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We consider the homogenisation of the instationary Stokes equations in a porous 
medium with an a priori given evolving microstructure. In order to pass to the 
homogenisation limit, we transform the Stokes equations to a domain with a fixed 
periodic microstructure. The homogenisation result is a Darcy-type equation with 
memory term and has the form of an integro–differential equation. The evolving 
microstructure leads to a time- and space-dependent permeability coefficient and 
the local change of the porosity causes an additional source term for the pressure.
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under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Understanding the behaviour of fluid flow in complex porous media or heterogeneous materials is crucial in 
various scientific and engineering disciplines such as materials science, chemical engineering and geophysics. 
In many practical scenarios, the porous medium exhibits a heterogeneous microstructure which evolves 
over time owing to processes such as phase transitions, chemical reactions or mechanical deformation. The 
prediction of flow properties in such evolving microstructures poses significant challenges, necessitating 
advanced mathematical models.

The Stokes equations govern the motion of a viscous fluid. They have been extensively studied in the 
context of flow through porous media by means of homogenisation. So far most of the homogenisation results 
are derived for fixed microstructure.
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Fig. 1. Illustration of a microscopically evolving geometry at two different points in time. 

1.1. Goal of this work

In this work, we consider the homogenisation of the instationary Stokes equations in a porous medium 
with evolving microstructure at small Reynolds number. We consider a time interval (0, T ) for T > 0. Let 
d ∈ N with d ≥ 2, we denote the ε-scaled pore space at time t ∈ (0, T ) by Ωε(t) ⊂ Rd. We denote the 
interface of the pore space with the solid matrix domain at t ∈ (0, T ) by Γε(t) and the boundary of the pore 
space at the outer boundary at t ∈ (0, T ) by Λε(t). Such evolving geometry is illustrated in Fig. 1. 

At the interface Γε(t), we assume a non-homogeneous Dirichlet boundary condition with given boundary 
values vΓε

, which can model a no-slip boundary condition for the evolving domain. At the outer boundary 
Λε(t) of the porous medium, we assume a normal stress boundary condition with normal stress pb,ε, which 
models fluid in- and outflow.

Let μ > 0 be the fluid viscosity, fε the density of the bulk force and ν the unit outer normal vector of 
Ωε(t). We consider the fluid velocity vε and the pressure pε as the solution of:

∂tvε − με2 div(∇vε + (∇vε)�) + ∇pε = fε in Ωε(t), t ∈ (0, T ) , (1a)

div vε = 0 in Ωε(t), t ∈ (0, T ) , (1b)

vε = vΓε
on Γε(t), t ∈ (0, T ) , (1c)(

−με2(∇vε + (∇vε)�) + pε1
)
ν = pb,ε on Λε(t), t ∈ (0, T ) , (1d)

vε(0) = vin
ε in Ωε(0) . (1e)

We show that the extension of the fluid velocity vε by zero and some extension of the pressure pε converges 
weakly as ε → 0 to the solution (v, p) of the Darcy-type law with memory (2). The effective equations are 
defined on the macroscopic limit domain Ω. The domain Ω is approximated by Ωε(t) in the sense that Ω is the 

interior of the support of the weak limit of the characteristic function of Ωε(t), i.e. Ω = int
(
supp

(
1Ωε(t)

))
, 

where 1U denotes the characteristic function for a measurable set U . A precise definition of Ω is given below.

1.2. Homogenisation result

The homogenisation result is a Darcy-type law with memory and is given by the following integro–
differential equation:

v(t, x) = ain(t, x) + 1 
μ

t ∫
0 

K(s, t, x)(f(s, x) −∇p(s, x)) ds in (0, T ) × Ω , (2a)
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div(v) = − d 
dtΘ in (0, T ) × Ω , (2b)

p = pb on (0, T ) × ∂Ω . (2c)

The permeability-type coefficient K and the initial velocity ain can be computed by means of the solutions 
of the cell problems (4) and (6). In (2b), the right-hand side of the divergence condition is formulated for the 
case of a no-slip boundary condition at the fluid–solid interface in the microscopic model, i.e. for the case 
that the velocity vΓε

and thus the fluid velocity at the interface Ωε(t) is equal the velocity of the interface. 
For this model, we obtain the simplified right-hand side of (2b) given by − d 

dtΘ, where Θ is the porosity of 
the local reference cell Y ∗(t, x) at the macroscopic position x ∈ Ω at time t ∈ (0, T ). For a general velocity 
field v̂Γε

, the right-hand side depends on its two-scale limit and is formulated in (44).
The cell problems are defined on the local evolving reference cells Y ∗(t, x), where Y ∗(t, x) ⊂ (0, 1)d is 

given by the two-scale limit of Ωε(t) in the sense that 1Ωε(t)(x) two-scale converges to 1Y ∗(t,x)(y), where 
the periodic extension of Y ∗(t, x) is, for a.e. (t, x) ∈ Ω × (0, T ), a Lipschitz set.

The permeability tensor K(s, t, x) is defined for a.e. (t, x) ∈ (0, T ) × Ω and every s ∈ (0, t) and i, j ∈
{1, . . . , d} by

Kji(s, t, x) :=
∫

Y ∗(t,x)

ζi(s, t, x, y) · ej dy , (3)

where (ζi(s, x, t, y), πi(s, x, t, y)) for i ∈ {1, . . . , d} are the solutions of the cell problems (4). The parameters 
(s, x) ∈ (0, T ) × Ω denote the initial time for the cell problem and the macroscopic position, respectively,

∂tζi − Δyyζi + ∇yπi = 0 in Y ∗(t, x), t ∈ (s, T ) , (4a)

divy ζi = 0 in Y ∗(t, x), t ∈ (s, T ) , (4b)

ζi = 0 on Γ(t, x), t ∈ (s, T ) , (4c)

ζi = ei in Y ∗(s, x) . (4d)

The initial value ain is given by

ain(t, x) :=
∫

Y ∗(t,x)

ζ0(t, x) dy, (5)

where (ζ0(x, t, y), π0(x, t, y)) is the solution of the following cell problem (6):

∂tζ0 − μΔyyζ0 + ∇yπ0 = 0 in Y ∗(t, x), t ∈ (0, T ) , (6a)

divy ζ0 = 0 in Y ∗(t, x), t ∈ (0, T ) , (6b)

ζ0 = 0 on Γ(t, x), t ∈ (0, T ) , (6c)

ζ0 = vin
0 in Y ∗(0, x) (6d)

and vin
0 is the two-scale limit of the initial values vin

ε of the Stokes problem (1).

1.3. Homogenisation approach

In order to homogenise (1), we transform the evolving domain to a periodically perforated fixed reference 
domain. We homogenise the resulting substitute equations on this substitute domain. This leads to two-
pressure Stokes equations in the (time-cylindrical) two-scale substitute domain. Separating the microscopic 
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Fig. 2. Two-scale transformation method. 

and macroscopic spatial variable leads to a Darcy law with memory for evolving microstructure comple-
mented by cell problems. We transform the two-pressure Stokes equations, the Darcy law with memory for 
evolving microstructure and the associated cell problems back to the evolving local reference cell. This leads 
in particular to the transformation-independent homogenisation result (2). This approach is illustrated in 
Fig. 2. 

In [50], it is shown that the transformation and homogenisation commute and, thus, the Darcy law with 
memory for evolving microstructure (2) is also the limit result for the Stokes equations (1).

1.4. Literature overview

Based on the results of experiments, Henry Darcy presented a fundamental principle of fluid mechanics 
in porous media [18]. Darcy’s law states that the rate of flow through porous media is directly proportional 
to the negative hydraulic gradient and inversely proportional to the viscosity of the fluid with the perme-
ability coefficient as proportionality factor. It can be derived mathematically by means of homogenising 
the (Navier–)Stokes equations in a perforated domain. In particular, this mathematical approach provides 
a better understanding of the effects of the microscopic geometry on the permeability coefficient. First 
upscaling approaches used formal two-scale asymptotic expansion and are presented in [25,28,44].

The main difficulty in the rigorous homogenisation of the Stokes equations lies in the uniform a pri-
ori estimate of the pressure. Tartar overcame this problem by constructing a restriction operator [47] 
and provided a rigorous proof of the homogenisation procedure. This operator was extended by Allaire 
to allow the homogenisation in the case where the solid space of the porous medium is also connected 
[2]. A modification of this restriction operator [29] allowed the consideration of different boundary con-
ditions at the pore interfaces. Furthermore, an extension of the restriction operator from H1 to W 1,p

integrability enables the homogenisation of the Navier–Stokes equations [33]. A different approach for the 
derivation of the a priori estimates was presented by Zhikov in [54], who constructed a family of ε-scaled 
operators, which are right-inverses of the divergence operator. In particular, these operators enable a con-
struction of a restriction operator in the sense of [47] with weaker estimates, which are still sufficient in 
order to show the strong convergence of the pressure [35]. For the construction of these right-inverse di-
vergence operators, the extension operators of [1] are used. Such ε-scaled right-inverse operators become 
useful for the homogenisation of the compressible (Navier–)Stokes equations [31] or in our case, where 
the domain evolution motivates inhomogeneous Dirichlet boundary conditions leading to an inhomoge-
neous divergence condition. While these works considered Dirichlet or periodic boundary conditions at 
the boundary of the macroscopic domain, the case of normal stress boundary conditions is considered 
in [20].

The upscaling of the instationary Stokes equations was first studied by formal two-scale asymptotic 
expansion in [28] and rigorous homogenisation results are proven in [6] and [34]. The result is a Darcy 
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law with memory, which is an integro–differential equation and can be approximated for large times and 
constant force by the classical Darcy law [34]. However, the ε-scaling of the viscosity becomes crucial and, 
for different scaling, the time derivative can vanish in the homogenisation limit leading directly to the 
stationary Darcy equation [33].

The above-mentioned works considered the case where the porosity remains constant for ε → 0. For the 
case of isolated obstacles, it is possible to scale the obstacles asymptotically smaller than the periodicity 
size ε, i.e. the obstacles are of size εα for α > 1 [4,3]. The homogenisation result depends on the exact value 
of α and leads for asymptotically small obstacles to the Stokes equations itself, for critically scaled obstacles 
to the Brinkman equation and for asymptotically large obstacles to a Darcy law. The permeability tensor 
for the Darcy law differs from the case of obstacles of size ε, see [5].

The above-mentioned homogenisation results deal with the case of a fixed microstructure. For an evolving 
domain, the quasi-stationary Stokes equations have recently been homogenised in [52]. There, the geometrical 
setting is the same as in the work presented here, but the Stokes equations are considered without the time-
derivative term.

The consideration of an evolving microstructure is motivated by many different physical, chemical and 
biological applications. For example, for dissolution and precipitation in a porous medium, a precipitate layer 
may be added to or be dissolved from the pore walls, implying that the overall solid part (and, implicitly, 
the void space) is evolving. In [49,41,42,12,43,45,46,13], such processes are modelled as free boundaries by 
means of a level-set function or phase-field approaches. However, these models are only formally upscaled 
by asymptotic two-scale expansions. A numerical computation of the effective permeability and porosity for 
a parameterised microstructure in the context of evolving microstructures is presented in [11].

For given or one-way coupled microstructure evolution, reaction–diffusion models are transformed to a 
periodic substitute domain and then rigorously homogenised in [38–40]. This approach is also used in the con-
text of elasticity in [19], for an advection–reaction–diffusion equation in [22] and the for the quasi-stationary 
Stokes flow in [52]. For a general class of transformations, it was shown in [50] that the homogenisation and 
the transformation commutes, which justifies this transformation approach. Moreover, it was shown how the 
two-scale limit equations and the cell problems can be transformed back into a transformation-independent 
limit result. We refer also to [53] for a more detailed overview on this transformation approach. In [52], the 
quasi-stationary Stokes equations for evolving microstructure are homogenised. There, as in this work, the 
transformation to the fixed periodically perforated substitute domain leads to transformation matrices in 
the symmetrised gradient in the substitute equations. A uniform Korn-type inequality for such two-scale 
transformed symmetric gradients is derived in [52]. We use this Korn-type inequality also for the derivation 
of the a priori estimates here. This two-scale transformation approach was further used in [21,51] for the 
rigorous homogenisation of a reaction–diffusion problem with free boundary, where the evolution of the 
domain is coupled with the unknown concentration. In [23], the reaction–diffusion is extended by advective 
transport, where the advection velocity is modelled by quasi-stationary Stokes flow as in [52].

The homogenisation of fluid flow in evolving porous media is also important for problems in poroe-
lasticity. The first linear theory was developed by Biot (cf. [8,9]). Starting with a description of the 
microporomechanics by equations of elasticity and fluid flow, effective equations can also be derived by 
means of homogenisation, cf. [27], [16] or, in the context of thermo-poroelasticity [15,48]. However, in order 
to pass rigorously to the homogenisation limit, the Stokes problem was linearised by assuming that the fluid 
domain is constant in time (cf. [32]). Recently, the corresponding non-linear model received considerable 
attention and micro–macro transformations are used for the formal upscaling of Stokes flow [14,17,36] and 
other transport processes in deformable media [26]. In this paper, we provide a rigorous homogenisation 
result for the decoupled Stokes problem, which is also a step towards the homogenisation of the fully coupled 
fluid–structure interaction problem.
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1.5. Organisation of this paper

This paper is organised as follows: In Section 2, we formulate the ε-scaled problem, the instationary Stokes 
equations in the evolving domain. We present the assumptions on the domain and its evolution by means of 
the periodically perforated reference domain and the existence of transformation mappings. In Section 3, we 
transform the Stokes equations to the substitute domain. For the resulting substitute problem, we show the 
existence and uniqueness of a solution as well as uniform a priori estimates in Section 4. Having the a priori 
estimates at hand, we can pass to the homogenisation limit ε → 0 for the substitute equations in Section 5. 
This leads to a system of two-pressure Stokes equations in the in-time-cylindrical two-scale domain. In 
Section 6, we separate the micro- and macroscopic spatial variable in the limit equations and derive a Darcy 
law with memory with cell problems defined on the fixed substitute cell but with transformation coefficients. 
We transform the two-pressure Stokes equations and the Darcy law with its cell problems back to the actual 
evolving domain in Section 7. The result is the Darcy law with memory for evolving microstructure (2). 
This homogenised equation as well as the cell problems are formulated without transformation quantities 
in the evolving domain and, hence, are transformation-independent.

1.6. Notations

Let d, n,m ∈ N and U ⊂ Rd. For a function u : U → R, a vector field v : U ⊂ Rn and a matrix-valued 
function M : U → Rm×n, we use the following notation for its derivatives. For x ∈ U , we write ∇u(x) ∈ Rd

for the gradient of u at x ∈ U , i.e. (∇u)i(x) := ∂xi
u(x), and ∂xu(x) := ∇u�(x) ∈ R1×d for its transposed. 

We denote the Jacobian matrix of v at x ∈ U by ∇�v(x) := ∂xv(x) ∈ Rn×d i.e. ∂xv(x)ij := ∂xj
vi(x)

and its transposed by ∇v(x) = ∂xv
�(x). Moreover, for v : U ⊂ Rd, we define the divergence div v(x) =∑d

i=1 ∂xi
vi(x). For a matrix-valued function M , we write ∂xM(x) ∈ R(m×n)×d for its derivative at x ∈ U , 

i.e. ∂xA(x)jki := ∂xi
Ajk(x) and ∇A(x) := (∂xA(x))� ∈ Rd×(m×n), where the transposed is defined by 

∇A(x)ijk := ∂xA(x)jki = ∂xi
Ajk(x). Moreover, for a matrix-valued function M : U → Rd×n, we define 

the divergence by its columns, i.e. div(A(x)) ∈ Rn with div(A(x))j := div((A(x)ij)di=1). Having the above 
notations, we can define the scalar- and vector-valued Laplace operator, i.e. for u : U → R and v : U → Rn, 

we define Δu := div∇u(x) =
d ∑

i=1
∂xi

∂xi
u(x) and Δv(x) := div∇v(x) = (

∑d
i=1 ∂xi

∂xi
vj(x))nj=1 for x ∈ U , 

which gives (Δv(x))j = Δvj(x).
For these notations, we have the following product rules ∂x(uv) = v∂xu+ u∂xv, ∂x(uA) = a∂xu+ u∂xA, 

∂x(Av) = v�∂xA+A∂xv, div(uv) = u div(v)+∇u·v, div(uA) = u div(A)+A� : ∇u, div(Av) = div(A)·v+A :
∇v.

We write 1 for the identity matrix and Adj(A) for the adjugate matrix of A, i.e. Adj(A)A = det(A)1. 
With the above notation for derivatives, the Piola identity is written as div(Adj(∂xv)) = 0.

We use the subscript # to denote the periodicity of a function space, i.e. for a domain U ⊂ (0, 1)d, 
C#(U) denotes the subset of continuous functions on Rn, which are Y -periodic. Similarly, we write H1

#(U)
to indicate the periodicity. Moreover, for a V ⊂ ∂U , we write CV (U) and H1

V (U) for the restriction of 
functions which are zero on V or have zero trace on V , respectively. We combine these subscripts in order 
to indicate the restriction to the intersection of the corresponding subsets, i.e. H1

#V (U) := H1
#(U)∩H1

V (U). 
We denote by L2

0(U) the subset of functions in L2(U) with zero mean.
We use C > 0 as generic constant which can change during estimates but is independent of ε.

2. The ε-scaled problem

2.1. Geometry

We describe the evolution of the geometry by means of a family of time-dependent and ε-scaled diffeo-
morphisms ψε, which map a periodically perforated reference domain Ωε onto the actual domain Ωε(t) at 
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time t ∈ [0, T ]. We formulate the assumptions on the domains Ωε(t) indirectly by means of assumptions on 
the reference domain Ωε and the diffeomorphisms ψε.

Let (εn)n∈N be a positive sequence converging to zero, as for instance εn = n−1. In what follows, we 
write ε = (εn)n∈N .

2.2. Reference structure

Macroscopic domain We assume that the macroscopic domain Ω ⊂ Rd is open and bounded and con-
sists of entire ε-scaled cells Y = (0, 1)d, i.e. let Kε := {k ∈ Zd | ε(k + Y ) ⊂ Ω}, we assume that 

Ω = int
( ⋃

k∈Kε

ε(k + Y )
)

.

Reference pore geometry We denote the open reference pore space in the periodicity cell by Y ∗ ⊂ Y

and its complementary solid part by Y s := Y \ Y ∗. We denote the periodic extensions of Y ∗ and Y s by 

Y ∗
# := int

( ⋃
k∈Zd

k + Y ∗

)
and Y s

# := int
( ⋃

k∈Zd

k + Y s

)
, respectively. We denote the interface of the pore 

and solid domain by Γ := ∂Y ∗
# ∩ ∂Y s

# ∩ [0, 1]d.
We assume that:

• 0 < |Y ∗|, |Y s| < 1,
• Y ∗

# and Y s
# are open sets with C1-boundary, which are locally located on one side of their boundary,

• Y ∗
# is connected.

For a detailed discussion of these assumptions, see [2].

The ε-scaled reference domains The ε-scaled reference pore space Ωε, the ε-scaled reference solid space 
Ωs

ε, their interface Γε and the reference outer boundary Λε are given by

Ωε := Ω ∩ εY ∗
# , Ωs

ε := Ω ∩ εY s
# , Γε := Ω ∩ ∂Ωε , Λε := ∂Ω ∩ ∂Ωε .

2.3. Evolving microdomain

In order to define the domains Ωε(t), we use a family of mappings ψε : [0, T ]×Ω → Ω. At time t ∈ [0, T ], 
we define the pore space Ωε(t), the solid space Ωs

ε(t), their interface Γε(t) and the outer boundary Λε(t) by

Ωε(t) := ψε(t,Ωε) , Ωs
ε(t) := ψε(t,Ωs

ε) , Γε(t) := ψε(t,Γε) , Λε(t) := ψε(t,Λε) .

We define the time–space sets by

ΩT
ε :=

⋃
t∈[0,T ]

{t} × Ωε(t) , ΩsT
ε :=

⋃
t∈[0,T ]

{t} × Ωs
ε(t) ,

ΓT
ε :=

⋃
t∈[0,T ]

{t} × Γε(t) , ΛT
ε :=

⋃
t∈[0,T ]

{t} × Λε(t) .

Assumptions on the transformations

Assumption 2.1 (Assumptions on the transformations). We assume that ψε has the following regularity:
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(R1) ψε ∈ C1([0, T ];C2(Ω;Rd)),
(R2) ψε(t, · ) is a C2-diffeomorphism from Ω onto Ω for every t ∈ [0, T ].

We assume that ψε satisfies the following uniform bounds:

(B1) εl−1‖ψε − x‖C1([0,T ];Cl(Ω)) ≤ C for l ∈ {0, 1, 2},
(B2) det(∂xψε(t, x)) ≥ cJ for all (t, x) ∈ [0, T ] × Ω and some constant cJ > 0.

For the asymptotic behaviour of ψε, we assume that there exists a limit function ψ0, which satisfies the 
following regularity conditions

(L1) ψ0 ∈ L∞(Ω;C1([0, T ];C2(Y ;Rd))),
(L2) ψ0(t, x, ·) : Y → Y is, for every t ∈ [0, T ] and a.e. x ∈ Ω, a C2-diffeomorphism,
(L3) the displacement mapping y 
→ ψ0(t, x, y)−y can be extended Y -periodically, i.e. (y 
→ ψ0(t, x, y)−y) ∈

L∞(Ω;C1([0, T ];C2
#(Y ;Rd)))

and we assume that the following strong two-scale convergences hold

(A1) ε−1(ψε(t, x) − x) 2, 2−−→−−−→ ψ0(t, x, y) − y,

(A2) ∂xψε
2, 2−−→−−−→ ∂yψ0,

(A3) ε∂x∂xψε
2, 2−−→−−−→ ∂y∂yψ0

(A4) ε−1∂tψε
2, 2−−→−−−→ ∂tψ0,

(A5) ∂x∂tψε
2, 2−−→−−−→ ∂y∂tψ0,

(A6) ε∂x∂x∂tψε
2, 2−−→−−−→ ∂y∂y∂tψ0.

The notation 
2, 2−−→−−−→ in Assumption 2.1(A1)–(A6) denotes the strong two-scale convergence (see Defini-

tion A.1). Due to the uniform essential boundedness, which is given by Assumption 2.1(B1), the strong 
two-scale convergences in Assumption 2.1(A1)–(A6) hold also for arbitrary p ∈ (1,∞) instead of 2.

We use the following notation for the transformation quantities:

Ψε := ∂xψε , Jε := det(Ψε) , Aε := Adj(Ψε) ,

Ψ0 := ∂yψ0 , J0 := det(Ψ0) , A0 := Adj(Ψ0) .

We note that the above assumptions ensure that Jε ≥ cJ and, thus, Ψε is invertible and it holds Aε = JεΨ−1
ε . 

The uniform bound of Jε from below can be transferred to J0 via the strong two-scale convergence of ∂xψε

and one gets J0 ≥ cJ and, thus, also A0 = J0Ψ−1
0 .

For clarification, we note that the uniform bounds in Assumption 2.1(B1) give

ε−1‖ψε − x‖L∞((0,T )×Ω) + ‖∂xψε‖L∞((0,T )×Ω) + ε‖∂x∂xψε‖L∞((0,T )×Ω) ≤ C ,

ε−1‖∂tψε‖L∞((0,T )×Ω) + ‖∂x∂tψε‖L∞((0,T )×Ω) + ε‖∂x∂x∂tψε‖L∞((0,T )×Ω) ≤ C .

Remark 2.2. The regularity assumptions on ψε allow us to transform the Stokes equations to the reference 
domain. The uniform estimates on ψε and its derivatives are crucial for the derivation of the uniform a 
priori estimates on the fluid velocity and the pressure. The asymptotic behaviour of ψε ensures that the 
coefficients in the transformed Stokes equations strongly two-scale converge and, hence, we can pass to the 
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homogenisation limit. Moreover, it guarantees that the homogenisation of the actual problem is equivalent 
to the homogenisation of the transformed problem, see [50].

Two-scale limit domain The two-scale limit domain of ΩT
ε should not be understood as a domain in 

(0, T ) × Ω × Y but rather as family of domains Y ∗(t, x) ⊂ Y with parameters (t, x) ∈ (0, T ) × Ω. In 
particular, for our homogenisation task it is not even necessary that Y ∗(t, x) is defined for every x ∈ Ω. 
Indeed, it suffices that it is defined for a.e. x ∈ Ω, where the null-set has to be chosen independent of the 
time t ∈ [0, T ]. Nevertheless, at some points it simplifies the notation if one defines Y ∗(t, x) for every x ∈ Ω
and defines the measurable set ΩT

0 as

ΩT
0 :=

⋃
(t,x)∈(0,T )×Ω

{t} × {x} × Y ∗(t, x) .

The set ΩT
0 and the domains Y ∗(t, x) can be obtained by means of the two-scale convergence of the char-

acteristic function of ΩT
ε . In this sense, we obtain the reference domain Ωε as two-scale limit Y ∗ for every 

t ∈ [0, T ] and a.e. x ∈ Ω. The two-scale limit of the characteristic function 1Ωε
is given by the function 

1Ω×Y ∗ , which is an element of Lp(Ω × Y ) and, thus, it does not define the domain uniquely. Indeed, for 
a.e. x ∈ Ω, 1Ω×Y ∗(x, ·) provides only the domain Y ∗ \ N1(x) ∪ N2(x) up to null sets N1(x), N2(x) ⊂ Y . 
The non-uniqueness can be addressed by requiring that for a.e. x ∈ Ω the periodic extension of the do-
main is a Lipschitz domain and we get Y ∗ = Y ∗ \ N1(x) ∪ N2(x). We address the non-uniqueness of 
the two-scale limit representative of 1Ωε(t) in the same way. This provides the sets Y ∗(t, x) for every 

t ∈ [0, T ] and a.e. x ∈ Ω. Lemma A.8 shows that 1(0,T )×Ωε
(t, x) 2, 2−−→−−−→ 1(0,T )×Ω×Y ∗(t, x, y) if and only 

if 1[0,T ]×Ωε
(t, x, ψ−1

ε (t, x)) 2, 2−−→−−−→ 1Ω×Y ∗(t, x, ψ−1
0 (t, x, y)). Thus, we can determine the two-scale limit for 

Ωε(t) and Ωs
ε(t) by

Y ∗(t, x) = ψ0(t, x, Y ∗) for every t ∈ [0, T ] and a.e. x ∈ Ω ,

Y s(t, x) = ψ0(t, x, Y s) for every t ∈ [0, T ] and a.e. x ∈ Ω .

Their interface, is given by

Γ(t, x) = ψ0(t, x,Γ) for every t ∈ [0, T ] and a.e. x ∈ Ω 

and we define analogously to ΩT
0 the solid region ΩsT

0 by

ΩsT
0 :=

⋃
(t,x)∈(0,T )×Ω

{t} × {x} × Y s(t, x) .

2.4. Weak formulation of the ε-scaled problem

We introduce the weak formulation for (1). We assume that the Dirichlet boundary values vΓε
and the 

normal pressure at the outer boundary can be extended to Ωε(t). We subtract these extensions from the 
unknowns vε and pε and define

wε := vε − vΓε
, win

ε := vin
ε − vΓε

(0) , qε := pε − pb,ε .

We use this substitution in (1), multiply the resulting equation by ϕ and integrate it over Ωε(t) and (0, T ). 
Integrating the divergence terms as well as the term with qε by parts and using the normal stress boundary 
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condition (1d) leads to the following weak form (7): Find (wε, qε) ∈ L2(0, T ;H1
Γε(t)(Ωε(t);Rd)) × L2(ΩT

ε )
with ∂twε ∈ L2(ΩT

ε ;Rd) such that

T∫
0 

∫
Ωε(t)

∂tvε · ϕ + ε2μ2∇swε : ∇ϕ− qε div(ϕ) dx dt

=
T∫

0 

∫
Ωε(t)

fε · ϕ− ∂tv̂Γε
· ϕ− ε2μ2∇sv̂Γε

: ∇ϕ−∇pb,ε · ϕ dx dt ,

(7a)

T∫
0 

∫
Ωε(t)

div(wε)φ dx dt = −
T∫

0 

∫
Ωε(t)

div(vΓε
)φ dx dt , (7b)

wε(0) = win
ε in Ωε(0) (7c)

holds for all (ϕ, φ) ∈ L2(0, T ;H1
Γε(t)(Ωε(t);Rd)) × L2(ΩT

ε ).
The space L2(0, T ;H1

Γε(t)(Ωε(t);Rd)) has to be understood as the subset of L2(0, T ;H1(Ω;Rd)) of func-
tions which are zero in ((0, T )× Ω) \ ΩT

ε . The time-derivative in L2(ΩT
ε ) has to be understood in the sense 

that the extension of vε by 0 to Ω is in H1(0, T ;L2(Ω;Rd)) and ∂tvε is zero in ((0, T ) × Ω) \ ΩT
ε .

2.5. Assumptions on the data

Let fε ∈ L2(ΩT
ε ;Rd), vΓε

∈ H1(0, T ;H1(Ω);Rd), pb,ε ∈ L2(ΩT
ε ) with ∇xpb,ε ∈ L2(ΩT

ε ;Rd) and 
vin
ε ∈ H1(Ωε(0)). We assume that the initial values vin

ε and boundary values vΓε
are compatible, 

i.e. div(win
ε )) = − div(vΓε

(0)) and win
ε |Γε(0) = 0 for win

ε = vin
ε − vΓε

(0).
We assume that the data satisfy the following uniform bounds:

‖fε‖L2(ΩT
ε ) + ‖vin

ε ‖L2(Ωε(0)) + ε‖∇vin
ε ‖L2(Ωε(0)) ≤ C , (8a)

ε−1‖vΓε
‖L2((0,T )×Ω) + ‖∂xvΓε

‖L2((0,T )×Ω) + ε‖∂x∂xvΓε
‖L2((0,T )×Ω) ≤ C , (8b)

ε−1‖∂tvΓε
‖L2((0,T )×Ω) + ‖∂x∂tvΓε

‖L2((0,T )×Ω) + ε‖∂x∂x∂tvΓε
‖L2((0,T )×Ω) ≤ C . (8c)

The uniform estimates for vΓε
and its derivatives give the uniform estimate for the trace at t = 0

ε−1‖v̂Γε
(0)‖L2(Ω) + ‖∇v̂Γε

(0)‖L2(Ω) ≤ C

and, thus,

‖win
ε ‖L2(Ωε(0)) + ε‖∇win

ε ‖L2(Ωε(0)) ≤ C .

In order to state the assumptions on their asymptotic behaviour, we extend fε, pb,ε and vin
ε as well as their 

derivatives by zero to (0, T )×Ω and Ω, respectively, which we denote by ̃·. We assume that there exists f ∈
L2((0, T ) × Ω;Rd), vΓ ∈ L2(Ω;H1(0, T ;H2

#(Y ;Rd))), pb ∈ L2(0, T ;H1(Ω)), pb,1 ∈ L2((0, T ) × Ω;H1
#(Y )), 

vin
0 ∈ L2(Ω;H1

#(Y ;Rd))) with vin
0 (x, y) = 0 for y ∈ Y s(0, x) such that
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f̃ε
2, 2−−⇀−−−⇀ 1ΩT

0
f , ε−1vΓε

2, 2−−⇀−−−⇀ vΓ , ∂xvΓε

2, 2−−⇀−−−⇀ ∂yvΓ , ε∂x∂xvΓε

2, 2−−⇀−−−⇀ ∂y∂yvΓ , 

ε−1∂tvΓε

2, 2−−⇀−−−⇀ ∂tvΓ , ∂x∂tvΓε

2, 2−−⇀−−−⇀ ∂y∂tvΓ , ε∂x∂x∂tvΓε

2, 2−−⇀−−−⇀ ∂y∂y∂tvΓ ,

p̃b,ε
2, 2−−⇀−−−⇀ 1ΩT

0
pb , ̃∇pb,ε

2, 2−−⇀−−−⇀ 1ΩT
0
(∇xpb + ∇ypb,1) ,

ṽin
ε (x) 2, 2−−⇀−−−⇀ 1Y ∗(0,x)(y)vin

0 (x, y) , ε̃∂xvin
ε (x) 2, 2−−⇀−−−⇀ 1Y ∗(0,x)(y)∂yvin

0 (x, y) .

(9)

We note that vΓε
(0) is of order ε and ∇vΓε

(0) is of order 1. Thus, their contribution in the limit of the 
initial values win

ε vanishes and we get

w̃in
ε (x) 2, 2−−⇀−−−⇀ 1Y ∗(0,x)(y)ŵin

0 (x, y) , ε̃∂xwin
ε (x) 2, 2−−⇀−−−⇀ 1Y ∗(0,x)(y)∂yŵin

0 (x, y) 

for ŵin
0 = v̂in

0 .

3. Transformation of the micromodel

In this section, we transform the Stokes equations to the reference domain (0, T ) × Ωε by means of 
the Piola transformation and ψε. Moreover, we transform the data and the assumptions on their uniform 
bounds and convergence to the reference domain. We denote the transformed quantities by ·̂, i.e. we have 
the transformed unknowns

v̂ε(t, x) := Aε(t, x)vε(t, ψε(t, x)) , ŵε(t, x) := Aε(t, x)wε(t, ψε(t, x)) ,

p̂ε(t, x) := pε(t, ψε(t, x)) , q̂ε(t, x) := qε(t, ψε(t, x))

and the transformed data

f̂ε(t, x) := fε(t, ψε(t, x)) ,

v̂Γε
(t, x) := Aε(t, x)vΓε

(t, ψε(t, x)) , p̂b,ε(t, x) := pb,ε(t, ψε(t, x)) ,

v̂in
ε (x) := vin

ε (ψε(0, x)) , ŵin
ε (x) := win

ε (ψε(0, x)) .

The multiplication by A−1
ε becomes useful for the derivation of the existence results of the microscopic 

transformed problem since it avoids time-dependent coefficients in the divergence condition. Moreover, for 
the limit process it becomes useful since it avoids microscopically oscillating coefficients in the divergence 
condition.

For the transformation of the normal stress boundary condition at Λ(t), we note the following relation 
between the outer unit normal vector ν(ψε(t, x)) of Ωε(t) and the outer unit normal vector ν̂(x) of the 
reference coordinates Ωε.

‖Ψ−�
ε (t, x)ν̂(x)‖−1Ψ−�

ε (t, x)ν̂(x) = ν(ψε(t, x)) for every t ∈ [0, T ] and a.e. x ∈ ∂Ωε .

Transforming (1a) to the reference coordinates gives

∂t(A−1
ε v̂ε) −∇�(A−1

ε v̂ε)Ψ−1
ε ∂tψε − J−1

ε με2 div(Aε2∇̂s
εv̂ε) + Ψ−�

ε ∇p̂ε = f̂ε in (0, T ) × Ωε , (10a)

J−1
ε div(v̂ε) = 0 in (0, T ) × Ωε , (10b)

v̂ε = v̂Γε
on (0, T ) × Γε , (10c)(

−με22∇̂s
εv̂ε + p̂ε1

)
‖Ψ−�

ε (t, x)ν̂(x)‖−1Ψ−�
ε ν̂ = pb,ε‖Ψ−�

ε (t, x)ν̂(x)‖−1Ψ−�
ε ν̂ on (0, T ) × Λε , (10d)
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v̂ε(0) = v̂in
ε in Ωε , (10e)

∇̂s
εv̂ε := (Ψ−�

ε ∇(A−1
ε v̂ε) + (Ψ−�

ε ∇(A−1
ε v̂ε))�)/2 in (0, T ) × Ωε . (10f)

In order to derive the weak form, we multiply (10a) by Ψ�
ε , (10b) by Jε and (10d) by ‖Ψ−�

ε (t, x)ν̂(x)‖. 
We rewrite the resulting first term of (Ψ�

ε (10a)) by

Ψ�
ε (∂t(A−1

ε v̂ε) = ∂t(Ψ�
ε A

−1
ε v̂ε) − ∂tΨ�

ε (A−1
ε v̂ε)

and we get

∂t(Ψ�
ε A

−1
ε v̂ε) − ∂tΨ�

ε (A−1
ε v̂ε) − Ψ�

ε ∇�(A−1
ε v̂ε)Ψ−1

ε ∂tψε

−A�
ε με

2 div(Aε2∇̂s
εv̂ε) + ∇p̂ε = Ψ�

ε f̂ε in (0, T ) × Ωε .

Proceeding as in the derivation of the weak form for the untransformed equation, we obtain the following 
weak form:

Find (ŵε, q̂ε) ∈ L2(0, T ;H1
Γε

(Ωε;Rd))×L2((0, T )×Ωε) with ∂t(Ψ−�
ε A−1

ε ŵε), ∂tŵε ∈ L2((0, T )×Ωε;Rd)
such that ∫

(0,T )

∫
Ωε

∂t(Ψ�
ε A

−1
ε ŵε) · ϕ−

(
∂tΨ�

ε A
−1
ε ŵε − Ψ�

ε ∇�(A−1
ε ŵε)Ψ−1

ε ∂tψε

)
· ϕ

+ με2Aε2∇̂s
εŵε : ∇ϕ− q̂ε div(ϕ) dx dt 

=
∫

(0,T )

∫
Ωε

Ψ�
ε f̂ε · ϕ− ∂t(Ψ�

ε A
−1
ε v̂Γε

) · ϕ−∇p̂b,ε · ϕ

+
(
∂tΨ�

ε A
−1
ε v̂Γε

− Ψ�
ε ∇�(A−1

ε v̂Γε
)Ψ−1

ε ∂tψε

)
· ϕ− με2Aε2∇̂s

ε : v̂Γε
∇ϕ dx dt ,

(11a)

∫
(0,T )

∫
Ωε

φ div(ŵε) dx dt = −
∫

(0,T )

∫
Ωε

φ div(v̂Γε
) dx dt , (11b)

ŵε(0) = ŵin
ε (11c)

for all (ϕ, φ) ∈ L2(0, T ;H1
Γε

(Ωε;Rd)) × L2(0, T ;L2(Ωε)).

Transformation of the data For the transformed data f̂ε, v̂Γε
, p̂b,ε and v̂in

ε , we can transfer the uniform 
bounds with Lemma A.6 and obtain:

Lemma 3.1 (Uniform bounds of the transformed data). Let f̂ε, v̂Γε
, p̂b and win

ε be given as above. Then, 
there exists a constant C > 0 such that

‖f̂ε‖L2((0,T )×Ωε) + ‖ŵin
ε ‖L2(Ωε) + ε‖∇ŵin

ε ‖L2(Ωε) ≤ C , (12a)

ε−1‖v̂Γε
‖L2((0,T )×Ωε) + ‖∂xv̂Γε

‖L2((0,T )×Ωε) + ε‖∂x∂xv̂Γε
‖L2((0,T )×Ωε) ≤ C , (12b)

ε−1‖∂tv̂Γε
‖L2((0,T )×Ωε) + ‖∂x∂tv̂Γε

‖L2((0,T )×Ωε) ≤ C . (12c)

Moreover, ŵin
ε is compatible i.e. ŵin

ε ∈ H1
Γε

(Ωε;Rd) and div(ŵin
ε ) = − div(v̂Γε

).

Proof. The uniform estimates for f̂ε, ŵin
ε and ∇ŵin

ε can be deduced with Lemma A.6 and Remark A.9.
To derive the uniform estimates on v̂Γε

, we note that the uniform estimates on vΓε
and Lemma A.6 pro-

vide a uniform estimate for ε−1‖vΓε
(t, ψε(t, x))‖L2((0,T )×Ω), ‖∂xvΓε

(t, ψε(t, x))‖L2((0,T )×Ω) and ε‖∂x∂xvΓε
(t, 
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ψε(t, x))‖L2((0,T )×Ω). We apply the product rule on v̂Γε
and, together with the estimates on Aε and its 

spatial derivatives given in Lemma A.5, we get (12b).
In order to derive (12c), we note that

∂tv̂Γε
(t, x) =∂tAε(t, x)vΓε

(t, ψε(t, x)) + Aε(t, x)∂tvΓε
(t, ψε(t, x)) + Aε(t, x)∂xvΓε

(t, ψε(t, x))∂tψε(t, x) 

and, hence, the estimates on Aε given in Lemma A.5 together with the estimates on v̂Γε
provide the uniform 

bound on ε−1∂tv̂Γε
. Taking the derivative with respect to x in the previous equation and employing the 

product rule, one can similarly deduce the uniform estimate on ∂x∂tv̂Γε
.

The compatibility of the initial values, i.e. div(ŵin
ε )) = − div(v̂Γε

(0)) and ŵin
ε |Γε(0) = 0 for ŵin

ε = v̂in
ε −

v̂Γε
(0) is preserved under the transformation. �
With Lemma A.8, we can also transform the two-scale convergences of the data arguing similarly as in 

the proof of Lemma 3.1. We get for f̂ = f ∈ L2((0, T ) × Ω;Rd), v̂Γ ∈ H1(0, T ;L2(Ω;H1
#(Y ;Rd))) with 

v̂Γ(t, x, y) = vΓ(t, x, ψ0(t, x, y)), p̂b = pb ∈ L2(0, T ;H1(Ω)), p̂b,1 ∈ L2((0, T ) × Ω;H1
#(Y )) with p̂b,1 =

pb,1(t, x, ψ0(t, x, y)) + (ψ0(t, x, y) − y) · ∇pb, v̂in
0 ∈ L2(Ω;H1(Y ) with v̂in

0 (x, y) = vin
0 (x, ψ0(0, x, y)) that

˜̂
fε

2, 2−−⇀−−−⇀ 1Y ∗f , ε−1v̂Γε

2, 2−−⇀−−−⇀ 1Y ∗ v̂Γ , ∂xv̂Γε

2, 2−−⇀−−−⇀ 1Y ∗∂y v̂Γ , ε∂x∂xvΓε

2, 2−−⇀−−−⇀ ∂y∂yvΓ ,

ε−1∂tv̂Γε

2, 2−−⇀−−−⇀ ∂tv̂Γε
, ∂x∂tvΓε

2, 2−−⇀−−−⇀ ∂y∂tvΓ , εv̂Γε

2, 2−−⇀−−−⇀ v̂Γ ,

p̂b,ε
2, 2−−⇀−−−⇀ 1Y ∗ p̂b, ̃∇p̂b,ε

2, 2−−⇀−−−⇀ 1Y ∗(∇xp̂b + ∇yp̂b,1) ,

˜̂win
ε (x) 2, 2−−⇀−−−⇀ 1Y ∗(y)ŵin

0 (x, y) , ̃ε∂xŵin
ε (x) 2, 2−−⇀−−−⇀ 1Y ∗(y)∂yŵin

0 (x, y) .

(13a)

As in the untransformed case, we get ŵin
0 = v̂in

0 .

4. Existence and a priori estimates for the microscopic problem

In this section, we show the existence and uniqueness of a solution of (11). Moreover, we derive the 
uniform a priori estimates (14) for the solution.

Theorem 4.1 (Existence, uniqueness and a priori estimates of the solution of the Stokes equations). For 
every ε > 0, there exists a unique solution (ŵε, q̂ε) ∈ L2(0, T ;H1

Γε
(Ωε;Rd)) × L2((0, T ) × Ωε) with ∂tŵε ∈

L2((0, T ) × Ωε;Rd) of (11). Moreover, there exists a constant C > 0 such that for every ε > 0

‖ŵε‖L2((0,T )×Ωε) + ε‖∇ŵε‖L2((0,T )×Ωε) + ‖q̂ε‖L2((0,T )×Ωε) ≤ C . (14)

4.1. Abstract results for differential–algebraic equations

In order to derive the existence and uniqueness of a solution of (11), we use a generic existence result 
for differential–algebraic operator equations from [55], which is given in Proposition 4.5. For Banach spaces 
X,Y , we denote by L(X,Y ) the linear continuous operators from X to Y and by ‖ · ‖L(X,Y ) the operator 
norm. We use the following notation of [55, Definition 4.3] based on [24, p. 74].

Definition 4.2 (Measurability). Let X be a Banach space. An abstract function u : [a, b] → X is called 
Bochner measurable if a sequence (un)n∈N of simple functions exists such that un(t) → u(t) in X as n → ∞
at almost every t ∈ [a, b].

Moreover, let A : [0, T ] → L(X,Y ) be an operator-valued function.
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• It is called uniformly measurable if t 
→ A(t) is Bochner measurable in L(X,Y ).
• It is called strongly measurable if, for every x ∈ X, t 
→ A(t)x is Bochner measurable in Y .

We consider the set of operator-valued functions following [55, Definition 4.8].

Definition 4.3 (The space Lp[0, T ;L(X,Y )]). For Banach spaces X, Y with X separable, we say A : [0, T ] 
→
L(X,Y ) belongs to Lp[0, T ;L(X,Y )] for p ∈ [1,∞] if A is strongly measurable, t 
→ ‖A(t)‖L(X,Y ) is Lebesgue 
measurable and ‖A‖Lp[0,T ;L(X,Y )] := ‖‖A(·)‖L(X,Y )‖Lp(0,T ) < ∞.

Note that Lp[0, T ;L(X,Y )] does not coincide with the Bochner space Lp(0, T ;L(X,Y )) since elements 
A ∈ Lp(0, T ;L(X,Y )) have to satisfy the more restrictive uniform measurability in L(X,Y ). We refer to [55, 
p. 23f] and [10, p. 75] for a more detailed discussion and note that, in particular, L(X,Y ) is not necessarily 
separable even if X and Y are separable.

Similarly to the concept of strong measurability, we consider the derivative for operator-valued functions 
in Lp[0, T ;L(X,Y )] by fixing x ∈ X as in [55, Definition 4.13].

Definition 4.4 (The space W k,p[0, T ;L(X,Y )]). Let X, Y be Banach spaces, X separable and A : [0, T ] →
L(X,Y ) be strongly measurable. Assume that t 
→ A(t)x has a k-th generalised derivative d 

dt(A(·)x) for 
some k ∈ N and every x ∈ X, i.e. the distributional derivative d 

dt (A(·)x) is in L1
loc(0, T ;Y ). Then, the k-th 

derivative A(k) : [0, T ] → L(X,Y ) of A is A(k)(t)x := dk

dtk (A(·)x).
For p ∈ [1,∞], we say A : [0, T ] 
→ L(X,Y ) belongs to W k,p[0, T ;L(X,Y )], if A(i) ∈ Lp[0, T ;L(X,Y )] for 

every i ∈ {0, . . . , k}. We write Hk[0, T ;L(X,Y )] := W k,2[0, T ;L(X,Y )].

Proposition 4.5 (Existence result for operator differential–algebraic equations). Let V , H, Q be separable 
Hilbert spaces. Assume V , H, V ∗ form a Gelfand triple with embedding constant CV ↪→H of V in H. Let 
T > 0, M ∈ H1[0, T ;L(H,H∗)], A ∈ L∞[0, T ;L(V, V ∗)], B ∈ L(V,Q∗) and F = F (1) + F (2) for F (1) ∈
L2(0, T ;H∗), F (2) ∈ W 1,1(0, T ;V ∗), G ∈ H1(0, T ;Q∗) and vin ∈ V with Bvin = G(0). Assume that M is 
self-adjoint and uniformly elliptic with constant μM > 0, i.e. for every t ∈ [0, T ] and every v ∈ H

M(t)(v, v) ≥ μM‖v‖2
H ,

assume A can be decomposed in A = A(1) + A(2) with A(1) ∈ L∞[0, T ;L(V ;V ∗)] and A(2) ∈
L∞[0, T ;L(V ;H∗)] such that A(1) is self-adjoint and there exist constants μA(1) , κA(1) such that for 
a.e. t ∈ (0, T ) and every v ∈ ker(B)

A(1)(t)(v, v) ≥ μA(1)‖v‖2
V − κA(1)‖v‖2

H . (15)

Moreover, we assume that B is inf–sup stable with constant μB, i.e.

inf
q∈M\{0}

sup
v∈V \{0}

B(v, q) 
‖q‖Q‖v‖V

≥ μB .

Then, there exists a unique (v, p) ∈ C([0, T ];V ) ∩H1(0, T ;H) × L2(0, T ;Q) such that for a.e. t ∈ (0, T )

d 
dt (M(t)v(t))) + (A(t) − 1

2
. 
M(t))v(t)) − B∗p(t) = F (t) in V ∗ , (16a)

Bv(t) = G(t) in Q∗ , (16b)

v(0) = vin in V . (16c)
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Moreover, there exists a constant C, which depends only on T , ‖M‖H1[0,T ;L(H,H∗)], ‖A(1)‖L∞[0,T ;L(V,V ∗)], 
‖A(2)‖L∞[0,T ;L(V,H∗)], μM, μA(1) , κA(1) , μB, CV ↪→H such that

‖v‖C([0,T ];V )+‖v‖H1(0,T ;H) + ‖q‖L2(0,T ;Q)

≤ C(‖F (1)‖L2(0,T ;H∗) + ‖F (2)‖W 1,1(0,T ;V ∗) + ‖G‖H1(0,T ;Q∗) + ‖u0‖V ) .

Proof. For the case that A(1) is uniformly elliptic and F2 = 0 the result is shown in [55, Theorem 7.24]. 
Remark [55, Theorem 7.25] extends it to the case F2 = 0. The case that A(1) satisfies only the weaker Gårding 
inequality (15) can be reduced to this case by reformulating and rescaling (16a) (see [55, Remark 7.1]). �
4.2. Application to the microscopic problem

We reformulate the weak form of the Stokes equations (11) in the generic setting of Proposition 4.5. We 
account for the ε-parameter by means of the subscript ε.

Let Vε := H1
Γε

(Ωε;Rd), Hε := L2(Ωε;Rd), Qε := L2(Ωε) with the norms

‖v‖Vε
:= ε‖∇v‖L2(Ωε) for v ∈ Vε ,

‖v‖Hε
:= ‖v‖L2(Ωε) for v ∈ Hε ,

‖q‖Qε
:= ‖q‖L2(Ωε) for q ∈ Qε .

We define the operators Mε ∈ H1[0, T ;L(Hε, H
∗
ε )], Aε ∈ L∞[0, T ;L(Vε, V

∗
ε )] with Aε = A(1)

ε + A(2)
ε for 

A(1)
ε ∈ H1[0, T ;L(Vε, V

∗
ε )] and A(2)

ε ∈ H1[0, T ;L(Vε, H
∗
ε )], Bε ∈ L(Vε, Q

∗
ε) as well as the right-hand sides 

F
(1)
ε ∈ L2(0, T ;H∗

ε ), F (2)
ε ∈ W 1,1(0, T ;V ∗

ε ) and Gε ∈ H1(0, T ;Q∗
ε) by

Mε(t)(u, v) :=
∫
Ωε

Ψ−�
ε (t)A−1

ε (t)u · v dx for u, v ∈ Hε ,

Aε(t)(u, v) := A(1)
ε (t)(u, v) + A(2)

ε (t)(u, v) for u, v ∈ Vε ,

A(1)
ε (t)(u, v) :=

∫
Ωε

με2Aε(t)2∇̂s
ε(t)v : ∇(A−1

ε (t)v) dx for u, v ∈ Vε ,

∇̂s
ε(t)u := (Ψ−�

ε (t)∇(A−1
ε (t)u) + (Ψ−�

ε (t)∇(A−1
ε (t)u))�)/2 for u ∈ Vε ,

A(2)
ε (t)(u, v) := −

∫
Ωε

(
∂tΨ�

ε (t)A−1
ε (t)u− Ψ�

ε (t)∇�(A−1
ε (t)u)Ψ−1

ε (t)∂tψε(t)
)
· v dx dt 

+ 1
2

. 
Mε(t)(u, v) for u ∈ Vε, v ∈ Hε ,

Bε(v, q) :=
∫

(0,T )

∫
Ωε

q div(v) dx dt for v ∈ Vε, q ∈ Qε ,

F (1)
ε (t)(ϕ) :=

∫
(0,T )

∫
Ωε

(Ψ�
ε (t)f̂ε(t) −∇p̂b,ε(t)) · ϕ dx−Mε(t)(v̂Γε

(t), ϕ) for ϕ ∈ Hε ,

F (2)
ε (t)(ϕ) := −Aε(t)(v̂Γε

(t), ϕ) for ϕ ∈ Vε ,

Gε(t)(q) := −Bε(v̂Γε
(t), q) for q ∈ Qε .

Thus, we have rewritten the weak form (11) in the generic setting of Proposition 4.5:
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d 
dt (Mε(t)ŵε(t)) + (Aε(t) − 1

2

. 
Mε(t))ŵε(t)) − B∗

ε q̂ε(t) = Fε(t) in V ∗
ε (17a)

Bεŵε(t) = Gε(t) in Q∗
ε , (17b)

ŵε(0) = ŵin
ε in V ∗

ε . (17c)

In order to deduce the uniform bounds (14) from Proposition 4.5, it is essential that we estimate the 
embedding constant CV ↪→H , the Gårding inequality constants μA(1)

ε
and κA(1)

ε
as well as the inf–sup constant 

μBε
uniformly.

We obtain a uniform estimate for the embedding constant CV ↪→H from the following ε-scaled Poincaré 
inequality.

Lemma 4.6 (ε-scaled Poincaré inequality). There exists a constant cP such that for every v ∈ H1
Γε

(Ωε;Rd)

‖v‖L2(Ωε) ≤ εcP‖∇v‖L2(Ωε) .

Proof. Lemma 4.6 is a standard result and can be shown by covering Ωε with ε-scaled copies of Y ∗. Scaling 
them on Y ∗ and applying the Poincaré inequality for piecewise zero boundary values there and scaling back 
yields the estimate. �

The uniform inf–sup constant can be deduced from the following ε-scaled right-inverse of the divergence 
operator.

Lemma 4.7 (ε-scaled right-inverse of the divergence operator). There exists a family of linear continuous op-
erators div−1

ε : L2(Ωε) → H1
Γε

(Ωε;Rd), which are right inverse to the divergence, i.e. div ◦ div−1
ε = idL2(Ωε), 

and there is a constant C > 0 such that for all f ∈ L2(Ωε)

‖ div−1
ε (f)‖L2(Ωε) + ε‖∇(div−1

ε (f))‖L2(Ωε) ≤ ‖f‖L2(Ωε) .

Lemma 4.8. Lemma 4.7 is shown in [52, Lemma 3.12] employing the extension operators of [47,2].

For the Gårding inequality (15), it becomes crucial to estimate the symmetrised gradient ∇̂s
ε. Here we 

use the following Korn inequality

Lemma 4.9 (Korn-type inequality for two-scale transformations). There exists a constant α such that for 
every ε > 0, a.e. t ∈ (0, T ) and every v ∈ H1

Γε
(Ωε;Rd)

α‖v‖2
L2(Ωε) ≤ ‖Ψ−�

ε (t)∇v + Ψ−�
ε (t)∇v‖2 .

Proof. A proof is given in [52, Lemma 3.6]. �
Proof of Theorem 4.1. We show Theorem 4.1 by means of Proposition 4.5. In order to derive the estimate 
(14), we show a uniform estimate for the continuity constant CV ↪→H of the embedding Vε → Hε, uniform 
bounds for the operators Mε, Aε, A(1)

ε , A(2)
ε , the right-hand sides F (1)

ε , F (2)
ε and Gε, the initial value vε as 

well as the ellipticity constant μMε
of Mε, the Gårding inequality constants μA(1)

ε
and κA(1)

ε
of A(1)

ε and 
the inf–sup constant of μBε

of Bε.
For the following estimates on the operators, the uniform estimate for the transformation coefficients 

becomes crucial, which is given in Lemma A.5.

• Embedding constant CV ↪→H : The Poincaré estimate from Lemma 4.6 provides a uniform embedding 
constant CV ↪→H , i.e. for every v ∈ Vε, it holds
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‖v‖Hε
= ‖v‖L2(Ωε) ≤ CV ↪→Hε‖∇v‖L2(Ωε) = CV ↪→H‖v‖Vε

. (18)

• Operator Mε: Noting that A−1
ε = J−1

ε Ψε, we obtain for every t ∈ [0, T ] that Mε(t) is self-adjoint from

Mε(t)(v, w) =
∫
Ωε

Ψ�
ε (t)A−1

ε (t)v · w dx =
∫
Ωε

v · (Ψ�
ε (t)J−1

ε Ψε(t))�w dt =

=
∫
Ωε

v · Ψ�
ε (t)A−1

ε (t)w dt = Mε(t)(w, v) .

We note that for a.e. t ∈ [0, T ] and u, v ∈ Hε

. 
Mε(t)(u, v) =

∫
Ωε

∂t(Ψ−�
ε (t)A−�

ε (t))u · v dx .

Since Ψ−�
ε , A−�

ε and ∂tΨ−�
ε , ∂tA−�

ε are bounded in L∞((0, T ) × Ωε)d×d, we can estimate with the 
Hölder inequality

‖Mε‖L2[0,T ;L(Hε,H∗
ε )] ≤ C‖Ψ−�

ε ‖L∞((0,T )×Ωε)‖A−�
ε ‖L∞((0,T )×Ωε) ≤ C ,

‖
. 

Mε‖L2[0,T ;L(Hε,H∗
ε )] ≤ C

(
‖Ψ�

ε ‖L∞((0,T )×Ωε)‖∂tA−�
ε ‖L∞((0,T )×Ωε)

+ ‖∂tΨ�
ε ‖L∞((0,T )×Ωε)‖A−�

ε ‖L∞((0,T )×Ωε)
)
≤ C .

In order to show the ellipticity of Mε(t), we rewrite

Mε(t)(v, v) = (Ψ�
ε (t)J−1

ε (t)Ψε(t)v · v)Hε
= (J−1/2

ε (t)Ψε(t)v · J−1/2
ε (t)Ψε(t)v)Hε

= ‖J−1/2
ε (t)Ψε(t)v‖2

Hε

for v ∈ Hε and use the uniform essential bounds of Jε and Ψ−1
ε to deduce with the Hölder inequality

‖v‖2
Hε

≤ ‖J1/2
ε (t)Ψ−1

ε (t)J−1/2
ε (t)Ψε(t)v‖2

L2(Ωε)

≤ ‖J1/2
ε (t)Ψ−1

ε (t)‖2
L∞(Ωε)‖J

−1/2
ε (t)Ψε(t)v‖2

Hε
≤ CMε(t)(v, v) .

Choosing μMε
= C−1 gives a uniform estimate for the ellipticity constant.

• Operators A(1)
ε and A(2)

ε : We can estimate with the Hölder inequality, the product rule and the uniform 
bounds of the coefficients and the Poincaré estimate (18)

‖A(1)
ε (t)(u, v)‖L∞(0,T )

= μ2‖Aε‖L∞((0,T )×Ωε)‖Ψ−�
ε ‖L∞((0,T )×Ωε)ε‖∇(A−1

ε u)‖L∞(0,T ;L2(Ωε))‖∇v‖L2(Ωε)

≤ C
(
ε‖∇A−1

ε ‖L∞((0,T )×Ωε)‖u‖L2(Ωε) + ε‖A−1
ε ‖L∞((0,T )×Ωε)‖∇u‖L2(Ωε)

)
ε‖∇v‖L2(Ωε)

≤ C‖u‖Vε
‖v‖Vε

.

We note that for a symmetric matrix A and a non symmetric matrix B it holds A : B = A : (B +B�)/2
and, thus, we can rewrite
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A(1)
ε (t)(u, v) =

∫
Ωε

με2Jε2∇̂s
ε(t)u : Ψ−�

ε (t)∇(A−1
ε (t)v) dx

=
∫
Ωε

με2Jε2∇̂s
ε(t)u : ∇̂s

ε(t)v dx = A(1)
ε (t)(v, w) ,

which shows that A(1)
ε (t) is self-adjoint. Using this reformulation and the Hölder inequality, we get

ε2‖∇̂s
ε(t)v‖2

L2(Ωε) ≤ ε2 1
2‖J

−1/2
ε (t)‖2

L∞(Ωε)‖J
1/2
ε (t)

√
2∇̂s

ε(t)v‖2
L2(Ωε)

= μ−1 1
2‖J

−1/2
ε (t)‖2

L∞(Ωε)A
(1)
ε (t)(v, v) .

We apply the Korn-type inequality of Lemma 4.9 on (A−1
ε (t)v) in order to estimate the left-hand side 

from below and get

αε2‖∇(A−1
ε (t)v)‖2

L2(Ωε) ≤ ε2‖∇̂s
ε(t)v‖2

L2(Ωε) ≤ μ−1 1
2‖J

−1/2
ε (t)‖2

L∞(Ωε)A
(1)
ε (t)(v, v) .

Moreover, with the Hölder inequality, the uniform essential boundedness of Aε(t) and ε∂xAε and the 
Young inequality, we get a constant δ > 0 such that

ε2‖∇v‖2
L2(Ωε) = ε2‖∇(Aε(t)A−1

ε (t)v)‖2
L2(Ωε) ≤ ε2‖∇(Aε(t)A−1

ε (t)v)‖2
L2(Ωε)

≤ (ε‖(Aε(t)∂x(A−1
ε (t)v))‖L2(Ωε) + ε‖(A−1

ε (t)v)�∂xAε(t))‖L2(Ωε))
2

≤ (Cε‖∇(A−1
ε (t)v))‖L2(Ωε) + C‖(A−1

ε (t)v))‖L2(Ωε))
2

≤ ε2δ‖∇(A−1
ε (t)v))‖2

L2(Ωε) + C
δ ‖v‖

2
L2(Ωε) .

Choosing δ = 2‖J−1/2
ε (t)‖−2

L∞(Ωε) and combining the last two equations gives

α‖v‖2
Vε

− C‖v‖2
Hε

≤ α‖∇v‖2
L2(Ωε) −

C
δ ‖v‖

2
L2(Ωε) ≤ A(1)

ε (t)(v, v) ,

which shows that A(1)
ε (t) satisfies a uniform Gårding inequality with time- and ε-independent constants.

The uniform estimate on A(2)
ε (t) can be shown by similar computations as for the estimate of A(1)

ε (t)
above. One only has to be aware of the fact that ∂tψε ≤ εC and, thus, one can compensate the factor 
ε−1 which arises in the estimates of ∂xA−1

ε and ∇u.
• Operator Bε: Lemma 4.7 provides the uniform inf–sup constant μB. Moreover, we get

|Bε(v, q)| =
∫
Ωε

q div(v) dx ≤ C‖q‖L2(Ωε)‖∇v‖L2(Ωε) = ε−1‖q‖Hε
‖v‖Vε

.

Indeed, this does not provide a uniform estimate on |Bε(v, q)‖L(V,Q∗); however, the bounds on the solu-
tions are independent of ‖Bε(v, q)‖L(V,Q∗).

• Estimates for the right-hand sides F (1)
ε , F (2)

ε and Gε: The estimates for the right-hand side F (1)
ε and F (2)

ε

can be deduced from the uniform bound of f̂ε, the uniform bounds of v̂Γε
and its derivatives, which are 

given in (12), together with similar estimates as above for the operators.
The estimate for Gε can be deduced from the estimate on |Bε(v, q)| from above and the uniform bound 

of ε∇v̂Γε
, which compensates the factor ε−1, which arises in the estimate of |Bε(v, q)|.

• Initial values: The estimates and compatibility of the initial values is shown in Lemma 3.1. �
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5. Homogenisation of the substitute problem

In this section, we pass to the homogenisation limit for the solution (ŵε, q̂ε) of (11). In order to state the 
convergence, we extend ŵε and q̂ε to Ω. We extend ŵε by 0, which we denote by w̃ε and q̂ε by its cell-wise 
mean value, which we denote by Q̂ε, i.e.

Q̂ε(t, x) :=

⎧⎪⎨⎪⎩
q̂ε(t, x) for x ∈ Ωε ,

1 
|εY ∗|

∫
ε(k+Y ∗)

q̂ε(t, x) for x ∈ Ω ∩ ε(k + Y s) for k ∈ Kε .
(19)

The physically more relevant quantity is v̂ε and not ŵε. It is given by v̂ε = ŵε + v̂Γε
in Ωε and extended 

by 0 in the solid domain Ωs
ε, which we denote by ˜̂vε. This extension of v̂ε is not H1-regularity preserving, 

but corresponds to the physically meaningful interpretation that there is no fluid flow in Ωs
ε. We also extend 

∇v̂ε by 0 to Ω, which we denote by ∇̃v̂ε Since v̂Γε
is of order ε, it vanishes in the limit ε → 0 and v̂ε and 

ŵε have the same two-scale limit. We denote the two-scale limit of v̂ε and ŵε by v̂0 because v̂ε corresponds 
with the physically meaningful quantity.

In a first step, we show that v̂ε and some extension of the pressure q̂ε two-scale converge to solutions of 
the two-scale limit system, which is given by the following instationary two-pressure Stokes system:

∂t(A−1
0 v̂0) −∇�

y (A−1
0 v̂0)Ψ−1

0 ∂tψ0 − J−1
0 μ divy(A−1

0 Ψ−�
0 ∇y(A−1

0 v̂0)

+Ψ−�
0 ∇xp̂ + Ψ−�

0 ∇yp̂1 = f̂ in (0, T ) × Ω × Y ∗ , (20a)

J−1
0 divy(v̂0) = 0 in (0, T ) × Ω × Y ∗ , (20b)

divx

⎛⎝∫
Y ∗

v̂0 dy

⎞⎠ = −
∫
Y ∗

divy(v̂Γ) dy in (0, T ) × Ω , (20c)

v̂0 = 0 on (0, T ) × Ω × Γ , (20d)

p̂ = q̂b on (0, T ) × Ω , (20e)

y 
→ v̂0, p̂1 Y -periodic , (20f)

v̂0 = v̂in
0 in Ω × Y ∗ . (20g)

For further information on the macroscopic divergence condition (20c), see Lemma 6.2 and (44).
In order to formulate the weak form of (20), one can proceed as in the ε-scaled case. One has to multiply 

(20a) by Ψ�
0 and to employ the product rule for the time-derivative term. The weak form is given by: Find 

(v̂0, q̂, q̂1) ∈ L2((0, T )×Ω;H1
Γ#(Y ∗;Rd))×L2(0, T ;H1

0 (Ω))×L2((0, T )×Ω;L2
0(Y ∗)) with ∂tv̂0, ∂t(Ψ�

0 A
−1
0 v̂0) ∈

L2((0, T ) × Ω × Y ∗;Rd) such that∫
(0,T )

∫
Ω 

∫
Y ∗

∂t(Ψ�
0 A

−1
0 v̂0) · ϕ−

(
∂tΨ�

0 A
−1
0 v̂0 − Ψ�

0 ∇�(A−1
0 v̂0)Ψ−1

0 ∂tψ0
)
· ϕ dy dx dt

+
∫

(0,T )

∫
Ω 

∫
Y ∗

μA0Ψ−�
0 ∇y(A−1

0 v̂0) : ∇y(A−1
0 ϕ) + ∇xq̂ · ϕ− q̂1 divy(ϕ) dy dx dt

=
∫

(0,T )

∫
Ω 

∫
Y ∗

Ψ�
0 f̂ · ϕ− (∇xp̂b + ∇yp̂b,1) · ϕ dx dt ,

(21a)

∫
(0,T )

∫
Ω 

∫
Y ∗

φ1 divy(v̂0) dx dt = 0 , (21b)
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∫
(0,T )

∫
Ω 

φ divx

⎛⎝∫
Y ∗

v̂0 dy

⎞⎠ dx dt = −
∫

(0,T )

∫
Ω 

φ

∫
Y ∗

divy(v̂Γ) dy dx dt , (21c)

v̂0(0) = v̂in
0 (21d)

for all (ϕ, φ, φ1) ∈ L2((0, T ) × Ω;H1
Γε

(Y ∗;Rd)) × L2((0, T ) × Ω) × L2((0, T ) × Ω × Y ∗).

Theorem 5.1 (Convergence result for the solutions of the substitute problem). Let (ŵε, q̂ε) be the solution of 
(11) and ˜̂wε and Q̂ε their extensions as defined above. Then,

ŵε
2, 2−−⇀−−−⇀ v̂0 , Q̂ε

2, 2−−⇀−−−⇀ q̂ ,

where (v̂0, q̂, q̂1) ∈ L2((0, T ) × Ω;H1
Γ#(Y ∗;Rd)) × L2(0, T ;H1

0 (Ω)) × L2((0, T ) × Ω;L2
0(Y ∗)) are the unique 

solution of the instationary two-pressure Stokes equations (21).

Proof. Since ˜̂wε and ε∇̃ŵε,̃∂tŵε are bounded, standard two-scale compactness arguments provide a sub-
sequence and v̂0 ∈ L2((0, T ) × Ω;H1

#(Y ;Rd)) with ∂tv̂0 ∈ L2((0, T ) × Ω × Y ;Rd) such that ˜̂wε, ε∇̃ŵε

and ̃∂tŵε two-scale converge weakly to v̂0, ∇y v̂0 and ∂tv̂0, respectively, where v̂0 is zero on Y \ Y ∗

and, thus, can be identified with an element in L2((0, T ) × Ω;H1
Γ#(Y ∗;Rd)). With the two-scale con-

vergence of ŵε(0) to v̂in
0 , we get v̂0(0) = v̂in

0 . Testing the divergence condition (11b) with φ
(
t, x, x

ε 
)

for 
φ ∈ C∞([0, T ];C∞

c (Ω;C∞
# (Y ))) yields the microscopic incompressibility condition (21b). Testing the diver-

gence condition (11b) with φ ∈ C∞([0, T ];C∞
c (Ω)) yields the macroscopic divergence condition (21c). For 

a detailed derivation of the divergence conditions, we refer to [52, Lemma 4.9] where the quasi-stationary 
case is considered.

Using the boundedness of Q̂ε, we can pass to a further subsequence and get Q̂ ∈ L2((0, T )×Ω×Y ) such 
that Q̂ε two-scale converges to q̂. In order to show that q̂ is constant on Y , we test (11a) by εϕ(t, x, x

ε ) for 
ϕ ∈ C∞([0, T ]×Ω;C∞

# (Y )). Due to this ε-factor, all the terms converge to 0 besides the pressure term and, 
thus, we get

0 = lim
ε→0

∫
(0,T )

∫
Ωε

q̂ε(t, x) divy

(
ϕ
(
t, x, x

ε 
))

dx dt

=
∫

(0,T )

∫
Ω 

∫
Y ∗

q̂(t, x, y) divy (ϕ(t, x, y)) dx dt

and, consequently, ∇y q̂ = 0 on Y ∗. By the construction of the extension Q̂ε, one can deduce further ∇y q̂ = 0
on Y and, thus, q̂ ∈ L2((0, T ) × Ω).

We test (11a) by ϕ(t, x, xε ) for ϕ ∈ C∞([0, T ] × Ω;H1
Y #(Y ∗;Rd)) with divy(ϕ) = 0. To pass to the limit 

ε → 0, we employ the two-scale convergences of the unknowns ŵε and q̂ε as well as of the coefficient and 
data given by Lemma A.7 and (13), respectively. Moreover, we note that v̂Γε

, ∂tv̂Γε
and ε∇v̂Γε

are of order 
ε and, thus, the terms with them vanish in the limit of (11a) and we get
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(0,T )

∫
Ω 

∫
Y ∗

∂t(Ψ�
0 A

−1
0 v̂0) · ϕ−

(
∂tΨ�

0 A
−1
0 v̂0 − Ψ�

0 ∇�(A−1
0 v̂0)Ψ−1

0 ∂tψ0
)
· ϕ

+ μA0(Ψ−�
0 ∇y(A−1

0 v̂0) + Ψ−�
0 ∇y(A−1

0 v̂0)�) : ∇y(A−1
0 ϕ)

− q̂ divx(ϕ) dy dx dt

=
∫

(0,T )

∫
Ω 

∫
Y ∗

Ψ�
0 f̂ · ϕ− (∇xp̂b + ∇yp̂b,1) · ϕ dx dt .

(22)

We test (22) with ϕ0ϕi for ϕ0 ∈ C∞([0, T ] × Ω) and ϕi ∈ H1
Γ#(Y ∗;Rd) such that 

∫
Y ∗

ϕ1 dy = ei for 

i ∈ {1, . . . , d}. Such functions ϕi can be constructed similarly to the proof of [7, Lemma 2.10]. For these test 
functions, we can rewrite the pressure term as 

∫
(0,T )

∫
Ω 

∫
Y ∗

q̂ divx(ϕ0ϕ1) dy dx dt =
∫

(0,T )

∫
Ω 
q̂∂xi

ϕ0 dy dx dt, while 

we interpret the remaining terms as functional for ϕ ∈ L2((0, T ) × Ω). Consequently, q̂ ∈ L2(0, T ;H1(Ω))
and we can integrate the macroscopic pressure term in (22) by parts. By a density argument, the resulting 
equation holds for all ϕ ∈ L2((0, T ) × Ω;H1

Y #(Y ∗;Rd)) with divy(ϕ) = 0.
In order to satisfy the equation for all test functions ϕ ∈ L2((0, T ) × Ω;H1

Γ#(Y ∗;Rd)), we add a mi-
croscopic pressure q̂1. For this, we note that the Bogovskii operator provides the surjectivity of divy from 
L2((0, T )×Ω;H1

Γ#(Y ∗;Rd)) onto L2((0, T )×Ω;L2
0(Y ∗)). Consequently, divy has closed range and the closed 

range theorem provides q̂1 such that∫
(0,T )

∫
Ω 

∫
Y ∗

∂t(Ψ�
0 A

−1
0 v̂0) · ϕ−

(
∂tΨ�

0 A
−1
0 v̂0 − Ψ�

0 ∇�(A−1
0 v̂0)Ψ−1

0 ∂tψ0
)
· ϕ

+ μA0(Ψ−�
0 ∇y(A−1

0 v̂0) + Ψ−�
0 ∇y(A−1

0 v̂0)�) : ∇y(A−1
0 ϕ)

+ ∇xq̂ · ϕ− q̂1 divy(ϕ) dy dx dt

=
∫

(0,T )

∫
Ω 

∫
Y ∗

Ψ�
0 f̂ · ϕ− (∇xp̂b + ∇yp̂b,1) · ϕ dx dt

(23)

holds for all test functions ϕ ∈ L2((0, T ) × Ω;H1
Γ#(Y ∗;Rd)).

To deduce (21a), it remains to show that

∫
Y ∗

μA0(Ψ−�
0 ∇y(A−1

0 v̂0) + Ψ−�
0 ∇y(A−1

0 v̂0)�) : ∇y(A−1
0 ϕ) dy = 0

for a.e. (t, x) ∈ Ω×Y ∗. This can be done following the argumentation in the end of the proof of [52, Theorem 
4.7].

Since this argumentation holds also after passing to an arbitrary subsequence before and the fact that 
the solution of (21) is unique (see Lemma 5.2 below), the convergence holds for the whole sequence. �
Lemma 5.2 (Existence and uniqueness of the solution of the two-pressure Stokes equations). There exists a 
unique solution (v̂0, q̂, q̂1) ∈ L2((0, T ) × Ω;H1

Γ#(Y ∗;Rd)) × L2(0, T ;H1
0 (Ω)) × L2((0, T ) × Ω;L2

0(Y ∗)) with 
∂tv̂0, ∂t(Ψ�

0 A
−1
0 v̂0) ∈ L2((0, T ) × Ω × Y ∗) of (21).

Proof. Indeed, the existence of the solution is already secured by the homogenisation process. In order 
to show the uniqueness, one can reformulate (21) in the abstract setting of Proposition 4.5 similarly as 
in the ε-scaled case. The construction and the estimates of M and A corresponds to the ε-scaled case 
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and become even simpler since there is no Korn-type inequality required. We define the operator B ∈
L(L2(Ω;H1

Γ#(Y ∗;Rd)), (H1(Ω) × L2(Ω;L2
0(Y ∗)))∗) by

B(v, (p, p1)) :=
∫
Ω 

∫
Y ∗

∇p1 · ϕ− p1 divy(v)) dy dx .

Its inf–sup stability can be shown as in Lemma [52, Lemma 4.10].
For the compatibility of the initial values v̂in

0 , we note that v̂0 ∈ L2((0, T )×Ω;H1
Γ#(Y ∗;Rd)). Moreover, 

one can show B(v̂in
0 , (φ, φ1)) =

∫
Ω 
φ
∫
Y

divy(v̂Γ) dy arguing as in the derivation of (21b)–(21c) by employing 

the compatibility of the ε-scaled initial values. �
6. A Darcy law with memory for evolving microstructure

In (21), the macroscopic pressure term ∇xp̂ contributes as source term similarly to Ψ�
0 f̂ . These two 

terms differ in their microscopic structure, i.e. ∇xp̂ is independent of y while Ψ�
0 f̂ has the y-dependence 

arising from Ψ�
0 . Thus, one would have to construct two different cell problems in order to account for this 

coefficient. The following computation shows that the difference between the source terms ∇xq̂ and Ψ�
0 ∇xq̂

leads only to an additive difference of the microscopic pressure term. Let ϕ ∈ H1
Γ#(Y ∗,Rd), then we get by 

integrating by parts∫
Y ∗

Ψ�
0 ei · ϕ dy =

∫
Y ∗

(∇y(ψ0 − y) + 1)ei · ϕ dy =
∫
Y ∗

(∇y(ψ0 − y)i + 1)ei · ϕ dy

=
∫
Y ∗

ei · ϕ dy −
∫
Y ∗

(ψ0 − y)i divy(ϕ) dy ,

where the boundary term of the integration by parts vanishes since ϕ is zero on Γ and ϕ and ψ0(t, x, y)− y

are Y -periodic. This computation allows us to rewrite the macroscopic pressure terms in (21a) leading to∫
(0,T )

∫
Ω 

∫
Y ∗

∂t(Ψ�
0 A

−1
0 v̂0) · ϕ−

(
∂tΨ�

0 A
−1
0 v̂0 − Ψ�

0 ∇�(A−1
0 v̂0)Ψ−1

0 ∂tψ0
)
· ϕ

+ μA0Ψ−�
0 ∇y(A−1

0 v̂0) : ∇y(A−1
0 ϕ) + Ψ�

0 ∇xq̂ · ϕ− q̂′1 divy(ϕ) dy dx dt

=
∫

(0,T )

∫
Ω 

∫
Y ∗

Ψ�
0
(
f̂ − (∇xp̂b + ∇yp̂

′
b,1)

)
· ϕ dx dt ,

(24)

for

q̂′1 = q̂1 − (ψ0 − y) · ∇xq̂ p̂′b,1 = p̂b,1 − (ψ0 − y) · ∇xq̂

instead of (21a). The same substitution but in the strong form (20a), i.e.

p̂′1 = p̂1 − (ψ0 − y) · ∇xp̂ ,

cancels the coefficient Ψ−�
0 in front of the macroscopic pressure ∇xp̂, i.e. one can replace (20a) by

∂t(A−1
0 v̂0) −∇�

y (A−1
0 v̂0)Ψ−1

0 ∂tψ0 − J−1
0 μ divy(A−1

0 Ψ−�
0 ∇y(A−1

0 v̂0)

+∇xp̂ + Ψ−�
0 ∇yp̂

′
1 = f̂ in (0, T ) × Ω × Y ∗ .

(25)
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Having this reformulation, it suffices to consider only one type of cell problem for the contribution of the 
macroscopic bulk term. The cell problem and its solutions (ζ̂i, π̂i) are parametrised over the initial times 
s ∈ (0, T ) and the macroscopic position x ∈ Ω and the direction ei for the initial values with i ∈ {1, . . . , d}. 
It is given by: For given (s, x) ∈ (0, T ) × Ω, find ζ̂i(s, x, t, y) and π̂i(s, x, t, y) such that

∂t(A−1
0 ζ̂i) −∇�

y (A−1
0 ζ̂i)Ψ−1

0 ∂tψ0

−J−1
0 divy(A−1

0 Ψ−�
0 ∇y(A−1

0 ζ̂i) + ∇yπ̂i = 0 in (s, T ) × Y ∗ , (26a)

J−1
0 divy(ζ̂i) = 0 in (s, T ) × Y ∗ , (26b)

ζ̂i = 0 on (s, T ) × Γ , (26c)

y 
→ ζ̂i,p̂1 Y -periodic , (26d)

A−1
0 (s)ζ̂i(s) = ei in Y ∗ . (26e)

The second cell problem and its solution (ζ̂ in, π̂in) accounts for the contribution of the initial value of 
(20). It is parametrised over the macroscopic position x ∈ Ω and is given by

∂t(A−1
0 ζ̂ in) −∇�

y (A−1
0 ζ̂ in)Ψ−1

0 ∂tψ0

−J−1
0 μ divy(A−1

0 Ψ−�
0 ∇y(A−1

0 ζ̂ in) + Ψ−�
0 ∇yπ̂

in = 0 in (0, T ) × Y ∗ , (27a)

J−1
0 divy(ζ̂ in) = 0 in (0, T ) × Y ∗ , (27b)

ζ̂ in = 0 on (0, T ) × Γ , (27c)

y 
→ ζ̂ in,π̂in Y -periodic , (27d)

A−1
0 (0)ζ̂ in(0) = v̂in

0 in Y ∗ . (27e)

Comparing these two cell problems with (25), (20b)–(20g) leads to

v̂0(t, x, y) = ζ̂ in(t, x, y) + 1 
μ

t ∫
0 

d ∑
i=1 

ζ̂i(s, x, t, y)
(
f̂i − ∂xi

p̂
)
, (28)

q̂′1(t, x, y) + p̂′b,1(t, x, y) = π̂0(t, x, y) + 1 
μ

t ∫
0 

d ∑
i=1 

π̂i(s, x; t, y)
(
f̂i − ∂xi

p̂
)
. (29)

Remark 6.1. Note that the bulk source terms in (25) become an initial value in the cell problem (26). Thus, 
the solution of the cell problem does not have the same physical unit, namely ζ̂i are accelerations of the 
fluid and not velocities. This is also addressed in (28) by the time integration. This reformulation leads 
to incompatible initial data in (26), i.e. the initial values do not satisfy the zero boundary values at Γ. 
Thus, it does not satisfy the assumptions of Proposition 4.5. Therefore, we have to use a weaker solution 
concept, which provides the time derivative and the pressure only in a distributional sense. For this, one 
can reformulate (26) in an operator formulation for which [55, Theorem 7.14] provides the existence and 
[55, Theorem 7.19] the uniqueness of a solution.

For the case of a stationary domain one can integrate the first cell problem over the time and consider 
there an inhomogeneous right-hand side in the momentum equation and a homogeneous initial value (see 
[6]). Then, one has to integrate over the time derivative of the cell problem in order to identify the two-scale 
limit of the velocity. In our case of an evolving domain, this integration of the cell problems would lead to 
additional terms due to the time-dependent coefficients and thus complicate the structure.



24 D. Wiedemann, M.A. Peter / J. Math. Anal. Appl. 546 (2025) 129222 

In order to compute the effective fluid velocity, we define

v̂ :=
∫
Y ∗

v̂0 dy .

Separating the macroscopic and microscopic variable in (28) and in (20c) gives the following integro–
differential equation as homogenised system

v̂(t, x) = v̂in +
t ∫

0 

K̂(s, t, x)(f̂ −∇p̂)(s, x) ds in (0, T ) × Ω , (30a)

divx(v̂(t, x)) = −
∫
Y ∗

divy(v̂Γ)(t, x, y) dy in (0, T ) × Ω , (30b)

p̂(t, x) = p̂b(t, x) on (0, T ) × Ω , (30c)

where the permeability-type tensor K̂(s, t, x) is given by

K̂(s, t, x)ji :=
∫
Y ∗

ζ̂i(s, t, x, y) · ej dy

and the initial value v̂in by

v̂in(t, x) =
∫
Y ∗

ζ̂0(t, x, y) dy .

In order to give v̂ a physical interpretation, we consider the back-transformation of the limit equations 
in the following section.

In the case that we model a no-slip boundary condition at vΓε
, one has vΓε

(t, x) = ∂tψε(t, ψ−1
ε (t, x)), 

which gives v̂Γε
= Aε∂tψ and allows the following simplification.

Lemma 6.2 (Macroscopic divergence condition for a microscopic no-slip boundary condition). Assume that 
vΓε

(t, x) = ∂tψε(t, ψ−1
ε (t, x)) for x ∈ Γε(t). Then, one can simplify the right-hand side of the macroscopic 

divergence condition (21c) to

∫
(0,T )

∫
Ω 

φ divx

⎛⎝∫
Y ∗

v̂0 dy

⎞⎠ dx dt = −
∫

(0,T )

∫
Ω 

φ

∫
Y ∗

divy(v̂Γ) dy dx dt

= −
∫

(0,T )

∫
Ω 

φ
d 
dtΘ dx dt

(31)

for Θ(t, x) = |Y ∗(t, x)| and every φ ∈ L2((0, T ) × Ω).

Proof. The Jacobi formula states that almost everywhere

d 
dt det(A(t)) = tr(Adj(A(t))∂tA(t)) = det(A(t))A−1(t) : ∂tA�(t)

for every A ∈ W 1,∞(0, T )n×n. With the Leibniz rule, the Jacobi formula applied to ∂yψ0 and the Piola 
identity, we infer
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divy(A0(t, x, y)∂tψ0(t, x, y))

= A0(t, x, y) : ∇∂tψ0(t, x, y) + divy(A0(t, x, y))∂tψ0(t, x, y)

= ∂tJ0(t, x, y) + 0 · ∂tψ0(t, x, y) = ∂tJ0(t, x, y) .

Hence, we obtain∫
Y ∗

divy(A0(t, x, y)v̂Γε
(t, x, y)) dy =

∫
Y ∗

∂tJ0(t, x, y) dy = ∂t

∫
Y ∗

J0(t, x, y) dy

= d 
dtΘ(t, x). �

As consequence of Lemma 6.2, we can simplify the right-hand side of (30b) to

divx(v̂(t, x)) = − d 
dtΘ(t, x) in (0, T ) × Ω . (32)

7. Back-transformation of the two-pressure Stokes system

In the last step, we transform the two-pressure Stokes equations (20) and the cell problems (26) and (27)
back to the actual moving cell domains. We separate again the macro- and microscopic variable, which leads 
to the Darcy law with memory (2). We note that a priori it is even from a formal point of view not clear 
that v̂ = v =

∫
Y ∗(t,x)

v0 dy, due to the transformation coefficient Ψ−1
0 in v̂0 = A0v0 = J0Ψ−1

0 v0. Nevertheless, 

we can employ the microscopic incompressibility condition in order to identify v̂ with v. Moreover, we show 
that K̂ = K.

Let

v0(t, x, y) := A−1
0 (t, x, ψ−1

0 (t, x, y))v̂0(t, x, ψ−1
0 (t, x, y)) ,

v̂0(t, x, y) = A0(t, x, y)v0(t, x, ψ0(t, x, y)) .

This choice is motivated by Lemma A.8, since it gives

vε
2, 2−−⇀−−−⇀ v0 if and only if v̂ε

2, 2−−⇀−−−⇀ v̂0 . (33)

We use this substitution in the two-pressure Stokes equations (20) with the version (25) for the momentum 
equation. The resulting equation can be transformed to the moving domain by means of ψ0 similarly to the 
transformation of the ε-scaled Stokes equations leading to (38). However, one has to be careful with the 
transformation of the pressure terms and the macroscopic divergence condition. The macroscopic pressure 
term in (20) has the coefficient Ψ−�

0 , which does not cancel in the back-transformation since there is no 
y-derivative. This can be circumvented by the substitution of (20) by (25), where this coefficient is cancelled 
by the substitution of the microscopic pressure q̂′1. For the weak form, one has to use analogously (24)
instead of (21a).

A similar problem arises in the back-transformation of the left-hand side of the macroscopic divergence 
condition, where the factor Ψ−1

0 of A0 = J0Ψ−1
0 does not cancel since there is no y-derivative involved, i.e.∫

Y ∗

v̂0 dy =
∫
Y ∗

A0(t, x, y)v0(t, x, ψ0(t, x, y)) dy =
∫

Y ∗(t,x)

Ψ−1
0 (t, x, ψ−1

0 (t, x, y))v0(t, x, y) dy .
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As for the pressure, we separate the microscopic oscillating part of the coefficient. But instead of shifting 
it to a microscopic term, we show that it cancels in this term due to the microscopic incompressibility of 
v̂0, i.e. we rewrite v̂0(t, x, y) = A0(t, x, y)v0(t, x, ψ0(t, x, y)) and use Lemma 7.1, which is given below, for 
u(t, x, y) = v0(t, x, ψ0(t, x, y)) to deduce∫

Y ∗

v̂0 dy =
∫
Y ∗

A0(t, x, y)v0(t, x, ψ0(t, x, y)) dy

=
∫
Y ∗

J0(t, x, y)v0(t, x, ψ0(t, x, y)) dy =
∫

Y ∗(t,x)

v0 dy .
(34)

Lemma 7.1. Let u ∈ L2(Ω;H1
Γ#(Y ∗;Rd)) with

divy(A0(x, y)u(x, y)) dy = 0 (35)

for a.e. x ∈ Ω. Then, ∫
Y ∗

A0(x, y)u(x, y) dy =
∫
Y ∗

J0(x, y)u(x, y) dy (36)

for a.e. x ∈ Ω.

Proof. For ξ ∈ Rd, we note that

A0ξ = J0Ψ−1
0 ξ = J0ξ + (1− Ψ0)J0Ψ−1

0 ξ = J0ξ + ∂y(y − ψ0)A0ξ

= J0ξ +

⎛⎜⎝∇y((y − ψ0)1) ·A0ξ
...

∇y((y − ψ0)d) ·A0ξ

⎞⎟⎠ .
(37)

We set ξ = u for u ∈ L2(Ω;H1
Γ#(Y ∗;Rd)) with divy(A0(x, y)u(x, y)) = 0. Then, we integrate the second 

summand on the right-hand side of (37) over Y ∗, subsequently integrate by parts and use the microscopic 
incompressibility condition (35). This shows∫

Y ∗

∇y(yi − ψ0(x, y)i) ·A0(x, y)u(x, y) dy

= −
∫
Y ∗

(yi − ψ0(x, y)i) · divy(A0(x, y)u(x, y)) dy = 0

for every i ∈ {1, . . . , d}, where the boundary integral of the integration by parts vanishes on Γ since u is 
zero on Γ and vanishes on ∂Y ∩∂Y ∗ since y−ψ0, A0 and u are Y -periodic. Therefore, the second summand 
on the right-hand side of (37) has mean value zero and vanishes after integrating over Y ∗, which yields 
(36). �

The strong form of the back-transformed two-pressure Stokes equations is given by

∂tv0 − μΔyy(v0) + ∇xp + ∇yp1 = f for (t, x) ∈ (0, T ) × Ω , y ∈ Y ∗(t, x) , (38a)

divy(v0) = 0 for (t, x) ∈ (0, T ) × Ω , y ∈ Y ∗(t, x) , (38b)
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divx

⎛⎜⎝ ∫
Y ∗(t,x)

v0 dy

⎞⎟⎠ = −
∫

Y ∗(t,x)

divy(vΓ) dy for (t, x) ∈ (0, T ) × Ω , (38c)

v0 = 0 for (t, x) ∈ (0, T ) × Ω , y ∈ Γ(t, x) , (38d)

p = pb on (0, T ) × Ω , (38e)

y 
→ v0, p1 Y -periodic , (38f)

v0 = vin
0 for x ∈ Ω , y ∈ Y ∗(0, x) . (38g)

Similarly, one can transform-back the weak form of the two-pressure Stokes equations, which leads to: 
Find (v0, q, q1) ∈ L2((0, T ) ×H1

#Γ(t,x)(Y ∗(t, x);Rd)) × L2(0, T ;H1
0 (Ω)) × L2((0, T ) × Ω;L2

0(Y ∗(t, x))) with 

∂tv0 ∈ L2({(t, x, y) ∈ (0, T ) × Ω × Y | y ∈ Y ∗(t, x)};Rd) such that∫
(0,T )

∫
Ω 

∫
Y ∗(t,x)

∂tv0 · ϕ + μ∇yv0 : ∇yϕ + ∇xq · ϕ− q1 divy(ϕ) dy dx dt

=
∫

(0,T )

∫
Ω 

∫
Y ∗(t,x)

f · ϕ− (∇xpb + ∇ypb,1) · ϕ dx dt ,
(39a)

∫
(0,T )

∫
Ω 

∫
Y ∗(t,x)

φ1 divy(v0) dx dt = 0 , (39b)

−
∫

(0,T )

∫
Ω 

∇xφ

∫
Y ∗(t,x)

v0 dy dx dt = −
∫

(0,T )

∫
Ω 

∫
Y ∗

φ divy(vΓ) dx dt , (39c)

v0(0) = vin
0 (39d)

for all (ϕ, φ, φ1) ∈ H1
Γ(t,x)(Y ∗(t, x);Rd)) × L2(0, T ;H1

0 (Ω)) × L2((0, T ) × Ω;L2
0(Y ∗(t, x))).

The space L2((0, T ) × H1
#Γ(t,x)(Y ∗(t, x);Rd)) has to be understood as the subspace of L2((0, T ) ×

H1
#(Y ;Rd)) of functions that are zero in Y s(t, x) for a.e. (t, x) ∈ (0, T ) × Ω. We understand ∂tv0 ∈

L2({(t, x, y) ∈ (0, T ) × Ω × Y | y ∈ Y ∗(t, x)};Rd) in the sense that ∂tv0 ∈ L2((0, T ) × Ω × Y ;Rd) and 
∂tv0 = 0 in Y s(t, x) for a.e. (t, x) ∈ (0, T ) × Ω.

We note that (39c) shows that divx(
∫

Y ∗(t,x)
v0 dy) ∈ L2((0, T ) × Ω).

By transforming the weak forms, one obtains the equivalence of the weak form (39) to the weak form 
(21b)–(21d) with (24) in the sense that (v̂0, q̂, q̂

′
1) solves (21b)–(21d) with (24) if and only if (v0, q, q1) solves 

(39), where

v̂0(t, x, y) = A0(t, x, y)v0(t, x, y, ψ0(t, x, y)) , q̂(t, x) = q(t, x) ,

q̂′1(t, x, y) = q1(t, x, ψ0(t, x, y)) .

The latter identity is equivalent to

q̂1(t, x, y) − (ψ0(t, x, y) − y) · ∇xq̂(t, x) = q̂′1(t, x, y) = q1(t, x, ψ0(t, x, y))

and, hence, q̂1(t, x, y) = q1(t, x, ψ0(t, x, y)) + (ψ0(t, x, y) − y) · ∇xq̂(t, x), which corresponds with back-
transformation rules of the correctors of the gradients derived in [50].

Having the equivalence of the ε-scaled problems and the two-pressure Stokes problem, we can transfer 
also the two-scale convergence of ŵε, v̂ε and q̂ε to wε, vε and qε, respectively. We note that we have to 
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extend the functions in order to define the (two-scale) convergence. We extend wε and vε by zero as we 
have already done for the transformed functions ŵε, v̂ε, i.e. we denote by w̃ε and ˜̂vε their extension by zero 
to Ω. Since the transformation mapping ψε is defined on all of Ω, we have ˜̂wε(t, x) = w̃ε(t, ψε(t, x)) and ˜̂vε(t, x) = ṽε(t, ψε(t, x)) for a.e. (t, x) ∈ (0, T ) × Ω. For the extension Q̂ε of the pressure q̂ε, we have used 
the extension by its cell-wise mean value. Consequently, in Ωs

ε this extension depends on the chosen ψε. In 
order to formulate the convergence result independently of ψε, we define analogously the extension Qε of 
qε to Ω by

Qε(t, x) :=

⎧⎪⎨⎪⎩
qε(t, x) for t ∈ (0, T ), x ∈ Ωε(t) ,

1 
|Ωε∩ε(k+Y )|

∫
ε(k+Y ∗)

q̂ε(t, x) for t ∈ (0, T ), x ∈ Ωs
ε ∩ ε(k + Y ) for k ∈ Kε .

(40)

We note that Q̂ε(t, x) = Qε(t, ψε(t, x)) holds for (t, x) ∈ (0, T )×Ωε but not necessarily for (t, x) ∈ (0, T )×Ωs
ε. 

Nevertheless, this equivalence suffices in order to translate the convergence of ˜̂Qε to the convergence of Q̃ε.

Theorem 7.2. Let (wε, qε) be the solution of (7) and w̃ε the extension of wε by zero, Qε the extension of qε
defined by (40) and ṽ0 the extension of v0 by zero to Y . Then,

w̃ε
2, 2−−⇀−−−⇀ ṽ0 Qε

2, 2−−⇀−−−⇀ q , (41)

and, thus, in particular,

wε ⇀ v =
∫

Y ∗(t,x)

v0 dy in L2((0, T ) × Ω) , Qε ⇀ q in L2((0, T ) × Ω) , (42)

where (v0, q, q1) is the solution of (39).

Proof. Lemma A.8 gives the two-scale convergence of wε and Q̂ε(t, ψ−1
ε (t, x)) to (v0, q) with v0(t, x, y) =

v̂0(t, x, ψ−1
0 (t, x, y)) and q = q̂, where (v̂0, q̂) are the two-scale limits of ŵε and Q̂ε. Arguing similarly to [52], 

one can deduce from the weak convergence of Q̂ε(t, ψ−1
ε (t, x)) to q the weak convergence of Qε to q. Since 

(v̂0, q̂) is the first part of the solution of (21b)–(21d) with (24), (v0, q) is the first part of the solution of 
(39). �

In the case of a no-slip boundary condition at Γε(t), i.e. in the case that vΓε
= ∂tψε(t, ψ−1

ε (t, x)), one 
can again simplify the right-hand side of the macroscopic divergence condition as in Lemma 6.2 to

divx

( ∫
Y ∗(t,x)

v0(t, x, y) dy
)

= − d 
dtΘ(t, x) in (0, T ) × Ω .

In order to separate the micro- and macroscopic variable in (38), we define

v(t, x) :=
∫

Y ∗(t,x)

v0(t, x, y) dy (43)

and note that (34) shows v̂ = v.
Separating the micro- and macroscopic variable in (38) for the case of the no-slip boundary condition 

leads to the Darcy law (2), with the permeability tensor (3), the initial value (5) and the cell problems (4)
and (6). For the general case, one gets the same result but with (44) instead of (2b), where
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divx v(t, x) = −
∫

Y ∗(t,x)

divy(vΓ(t, x, y)) dy = −
∫

Γ(t,x)

vΓ(t, x, y) · n dy . (44)

In particular, the macroscopic velocity is divergence-free if the integral of the normal component of the 
boundary values over Γ(t, x) vanishes for all x ∈ Ω and for each time.
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Appendix A. Two-scale convergence

For the limit process, we use the notion of two-scale convergence, which was introduced in [37,7], see also 
[30].

Since we consider a time-dependent problem, we use the following with time parametrised version of 
two-scale convergence. In what follows, let Y = (0, 1)d.

Definition A.1 (Two-scale convergence). Let p ∈ [1,∞), q ∈ (1,∞) and 1 
p + 1 

p′ = 1, 1
q + 1 

q′ = 1. A sequence 
uε ∈ Lp(0, T ;Lq(Ω)) two-scale converges to u0 ∈ Lp(0, T ;Lq(Ω × Y )) if

lim
ε→0

∫
(0,T )

∫
Ω 

uε(t, x)ϕ
(
t, x,

x

ε 

)
dx dt =

∫
(0,T )

∫
Ω 

∫
Y

u0(t, x, y)ϕ(t, x, y) dy dx dt

for all ϕ ∈ Lp′(0, T ;Lq′(Ω;C#(Y ))). In this case, we write uε
p, q−−⇀−−−⇀ u0, or uε(t, x) p, q−−⇀−−−⇀ u0(t, x, y) if we 

want to emphasize the dependence on the variables.
For p, q ∈ (1,∞), we say that uε strongly two-scale converges to u0 ∈ Lp(0, T ;Lq(Ω × Y )) if and only 

if uε
p, q−−⇀−−−⇀ u0 and lim

ε→0
‖uε‖Lp(0,T ;Lq(Ω)) = ‖u0‖Lp(0,T ;Lq(Ω×Y )). In this case, we write uε

p, q−−→−−−→ u0, or 

uε(t, x) p, q−−→−−−→ u0(t, x, y) if we want to emphasize the dependence on the variables.

Moreover, we have the following well-known compactness result.

Lemma A.2 (Two-scale compactness). Let p, q ∈ (1,∞) and uε a bounded sequence in Lp(0, T ;Lq(Ω)). 
Then, there exist a subsequence uε and u0 ∈ Lp(0, T ;Lq(Ω × Y )) such that for this subsequence 

uε
p, q−−⇀−−−⇀ u0. Moreover, if also ε∇xûε is bounded in Lp(0, T ;Lq(Ω), there exist a subsequence uε and 

u0 ∈ Lp(0, T ;Lq(Ω;W 1,q
# (Y ))) such that uε

p, q−−⇀−−−⇀ u0 and ε∇uε
p, q−−⇀−−−⇀ ∇yû0.

Due to the transformation of the equations in the reference coordinates, we obtain coefficients which 
strongly two-scale converge. For those, the following two product results become useful. They can be derived 
for instance using the unfolding operator.
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Lemma A.3. Let p, q, q1, p2, q2, p, q ∈ [1,∞) with 1 
p1

+ 1 
p2

= 1 
p , 

1 
q1

+ 1 
q2

= 1
q and uε be a sequence 

in Lp1(0, T ;Lq1(Ω)) and u0 ∈ Lp1(0, T ;Lq1(Ω × Y )) such that uε
p1, q1−−→−−−→ u0. Let vε be a sequence in 

Lp2(0, T ;Lq2(Ω)) and v0 ∈ Lp2(0, T ;Lq2(Ω × Y )) such that vε
p2, q2−−⇀−−−⇀ v0. Then, uεvε

p, q−−⇀−−−⇀ u0v0.
Moreover, if also p, q ∈ (1,∞) and vε

p2, q2−−→−−−→ v0 one has vε
p, q−−→−−−→ v0.

In the case that the sequence uε is also essentially bounded, one can preserve the integrability.

Lemma A.4. Let p, q ∈ (1,∞). Let uε be a bounded sequence in L1((0, T ) × Ω) ∩ L∞((0, T ) × Ω) and 

u0 ∈ L1((0, T ) × Ω) ∩ L∞((0, T ) × Ω) such that uε
2, 2−−→−−−→ u0. Let vε be a sequence in Lp(0, T ;Lq(Ω)) and 

v0 ∈ Lp(0, T ;Lq(Ω× Y )) such that vε
p, q−−⇀−−−⇀ v0 (resp. vε

p, q−−→−−−→ v0). Then, uεvε
p, q−−⇀−−−⇀ u0v0 (resp. uεvε

p, q−−→−−−→
u0v0).

A.1. Transformation and two-scale convergence

Following [50], we obtain the following result on two-scale convergence in the context of the microscopic 
coordinate transformation.

Lemma A.5 (Bounds for the Jacobians). Let ψε satisfy Assumption 2.1(R1)–(R2), Assumption 2.1(B1) for 
l = 1. Then, there exists a constant C such that

‖Ψε‖L∞((0,T )×Ω) + ‖Ψ−1
ε ‖L∞((0,T )×Ω) + ‖Jε‖L∞((0,T )×Ω) ≤ C ,

‖J−1
ε ‖L∞((0,T )×Ω) + ‖Aε‖L∞((0,T )×Ω) + ‖A−1

ε ‖L∞((0,T )×Ω) ≤ C ,

‖∂tΨε‖L∞((0,T )×Ω) + ‖∂tΨ−1
ε ‖L∞((0,T )×Ω) + ‖∂tJε‖L∞((0,T )×Ω) ≤ C ,

‖∂tJ−1
ε ‖L∞((0,T )×Ω) + ‖∂tAε‖L∞((0,T )×Ω) + ‖∂tA−1

ε ‖L∞((0,T )×Ω) ≤ C .

Assume that additionally Assumption 2.1(B1) is satisfied for l = 2. Then, there exists a constant C such 
that

ε‖∂xΨε‖L∞((0,T )×Ω) + ε‖∂xΨ−1
ε ‖L∞((0,T )×Ω) + ε‖∂xJε‖L∞((0,T )×Ω) ≤ C ,

ε‖∂xJ−1
ε ‖L∞((0,T )×Ω) + ε‖∂xAε‖L∞((0,T )×Ω) + ε‖∂xA−1

ε ‖L∞((0,T )×Ω) ≤ C ,

ε‖∂t∂xΨε‖L∞((0,T )×Ω) + ε‖∂t∂xΨ−1
ε ‖L∞((0,T )×Ω) + ε‖∂t∂xJε‖L∞((0,T )×Ω) ≤ C ,

‖ε∂x∂tJ−1
ε ‖L∞((0,T )×Ω) + ε‖∂x∂tAε‖L∞((0,T )×Ω) + ε‖∂x∂tA−1

ε ‖L∞((0,T )×Ω) ≤ C .

Proof. Lemma A.5 can be shown by rewriting all quantities in terms of polynomials in ∂xψε, ∂x∂tψε, 
ε∂x∂xψε, ε∂x∂x∂tψε and J−1

ε which are bounded by the assumption. We refer to [50], [51], [52] for a more 
detailed proof. �
Lemma A.6 (Bounds under transformations). Let ψε satisfy Assumption 2.1(R1)–(R2), Assumption 2.1(B1)
for l = 1. Let p, q ∈ [1,∞) and uε be a sequence of functions and ûε(t, x) := uε(t, ψε(t, x)). Then,

uε ∈ Lp(0, T ;Lq(Ωε(t))) if and only if ûε ∈ Lp(0, T ;Lq(Ωε)) ,

uε ∈ Lp(0, T ;W 1,q(Ωε(t))) if and only if ûε ∈ Lp(0, T ;W 1,q(Ωε)) ,

uε ∈ H1(ΩT
ε ) if and only if ûε ∈ H1((0, T ) × Ωε) .

Moreover, in all three cases, uε is uniformly bounded if and only if ûε is uniformly bounded.
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The space Lp(0, T ;Lq(Ωε(t))) can be understood as the measurable functions on ΩT
ε such that 

‖‖u(·)‖Lq(Ωε(t))‖Lp(0,T ) is finite. The space Lp(0, T ;W 1,q(Ωε(t))) has to be understood as the subset of 
Lp(0, T ;Lq(Ωε(t))) such that u(t) ∈ W 1,q(Ωε(t)) for a.e. t ∈ Ω and ∂xu ∈ Lp(0, T ;Lq(Ωε(t))).

Proof of Lemma A.6. Lemma A.6 follows directly from coordinate transformation and the uniform essential 
bounds for the Jacobians of ψε. �

For the Jacobians of the transformations, we obtain the following asymptotic behaviour:

Lemma A.7 (Two-scale convergence of the Jacobians). Let ψε satisfy Assumption 2.1(R1)–(R2), Assump-
tion 2.1(B1) for l = 1 and Assumption 2.1(A1)–(A2), 2.1(A4)–(A5) Then, for every p ∈ (1,∞),

Ψε
p, p−−→−−−→ Ψ0 , Ψ−1

ε

p, p−−→−−−→ Ψ−1
0 , Jε

p, p−−→−−−→ J0 , J−1
ε

p, p−−→−−−→ J−1
0 , 

Aε
p, p−−→−−−→ A0 , A−1

ε

p, p−−→−−−→ A−1
0 , ∂tΨε

p, p−−→−−−→ ∂tΨ0 , ∂tΨ−1
ε

p, p−−→−−−→ ∂tΨ−1
0 , 

∂tJε
p, p−−→−−−→ ∂tJ0 , ∂tJ

−1
ε

p, p−−→−−−→ ∂tJ
−1
0 , ∂tAε

p, p−−→−−−→ ∂tA0 , ∂tA
−1
ε

p, p−−→−−−→ ∂tA
−1
0 . 

Assume that additionally Assumption 2.1(B1) is satisfied for l = 2 and 2.1(A3), (A6). Then, one has 
additionally

ε∂xΨε
p, p−−→−−−→ ∂yΨ0 , ε∂xΨ−1

ε

p, p−−→−−−→ ∂yΨ−1
0 , ε∂xJε

p, p−−→−−−→ ∂yJ0 , 

ε∂xJ
−1
ε

p, p−−→−−−→ ∂yJ
−1
0 , ε∂xAε

p, p−−→−−−→ ∂yA0 , ε∂xA
−1
ε

p, p−−→−−−→ ∂yA
−1
0 , 

ε∂x∂tΨε
p, p−−→−−−→ ∂y∂tΨ0 , ε∂x∂tΨ−1

ε

p, p−−→−−−→ ∂y∂tΨ−1
0 , ε∂x∂tJε

p, p−−→−−−→ ∂y∂tJ0 , 

ε∂x∂tJ
−1
ε

p, p−−→−−−→ ∂y∂tJ
−1
0 , ε∂x∂tAε

p, p−−→−−−→ ∂y∂tA0 , ε∂x∂tA
−1
ε

p, p−−→−−−→ ∂y∂tA
−1
0 . 

Proof. The first part was shown for the time-independent case in [50], the time-dependent case can be 
deduced by the same argumentation and is given also in [51]. The second part becomes relevant for the 
Stokes problem and is presented for the time-independent case in [52], while the time-dependent case can 
be deduced by the same argumentation. �

Moreover, we can translate the two-scale convergence between the transformed and untransformed setting 
as follows.

Lemma A.8 (Transformation and two-scale convergence). Let ψε satisfy Assumption 2.1(R1)–(R2), As-
sumption 2.1(B1) for l = 1 and let ψ0 satisfy Assumption 2.1(L1)–(L3) such that the convergence of 
Assumption 2.1(A1)–(A2) is satisfied. Let p, q ∈ (1,∞) and uε ∈ Lp(0, T ;Lq(Ω)) be a sequence of functions, 
ûε(t, x) := uε(t, ψε(t, x)) and u0 ∈ Lp(0, T ;Lq(Ω × Y )). Then,

uε
p, q−−⇀−−−⇀ u0 if and only if ûε

p, q−−⇀−−−⇀ û0 ,

uε
p, q−−→−−−→ u0 if and only if ûε

p, q−−→−−−→ û0 ,

where û0(t, x, y) = u0(t, x, ψ0(t, x, y)).
Moreover, if uε ∈ Lp(0, T ;W 1,q(Ω)), u0 ∈ Lp(0, T ;W 1,q(Ω)), u1 ∈ Lp(0, T ;Lq(Ω;W 1,q

# (Y ))) one has

∇uε
p, q−−⇀−−−⇀ ∇xu0 + ∇yu1 if and only if ∇ûε

p, q−−⇀−−−⇀ û0∇xû0 + ∇yû1
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for u0 = û0 and û1(t, x, y) = u1(t, x, ψ0(t, x, y)) + ∇xu0(t, x) · (ψ0(t, x, y) − y). If uε ∈ Lp(0, T ;W 1,q(Ω)), 
u0 ∈ Lp(0, T ;Lq(Ω;W 1,q

# (Y ))) one has

ε∇uε
p, q−−⇀−−−⇀ ∇yu0 if and only if ε∇ûε

p, q−−⇀−−−⇀ ∇yû0

for û0(t, x, y) = u0(t, x, ψ0(t, x, y)).

Proof. For the proof of the time-independent case, see [50]. The time-dependent case can be deduced by 
the same argumentation. �
Remark A.9. Lemma A.5–Lemma A.8 are formulated for the two-scale convergence with the time as pa-
rameter. Since Assumption 2.1 provides also a uniform control of the time derivative of ψε, the two-scale 
convergence of ψε and its spatial derivatives holds also for every fixed point in time, in particular for the 
initial time. Thus, one can also deduce Lemma A.5–Lemma A.8 for a fixed point in time, which becomes 
useful for the investigation of the initial values.
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