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Affective computing (AC), like most other areas of computational research, has benefited tremendously 
from advances in deep learning (DL). These advances have opened up new horizons in AC research and 
practice. Yet, as DL dominates the community’s attention, there is a danger of overlooking other emerging 
trends in artificial intelligence (AI) research. Furthermore, over-reliance on one particular technology may 
lead to stagnating progress. In an attempt to foster the exploration of complementary directions, we 
provide a concise, easily digestible overview of emerging trends in AI research that stand to play a vital 
role in solving some of the remaining challenges in AC research. Our overview is driven by the limitations 
of the current state of the art as it pertains to AC.

Introduction

Affective computing (AC), like all areas of artificial intelligence 
(AI), has benefited immensely from the rise of deep learning 
(DL). The first major advancements came in perception—an 
area in which DL particularly excels, with the last few years 
seeing an equal, if not more impressive, progress in the genera-
tion of affective behaviors. These advances have sparked wide-
spread enthusiasm in the field but also attracted increasing 
criticism. Most recently, the European Union’s proposed AI 
regulation casts a critical eye on AC and emotion recognition, 
in particular. A large share of this criticism is inspired by deeper 
ethical questions that pertain to whether we should create arti-
ficial agents with affective capabilities at all—a question that 
has been considered elsewhere [1].

However, another cause of worry is the brittleness of DL 
methods in certain situations and its unexpected failure modes. 
The latter is in large part a byproduct of the success that DL 
has sparked. With greater performance come ever increasing 
user expectations, which raises an interesting question: Can 
DL overcome its current limitations, or are alternative, com-
plementary intelligence paradigms called for? This is the ques-
tion we address in our current contribution. Specifically, we 
attempt to chart out these alternative research directions by 
drawing inspiration from contemporary advances in the wider 
AI literature.

We note that DL is not the only paradigm being pursued 
in contemporary AC research; however, it is drawing a great 

deal of recent attention. The popularity of DL is reflected in 
the majority of recent reviews, which tend to focus on DL 
methodologies, as discussed by Wang et al. [2]. In order to 
further ascertain the community’s interest in this field, we 
collected all journal articles published in IEEE Xplore between 
2012 and 2023 containing the terms “affective computing” or 
“affective computing AND deep learning” (in any of their 
indexed fields). The trend shown in Fig. 1 illustrates the 
increasing importance of DL (which is mentioned in almost 
30% of published journal articles in recent years). Note that 
our coarse search potentially missed several articles using 
DL-related terms such as convolutional neural networks 
(CNNs)/recurrent neural networks/transformers, and is thus 
underestimating the number of DL-related papers. Thus, while 
not being the singular focus point of research, DL is neverthe-
less one of the dominant computational paradigms, which 
caused us to ask: What lies beyond?

We begin with an introduction of the state of the art; it cov-
ers the progress yielded by DL as well as its most prominent 
shortcomings. We use those shortcomings as anchors for the 
research areas we cover in our overview, which constitutes a 
bottom-up “requirements engineering” as covering all the 
advances in AI would be an unmanageable feat. Rather, we 
cover those directions we consider to be most pertinent to 
where AC currently is. This focus brings, by necessity, a sub-
jective element to our overview. Nevertheless, our work aims 
to inspire future research in emerging topics that can lead us 
to the next generation of AC architectures.
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A Brief Overview of the State of the Art
As our work is geared toward expected future advances, and 
existing reviews already cover the existing state of the art (see 
among others [3–6]), we only provide a brief overview of prior 
work. We begin with a necessary definition of AC, with empha-
sis on those aspects relevant to our discussion, and follow up 
with a synopsis of DL, highlighting its major contributions and, 
more importantly, its current limitations.

A working definition of AC
AC is the field that concerns itself with the understanding and 
emulation of human affect. In the present context, we use affect 

in its broadest connotation, which includes emotions, mood, 
interpersonal stances, attitudes, and affective personality traits, 
as per the taxonomy of [7,8]. Furthermore, we consider both 
the analysis and synthesis of affect, as both aspects play an 
equally important role in AC. Finally, we do not differentiate 
among the different modalities (or signals) that have been used 
to analyze or portray affect; indeed, as we later discuss, one of 
the defining characteristics of DL is the substitution of custom-
ized, task-specific pipelines with powerful, generic learners that 
can learn any task given sufficient data. While not restricting 
ourselves to a specific modality makes our scope broader, it 
allows us to unify trends that are observed across the different 
strata of AC research.

Of all the affective states that are of interest to the compu-
tational community, emotion has perhaps played the most 
prominent role. Underlying computational approaches to emo-
tion are the different theoretical models [9]: From Ekman’s “big 
6” and other categorical models [10], to Russel’s circumplex 
model [11] and emotional dimensions, to appraisal theories 
and Scherer’s emotional component model [12], several differ-
ent constructs have been proposed and used in AC research. 
To date, the most dominant one is probably the categorical 
model, followed by the dimensional one, with alternatives 
receiving far less attention.

However, categorical descriptions of emotion are not neces-
sarily the most accurate or fitting representations. Contrary 
to other emotion theory families, appraisal theories seek 
to explain the whole “emotion process.” Therefore, Scherer [13] 
advocates basing emotional agents on them. A range of archi-
tectures and prototypes for such systems have been proposed 
in recent years, e.g., CAIO [14], ABC-EBDI [15], and Silicon 
Coppelia [16], the vast majority of them indeed founded on an 
appraisal framework. For a comprehensive overview of this line 
of research, see Zall and Kangavari [17].

Fig.  1. Number (#) of journal publications appearing in IEEE Xplore between 2012 
and 2023 featuring the terms “affective computing” (AC) or “affective computing” 
AND “deep learning” (AC + DL).
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Fig. 2. A schematic diagram of the envisioned system.
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Furthermore, emotional reactions do not exist in a vacuum 
but are interspersed in other functionalities of an agent in its 
environment. In particular, the agent must be able to sense this 
environment and produce its responses in a way that accounts 
for emotional “appropriateness”—a feat indicative of the agent’s 
emotional competence. Scherer [13] characterizes emotion 
production competence as consisting of 3 aspects: (1) appraisal 
competence, (2) regulation competence, and (3) communica-
tion competence. The appraisal competence of artificial emo-
tional agents is their capability of judging a given situation 
correctly and updating their emotional state accordingly. 
Regulation competence is the capability of an agent to appro-
priately manage and, if necessary, readjust its emotional state. 
As this capability lies beyond our current scope, we will not 
discuss it further. Last, communication competence entails 
both understanding the emotions expressed by others and 
being capable of expressing emotions in such a way that others 
can be expected to be able to decode them. In particular, emo-
tion expression has to consider the sociocultural context and 
aim for appropriateness.

We note that similar models exist for other affective states. 
For example, personality is typically evaluated with OCEAN 
[18] or other such models, whereas mood is (self-)evaluated 
using the Hamilton Depression Scale (HAMD) [19] or similar 
constructs—although this line of research is most commonly 
pursued in mental health research. Irrespective of the underly-
ing construct, though, AC is typically tasked with predicting 
or simulating it.

With respect to the modalities used to model and portray 
these states, there exists an equally broad spectrum of sensors 
and signals. The 3 major types are vision, audio, and text, and 
they are used for both the analysis and synthesis of affect. 
Visual cues such as facial expressions and gestures are among 
the most prominent signals investigated by AC researchers 
[20,21]. Voice is another major signal for the modeling of affec-
tive expression [7,8]. Textual analysis is often pursued in isola-
tion from speech as text can be produced by other means (writing) 
[22]. In addition to those modalities, physiological signals, 
such as electrodermal activity, heart rate, and electrocardio-
grams, can be passively and ubiquitously monitored and are 
highly correlated with affective arousal [23]. Wearable sensors, 
such as GPS, biomechanical, or tactile sensors, can be used to 
track mood (mostly in depressed individuals) or well-being 
[24–26]. However, in these cases, research has focused exclu-
sively on analysis, and not synthesis.

The state of the art in DL
Definition
There are many different interpretations of DL. In fact, as DL 
is a relatively novel machine learning paradigm, its theoretical 
foundations are still an area of active research. For our pur-
poses, we focus on its key differentiating characteristic, namely, 
depth.

Depth arises from stacking together multiple learnable mod-
ules, or layers, which are jointly trained to optimize a given 
objective. The building blocks of DL architectures are relatively 
simple: linear or convolutional layers, sigmoid or rectified acti-
vation functions, different normalizations. Their representation 
power arises when several are composed in a hierarchical com-
putational graph, with the first layer processing the (raw) input, 
the second layer processing the output of the first, and so on 

until the last layer, which produces the output. Each layer then 
successively generates a higher-level representation, a “deeper” 
form of abstraction derived over its input, until the last layer, 
tasked to generate the highest form of abstraction (e.g., the 
target classes).

A key motivation for DL is the potential to circumvent tra-
ditional feature engineering [27]. Allowing a general-purpose 
learning machine to jointly learn both the features and the 
predictive “rules” it needs from data is a crucial advantage. 
Traditional, shallow methods are only as good as their features, 
which are ultimately as good as the engineers who design them.

Contributions
The advances facilitated by DL are astounding. The most 
notable one is their superior performance in a vast array of 
tasks, beginning with computer vision [28,29], speech rec-
ognition [30], and natural language processing (NLP) [31], 
and quickly spreading to encompass most application fields 
of machine learning [32,33]. AC was also one of the early 
adopters of this technology, with DL models quickly becoming 
the new state of the art in facial [21,34] and speech emotion 
recognition [35] and other application areas.

The biggest improvement came in the form of increased per-
formance; deep neural networks (DNNs) were able to achieve 
impressive gains over traditional, shallow baselines, especially 
in those affective dimensions that were previously more chal-
lenging, such as valence in the case of speech [33]. Another 
major improvement came in the form of robustness, with deep 
models showing better generalization across noise conditions 
over handcrafted feature-based methods [36]. Although DNNs 
were later found to be susceptible to “adversarial attacks” [37] 
(small perturbations that can considerably reduce their perfor-
mance), their robustness to more realistic degradations that 
plagued traditional approaches is still remarkable [33].

Another key innovation of DNNs was their conduciveness 
to transfer learning, and in particular their ability to consume 
large datasets and produce generalizable representations that 
can be used to effectively solve downstream tasks [27], an abil-
ity that was vastly improved over that of shallower architec-
tures [38]. Further advances in learning without labels allowed 
the scaling of the amount of available data [39], resulting in 
training datasets that effectively capture a large part of the 
entire Internet [40]. Oftentimes, knowledge transfer traversed 
the boundaries of a single modality, with researchers utilizing 
the power of learned representations in one modality to improve 
performance in another, as in the case of image-to-audio trans-
fer learning [41,42].

These trends have accelerated with the advent of transform-
ers [31] and self-supervised learning. Transformers are archi-
tectures that rely on a stack of “self-attention” blocks: operators 
that were originally introduced for NLP and have since found 
widespread use in computer vision and audition [33,42,43]. 
The introduction of this new class of models coincided with 
important advances in self-supervised learning, a form of non-
supervised learning where a network is trained on a set of proxy 
tasks derived from the data itself. This practice is so widespread 
that these models have been recently labeled “foundational” 
and now form the building blocks on which most contem-
porary machine learning research is founded [44]. Similar 
advances have also been driving the recent explosion in genera-
tive AI [3], which is equally important for the generation of 
affective behavior.
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Limitations
Despite the tremendous performance improvements facilitated 
by DL, there still remains much ground to be covered before 
AC applications can meet (ever increasing) user expectations. 
In the present section, we discuss the missing pieces with an 
emphasis on those we believe require us to move beyond DL 
and toward other AI paradigms.

The biggest obstacle is out-of-domain generalization [45]. 
Now that in-domain performance on several tasks is approach-
ing human levels, researchers are increasingly evaluating their 
models across a wider set of domains. Their efforts have high-
lighted the inability of models to generalize even under relatively 
small distribution shifts that present no challenge to a human. 
Rather than a shortcoming of DL per se, this particular behavior 
underlies all statistical learning, as one of its most foundational 
assumptions is that source data must be identically and inde-
pendently distributed. However, this assumption rarely holds 
in practice. Instead, data are often sourced from specific, con-
strained environments under a certain set of conditions. When 
these conditions change, a phenomenon corresponding to a dis-
tribution or a concept shift [46], models are unable to generalize. 
While considerable efforts are being currently put into over-
coming this problem, we believe that the solution is unlikely 
to come from more depth; thus, it is something that requires 
additional research beyond DL.

Beyond simple robustness to noise and different conditions, 
there is also the issue of generalization across different cultural 
settings [13]. As different social norms hold in different cul-
tures, established machine learning methods as mentioned 
above may not yield good results in sociocultural contexts 
underrepresented in the training data. The desire to effectively 
apply established methods in new contexts motivates research 
on cross-cultural transfer, which has received increasing atten-
tion recently. The multimodal SEWA [47] database comprises 
valence/arousal-annotated recordings of persons from 6 differ-
ent cultures. Hume-VB [48] contains emotional vocal bursts 
by subjects from 4 different countries. For Hume-Reaction 
[49,50], individuals from several different countries rated audio-
visual recordings of their own emotional reactions to different 
stimuli. However, cross-cultural performance still lies consider-
ably below within-culture performance.

The identically and independently distributed assumption 
underpinning DL also stumbles against another fundamental 
aspect of AC: Oftentimes, data are collected longitudinally from 
the same individual [25,51]. The individual can be a user of an 
emotion recognition app, or a patient tracked under a mental 
health study. In both cases, the data are neither independent 
nor identical: Each user has unique characteristics that affect 
how the observed phenomenon manifests in a given signal. 
Oftentimes, it is also the case that tracking the changes in an 
individual’s state over time is explicitly the goal of an application, 
for example, in the case of tracking the mood of depressed patients 
[52]. Enabling adaptation to individual needs requires the intro-
duction of personalized models [53], rather than population-
level ones, which are the norm in current literature.

One additional related shortcoming is the inability of the 
models to perform causal reasoning. Once more, this limitation 
underpins all statistical learning models, as such models reside 
by definition at the lowest rung of Pearl’s causal ladder [54], 
namely, the level of understanding “associations” (with inter-
ventions and counterfactual reasoning being the upper layers). 
On the one hand, the inability to account for causal factors 

exacerbates the out-of-domain generalization issues of the mod-
els. This is because small changes in the causal graph of a par-
ticular phenomenon can result in large changes in the signal 
space. To take one example from facial analysis, age has a big 
influence on the signal space: The face of the same person can 
change considerably across different periods of that person’s 
life, but the changes in the underlying causal graph are restricted 
to just a few bits (assuming, for example, that age is represented 
in decades). Incorporating this level of understanding into 
DNNs requires a new wave of theoretical advances.

However, the pursuit of causal reasoning does not stop with 
ameliorating distribution shifts. Rather, there is the much big-
ger goal of disentangling causal effects. This disentanglement 
is particularly important for the digital health aspect of AC. 
Understanding what caused a particular effect that is detected 
in a signal could unlock a new era for affective applications. 
For example, knowing what caused a particular emotion, rather 
than simply identifying what that emotion is, can help an affec-
tive agent react properly to a user’s behavior. Currently, such a 
form of reasoning is beyond the capabilities of DL models, and 
infusing these models with causal understanding is becoming 
one of the most active areas of current research.

There are 2 facets to understanding the “why” of a decision: 
One is to find its cause, as discussed above; the other is to 
interpret why a system made the decision it did. Successful 
decision analysis will improve transparency and user trustabil-
ity, which are both necessary preconditions for the acceptance 
of a new technology. In general, interpretability is one area 
where DNNs fare worse than their predecessors. Given their 
increased complexity, which largely arises out of their depth, 
these models became completely opaque to layman users and 
researchers alike. While there is a new wave of methods attempt-
ing to illuminate the “black box” of DL [55–58], these fall short 
of the level and detail required for a seamless integration of 
those models in real-life applications.

Finally, a major downside of DNNs is their increased compu-
tational overhead. This overhead translates to much higher train-
ing and inference costs, which have a huge environmental impact 
and form a barrier for the users and developers of that technology 
who cannot afford the cost. The community is well aware of this 
issue, and concentrated efforts are being spent on making DNNs 
smaller and faster to run [59], but this pursuit of efficiency may 
well include new forms of learning that go beyond depth.

Collectively, we summarize the following affordances that 
an affective agent needs to provide and are currently missing 
from DL architectures in Table:

1. Generalizability amounts to performing equally well 
under distribution and concept shifts (e.g., different environ-
ments or cultures).

2. Situatedness highlights the importance of adapting to 
the specific situation (e.g., to the broader context or the 
interlocutor)

3. Interactivity encapsulates the ability of an agent to enact 
changes in its environment.

4. Causal reasoning entails higher cognitive abilities related 
to causal understanding and planning.

5. Transparency translates to the interpretability of an agent’s 
decisions and reasoning steps (if not necessarily its inner 
workings).

6. Efficiency in terms of energy use and computational 
resources is a necessary prerequisite of deploying these agents 
in real-world settings.
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Table maps the theoretical advances included in our over-
view to these limitations of DL. This formed the starting point 
for the rest of our work.

Next-Generation Neural Networks
We begin our overview of next-generation AI paradigms by 
considering new network architectures. While depth might 
be a common feature with current DL architectures, the next 
generation must introduce some fundamental difference 
other than depth. The most promising paradigms are capsule 
networks, which aim to overcome the inability of DNNs to 
learn complex part-whole hierarchies, spiking neural net-
works, which constitute a more “natural” approximation of 
biological neural systems and come with additional compu-
tational benefits, and geometric DL, which guides the design 
of a new class of models using invariance properties in dif-
ferent topological spaces. All 3 address specific shortcom-
ings of DNNs and thus hold great promise for future AC 
applications. While they have seen important advances in 
the broader AI field, their uptake within the AC community 
is rather limited—a trend we expect to change in the coming 
years. In the following sections, we proceed to discuss them 
in more detail.

Capsule networks
CNNs have become indispensable to several modern computer 
vision applications [29], ranging from image recognition over 
object detection to image segmentation. Moreover, they not 
only are limited to the computer vision domain but also can be 
found in a variety of other areas, such as computer audition 
and NLP [60]. Nevertheless, despite their achievements over 
the recent years, they suffer some considerable drawbacks. For 
example, CNNs typically implement pooling layers, which tend 
to lose some of the features and spatial information of the 
image. This loss makes them invariant to translation, which 
allows them to detect features detached from the location in 
an image. However, it also means that they are not able to rec-
ognize the pose or deformations of an entity [61]. Accordingly, 

they cannot capture part-whole hierarchies, i.e., interlink the 
different parts that constitute a separate entity.

Hinton et al. [62] proposed capsule networks (CapsNets) as 
a solution to these issues for the field of computer vision. The 
primary novelty of CapsNets is the substitution of layers with 
“capsules.” Each capsule outputs the probability of the exis-
tence as well as the instantiation parameters of an entity. For 
example, these instantiation parameters may comprise the 
pose or deformation of the entity. Thus, whenever an entity is 
deformed, its instantiation parameters change as well, which 
makes them equivariant to transformations. Using this mecha-
nism, CapsNets can preserve information about the location 
and pose of an object throughout the network.

More importantly, CapsNets first capture the parts of an 
entity before they recognize the entity as a whole. That is, if the 
predictions of capsules in one layer are “agreeing,” they are 
assumed to have the correct spatial relationship and activate a 
higher-level capsule in the next layer. For instance, the parts of 
a human body include arms, feet, and the torso. In order to 
form a human body, these parts have to be at the correct loca-
tions and have the right spatial relationships to each other. 
When each capsule represents a body part, the predictions of 
the capsules have to agree in order for the higher-level capsule 
to be activated and recognize the human body as a whole. This 
ability of capturing part-whole hierarchies is a key contribution 
of CapsNets.

Several distinct implementations of capsules have been pro-
posed, starting in 2011 with transforming autoencoders [62], 
followed by capsules with vector outputs that employ routing 
by agreement (dynamic routing) [63], and matrix capsules 
using expectation–maximization routing (EM routing) [64]. 
The first successful approach that accelerated the uptake of 
CapsNets was the one introduced by Sabour et al. [63], where 
routing by agreement is utilized and the capsules have vectors 
as input and output. Each activation vector represents the 
instantiation parameters of an entity, and its length deter-
mines the probability of the existence of that entity. The pro-
posed architecture is widely used in the literature and serves 
as the basis for modifications and further improvements. The 

Table. Overview of the different research areas included in our overview and how each one maps to the intersection between the limitations 
of DL and the affordances required by affective agents

Capsules 
(section 
“Capsule 

networks”)

Geomet-
ric DL 

(section 
“Geomet-

ric DL”)

Spiking 
DNNs (sec-
tion “Spik-
ing neural 

networks”)

Neurosym-
bolic AI 

(sec-
tion “Neu-

rosymbolic 
intelli-

gence”)

Context 
(section 

“Context-
informed 

neural 
networks”)

Embodi-
ment 

(section 
“Embodied 
cognition”)

Generation 
(section 
“Genera-

tion”)

Person-
alization 
(section 

“Personal-
ization”)

Causality 
(section 
“Causal-

ity”)

Generalizability ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✓
Situatedness ✓ ✗ ✗ ✗ ✓ ✓ ✗ ✓ ✓
Interactivity ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗
Causal 
reasoning

✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

Transparency ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✓
Efficiency ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗
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rough CapsNet structure is as follows: First, there is a convo-
lutional layer that extracts initial features. These features are 
then fed to a primary (lower-level) capsule layer. Afterward, 
there can be several higher-level capsule layers with a final class 
capsule layer as the classification layer to obtain the class predic-
tions. The routing is only conducted between 2 consecutive 
capsule layers [63]. Finally, there is a decoder to reconstruct 
the input based on the final activation vectors from the last 
capsules. Following this initial implementation, there have 
been several modifications and improvements, as well as wide-
spread application of CapsNets in different areas, such as health-
care [65–69], autonomous driving [70,71], and NLP [72,73].

CapsNets have also been successfully applied to AC, in the 
context of different modalities. For instance, Liu et al. [74] and 
Li et al. [75] both utilize a CapsNet to recognize emotions based 
on multichannel electroencephalogram (EEG) signals. Their 
motivation was to learn the intrinsic relationships among vari-
ous EEG channels. In addition to EEG signals, several works 
have explored the effectiveness of CapsNets for speech emotion 
recognition (SER). For example, they have been used to capture 
the spatial information in input features like spectrograms, e.g., 
the positional and relationship information of low-level fea-
tures including pitch and formant frequencies [76,77]. In this 
regard, sequential capsules have been introduced in order to 
best handle the sequential nature of input feature frames in SER 
and thus optimize on the whole sequence [76,78].

Finally, as CapsNets were initially developed for the com-
puter vision domain, they have an obvious application to visual 
AC, and in particular facial expression recognition. A human 
face comprises spatial relationships among its different parts 
(such as eyes, mouth, and nose), which is important for rec-
ognizing a human face. Since CapsNets were developed to 
capture exactly these kinds of information and incorporate 
them into a part-whole hierarchy, they are highly suited to this 
task. Accordingly, employing them for facial expression recog-
nition results in both performance improvements and increased 
robustness compared to CNNs [79,80].

Overall, CapsNets are a relative newcomer to the field of AI 
(although traces of the idea can be found in much earlier works 
of Hinton [81,82]). Crucially, they have been introduced to address 
the problem of capturing part-whole hierarchies, which remains 
a fundamental issue in “vanilla” DNNs. Capturing part-whole 
hierarchies is a critical component of AC systems, especially sys-
tems designed around the idea of appraisal theories, which require 
the understanding of the different parts that led to the emergence 
of an emotion (see the “A working definition of AC” section). 
Incorporating CapsNets into AC will improve the generalizability 
of systems, as it enables compositionality over different parts, as 
well as facilitate improved situatedness by means of capturing these 
part-whole hierarchies. As we later discuss, capturing part-whole 
hierarchies is connected to the more comprehensive modeling 
of the surrounding context; indeed, if emotions can be seen as 
reactions to external events, then incorporating those events as 
“parts” of some part-whole hierarchy should enable a better 
understanding of affect in naturalistic environments.

Geometric DL
The notion of geometric DL was initially introduced by 
Bronstein et al. [83], where the authors tackled the challenge 
of DL in non-Euclidean geometric structures like graph neural 
networks (GNNs) and manifolds. The authors introduced a 
constructive method for classifying the known DL architectures 

based on the symmetries of their domain spaces. This con-
structive approach allows for the design of more modular 
architectures, which are adapted to the idiosyncrasies of differ-
ent signals and tasks (i.e., the introduction of suitable inductive 
biases).

These efforts culminated in the Geometric Deep Learning 
Blueprint [84], a scheme for constructing functions that exhibit 
desirable invariance—or equivariance—properties. A typical 
instance of this setup is that of a function defined on a graph 
. Such a function should be permutation-invariant, i.e., the 
output of the function should be identical irrespective of the 
order in which the inputs are given. In AC, such permutation 
invariance can be useful in the case of multiparty interactions, 
where the order in which the different agents are given should 
leave the outcome unaffected.

In the case of MeshCNN [85], the domain consists instead 
of a manifold where the pertaining functions should preserve 
the distances—i.e., be isometry-invariant. The key idea is to 
explicitly introduce invariance into certain transformations, 
thus making the system less prone to small variations in the 
data. However, even though this scheme can provide useful 
insights for the creation of robust models, learning invariances 
is challenging depending on the underlying modality [86]; thus, 
there is growing research interest in this direction [87–91].

Research has so far largely focused on the 2 most prominent 
non-Euclidean structures: graphs and manifolds. With applica-
tions ranging from tasks such as node classification in social 
media [92] to tasks such as the prediction of microstructures 
in materials science [93], the design of a GNN consists of node 
update operations

such as summation or averaging. The success of GNN frame-
works, such as the graph convolutional network [94], can be 
traced back to this structure, which may comprise distinct meth-
ods of information aggregation over neighborhood nodes and 
edges [94,95]. Essentially, this aggregation allows information 
to propagate among interconnected entities; by carefully config-
uring the edges and nodes of the graph, one can incorporate 
prior knowledge about the downstream task. GNNs are typically 
shallow, and increasing their depth can produce adverse effects 
such as over-smoothing [96]: nodes collapsing to a single feature 
vector. Nevertheless, more research is ongoing toward adding 
depth to GNNs [97,98] to alleviate emerging problems.

GNNs have already been successfully applied in AC applica-
tions, most often in the field of sentiment analysis [99,100], but 
also in facial analysis [101,102]. They have also been used for 
affect-aware recommendation, where affective information is 
taken into account when providing personalized suggestions 
[103]. In general, the malleability of GNNs makes them ideal 
for modeling the relationships and interactions between differ-
ent entities, such as users, items, and events. These multiway 
interactions can form the basis for the holistic comprehension 
of the surrounding context, and in turn lead to an improved 
understanding of the factors leading to an affective expression 
by one of the users in an environment.

Geometric DL also goes beyond graphs and allows for more 
complex constructs, such as manifolds. A manifold is mathe-
matically defined as an n-dimensional, “well-behaved” topo-
logical space, which is locally homeomorphic to Euclidean 

xu = 𝜙

(

xu, ⊕
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space ℝn. The prototypical example of a manifold is the sphere 
�
2, a subspace of ℝ3 that can be locally perceived as ℝ2. This 

modeling is convenient when considering 3D shapes in the 
fields of computer graphics and computer vision, and its 
applications encompass meshes, point clouds, and convexes 
[104,105]. However, current implementations still suffer from 
high memory consumption and slow training [106]. In addition 
to the classical manifold learning methods traditionally used for 
high dimensional data, recent research demonstrates that mani-
fold learning combined with a graph convolutional network 
can considerably improve performance on image classification 
tasks [107]. In the context of AC, manifold learning can provide 
a toolkit for analyzing emotions in 3-dimensional (3D) environ-
ments, e.g., by means of body gestures or facial expressions 
[20,108]. We expect that integrating better inductive biases into 
our architectures will vastly improve their generalizability.

Spiking neural networks
A promising candidate to tackle the problem of the high com-
putational costs of training large-scale DNNs are spiking neural 
networks (SNNs), which have been recently seeing increased 
usage in AC [109–111]. The development of spiking neurons 
goes back to the 1950s [112], but has been overshadowed by the 
overwhelming success of DNNs since the end of the most recent 
AI winter. The design of spiking neurons can be considered a 
step closer to biological neurons compared to the artificial neu-
rons encapsulated in the most commonly used DL architectures. 
The design of a standard neuron is well known in the research 
community, and its output is commonly denoted as

with the inputs x, a weight vector W, a bias b, and a nonlinear 
activation function f. In DL architectures, multiple layers of 
such neurons are stacked in a sequential manner and the out-
puts of the network are calculated in a feed-forward manner, 
with information propagating from the input layer to the output 
layer in a sequential fashion. In biological neurons, this propa-
gation corresponds to the constant-rate firing of impulses 
throughout the entire network. Such networks thus lack at their 
core the ability to simultaneously process neuronal output at 
different layers with a continuous flow of time [113].

Modern SNNs, referred to as the third generation of neurons, 
incorporate simultaneous processing via an internal state, which 
is dynamically changing with respect to its inputs and also with 
respect to time. Once a critical threshold of the internal state 
is reached, a spiking neuron fires. Among spiking neurons, 
there exist a variety of designs, which, in general, follow time-
dependent differential equations inspired by nature. The dynamic 
nature of spiking neurons can be seen in the exponential decay 
over time in the commonly applied leaky integrate-and-fire 
(LIF) model [114,115]

with the membrane potential Vmp and the membrane time con-
stant τmp, the timings of previous input spikes tp and tp−1, as 

well as synaptic and dynamic weights w(p)
i

 and wdyn. The mem-
brane potential of the LIF neuron thus has an exponential decay 
over time and is raised proportionally to a connection-specific 
weight when a new spike arrives, with the dynamic wdyn weight 

hindering the impact of new inputs for a specified duration of 
time. The LIF model is thus characteristic of an SNN architec-
ture, where the output potential of a neuron depends on the 
timing of its inputs.

Alternative spiking neuron models are explored in other 
works, such as Yamazaki et al. [113]. Architectures of the SNNs, 
i.e., connected systems of spiking neurons, are often similar to 
those of artificial neural networks (ANNs), but with a different 
processing unit at their core. Consequentially, adjustments to 
the backpropagation algorithm commonly applied to ANNs 
can be made to train SNNs in a supervised fashion [115,116].

Crucially, as each neuron fires only when a threshold is 
reached, an SNN comes with a greatly improved energy effi-
ciency compared to traditional ANNs. This is because the default 
state of a neuron in hardware can be denoted as a “0” state (no 
voltage) that is only set to “1” when firing. In contrast, an ANN 
would “fire” all its neurons during a forward pass, resulting in 
much higher energy consumption. This improved efficiency 
allows the deployment of ANNs on low-resource computational 
units that can vastly extend the outreach of affective intelligence. 
It also reduces the computational costs for GNNs [117] (thus 
helping overcome an obstacle to increasing their depth) and 
enables the deployment of deep SNNs in real-world applica-
tions with low latency, thus substantially improving their 
efficiency. Real-world efficiency is especially important in con-
nection with the ideas discussed in the next section, where we 
consider embodied affective agents that are able to sense and 
interact with their surrounding environment.

Resurgent Themes
DL itself is to some extent a resuscitation of an old idea using 
modern tools. The rise of DL illustrates how the process of 
“rediscovering” old ideas and adapting them to a new context 
is a promising research avenue. While other old ideas might 
have failed in the past, they might have done so based on criteria 
on which DL excels. However, their strengths might complement 
the shortcomings of DNNs, and other network architectures 
in general. Therefore, their introduction as additional com-
ponents in AC applications can help supply the deficiencies 
discussed in the “Limitations” section. In particular, we expect 
hybrid neurosymbolic architectures to play an important role 
in integrating expert knowledge and helping overcome the lack 
of causal understanding, and embodied and context-informed 
agents to become mainstays of next-generation AC.

Neurosymbolic intelligence
DL adheres to the connectionist paradigm of cognition, which 
contrasts with the “traditional” symbolic paradigm pursued in 
the earlier stages of AI research. Indeed, a key distinction in 
the design of neural network architectures is their ability to 
learn distributed representations: Information is represented 
in multiple neurons within a neural network, and each neuron 
may focus on different facets of a given input. This type of 
representation is in opposition to “classic” AI, which empha-
sizes explicit symbolic manipulation, with each symbol having 
one concrete interpretation. While the former has proven more 
conducive to learning from (large amounts of) data, the latter 
has clear advantages in the form of robustness (evaluating a 
symbolic expression with the same inputs always returning 
the same result), out-of-domain generalization (plugging in 
a previously unseen value for a symbol in an equation will not 

(1)o = f (Wx + b),

(2)Vmp(tp)=Vmp(tp−1)exp
tp−1− tp

�mp
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cause the model to break), and explainability (assuming that 
the symbols themselves are interpretable). Recent years have 
seen a renaissance in attempts to bridge the gap between these 
2 approaches in order to overcome these particular limitations 
of DNNs [118–120].

The simplest way to integrate the 2 paradigms uses DNNs 
to process symbolic inputs and generate symbolic outputs; the 
DNN then is trained—as usual—to learn a mapping between 
input and output. Alternatively, the output of one or several 
DNNs that predict certain statistical variables may be propa-
gated to a (cascade) symbolic solver for further processing. 
However, both of these approaches are somewhat “shallow” 
in nature, since the first uses a DNN to perform symbolic 
reasoning and the other reasons over the outputs of a neural 
architecture, but none of them integrates symbolic reasoning 
into a DNN—which is the key distinction of a neurosymbolic 
system.

In his 2023 AAII keynote speech, Kautz [120] outlined 6 
different architecture designs for neurosymbolic systems:

1. Symbolic Neuro symbolic systems, which are currently 
the standard in DL-based AI, pass symbolic inputs to DL mod-
els (e.g., in the form of words), which subsequently output 
symbols in return (i.e., the predicted categories at the output 
layer).

2. Symbolic[Neuro] systems combine symbolic problem 
solvers with DNNs for pattern recognition. A prime example 
of such an architecture is AlphaGo, which uses Monte-Carlo 
Tree Search for planning its next moves while relying on 
DNNs for evaluating the game state.

3. Neuro|Symbolic methods rely on the conversion of non-
symbolic inputs (e.g., pixels of an image) to symbols that can 
be manipulated by a symbolic engine.

4. Neuro: Symbolic → Neuro paradigms rely on DNNs that 
are trained on outputs generated by symbolic rules and that 
subsequently learn to emulate these symbolic functions without 
explicit logic operations.

5. Neuro_{Symbolic} approaches implement symbolic rules 
as neural operations and embed them within a DNN as special-
ized, trainable subnetworks.

6. Neuro[Symbolic] perspectives pursue a tighter integration 
of neural and symbolic architectures in a setup inspired by 
Kahneman’s “fast and slow thinking.” The neural components 
handle the “faster” thinking tasks at which they excel (e.g., pat-
tern recognition and action-taking), while the symbolic parts 
are responsible for longer-term planning and reasoning.

In the AC domain, neurosymbolic systems can be useful in 
multiple ways: They allow the integration of expert background 
knowledge in the form of symbolic equations. Thus, expert 
knowledge can be used to constrain the outputs of a neural 
network to a meaningful domain (as seen in the “Context-
informed neural networks” section). In addition, they facilitate 
a human-in-the-loop paradigm where a user continuously guides 
an affective agent through the definition of certain symbolic 
variables. As seen in the “Personalisation” section, this para-
digm can be used to adapt to (new) individuals that interact 
with the agent. More importantly, such capabilities allow the 
translation of AC technologies to new domains. For instance, a 
key issue is the modeling and synthesis of affective states in 
cultures differing substantially from the cultures a DNN system 
was based on. Affect may both be expressed differently and be 
enshrouded in different cultural norms, thus hampering the 
generalization of the system. Providing a way to configure and 

convey the systems for these new domains can be critical for 
the fair application of AC, as it will enhance the transparency, 
and thus the trustability, of those systems and make them more 
generalizable to new contexts.

Context-informed neural networks
As AC applications increasingly find their way into the real 
world, there is a pressing need to accommodate ever-growing 
user expectations. Going beyond traditional performance met-
rics such as accuracy and correlation, such accommodation 
entails the impetus of conforming to social norms that underlie 
human behavior. Conforming to social norms is particularly 
important for the synthesis of affective states: Rather than being 
correct according to some predefined measure of success, the 
requirement in the real-world is to be appropriate—as dictated 
by the enveloping context. Context is determined by both the 
external environment and the agent’s role in it, and may include 
the location, the application in which the agent is embedded, 
the interlocutor or receiver of the agent’s affective message, etc. 
Achieving the objective of contextual appropriateness requires 
accounting for these externalities.

Appraisal-based affective systems, in particular, are often 
dependent on context [17]. Existing methods typically rely 
on rule-based approaches to model appraisal processes and 
the resulting emotional expressions. As a notable exception, 
Hoorn et al. [16] utilize a machine learning model to pre-
dict the attractiveness of a person as one appraisal variable. 
Moreover, due to the considerable manual effort of designing 
appraisal rules, these approaches have only been evaluated for 
specific and simplified proof-of-concept applications, e.g., a 
doctor telling bad news to a patient [15] and a simple dating 
scenario [16].

Understanding the overarching context is also crucial to 
achieving the goal of communication competence [13]. As 
for the understanding of others’ emotions, a plethora of stud-
ies have shown that emotion recognition techniques benefit 
from taking contextual information into account. As an exam-
ple, the task of emotion recognition in both text-only (e.g. 
[121]) and multimodal dialogue settings (e.g. [122]) can be 
considered. Here, numerous methods, e.g. [123–125], have 
been proposed that predict the emotionality of an utterance 
considering the utterances preceding it, leading to improved 
performance compared to emotion recognition on isolated 
utterances only.

When it comes to emotionally responding to other agents, 
an artificial agent should therefore conform to social rules and 
expectations. Part of a solution to this problem may be to lever-
age manually curated databases of common-sense knowledge 
to infer such information. For example, ATOMIC [126] pro-
vides about 900,000 crowdsourced If-Event-Then triples in the 
form (<event>, <relation>, <event>). The types of relations 
between events include the expected reactions by others and 
the possible intentions motivating someone to cause an event. 
More context-oriented, CICERO [127] comprises about 50,000 
common-sense inferences from dialogues, among them moti-
vations and reactions. Ghosal et al. [128] demonstrate that tex-
tual transformer models trained on such databases are capable 
of inferring common-sense rules that are not explicitly part of 
the database. One major challenge here is that existing data 
are likely not applicable to multiple sociocultural settings. 
Another research question is how an agent should handle these 
kinds of norms once they are available.
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Inspiration for a principled way to adhere to additional 
requirements other than correctness may be found in the use 
of DNNs in physics. There is a recent wave of approaches falling 
under the umbrella of physics-informed neural networks [129], 
which constrain the output of a DNN so that it conforms to the 
laws of physics that apply to the problem it attempts to solve. 
Translating that to AC requires us to satisfy context-based 
“laws”: These can be the norms of the culture the agent is 
embedded in, the interlocutor’s identity and personal history, 
or generally anything that can be considered relevant context. 
These constraints may be provided in the form of symbolic 
expressions, thus providing a bridge between context-informed 
neural networks and the neurosymbolic systems discussed 
before. Including more context is a necessary aspect of situ-
atedness for an affective agent, and this goal can be achieved 
by introducing these constraints during system training and 
inference.

Embodied cognition
Perhaps the most extreme version of context is embodiment, 
with all the implications it entails for an affective agent. 
Embodied cognition can be viewed as the polar opposite of 
pure symbolic reasoning [130,131]; instead of abstract symbols 
that are manipulated according to some predefined set of 
(logic) rules and a knowledge base acquired through experi-
ence, embodied cognition posits an agent inextricably grounded 
in physical reality [132]. This form of cognition does not deny 
the need for good (world) representations; it merely subjugates 
them to the practical needs arising from an agent embedded 
in its environment and the concrete goals it pursues in it [130]. 
We note that embodied intelligence does not presuppose an 
actual physical body in the “real” world: The agent’s environ-
ment may be entirely or partially digital, its physical sensors 
may be constrained to a few modalities (e.g., it may be blind or 
deaf), and it may be unable to move. What is important is that 
the agent may purposefully pursue its goals under a set of physi-
cal constraints.

The importance of embodiment for AC is most evident in 
the case of synthesis: The portrayal of affective states must be 
appropriate for the state of the environment in which an agent 
finds itself [133]. This requirement is particularly strong for 
gestures, or more generally “body language,” which needs to 
conform to the physical constraints of the agent. However, 
other modalities may benefit from embodiment as well. Using 
facial expressions to intentionally convey an affective state 
relies on direct line of sight; without it, such expressions are 
meaningless. The agent may thus choose to reposition itself 
before enacting an expression. Speech, too, may be adapted 
to the surrounding physical space. Loudness, for example, takes 
on different meanings depending on the distance between 2 
interlocutors; being loud when the distance is large can be 
interpreted as an attempt to boost communication, whereas it 
may be interpreted as a signal of aggression if the distance is 
small. Accounting for these constraints can therefore lead to 
more natural affective expressions. Crucially, the agent must 
ensure a degree of congruity across all different media of 
expression; otherwise, the (human) receiver of a message will 
struggle to decode it [134].

Exhibiting empathy through mimicry is one of the affec-
tive affordances that stand to gain the most from embodied 
cognition, given the fact that humans appear to be experienc-
ing emotions in an embodied fashion [134,135]. Mimicking 

the body language, facial expressions, and speaking style of 
their interlocutors might be necessary in order for agents to 
build rapport with them. Mimicry requires the agents to moni-
tor and mirror the affective expressions of their interlocutors. 
Importantly, given the unavoidable physical differences between 
humans and robotic agents, they should not attempt a naive 
reproduction, but rather map human expressions to their own 
characteristics—a feat that requires them to be aware of these 
characteristics.

The understanding of affect may benefit as well from situat-
ing the agent in a physical environment. In particular, it may 
facilitate the understanding of natural, contextualized affective 
responses that result from an interaction with the environment. 
A loud bang, for instance, is expected to cause sudden (sur-
prise) fear in a human. Learning those associations can help 
the agent reason about the causes, and expected effects, of such 
external events on the humans it interacts with. Such under-
standing may help determine both if the response is relevant 
to the agent and the appropriate response to it.

Recent advances in embodied AI can be readily assimilated 
to AC. One of the most exciting avenues of current research is 
the simulation of realistic environments for the purpose of 
training (multi)agent systems [136]. These environments are 
used for the training of agents via reinforcement learning (RL). 
Video games, in particular, have become a focal point of experi-
mentation in RL agents [137]. These environments form a 
natural training ground for affective agents as well, as they fos-
ter natural interaction between multiple entities and, crucially, 
entail working toward solving real-world tasks under physical 
constraints.

RL allows a move away from labeled data and facilitates inter-
active learning, which can overcome the downsides of the stan-
dard supervised learning paradigm. For AC, the tasks differ 
from the standard goals pursued by most RL agents (i.e., navi-
gation). The focus is instead on objectives where AC is relevant: 
collaboration with humans in education, healthcare, etc.

In general, embodiment is a crucial step toward achieving 
better situatedness and interactivity for affective agents. It will 
allow them to better understand their environment and over-
arching context while simultaneously providing them with 
numerous interfaces that can be exploited to interact with that 
environment and other entities inside it.

New Frontiers for AC
In this last section, we outline ideas that have seen substantial 
progress in the last “few” years (i.e., in the 21st century). While 
their roots go back decades, or even centuries, we believe that 
recent advances have set these ideas apart from the crowd of 
the resurgent themes we discussed above. The first such frontier 
is generation; while it has been considered a holy grail of AI 
for decades, the recent advances of large generative models, 
largely based on diffusion processes, mark a new era in the field. 
The next one is personalization, which encompasses an array 
of methods that move away from generic, population-level 
models and toward models that account for the characteristics 
of an individual subject. Finally, we provide an overview of 
causality, whose mathematical foundations have been pio-
neered by Pearl [54]—an achievement that led him to win the 
2011 Turing Award. We note that due to the relatively recent 
emergence of these topics, our estimated importance of their 
future impact has a higher subjective element than the other 
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more established research directions outlined in the previous 
segments.

Generation
Given our emphasis on embodied agents that are able to inter-
act with their environment, the ability to generate appropriate 
affective expressions becomes a key prerequisite for the next 
generation of AC [3]. The recent developments in generative 
models have shown the remarkable aptitude of AI to use simple 
prompts to create stunning images [138–141], 3D models [142], 
videos [143], and audio [144,145]—feats marking the begin-
ning of a new era in AI generation.

Spearheading those advances are diffusion models. Relying 
on breakthrough work from a theoretical perspective [139,146] 
and improvement from empirical application and optimization 
[141], diffusion-based models have already beaten the state-of-
the-art generative adversarial networks (GANs) on image syn-
thesis [140] and have also been shown to be more stable and 
easier to train while generating high-quality images with the 
desired properties. The original diffusion model was first pro-
posed by Sohl-Dickstein et al. [138] and was inspired by non-
equilibrium thermodynamics and probabilistic methods such 
as Markov chains. It is based on the idea that a real data distri-
bution x0 ∼ q(x) can be gradually transformed into a simple 
isotropic Gaussian distribution xT ∼ (�,�) by iteratively 
adding a small amount of Gaussian noise to the sample in T 
steps, and that this forward process can be reversed by sam-
pling from the reverse diffusion process q(xt−1| xt). However, 
the reverse diffusion process q(xt−1| xt) requires access to the 
entire dataset for accurate estimation. Therefore, neural net-
works can be utilized to perform modeling of a series of noise 
distributions (denoising diffusion probabilistic modeling) [139] 
or to perform modeling of the gradient of the log probability 
density function, also known as the (Stein) score function 
(score matching with Langevin dynamics) [147], to effectively 
approximate the reverse diffusion process and generate high-
quality samples.

Given these exciting advances in related fields, we are just 
now beginning to scratch the surface of affect generation. 
Recent works are predominantly occupied with “transmitting 
the message”: generating high-fidelity samples suitable to the 
“prompt” given by a human user. Yet, to facilitate more natural 
interactions, we require agents that are able to go beyond that 
and decide for themselves the appropriate response. Agents 
thus need an underlying decision process that assigns a prob-
ability distribution to a limited set of “actions” that can be taken 
given system “states.” Inspiration for such a process can be 
drawn from the RL literature, which describes the decision 
process as a policy. RL is commonly described as an agent-
based framework that has to learn the policy based on an unfold-
ing history of state–action pairs that are assigned a reward 
based on the impact of the actions according to the agent’s 
goals. RL is applied in a plethora of dialogue systems [148] to 
generate adequate responses, e.g., politeness [149], empathy 
[150], or emotionality [151], and can be co-opted to create 
affective agents that can decide for themselves the most suitable 
affective response.

Personalization
In practice, we encounter individual differences among differ-
ent subjects. These differences can be reflected in several data 

modalities. Individual characteristics can manifest themselves 
in the audio modality in the form of the speech and voice used 
(e.g., higher/lower “normal” fundamental frequency), in the 
video modality, e.g., on the basis of facial expressions and ges-
tures, and in wearable sensors as general physical condition 
and individual movement behavior. Nevertheless, most of the 
models used in research today pay too little attention to these 
individual differences and are based on a “one model fits all” 
approach. To cope with these personalized characteristics, there 
is a need for models that are not only trained on an entire 
population but also tailored to one specific subject.

Personalization is an area of research that has become 
increasingly important in recent years and is based on a fun-
damental difference compared to population-level models: 
In many cases, longitudinal data on individuals are available, 
e.g., from patients undergoing medical treatments or users 
of an app that tracks emotions. These data are not indepen-
dent and identically distributed; therefore, their potential is 
not fully exploited by general models. Thus, personalized 
models are needed to adapt to individual particularities.

In recent years, several major categories of personalization 
methods have emerged. Each of these groups has strengths 
and weaknesses and can be distinguished by the amount of 
data that is necessary for implementing them, ranging from 
zero-shot personalization to fine-tuning on longitudinal data. 
Thus, depending on the use case, different methods may be more 
suitable.

1. Similarity-based approaches are based on the assumption 
that a model can be tailored to one person even if no longitu-
dinal data are available and can therefore also be referred to as 
user-independent [152,153]. Sridhar and Busso [154] recently 
introduced a method of this category for personalizing an SER 
system using an unsupervised approach. In their approach, an 
adaptation set is formed, consisting of the speakers in the train-
ing set with acoustic patterns most similar to those of the sub-
ject in the test set. Subsequently, this adaptation set is utilized 
for fine-tuning the SER system, resulting in improved perfor-
mance, even if the speaker in the test set was never present in 
the training set. Another group of methods within this category 
is based on dividing all subjects into smaller subgroups. For 
example, Kathan et al. [24,25] experimented with sex-based 
group-level model adaptation for personalized depression fore-
casting and exertion prediction. Dividing people into sub-
groups, followed by a separate training for each group, enables 
the models to learn specific characteristics, which would not 
be possible for models trained on an entire population.

2. Enrolment-based methods also belong to the group of 
user-independent approaches as they do not need any longitu-
dinal data. Instead, only a limited number of samples and labels 
are used for adapting to a new user. In contrast to similarity-
based methods, this approach offers the advantage that real 
data from one subject (not just data from similar subjects) are 
taken into account to tailor the model to a specific user without 
the need for long-term data. For example, Triantafyllopoulos 
et al. [155] introduced a framework for SER that is capable of 
adapting to a new user using a single neutral utterance, which 
makes this personalization method suitable even for relatively 
short interactions.

3. User-specific approaches, unlike the other 2 types, which 
focus on the need for little to no data, exploit the full potential 
of longitudinal data by using some of it to customize models. 
This group therefore represents user-dependent methods, 
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which means that they can only be applied if several data points 
of a user are available. A popular method of user-specific per-
sonalization is to use a common backbone model that is trained 
on an entire population and then enriched with personalized 
layers for each subject [51,53,156,157]. Another user-dependent 
personalization method consists of using subject-dependent 
feature normalization [52,158]. For example, Busso et al. [158] 
proposed a normalization approach for speaker adaptation in 
speech applications.

Despite recent progress, there are also several open chal-
lenges. One of the hardest to face is data privacy, which of 
course conflicts with personalized models. However, federated 
learning (FL) presents a promising approach to counteract this 
concern. FL employs a decentralized approach. Following this 
paradigm, models are collaboratively trained on data that never 
leaves the device on which it was collected (e.g., a smartphone 
or smartwatch). In doing so, methods in all of the categories 
described above can be incorporated into FL (e.g., similarity-
based methods such as clustering or user-specific ones such as 
a common backbone model in combination with personalized 
layers) [159,160].

In addition to personalizing the recognition of affect, a simi-
lar approach can be taken to the modeling of the receiver. 
Humans not only generate but also perceive affect differently, 
and a system must accordingly adapt to these differences. On 
the one hand, this can help the system to “see the world from 
the user’s side”: An AC system might be required to have the 
same understanding of affect as its user. Beyond that, modeling 
how individuals understand affect is crucial in the generation 
phase. So far, comparatively little effort has been placed on the 
personalized generation of affect in order to match the expecta-
tions of the receiver, but, given individual differences in percep-
tion, this is a key open issue for bringing AC to real-world 
applications.

Ultimately, personalized machine learning is expected to 
play a central role in the next generation of AC, given its unique 
ability to adapt to new users as they interact with an affective 
agent, thus embedding them more deeply into the context of 
the current interaction. As such, personalization is a key enabl-
ing technology for bridging a crucial gap in the performance 
of contemporary systems: the gap arising from the indi-
vidual idiosyncrasies in the expression, and understanding, 
of affect.

Causality
We end our perspective on exciting new research directions 
with a discussion of causality. In addition to being one the most 
fascinating theoretical innovations in recent times—leading to 
the 2011 Turing Award—it can also act as the “binding sauce” 
that can bring together several of the research areas we outlined 
above.

Pearl’s “Ladder of Causation” describes 3 levels of causal 
ability [54]: (a) association, defined as the ability to reason from 
observations; (b) intervention, denoting the skill to intervene 
in results and reason about potential outcomes; and (c) coun-
terfactuals, encompassing the facilities of imagination, retro-
spection, and understanding, which enable reasoning about 
alternative outcomes that have not yet been observed.

The current generation of AI methods already excels at 
reasoning from (passive) observations. Indeed, DL has been 
the cornerstone of recent advances and has vastly improved 
the predictive performance of human states. However, the 

next 2 levels of causality require different approaches. For 
an agent to successfully perform an “intervention,” which in 
the case of AC is tantamount to generating a response that 
alters the affective state of the interlocutor, it is necessary to 
distill its knowledge of affect in a set of possible causes and 
manipulate one or more of them at a time. For example, an 
agent should learn that a positive reaction to good news is dif-
ferent from a person reacting positively to a humorous inter-
action with their digital assistant; failing to do so might result 
in an affective agent that floods the user with a constant stream 
of (irrelevant) good news to achieve its goal of eliciting a posi-
tive response.

Similarly, reasoning about counterfactuals requires taking 
yet another step up Pearl’s ladder. Being able to systematically 
evaluate “alternative realities” is a crucial component for an 
affective agent that needs to adjust its strategy on the fly. This 
entails being able to answer “what if ” questions about the past, 
such as “What if I had greeted the user more formally?”, or, 
crucially, about the future (“What if I now said X?”).

The formal tool for performing causal reasoning is the do-
calculus. This axiomatic system allows for performing all 3 
types of reasoning. Do-calculus has matured rapidly in past 
years and is used widely in different fields. However, it requires 
the use of a graph model (or a structural equation model) rep-
resenting the different variables and their associations. In gen-
eral, providing such a model is a hard and domain-specific 
problem and has been receiving increasing interest from the 
community. Recent efforts have focused on learning a causal 
model through interactions with the environment, while GNNs 
have shown great promise in representing them. These causal 
representations are learned iteratively, with an agent using its 
prior knowledge to drive future interactions, while in turn 
learning from them and updating its causal model of the world. 
Thus, causal reasoning becomes the missing link that allows 
embodied, context-informed agents to interact with their envi-
ronment and learn effective strategies for generating appropri-
ate affective responses.

Overall, we see this research field playing a crucial role in 
future AC systems. We expect it to not only result in more 
generalizable performance but also imbue systems with the 
necessary causal reasoning capabilities that will allow them to 
become more transparent to downstream users while better 
accounting for the changes in their environment.

A Blueprint for the Next Generation of AC
We have discussed various strategies for moving beyond DL 
and creating affective agents that can satisfy contemporary 
needs in an ethical fashion. We end with a discussion of how 
the different components presented in the previous sections 
can interact with one another and work together to jointly 
tackle the challenges in AC research (Fig. 2). In doing so, we 
will work on the assumption that the desired goal is to build 
an embodied affective agent (embodied in the sense that it 
exists in a physical or digital environment with which it is rela-
tively free to interact) whose goal is to communicate with dif-
ferent, potentially multiple human users in a broad context 
and help them to achieve their goals. Therefore, it needs to 
understand the needs of different individuals (contrary, for 
example, to a personal assistant who only ever interacts with 
one person). A prototypical example would be a robot assistant 
permanently situated in a public space (e.g., a hospital).
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When starting each new interaction with a user or group of 
users, the first critical requirement is for the agent to assess (a) 
their goal(s), mostly in terms of semantics, (b) their mental 
states, and (c) their interrelationships. Assessing goals falls pri-
marily under the auspices of natural language understanding, 
although the process can be supplemented by an accurate char-
acterization of mental states (e.g., by imparting a sense of urgency). 
Gauging those mental states is already working at a sufficient 
level following the advancements sparked by DL.

The advances we have described are mostly geared toward 
facilitating longer interactions. As the agent converses with its 
interlocutors, it can adapt to their individual characteristics 
using personalization, follow the conversation by accounting 
for multiparty relations, and emanate an appropriate set of 
social signals befitting the situation (i.e., accomplish genera-
tion). Importantly, deciding what signal to procure and when 
requires an understanding of both context and causation so 
that a response that is conducive to the agent’s goal can be 
selected. Context, as well as the flow of conversation, can be 
represented in graphs, which allow for symbolic manipulation 
according to the identified causal factors driving the interac-
tion. Crucially, these processes need to be implemented on the 
fly with minimal latency and low energy requirements to mini-
mize the off-time of the agent, something that can be achieved 
with next-generation spiking neural networks.

In total, the 9 components we have presented in our over-
view can be used in the following order:

1. Graphs allow for mapping user–user relations and exter-
nal context to an interpretable representation.

2. Capsules can further facilitate the modeling of part-whole 
hierarchies, which drive the understanding of an affective inter-
action in terms of a set of “affective primitives.”

3. Manipulating these primitives with a (neuro)symbolic 
engine allows the agent to reason about counterfactuals and 
plan its response.

4. Symbols further allow for the specification of common 
knowledge, rules, or human feedback, which constrain the 
interaction.

5. Embodiment provides an indirect path to learning, via 
the pursuit of objectives that necessitate the understanding and 
portrayal of affect (e.g., collaborative learning) in a constrained 
(digital or physical) environment.

6. Personalization is foundational to adapting to user char-
acteristics and thus moving away from a “one size fits all” solu-
tion toward more adaptive agents.

7. The advances in generative AI across multiple modalities 
can then be tasked with creating the agent’s response.

8. Causal models enable the principled disentangling of 
causes from effects and facilitate higher-order reasoning.

9. Finally, spiking neural networks have shown great prom-
ise in enabling the deployment of DNNs in physical agents with 
limited computational resources.

Limitations
Our review of recent advances in AI research that can catalyze 
the deployment of affective agents in the real world has an 
unavoidable element of subjectivity. AI is a rapidly growing 
field that has been drawing tremendous academic and indus-
trial interest in the last decade. Therefore, it is impossible to 
map out all advances that may be relevant for the AC com-
munity. For example, we have decided to omit the exciting 

advances taking place in the use of large language models 
(LLMs) [161], as their major improvement over previous mod-
els is an increase in their depth. Nevertheless, we expect the 
areas we have chosen to be among those that play a vital role 
in the upcoming years.

Conclusion
We have presented an overview of 9 (re-)emerging themes in 
AI research that seem poised to play a pivotal role in AC. Our 
starting point was the limitations of DL—the driving force 
behind much of the recent progress. The success of DL has 
opened up new paths toward making human–computer inter-
action more affective. Indeed, the overwhelming effectiveness 
of DL has caused many to claim that it is enough to achieve the 
goals of the community. While this may well prove true, it is 
important not to overlook additional complementary research 
directions. Our article serves as a primer on some of the most 
prominent areas in the broader AI field.
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