Radiotherapy section).

With regard to chemotherapy, the SIOPE HGG Working Group has
not managed to reach a consensus on the management of these tumours
using the Delphi method [96]. Fifty per cent of the Delphi participants
agreed that the recommended treatment regimen is chemoradiation
with TMZ, followed, after a TMZ treatment break of approximately 4
weeks, by 6–12 cycles of TMZ, irrespective of MGMT promotor
methylation status. This management approach is supported by the re-
sults of the HIT-HGG-2007 trial (ISRCTN19852453) presented at ISPNO
in 2022 [105]. A sub-group analysis showed a 3-month EFS and OS
benefit for patients with non-pontine pedHGG treated with TMZ in
comparison to a more intensive cisplatinum-based chemotherapy
regimen (median EFS 10.7 versus 7.4 months, and 19.3 versus 16.2
months, respectively). This also confirmed other reports supporting TMZ
as a better tolerable alternative to other cytostatic therapy [30].

Given that the above results have not been published yet and further
subgroup survival analysis is ongoing, the remaining 50% of the Delphi
participants did not support the role of TMZ in the treatment of children
with DMG H3K27-altered [96]. We hope that future studies might help
to resolve this area of controversy.

There is some evidence regarding the efficacy of ONC201, a selective
antagonist of dopamine receptor D2/3 (DRD2/3), in H3 K27M-mutant
diffuse midline glioma [106]. Data initially presented at ASCO in
2019 showed a response rate of 27% in supratentorial H3K27M diffuse
midline gliomas [107]. This preliminary data still awaits confirmation
[108]. The activity appears more convincing for adult and

non-brainstem located DMG which is being investigated by currently
recruiting BIOMEDE 2.0 trial (NCT05476939). The trial is evaluating
efficacy of ONC201 in comparison with everolimus and subsequent to
historical controls.

In view of the absence of any meaningful therapy for this lethal
disease and some evidence regarding the efficacy of ONC201, a patient
may qualify for access to ONC201 following radiotherapy through an
expanded access pathway in cases where a clinical trial is not an option
[106]. Treating clinicians and patients should note that investigational
medicines do not have established safety and efficacy, so all potential
risks and benefits should be carefully evaluated before seeking expanded
access to unapproved medicines outside of a clinical trial.

If a potential target for therapy is identified following a biopsy, the
biological agent should ideally be used within the context of a clinical
trial. If enrolment into a clinical trial is not feasible, it is at the discretion
of a treating clinician to consider the individual patient, and the risk
profile of the drug(s) to ensure the risk-benefit balance is appropriate.
Patients and their parents/guardians should be informed of the experi-
mental nature of the treatment and potential side effects. Quality of life
aspects should always be taken into consideration for any kind of
treatment decisions in these extremely poor prognostic patients.

Therapy should be primarily based on national therapy guidelines,
and each plan should be tailored according to the patients’ needs.

5.4. Progressive/relapsed diffuse midline glioma H3K27-altered

Similarly, to the de novo diagnosis of DMG H3K27-altered, currently,
there is no evaluated and agreed chemotherapy treatment standard for
progressive/relapsed DMG H3K27-altered.

If a potential target for therapy is identified following a biopsy and
considered at the time of tumour progression/relapse, similar principles
apply as in de novo diagnosis.

5.4.1. Pontine diffuse midline glioma H3K27-altered (DIPG)
Numerous studies of systemic chemotherapy have failed to demon-

strate any significant improvement in survival. Currently, the mainstay
of treatment is radiation given with palliative intent (see Radiotherapy
section) [109].

A sub-group analysis of the HIT-HGG-2007 trial (ISRCTN19852453),
presented at ISPNO in 2022, showed a 2-month EFS benefit for patients
with pontine pedHGG treated with TMZ (median 8.2 versus 6.2 months).
However, there was no OS benefit for these patients (median OS 11.4
versus 11.3 months) [105].

If a potential target for therapy is identified following a biopsy, the
biological agent should ideally be used within the context of a clinical
trial. If enrolment into a clinical trial is not feasible, similar principles
apply as in the management of other pedHGG.

5.5. Progressive/relapsed pontine diffuse midline glioma H3K27-altered

Similarly, to the de novo diagnosis of intrinsic pontine glioma, if a
potential target for therapy is identified following a biopsy and
considered at the time of tumour progression/relapse, the therapy must
be regarded as experimental and ideally would be given in the context of
a clinical trial. If the enrolment into a clinical trial is not feasible, similar
recommendations apply.

5.6. Infant-type hemispheric HGG

A chemotherapy-only approach has been widely adopted by the
paediatric neuro-oncology community worldwide as the preferred
treatment option for infants with newly diagnosed HGG. Seventy-five
per cent of the Delphi participants agreed that radiation therapy
should be avoided in the management of infant-type HGG to prevent
significant adverse effects on the developing brain. Indeed, it is now
worldwide recognized that radiation is not recommended in young
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children < 2 years. Poor outcomes and late treatment effects have
engendered a reluctance to treat those patients with radiation therapy.

The two currently recommended chemotherapy regimens for treat-
ment of infant-type hemispheric HGG in European countries are the
BBSFOP protocol and the modified-HIT-SKK (without intraventricular
methotrexate).

The regimens are based on the French chemotherapy-only (BBSFOP)
protocol, the German modified-HIT-SKK (without intraventricular
methotrexate) chemotherapy-only strategy, and the UK-chemotherapy
only approach as per UKCCSG/SIOP CNS 9204 trial:

1. The BBSFOP protocol is a 16-month schedule of 7 cycles of three drug
pairs of carboplatin-procarbazine, cisplatin-etoposide, and
vincristine-cyclophosphamide [34]. Five-year progression-free sur-
vival was 35% and 5-year overall survival was 59%, with a median
follow-up of 5.2 years. Age range of patients included in the trial was
up to 5 years. The drugs selected were a combination of those used
with acceptable toxicities in infants and young children with ma-
lignant brain tumours [110]. This protocol aimed to develop a mild
chemotherapy that could be given for a long period to delay/avoid
radiotherapy (Appendix 1).

2. The HIT-SKK chemotherapy (Chemotherapy for Infants and Toddlers
with Brain Tumours) is the German strategy to delay and avoid
radiotherapy in young brain tumour patients. Patients treated by the
HIT-SKK multiagent chemotherapy receive three two-month cycles
of chemotherapy consisting of intravenous methotrexate, cyclo-
phosphamide, vincristine, carboplatin, and etoposide [111]. The
published outcome data is based on treatment of children diagnosed
with medulloblastoma under the age of 4 years [111,112]. The
HIT-SKK chemotherapy – in combination with intraventricular
methotrexate for young children with medulloblastoma patients –
has been shown to be feasible and well tolerated [112]. In infant-type
hemispheric HGG, the modified HIT-SKK chemotherapy (without
intraventricular methotrexate) is currently frequently used
(Appendix 1).

3. In the UK version of this chemotherapy, infants were treated without
intraventricular therapy, with courses of carboplatin-vincristine,
high-dose methotrexate-vincristine, cyclophosphamide-vincristine
and cisplatin monotherapy [35]. Five-year progression-free survival
was 18.1% and 5-year overall survival was 34.7%. The trial
recruited only patients under the age of 3 years. The chosen drugs
have different mechanisms of cytotoxic action to prevent the early
emergence of drug resistance by alternating courses of myelosup-
pressive and relatively non-myelosuppressive chemotherapy. The
aim was to enhance treatment intensity with chemotherapy given
every 2 weeks (Appendix 1).

Given that the European trials were conducted on children of
different age (which has an impact on survival outcomes) and before the
era of molecular biology, it is at a discretion of the treating clinician to
select the preferred treatment regimen according to the institutional
settings.

Molecular pathology has recently shed light on molecular groups in
infant HGG with distinct survival [40,41]. If possible molecular analysis
should be undertaken to detect common gene fusions in ALK, ROS1,
NTRK1/2/3 and MET, which may be targetable ideally as part of a
clinical trial. Entrectinib, a tyrosine kinase inhibitor known to target
NTRK, ALK and ROS1, showed encouriging results in STARTRK-1 trial
(NCT02097810) which has led to the subsequent STARTRK-NG
(NCT02650401) phase 1/2 trial conducted in children to evaluate
entrectinib in solid or primary CNS tumors (NCT02650401). Results in
16 non-infant paediatric patients (median age > 5 years) with primary
CNS tumors were promising. Currently recruiting CONNECT1903 study
(NCT04655404) is a pilot study evaluating safety and efficacy of laro-
trectinib in children diagnosed with high-grade glioma with NTRK
fusion. Infantile gliomas are mostly single-driver tumours and,

therefore, they should be suitable for treatment with targeted therapy
[36]. The promising preliminary data still awaits confirmation. Market
authorization of entrectinib and larotrectinib also still limit their
application to children with NTRK fusion gene-positive tumours in the
absence of adequate other treatment options which are present for infant
HGG. For ALK and ROS1 positive paediatric tumours there is still no
market authorization for entrectinib. Therefore, precision medicine
approaches are currently not recommended in childern with a new
diagnosis of infant-type hemispheric HGG.

6. Conclusion

The levels of evidence for treatment recommendations for children
diagnosed with pedHGGs are limited. Numerous efforts to generate new
evidence by doing prospective studies pointing at this unmet need in
neuro-oncology are ongoing. Translating and adapting adult treatment
recommendations into paediatric practice can be challenging and might
inadvertently lead to inappropriate management. Therefore, the medi-
cal community needs to develop research studies for this rare disease
group, including investigation into the biology of diseases and treatment
options.
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