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I. INTRODUCTION 

Robots are widely used in industrial assembly processes for 

various applications. However, conventional control 

algorithms that rely on static programming are not adaptable 

for facilitating human-robot collaborations and interactions 

with an unknown environment. In applications such as these, 

force and torque feedback become vital, and the potential of 

this control strategy can be fully leveraged by training a 

supervised learning algorithm with force-torque data. 

However, collecting training data for learning-based force-

torque control can be time-consuming and inefficient. Hence, 

simulations can generate abundant data for interactions 

between the robot and its environment. This paper proposes a 

synthetic force-torque data generation method for hassle-free 

robot training when interacting with rigid and deformable 

materials in industrial assembly tasks by leveraging transfer 

learning techniques. Additionally, it discusses how the 

simulation model of the environment can be validated to 

obtain the most accurate estimates of the real forces in the 

physical world with Sim2Real transformation of the industrial 

assembly setup. 

Since the inception of the usage of robots in assembly lines, 

control strategies have primarily focused on ensuring the 

positional accuracy of the robot’s end effector to execute tasks 

effectively. However, this emphasis on positional precision 

often encounters difficulties over time due to the wear and 

tear of various robot parts. As these components degrade, they 

can cause slips in drives and provide false encoder values, 

resulting in deviations of the tool centre point (TCP) position 

from the desired location. These deviations pose significant 

risks, particularly in scenarios requiring human-robot 

collaboration, where even minor discrepancies in positioning 

can lead to potentially fatal accidents [1]. Moreover, in tasks 

involving the handling of softer materials, the slightest 

deviation from the intended path may damage the handled 

workpiece, leading to the wastage of valuable resources. 

Therefore, there is a need to evolve control strategies beyond 

conventional positional accuracy to address such challenges 

and enhance safety and efficiency in assembly processes. 

Incorporating force adaptability into control systems can 

mitigate the impact of wear and tear on robot components, 

reducing the likelihood of positioning errors. Thus, using 

state-of-the-art sensing technologies, such as force-torque 

sensors, can better estimate interactions between the robot and 

its environment.  

By integrating this feedback into control algorithms, the 

robot can dynamically adjust its movements to account for 

variations in material properties or unexpected obstacles, thus 

minimizing the risk of damages or accidents. Additionally, 

adopting learning-based control approaches, such as 

reinforcement learning (RL) or neural network-based 

methods, can facilitate the development of more adaptive and 

resilient control policies. These algorithms can continuously 

learn from interactions with the environment, allowing the 

robot to autonomously optimize its behaviour over time and 

counter the evolving conditions, including wear-induced 

degradation. Training robots for these data-driven, learning-

based force-torque control approaches needs substantial 

physical data with accurate force and torque estimates, which 

can be challenging to obtain with real robot systems. Hence, 

adopting synthetic data generation methods becomes vital for 

efficiently acquiring ample and diverse data [2]. By 

leveraging state-of-the-art simulation platforms, one can 

generate synthetic data that closely mimic real-world 

scenarios while offering several advantages [3]. Synthetic 

data generation allows for rapidly accumulating large datasets 

within a fraction of the time required for real-world data 

collection. This accelerated data acquisition process 

significantly paces the training of learning-based control 

algorithms. 

Moreover, simulation environments enable the inclusion of 

diverse environmental variations, introducing a wide range of 

forces and torques acting on the robot’s end effectors. Hence, 

by utilizing these advantages in the selected simulation 

environment, the method is proposed where the data 

generated using the robot’s interaction with a metallic peg-in-

hole test bench is used to train the suitable machine learning 

(ML) model and this pre-trained model to be incorporated 

directly on an actual metallic industrial assembly workpiece 

used in a similar peg-in-hole assembly setup by transfer 

learning. Furthermore, the Sim2Real transfer can also be 

validated by comparing the results obtained from the 

synthetic data in the simulation with the data from the real 

robot for a particular material. 
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II. PROPOSED METHOD 

The setup to generate synthetic force and torque data for a 

robotic industrial assembly process is modelled in a 

simulation environment Isaac Sim by NVIDIA, as shown in 

Fig.1. The robot used in this context is a 7-axis collaborative 

robot, Franka Panda from Franka Robotics. As the paper 

focuses on force and torque control, one of the standard use 

cases to be set up and tested is a peg-in-hole assembly, which 

has been formally tested in various previous research works 

[4]. Thus, for training the robot on a chosen material, a 

cylindrical peg of length 40 mm and diameter 6 mm is 

designed and is provided with a cubical top so that the two-

finger gripper can conveniently hold the peg from both sides. 

Moreover, a cubical block is designed with various holes with 

varying diameters and shapes. Three circular holes were of 

varying diameters, 6.05 mm, 6.10 mm, and 6.30 

mm, respectively. A fourth hexagonal hole is tested to get 

some non-uniform behaviour in the X and Y-axis forces 

exerted on the robot end effector during the task. After a depth 

of 10 mm, this slot also consists of a 6.30 mm circular hole. 

The real robot is provided with an inbuilt force torque sensor 

at its end effector with force and torque resolution of 0.05 N 

and 0.02 Nm, respectively. Hence, a similar virtual sensor is 

also made available in the model used in the simulation.  

 

 
Fig. 1  Simulation model of the robot peg-in-hole test bench setup with 

metallic peg and hole 

The peg and block are metallic and are used to set up a 

physical test bench with the real robot system; thus, in the 

simulation, the block and peg are assigned the same material 

to mimic the properties, reaction forces, and deformability 

behaviour in our real-world setup. The real-time position and 

force-torque data in 6-axes are gathered from the simulation 

environment for the end effector. The recorded data is plotted 

against time as a time series of the events of placing the peg 

in the hole. As an example, the plot shown in Fig. 2 is 

generated for the action of placing the peg in the hexagonal 

hole of the block. 

This data generated using metal is now suitable as training 

data for a learning-based algorithm of choice, as explained in 

[4][5], where both position and forces at the end effector are 

used for the adaptive control. These models can apply to a 

broader set of materials and use cases. The proposed method 

involves first generating synthetic data in varying 

environmental settings, randomized via a Python API in Isaac 

Sim. To validate the correctness of the proposed generated 

synthetic data and the parameters of the simulation 

environment, the forces and torques from the real robot 

system are also recorded along with the corresponding 

positions for the processes in the peg-in-hole test bench setup 

with peg and block. Comparing the real force-torque data with 

the generated synthetic dataset gives us an estimate of the 

parameters in the simulation environment that are ideal for 

creating a reliable and robust pipeline for training dataset 

generation.  

 

 

Fig. 2  Generated force and torque data plot for the proposed test bench 

setup in the simulation of metallic peg-in-hole assembly. 

The data produced and validated through this pipeline is 

reliable as labelled training data and, after feature extraction 

for forces and torques in the peg-in-hole action, will be ready 

for training an ML algorithm to predict the position of the tool 

centre point (TCP) based on six features: three forces and 

three torques. Given the variety in the range of values for the 

forces and torques, the data needs to be normalized to a scale. 

Moreover, as the generated time series data comprises the 

whole process from picking the peg to inserting it into the 

hole, the valuable time series can be extracted according to 

the use case. As seen in Fig. 2, the deviation in forces is 

negligible until the insertion of the peg, and only when it is 

being inserted do the forces fluctuate. Thus, one can use only 

the data excerpt where this fluctuation occurs. After training 

an ML model with this data, it can later be tested for accuracy 

on other holes of the block, which vary in size and shape and 

require the TCP to adjust the position accordingly. Also, if 

needed, data from the insertion of the peg into different holes 

can be combined to create a training dataset with differing 

hole sizes, thus avoiding overfitting to a particular shape and 

size of the hole. 

III. CONCLUSION 

The proposed approach could replace the monotonous and 

time-consuming process of physical data generation with a 

synthetic alternative that considers various materials. 

Additionally, in supervised learning algorithms where force 

and torque feature vectors need to be labelled with the 

respective positions, this approach will save significant 

labelling time and resources. Finally, by leveraging the 

transfer learning capabilities, a robust pre-trained model can 

be created and used for a wide range of materials for the 

specific use case. 
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