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Abstract
In observational studies with time-to-event outcomes, the
g-formula can be used to estimate a treatment effect in
the presence of confounding factors. However, the asymp-
totic distribution of the corresponding stochastic process
is complicated and thus not suitable for deriving con-
fidence intervals or time-simultaneous confidence bands
for the average treatment effect. A common remedy are
resampling-based approximations, with Efron’s nonpara-
metric bootstrap being the standard tool in practice. We
investigate the large sample properties of three different
resampling approaches and prove their asymptotic validity
in a setting with time-to-event data subject to competing
risks. The usage of these approaches is demonstrated by
an analysis of the effect of physical activity on the risk
of knee replacement among patients with advanced knee
osteoarthritis.
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1 INTRODUCTION

In observational studies, comparisons between treatment groups are complicated by the poten-
tially unequal distribution of confounding factors. A prominent idea to tackle this issue is the
potential outcomes approach, which models the mean outcome in a hypothetical world where
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all study participants are subject to the same intervention (Hernán & Robins, 2020; Rubin, 1974).
This article focuses on the comparison between two treatment groups, where the outcome is a
right-censored time-to-event that is possibly subject to competing risks. Our parameter of inter-
est is the average treatment effect (ATE) at time t, defined as the difference between the absolute
risks of the event of interest in the exposure groups. Following Ozenne et al. (2020), we model
cause-specific hazards by Cox regression models to estimate the absolute risk of the event of
interest (Benichou & Gail, 1990; Ozenne et al., 2017).

For thorough statistical inference, confidence intervals and time-simultaneous confidence
bands for the ATE provide additional insight. Inference is usually based on Efron’s nonparamet-
ric bootstrap, since the stochastic processes involved in the estimation are rather complex, though
(Efron, 1981; Neumann & Billionnet, 2016; Ryalen et al., 2020; Stensrud et al., 2022). Ozenne
et al. (2020). present an alternative approach, which is based on the influence function and the
resampling scheme developed by Scheike and Zhang (2008). Another popular resampling tech-
nique for time-to-event data is the martingale-based wild bootstrap. This method has successfully
been applied in different situations, e.g. in non-causal investigations that cover Cox proportional
hazards models (Lin et al., 1993; Lin et al., 1994) or competing risks (Lin, 1997). Extensions that
improve the performance for small sample sizes have been discussed by Beyersmann et al. (2013),
Dobler and Pauly (2014) as well as Dobler et al. (2017). What is more, the wild bootstrap has been
shown to perform superior to the classical bootstrap in several situations, in particular when the
data involve dependencies (Nießl et al., 2023; Rühl et al., 2023).

In this paper, we derive a martingale representation of the stochastic process characteriz-
ing the asymptotic behaviour of the ATE. Based on this representation, we provide proofs of the
asymptotic validity of three resampling approaches: Efron’s bootstrap, a resampling method based
on the influence function and the wild bootstrap. Thus, the main contribution of this paper is to
fill the gap between theory and practice and provide the missing proofs that justify the application
of resampling techniques in the situation discussed here.

The remainder of this manuscript is organized as follows: Section 2 introduces the nota-
tion, the competing risks setting and the parameter of interest. In Section 3, we investigate the
asymptotic behaviour of the estimated ATE and present a martingale-based representation of
the corresponding stochastic process, which provides the basis for Section 4, where we estab-
lish the asymptotic validity of the three resampling approaches. The corresponding proofs can be
found in Section 5. Subsequently, Section 6 summarizes the benefits and drawbacks of the resam-
pling methods. Their application is illustrated by an analysis of publicly accessible data from the
Osteoarthritis Initiative (OAI). We close with a discussion in Section 7.

2 SETTING AND NOTATION

Consider an independent and identically distributed (i.i.d.) data sample of the form
{(Ti ∧ Ci,Di,Ai,Zi)}i∈{1,…,n}. The first vector element denotes the time of an individual’s first event
(T) or censoring (C), whichever occurs earlier. In a setting with K competing causes of failure,
the indicator D may assume values in {1,…,K} according to the type of event that is observed,
whereas for censored observations, D = 0. The data moreover include the treatment indicator
A ∈ {0, 1} as well as the covariate vector Z ∈ Rp. We suppose that there are no ties and that T⊥⊥C
conditional on (A,Z). Besides, the covariate values in Z should be bounded.

Let without loss of generality D = 1 refer to the event of interest and define the poten-
tial cumulative incidence function Fa

1 (t) = P(Ta ≤ t, Da = 1) under treatment a. This function
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quantifies the probability of experiencing the event of interest until time t in a hypothetical
world where all individuals received treatment a. Given independent censoring, that prob-
ability can be represented by observable data alone if the cause-specific hazards are pre-
dictable (i.e., nonrandom or dependent only on past events and covariates known by
the researcher):

Fa
1 (t) = ∫

t

0
1
{

Ta ∧ Ca
≥ s
}
⋅ exp

(

−
K∑

k=1
∫

s

0
P
(

Ta ∧ Ca ∈ [u,u + du), Da = k|||T
a ∧ Ca

≥ u
)

du

)

⋅ P
(

Ta ∧ Ca ∈ [s, s + ds), Da = 1|||T
a ∧ Ca

≥ s
)

ds.

The expression 1{⋅} above is used to denote the indicator function of the event in the argument.
To compare the effectiveness of two different treatment strategies a = 1 and a = 0, we consider
Fa

1 as estimand and characterize the ATE by the relation ATE(t) = E
(

F1
1 (t) − F0

1 (t)
)
, with time

t ranging between 0 and 𝜏, the terminal time of the study. Note that ATE merely describes the
total effect on the event of interest, that is, one cannot distinguish between the direct influ-
ence of treatment on the event of interest and the impact that is due to advancing/preventing
competing events ts (Stensrud et al., 2022). If the identifiability conditions of exchangeabil-
ity, positivity and consistency apply ply (cf. Hernán & Robins, 2020, Sec. I.3), the g-formula
suggests

̂ATE(t) = 1
n

n∑

i=1

(
̂F1

(
t|||A = 1,Zi

)
− ̂F1

(
t|||A = 0,Zi

))
,

as an estimator of the ATE (Ozenne et al., 2020). One possible way to obtain ̂F1

(
t|||A,Z

)
,

i.e. an estimator for the cumulative incidence function of the cause of interest given treat-
ment A and covariates Z, involves fitting cause-specific Cox models with covariates A and
Z(k) ∈ Rpk for each event type k ∈ {1,…,K}. This yields estimated cumulative hazards of the
following form:

̂Λk

(
t|||a, z

(k)
)
= ̂Λ0k(t) exp

(
̂
𝛽kAa + ̂𝜷

T
kZz(k)

)
,

with ̂Λ0k(t) =
∫

t

0

dNk(s)
∑n

i=1Yi(s) exp
(
̂
𝛽kAAi + ̂𝜷

T
kZZ(k)i

) .

(We use Z instead of Z(k) hereafter, as the cause specificity of the covariates follows from the
context.) The vector ̂𝜷k = ( ̂𝛽kA, ̂𝜷

T
kZ)T ∈ Rpk+1 results from the Cox regression and combines

the estimated coefficients for treatment and covariates. Apart from that, ̂Λ0k(t) is the Breslow
estimator of the cumulative baseline hazard (Breslow, 1972), which depends on the counting
process Nk(t) =

∑n
i=1Nki(t) for observed events of type k, with Nki(t) = 1{Ti ∧ Ci ≤ t, Di = k},

and the at-risk indicator Yi(t) = 1{Ti ∧ Ci ≥ t}, i ∈ {1,…,n}. The estimator of the cumula-
tive incidence finally results by plugging the estimated cumulative hazard ̂Λk

(
t|||a, z

)
, into

the formula

̂F1

(
t|||a, z

)
=
∫

t

0
̂S
(

t|||a, z
)

d ̂Λ1

(
s|||a, z

)
.
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Here, ̂S
(

t|||a, z
)
= exp

(
−
∑K

k=1
̂Λk

(
s|||a, z

))
approximates the survival probability P

(
T > t|||a, z

)

for a given treatment a and covariate vector z.

3 ASYMPTOTIC DISTRIBUTION OF THE ESTIMATED ATE

In order to investigate the asymptotic behaviour of ̂ATE, we study the process Un(t) =√
n
(
̂ATE(t) − ATE(t)

)
and its properties as n →∞. Arguments similar to those used by Cheng

et al. (1998) show that the limiting distribution of Un may be represented in terms of martingales.
This is an important finding that facilitates further inferences on the large-sample properties of
the process. Before we introduce the martingale representation of the process, it is necessary to
define several functions and variables, however.

Consider the subsequent quantities, which are useful to express the score function and the
Fisher information for the Cox model (cf. Andersen et al., 1993, Sec. VII.2, in particular Ex.
VII.2.3);

S(r)(𝜷k, t) =
1
n

n∑

i=1
Yi(t) exp

(
𝛽kAAi + 𝜷T

kZZi
)((

Ai,ZT
i
)T
)
⊗r
, r ∈ {0, 1, 2},

(with v⊗0 = 1, v⊗1 = v, v⊗2 = vvT for a column vector v), and the corresponding expectations
s(r)(𝜷k, t) = E

(
S(r)(𝜷k, t)

)
, r ∈ {0, 1, 2}, as well as

E(𝜷k, t) =
S(1)(𝜷k, t)
S(0)(𝜷k, t)

,

with e(𝜷k, t) = s(1)(𝜷k, t)
/

s(0)(𝜷k, t) for k ∈ {1,…,K}. Let the positive definite matrix 𝜮k be the

inverse covariance matrix of the asymptotic distribution of ̂𝜷k, which is given by

𝜮k =
∫

𝜏

0

(
s(2)(𝜷0k,u)
s(0)(𝜷0k,u)

−
(

e(𝜷0k,u)
)
⊗2
)

s(0)(𝜷0k,u) dΛ0k(u),

supposing that the Cox model applies with true vector of regression coefficients 𝜷0k for cause
k (cf. Andersen et al., 1993, Thm. VII.2.2). The following functions have further been intro-
duced by Cheng et al. (1998) to characterize the asymptotic distribution of the cumulative
incidence:

hk

(
t|||a, z

)
=
∫

t

0

((
a, zT)T − e(𝜷0k,u)

)
dΛk

(
u|||a, z

)
,

𝝋1

(
t|||a, z

)
=
∫

t

0
S
(

u − |||a, z
)

dh1

(
u|||a, z

)
,

𝝍1k

(
t|||a, z

)
=
∫

t

0

(
F1

(
t|||a, z

)
− F1

(
u|||a, z

))
dhk

(
u|||a, z

)
.

Eventually, we define

Hk1i(u, t) =
̃Hk1(u, t)

√
n S(0)(𝜷0k,u)

and Hk2i(u, t) =
1
√

n

(
̃Hk2(t)

)T𝚺−1
k

((
Ai,ZT

i
)T − E(𝜷0k,u)

)
,
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k ∈ {1,…,K}, i ∈ {1,…,n}, u ≤ t, with

̃H11(u, t) =
1
n

n∑

i=1

((
S
(

u − |||A = 1,Zi

)
− F1

(
t|||A = 1,Zi

)
+ F1

(
u|||A = 1,Zi

))
exp
(
𝛽01A + 𝜷T

01ZZi
)

−
(

S
(

u − |||A = 0,Zi

)
− F1

(
t|||A = 0,Zi

)
+ F1

(
u|||A = 0,Zi

))
exp
(
𝜷T

01ZZi
))
,

̃Hk1(u, t) =
1
n

n∑

i=1

((
F1

(
t|||A = 0,Zi

)
− F1

(
u|||A = 0,Zi

))
exp
(
𝜷T

0kZZi
)

−
(

F1

(
t|||A = 1,Zi

)
− F1

(
u|||A = 1,Zi

))
exp
(
𝛽0kA + 𝜷T

0kZZi
))
, k ∈ {2,…,K},

and

̃H12(t) =
1
n

n∑

i=1

((
𝝋1

(
t|||A = 1,Zi

)
− 𝝍11

(
t|||A = 1,Zi

))
−
(
𝝋1

(
t|||A = 0,Zi

)
− 𝝍11

(
t|||A= 0,Zi

)))
,

̃Hk2(t) =
1
n

n∑

i=1

(
𝝍1k

(
t|||A = 0,Zi

)
− 𝝍1k

(
t|||A = 1,Zi

))
, k ∈ {2,…,K}.

Based on these functions, one finds an adjuvant approximation of Un:

Lemma 1. For the process

̃Un(t) =
K∑

k=1

n∑

i=1

(

∫

t

0
Hk1i(s, t) dMki(s) +

∫

𝜏

0
Hk2i(s, t) dMki(s)

)
,

with Mki(t) = Nki(t) − ∫
t

0 Yi(s) dΛk

(
s|||Ai,Zi

)
, k ∈ {1,…,K}, i ∈ {1,…,n}, it holds that

Un(t) = ̃Un(t) + op(1).

Note that Mki is a martingale relative to the history (ℱt)t≥0 that is generated by the data
observed until a given time, that is, E

(
dMki(t)

|||ℱt−

)
= 0. The proofs of this and all following

propositions are deferred to Section 5 for better readability.
The subsequent theorem characterizes the limiting distribution of Un for fixed covariate

vectors Zi, i ∈ {1,…,n}:

Theorem 1. The process Un converges weakly to a zero-mean Gaussian process with
covariance function 𝜉(t1, t2) =

∑K
k=1𝜉

(k)(t1, t2),

𝜉

(k)(t1, t2) =
∫

t1∧t2

0
̃Hk1(u, t1) ̃Hk1(u, t2)

dΛ0k(u)
s(0)(𝜷0k,u)

+
(
̃Hk2(t1)

)T𝚺−1
k

̃Hk2(t2),

on the Skorokhod space[0, 𝜏].

4 RESAMPLING-BASED APPROXIMATIONS

The asymptotic distribution of Un(t) is too complex to derive in practice, which is why resampling
approaches are often used as a remedy to draw inferences on ATE(t). In the following, we show
the validity of three different methods.
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4.1 Efron’s bootstrap

Usually, confidence intervals and bands for the ATE are constructed using the classical nonpara-
metric bootstrap (Efron, 1981). The main idea is to draw n times with replacement from the data
at hand and compute the desired statistical functional in the resulting bootstrap sample. This step
is repeated multiple times, yielding a set of bootstrap estimators that provides information on the
distribution of the underlying functional. Although this approach generally provides asymptot-
ically valid outcomes, there are certain situations where it breaks down (Friedrich et al., 2017;
Singh, 1981). To the best of our knowledge, a proof of the validity in the specific setting considered
here is still pending.

Theorem 2.

U∗
n(t) =

√
n
(
̂ATE

∗
(t) −̂ATE(t)

)
,

with ̂ATE
∗
(t) being the estimated ATE in the bootstrap sample, converges to the same

limiting process as Un(t) for almost all data samples {Ti ∧ Ci,Di,Ai,Zi}i∈{1,…,n} if
infu∈[0,𝜏] Y (u) P−−→∞.

4.2 Influence function

Ozenne et al. (2020) presented a second resampling technique based on the influence function of
the ATE. The idea proceeds from the functional delta method, which shows that

Un(t) =
1
√

n

n∑

i=1
IF(t; Ti ∧ Ci,Di,Ai,Zi) + oP(1)

𝒟
−−→ 

(
0,
∫
(IF(t; s, d, a, z))2 dP(s, d, a, z)

)
.

To look up the definition of the influence function IF, refer to Ozenne et al. (2020, 2017). The
authors propose the resampling method described by Scheike and Zhang (2008) in order to
approximate the distribution of the process while taking the dependence of the increments of Un
into account. This method is valid because of the asymptotic properties of Un (see Theorem 1).
More specifically, one can imitate the limiting distribution of Un by applying independent
standard normal variables GIF

1 ,…,GIF
n and the plug-in estimator ̂IF as follows:

1
√

n

n∑

i=1

̂IF(t; Ti ∧ Ci,Di,Ai,Zi) ⋅ GIF
i .

For further details, see also van der Vaart (1998, Chap. 20).

4.3 Wild bootstrap

With regard to the martingale representation of Un from Lemma 1, a third approach results in
accordance with the resampling scheme proposed by Lin et al. (1993). In short, one tries to emu-
late the distribution of the martingale increments dMki, k ∈ {1,…,K}, i ∈ {1,…,n}, by generating



1512 RÜHL and FRIEDRICH

random variates with asymptotically equal moments. The subsequent theorem sets out the
conditions these variates need to fulfil in more detail. (Note the parallels to Theorem 1 in Dobler
et al., 2017.)

Theorem 3. Let GWB
i , i ∈ {1,…,n}, be random variables that satisfy the following

conditions:

(i)
√

n max1≤i≤n E

(
GWB

i
|||ℱ𝜏

) P
−−→ 0;

(ii) max1≤i≤n Var
(

GWB
i
|||ℱ𝜏

) P
−−→ 1;

(iii) 1
/√

n max1≤i≤n E

((
GWB

i

)4|||ℱ𝜏

) P
−−→ 0;

(iv) 
(

GWB
1 ,…,GWB

n
|||ℱ𝜏

)
= ⊗n

i=1
(

GWB
i
|||ℱ𝜏

)
,

where
(
⋅|||ℱ𝜏

)
denotes the conditional distribution givenℱ

𝜏
, and⊗ is the product

measure;

(v)
∑n

i=1 E

⎛
⎜
⎜
⎜
⎝

(
GWB

i −E

(
GWB

i
|||ℱ𝜏

))2

∑n
j=1

(
Var
(

GWB
j
|||ℱ𝜏

))2 ⋅ 1

⎧
⎪
⎨
⎪
⎩

(
GWB

i −E

(
GWB

i
|||ℱ𝜏

))2

∑n
j=1

(
Var
(

GWB
j
|||ℱ𝜏

))2 > 𝜖

⎫
⎪
⎬
⎪
⎭

|||ℱ𝜏

⎞
⎟
⎟
⎟
⎠

P
−−→ 0 ∀𝜖 > 0.

Then the plug-in estimate of Un,

̂Un(t) =
K∑

k=1

n∑

i=1

(
̂Hk1i(Ti ∧ Ci, t) Nki(t)GWB

i + ̂Hk2i(Ti ∧ Ci, t) Nki(𝜏)GWB
i
)
,

converges weakly to the same process as Un on[0, 𝜏], conditional on the data.
The functions ̂Hk1i and ̂Hk2i are calculated by plugging appropriate sample estimates into the

definitions of Hk1i and Hk2i. It is easy to see that conditions (i) to (v) are fulfilled by independent
standard normal multipliers GWB

i , which corresponds to the original idea of Lin et al. (1993).
Another option is, for example, independent centered unit Poisson multipliers, according to the
suggestion of Beyersmann et al. (2013).

5 PROOFS

Subsequently, we present the proofs of the lemmas and theorems from Sections 3 and 4.

Proof of Lemma 1. By the strong law of large numbers, we have

Un(t) =
√

n
n

n∑

i=1

(

∫

t

0
̂S
(

u − |||A = 1,Zi

)
exp
(
̂
𝛽1A + ̂𝜷

T
1ZZi

)
d ̂Λ01(u)

−
∫

t

0
S
(

u − |||A = 1,Zi

)
exp
(
𝛽01A + 𝜷T

01ZZi
)

dΛ01(u)
)

−
√

n
n

n∑

i=1

(

∫

t

0
̂S
(

u − |||A = 0,Zi

)
exp
(
̂𝜷

T
1ZZi

)
d ̂Λ01(u)

−
∫

t

0
S
(

u − |||A = 0,Zi

)
exp
(
𝜷T

01ZZi
)

dΛ01(u)
)
+ op(1)
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=
√

n
n

n∑

i=1

(

∫

t

0

(
̂S
(

u − |||A = 1,Zi

)
− S
(

u − |||A = 1,Zi

))
exp
(
̂
𝛽1A + ̂𝜷

T
1ZZi

)
d ̂Λ01(u)

+
∫

t

0
S
(

u − |||A = 1,Zi

)
d
(

exp
(
̂
𝛽1A + ̂𝜷

T
1ZZi

)
̂Λ01(u) − exp

(
𝛽01A + 𝜷T

01ZZi
)
Λ01(u)

))

−
√

n
n

n∑

i=1

(

∫

t

0

(
̂S
(

u − |||A = 0,Zi

)
− S
(

u − |||A = 0,Zi

))
exp
(
̂𝜷

T
1ZZi

)
d ̂Λ01(u)

+
∫

t

0
S
(

u − |||A = 0,Zi

)
d
(

exp
(
̂𝜷

T
1ZZi

)
̂Λ01(u) − exp

(
𝜷T

01ZZi
)
Λ01(u)

))
+ op(1).

Lin et al. (1994) showed that
√

n
(
̂Λk

(
t|||a, z

)
− Λk

(
t|||a, z

))
= ̃W k

(
t|||a, z

)
+ op(1) for

the martingale expression

̃W k

(
t|||a, z

)
= 1
√

n

n∑

i=1

(

∫

t

0

exp
(
𝛽0kA ⋅ a + 𝜷T

0kZz
)

S(0)(𝜷0k,u)
dMki(u)

+
(

hk

(
t|||a, z

))T
𝚺−1

k ∫

𝜏

0

((
Ai,ZT

i
)T − E(𝜷0k,u)

)
dMki(u)

)
.

Thus, exploiting the (uniform) consistency of ̂𝜷1 and ̂Λ01 (Kosorok, 2008,
pp. 361–362; Tsiatis, 1981) and using a first-order Taylor approximation of f ∶ x →
exp(−x) around x =

∑K
k=1 exp

(
𝛽0kA ⋅ a + 𝜷T

0kZz
)
Λ0k(t) (which yields ̂S

(
t − |||a, z

)
−

S
(

t − |||a, z
)
= − 1√

n
S
(

t − |||a, z
)∑K

k=1
̃W k

(
t|||a, z

)
+ op(1)), we find that

Un(t) =
1
n

n∑

i=1

(

∫

t

0
S
(

u − |||A = 1,Zi

)
d ̃W1

(
u|||A = 1,Zi

)

−
K∑

k=1
∫

t

0
̃W k

(
u|||A = 1,Zi

)
dF1

(
u|||A = 1,Zi

))

− 1
n

n∑

i=1

(

∫

t

0
S
(

u − |||A = 0,Zi

)
d ̃W 1

(
u|||A = 0,Zi

)

−
K∑

k=1
∫

t

0
̃W k

(
u|||A = 0,Zi

)
dF1

(
u|||A = 0,Zi

))

+ op(1)

= 1
n

n∑

i=1

(

∫

t

0
S
(

u − |||A = 1,Zi

)
d ̃W1

(
u|||A = 1,Zi

)

−
K∑

k=1
∫

t

0

(
F1

(
t|||A = 1,Zi

)
− F1

(
u|||A = 1,Zi

))
d ̃W k

(
u|||A = 1,Zi

)

−
(

∫

t

0
S
(

u − |||A = 0,Zi

)
d ̃W1

(
u|||A = 0,Zi

)

−
K∑

k=1
∫

t

0

(
F1

(
t|||A = 0,Zi

)
− F1

(
u|||A = 0,Zi

))
d ̃W k

(
u|||A = 1,Zi

)))

+ op(1).
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The last equivalence follows from integration by parts, since

∫

t

0
̃W k

(
u|||a, z

)
dF1

(
u|||a, z

)
= ̃W k

(
t|||a, z

)
F1

(
t|||a, z

)
−
∫

t

0
F1

(
u|||a, z

)
d ̃W k

(
u|||a, z

)
.

Finally, by inserting the definition of ̃W k and reordering the terms, the result
follows. □

Proof of Theorem 1. Lemma 1 implies that it is sufficient to consider the limiting
distribution of ̃Un.

For distinct causes k ≠ l, the counting processes Nki and Nli cannot jump both,
which is why the martingales Mki(t) and Mli(t) are orthogonal. Moreover, ∀k ∈
{1,…,K},
⟨ n∑

i=1
∫

⋅

0

1
√

n S(0)(𝜷0k,u)
dMki(u),

n∑

i=1
∫

⋅

0

1
√

n

((
Ai,ZT

i
)T − E(𝜷0k,u)

)
dMki(u)

⟩

(t)

= 1
n

n∑

i=1
∫

t

0

1
S(0)(𝜷0k,u)

((
Ai,ZT

i
)T − E(𝜷0k,u)

)
Yi(u) exp

(
𝛽0kA ⋅ Ai + 𝜷T

0kZZi
)

dΛ0k(u)

=
∫

t

0

1
S(0)(𝜷0k,u)

(
S(1)(𝜷0k,u) − E(𝜷0k,u)S(0)(𝜷0k,u)

)
dΛ0k(u) = 0.

This means that
∑n

i=1∫
t

0 Hk1i(u, t) dMki(u) and
∑n

i=1∫
t

0 Hk2i(u, t) dMki(u) are orthogonal
as well. Andersen et al. (1993, pp. 498–501) furthermore showed that

1
√

n

n∑

i=1
∫

𝜏

0

((
Ai,ZT

i
)T − E(𝜷0k,u)

)
dMki(u)

𝒟
−−→  (0,𝜮k),

as n tends to infinity (where symbolizes the normal distribution), and since𝝋1 and
𝝍1k are deterministic functions for given covariates Zi, the second summand of ̃Un is
likewise asymptotically normal with mean zero.

It therefore only remains to consider the first summand. Note that ∀k ∈ {1,…,K},
the processes ̃Hk1(u, t) are deterministic, continuous in u and bounded for fixed
covariates Zi. In particular,

|| ̃Hk1(u, t)|| ≤ (exp (𝛽0kA) + 1)max
1≤i≤n

exp
(
𝜷T

0kZZi
)
,

|||
(
̃Hk1(u, t)

)2||| ≤ (exp (2𝛽0kA) + 2 exp (𝛽0kA) + 1)max
1≤i,j≤n

exp
(
𝜷T

0kZ(Zi + Zj)
)
,

for u ≤ t. The strong law of large numbers further suggests that S(0)(𝜷k, t) con-
verges to s(0)(𝜷k, t) almost surely for any t ∈ [0, 𝜏], 𝜷k ∈ Rpk+1. If we suppose that
P(Yi(𝜏) > 0) > 0 ∀i ∈ {1,…,n} (or also some less stringent constraints, see Fleming &
Harrington, 2005, Sec. 8.4), this convergence is uniform on k × [0, 𝜏], where k is a
neighbourhood of 𝜷0k. Besides, s(0) is bounded away from zero onk × [0, 𝜏]. The con-
ditions of Rebolledo’s martingale central limit theorem (Andersen et al., 1993, Thm.
II.5.1) are thus fulfilled, and we conclude that ̃Un converges weakly to a zero-mean
Gaussian process on[0, 𝜏].
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For the covariance function ̃
𝜉, one finds that

̃
𝜉(t1, t2) =

K∑

k=1

( n∑

i=1
∫

t1∧t2

0

̃Hk1(u, t1) ̃Hk1(u, t2)

n
(

S(0)(𝜷0k,u)
)2 Yi(u) exp

(
𝛽0kA ⋅ Ai + 𝜷T

0kZZi
)

dΛ0k(u)

+
n∑

i=1
∫

𝜏

0

1
n
(
̃Hk2(t1)

)T𝚺−1
k

((
Ai,ZT

i
)T − E(𝜷0k,u)

)

×
(
̃Hk2(t2)

)T𝚺−1
k

((
Ai,ZT

i
)T − E(𝜷0k,u)

)
⋅Yi(u) exp

(
𝛽0kA ⋅ Ai + 𝜷T

0kZZi
)

dΛ0k(u)

)

=
K∑

k=1

(

∫

t1∧t2

0

̃Hk1(u, t1) ̃Hk1(u, t2)
S(0)(𝜷0k,u)

dΛ0k(u)

+
(
̃Hk2(t1)

)T𝚺−1
k

(

∫

𝜏

0

1
n

n∑

i=1

((
Ai,ZT

i
)T − E(𝜷0k,u)

)((
Ai,ZT

i
)T − E(𝜷0k,u)

)T

⋅Yi(u) exp
(
𝛽0kA ⋅ Ai + 𝜷T

0kZZi
)

dΛ0k(u)
)(
𝚺−1

k
)T
̃Hk2(t2)

)

=
K∑

k=1

(

∫

t1∧t2

0

̃Hk1(u, t1) ̃Hk1(u, t2)
S(0)(𝜷0k,u)

dΛ0k(u)

+
(
̃Hk2(t1)

)T𝚺−1
k

(

∫

𝜏

0

(
S(2)(𝜷0k,u) − S(1)(𝜷0k,u)

(
E(𝜷0k,u)

)T
)

dΛ0k(u)
)
𝚺−1

k
̃Hk2(t2)

)

−−−−−→
n→∞

K∑

k=1

(

∫

t1∧t2

0

̃Hk1(u, t1) ̃Hk1(u, t2)
s(0)(𝜷0k,u)

dΛ0k(u) +
(
̃Hk2(t1)

)T𝚺−1
k 𝚺k𝚺−1

k
̃Hk2(t2)

)

= 𝜉(t1, t2),

where the convergence in the last step follows by the strong law of large numbers and
the continuous mapping theorem. □

Proof of Theorem 2 ((Outline)). The superscript “∗” is used here and in the following
to indicate bootstrapped quantities.

Suppose that the given data are obtained on the probability space (Ω,,P). We first
note that the general martingale arguments apply conditionally on 𝜔 ∈ Ω for almost
all 𝜔 (cf. Akritas, 1986). Let 𝜏∗ = max1≤i≤n{(T ∧ C)∗i } be the last observed event time
in the bootstrap sample. The estimators ̂Λ0k and ̂Λk calculated in the original data
sample are now the true (discontinuous) cumulative baseline hazard and cumula-
tive hazard in the bootstrap sample, respectively. Moreover, s(r),∗(𝜷k,u) = S(r)(𝜷k,u) as
well as e∗(𝜷k,u) = E(𝜷k,u), which is easy to see if the bootstrap sample is represented
with multinomial weights assigned to the original sample, for example,

S(0),∗(𝜷k,u) =
1
n

n∑

i=1
wi Yi(u) exp

(
𝛽kAAi + 𝜷T

kZZi
)
,

for w ∼ult
(

n,
(

1
/

n,…, 1
/

n
)T
)

. Thus, 𝚺∗k = ̂𝚺k, h∗k = ̂hk, 𝝋∗1 = 𝝋̂1, 𝝍∗
1k = 𝝍̂1k

and

M∗
ki(t) = wi

(
Nki(t) −

∫

t

0
Yi(u) d ̂Λk

(
u|||Ai,Zi

))
,
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for i ∈ {1,…,n}. Note that a discrete-time setting is considered here! We can now infer
that ̂𝜷∗k

P−−→ ̂𝜷k and ̂Λ∗0k
a.s.−−−→ ̂Λ0k on [0, 𝜏∗] as n → ∞ by the considerations of Prentice

and Kalbfleisch (2003). Also,

√
n
(
̂Λ∗k
(

t|||a, z
)
− ̂Λk

(
t|||a, z

))

= 1
√

n∫

t

0

exp
(
̂
𝛽kA ⋅ a + ̂𝜷

T
kZz
)

S(0),∗( ̂𝜷k,u)
M∗

k (du)

+ 1
√

n

(
̂hk

(
t|||a, z

))T
̂𝚺−1

k

( n∑

i=1
∫

𝜏

∗

0

((
Ai,ZT

i
)T − E∗( ̂𝜷k,u)

)
M∗

ki(du)

)

+ op(1),

which can be concluded by the reasoning of Andersen et al. (1993, proof of Thm.
VII.2.3). These results provide the basis for proceeding in the same way as we did in
the proof of Lemma 1. It follows that U∗

n(t) = ̃U∗
n(t) + op(1), with

̃U∗
n(t) =

K∑

k=1

n∑

i=1

(

∫

t

0
H∗

k1i(u, t) M∗
ki(du) +

∫

𝜏

∗

0
H∗

k2i(u, t) M∗
ki(du)

)
,

applying the definitions of Hk1i and Hk2i to the bootstrap sample.
Subsequently, we use similar arguments as in the proof of Theorem 1. One finds

that
⟨ n∑

i=1
∫

⋅

0

1
√

n S(0),∗( ̂𝜷k,u)
M∗

ki(du),
n∑

i=1
∫

⋅

0

1
√

n

((
Ai,ZT

i
)T − E∗( ̂𝜷k,u)

)
M∗

ki(du)

⟩

(t)

= 1
n

n∑

i=1
∫

t

0

1
S(0),∗( ̂𝜷k,u)

((
Ai,ZT

i
)T − E∗( ̂𝜷k,u)

)

× wi Yi(u)
(

1 − ̂Λk

(
Δu|||Ai,Zi

))
̂Λk

(
du|||Ai,Zi

)

→
∫

t

0

1
S(0)( ̂𝜷k,u)

(
E( ̂𝜷k,u)S

(0)
2 ( ̂𝜷k,u) − S(1)2 ( ̂𝜷k,u)

)
̂Λ0k(Δu) ̂Λ0k(du),

with S(r)2 (𝜷k,u) =
1
n

∑n
i=1Yi(t) exp

(
2𝛽kAAi + 2𝜷T

kZZi
)((

Ai,ZT
i
)T
)
⊗r
, r ∈ {0, 1, 2}. Also,

1
√

n

n∑

i=1
∫

𝜏

∗

0

((
Ai,ZT

i
)T − E∗( ̂𝜷k,u)

)
M∗

ki(du)
𝒟
−−→

(
0, ̂𝚺k − ̂𝚺k,2

)
,

with

̂𝚺k,2 =
∫

𝜏

0

(
S(2)2 ( ̂𝜷k,u) − S(1)2 ( ̂𝜷k,u)

(
E( ̂𝜷k,u)

)T − E( ̂𝜷k,u)
(

S(1)2 ( ̂𝜷k,u)
)T

+E( ̂𝜷k,u)
(

E( ̂𝜷k,u)
)TS(0)2 ( ̂𝜷k,u)

)

⋅ ̂Λ0k(Δu) ̂Λ0k(du),
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(cf. Prentice & Kalbfleisch, 2003), and lastly,

n∑

i=1
∫

t

0

̃H∗
k1(u, t)√

n S(0),∗( ̂𝜷k,u)
M∗

ki(du),

converges weakly to a zero-mean Gaussian process with covariance function

𝜉

∗
1 (t1, t2) =

K∑

k=1
∫

t1∧t2

0

̃Hk1(u, t1) ̃Hk1(u, t2)
S(0)( ̂𝜷k,u)

̂Λ0k(du)

−
K∑

k=1
∫

t1∧t2

0

̃Hk1(u, t1) ̃Hk1(u, t2)
(

S(0)( ̂𝜷k,u)
)2 S(0)2 ( ̂𝜷k,u) ̂Λ0k(Δu) ̂Λ0k(du),

as n → ∞.
Since we assumed that there are no ties in the original sample,

S(r)2 ( ̂𝜷k,u) ̂Λ0k(Δu) ̂Λ0k(du) = 1
n

n∑

i=1
Yi(u) exp

(
2 ̂𝛽kAAi + 2 ̂𝜷T

kZZi

)((
Ai,ZT

i
)T
)
⊗r

× (ΔNk(u))2
(∑n

i=1Yi(u) exp
(
̂
𝛽kAAi + ̂𝜷

T
kZZi

))2

≤

max
1≤i≤n∶ Yi(u)=1

{
exp
(

2 ̂𝛽kAAi + 2 ̂𝜷T
kZZi

)((
Ai,ZT

i
)T
)
⊗r
}

(Y (u))2 min
1≤i≤n∶ Yi(u)=1

{
exp
(

2 ̂𝛽kAAi + 2 ̂𝜷T
kZZi

)} .

Because of the boundedness of the covariates, all the terms involving
S(r)2 ( ̂𝜷k,u) ̂Λ0k(Δu) ̂Λ0k(du), r ∈ {0, 1, 2}, vanish as n → ∞, and the proof is
complete. □

Before we can verify Theorem 3, several interim results are needed. The proofs of the following
lemmas can be found in the appendix; the ideas are based on Beyersmann et al. (2013) and Dobler
et al. (2017).

Consider the triangular arrays X(k)n,i =
(

X (k)
n,i (t1),…,X (k)

n,i (tl)
)T

, i ∈ {1,…,n}, k ∈ {1,…,K},
defined on the probability space (Ω1,1,P1), for 0 ≤ t1 ≤…≤ tl ≤ 𝜏, l ∈ N, with

X (k)
n,i (t) = ∫

t

0

̂
̃Hk1(u, t)

dNki(u)
√

n S(0)( ̂𝜷k,u)
+
∫

𝜏

0

1
√

n

(
̂
̃Hk2(t)

)T
̂𝚺−1

k

((
Ai,ZT

i
)T − E( ̂𝜷k,u)

)
dNki(u),

constituting the subject- and cause-specific summands of ̃Un(t) (except that dMki is replaced by
dNki), as well as the plug-in estimators ̂̃Hk1, ̂̃Hk2 and

̂𝚺k =
1
n

n∑

i=1
∫

𝜏

0

⎛
⎜
⎜
⎝

S(2)( ̂𝜷k,u)
S(0)( ̂𝜷k,u)

−

(
S(1)( ̂𝜷k,u)
S(0)( ̂𝜷k,u)

)
⊗2⎞
⎟
⎟
⎠

dNki(u).

Consequently, ̂Un(t) =
∑K

k=1
∑n

i=1Gi X (k)
n,i (t), with multipliers Gi defined on (Ω2,2,P2). (We gen-

erally consider the product probability space (Ω,,P) = (Ω1 × Ω2,1 ⊗2,P1 × P2).)
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Lemma 2. The triangular arrays X(k)n,i satisfy the following conditions for each k ∈
{1,…,K}:

(i) max1≤i≤n
‖‖‖X(k)n,i

‖‖‖
P
−−→ 0 (where ‖⋅‖ denotes the Euclidian norm);

(ii)
∑n

i=1X(k)n,i

(
X(k)n,i

)T P
−−→
(
𝜉

(k)(tr, ts)
)

1≤r,s≤l.

Lemma 3. For time points 0 ≤ tr ≤ ts ≤ 𝜏 and k ∈ {1,…,K},

max
1≤i≤n

|||X
(k)
n,i (ts) − X (k)

n,i (tr)
||| ∈ Op

(
n−1∕2)

,

where Op(an) denotes asymptotic boundedness by an in probability.

Note that the bound in Lemma 3 is independent of the time points tr and ts!

Lemma 4. For time points 0 ≤ tq ≤ tr ≤ ts ≤ 𝜏, causes k ∈ {1,…,K} and the function

L(k)n (t) =
1
n

n∑

j=1

(
exp
(
2 ̂𝛽kA

)
+ 2 exp

(
̂
𝛽kA + 1

))
exp
(

2 ̂𝜷T
kZZj

)

∫

t

0

dNk(u)

n
(

S(0)( ̂𝜷k,u)
)2

+ 1
n

n∑

j=1

((
̂F1

(
t|||A = 1,Zj

))2
exp
(
2 ̂𝛽kA

)
+
(
̂F1

(
t|||A = 0,Zj

))2
)

× exp
(

2 ̂𝜷T
kZZj

)

∫

𝜏

0

dNk(u)

n
(

S(0)( ̂𝜷k,u)
)2

+ 1
n

n∑

j=1
exp
(

2 ̂𝛽kA + 2 ̂𝜷T
kZZj

)

⋅
∫

t

0

((
1,ZT

j

)T
− E( ̂𝜷k,u)

)T
̂𝚺−1

k

(
1
n

n∑

i=1

̃𝚺ki

)
̂𝚺−1

k

×
((

1,ZT
j

)T
− E( ̂𝜷k,u)

)
dNk(u)

n
(

S(0)( ̂𝜷k,u)
)2

+ 1
n

n∑

j=1
exp
(

2 ̂𝜷T
kZZi

)

⋅
∫

t

0

((
0,ZT

i
)T − E( ̂𝜷k,u)

)T
̂𝚺−1

k

(
1
n

n∑

i=1

̃𝚺ki

)
̂𝚺−1

k

×
((

0,ZT
i
)T − E( ̂𝜷k,u)

) dNk(u)

n
(

S(0)( ̂𝜷k,u)
)2

+ 1
n

n∑

j=1

(
̂F1

(
t|||A = 1,Zj

))2
exp
(

2 ̂𝛽kA + 2 ̂𝜷T
kZZj

)

⋅
∫

𝜏

0

((
1,ZT

j

)T
− E( ̂𝜷k,u)

)T
̂𝚺−1

k

(
1
n

n∑

i=1

̃𝚺ki

)
̂𝚺−1

k

×
((

1,ZT
j

)T
− E( ̂𝜷k,u)

)
dNk(u)

n
(

S(0)( ̂𝜷k,u)
)2
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+ 1
n

n∑

j=1

(
̂F1

(
t|||A = 0,Zi

))2
exp
(

2 ̂𝜷T
kZZi

)

⋅
∫

𝜏

0

((
0,ZT

i
)T − E( ̂𝜷k,u)

)T
̂𝚺−1

k

(
1
n

n∑

i=1

̃𝚺ki

)
̂𝚺−1

k

×
((

0,ZT
i
)T − E( ̂𝜷k,u)

) dNk(u)

n
(

S(0)( ̂𝜷k,u)
)2 .

with ̃𝚺ki = ∫
𝜏

0

((
Ai,ZT

i
)T − E( ̂𝜷k,u)

)((
Ai,ZT

i
)T − E( ̂𝜷k,u)

)T
dNki(u), the following

inequality holds in probability provided that the conditions in Theorem 3 are fulfilled:

E

⎛
⎜
⎜
⎝

( n∑
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≤
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)3∕2
⋅ Op(1).

Proof of Theorem 3. Considering ̂U (k)
n (⋅) =

∑n
i=1Gi X (k)

n,i (⋅), the conditions of
Lemma 1 from the supplementary material of Dobler et al. (2017) are fulfilled
∀k ∈ {1,…,K} due to Lemma 2 and the assumptions w.r.t. the multipliers Gi. It
follows that the finite-dimensional distributions of ̂U (k)

n converge weakly to zero-mean
Gaussian processes with covariance functions 𝜉

(k), respectively, in probability
(conditional on ℱ

𝜏
).

Since 1
n

∑n
i=1
̃𝚺ki converges to 𝚺k (see proof of Lemma 2), the function L(k)n from

Lemma 4 converges uniformly to
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+ EZ

((
F1

(
t|||A = 0,Z

))2
exp
(
2𝜷T

0kZZ
)

⋅
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𝜏

0

((
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𝚺−1

k
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) dΛ0k(u)
s(0)(𝜷0k,u)

)
,

on [0, 𝜏) as a consequence of the martingale central limit theorem. The conditional
tightness of ̂U (k)

n can now be shown along the lines of the proof of Theorem 3.1 in
Dobler and Pauly (2014). We apply the subsequence principle for convergence in
probability (cf. Beyersmann et al., 2013): For every subsequence, there is another
subsequence such that for almost every (fixed) 𝜔 ∈ Ω1 × Ω2, we find n0 ∈ N, a con-
stant 𝛾 > 0 and a sequence of nondecreasing, continuous functions l(k)n that converges
uniformly to l(k), such that

E

⎛
⎜
⎜
⎝

( n∑

i=1
Gi X (k)

n,i (tr) −
n∑

i=1
Gi X (k)

n,i (tq)

)2( n∑

i=1
Gi X (k)

n,i (ts) −
n∑

i=1
Gi X (k)

n,i (tr)

)2
|||ℱ𝜏

⎞
⎟
⎟
⎠

≤ 𝛾

(
l(k)n (ts) − l(k)n (tq)

)3∕2
,

if n ≥ n0. (Here, n0 and 𝛾 do not depend on 0 ≤ tq ≤ tr ≤ ts ≤ 𝜏.) The conditional
tightness follows by extending Theorem 13.5 in Billingsley (1999) pointwise along
subsequences (cf. Dobler & Pauly, 2014). Eventually, this proves the conditional
convergence in distribution of ̂U (k)

n in probability for each k ∈ {1,…,K}.
The assertion of Theorem 3 follows by noting that the processes ̂U (k)

n and ̂U (k′)
n are

independent for k ≠ k′ given the data because we consider competing events, that
is, dNki and dNk′i cannot jump both. □

6 COMPARISON OF THE RESAMPLING METHODS

To provide better insight into the properties of the discussed resampling methods, the outcomes of
extensive simulations investigating their performance are summarized below. Besides, we present
the results of an application to real data.

6.1 Performance in simulations

In the simulation study described in Rühl and Friedrich (2024), competing risks data were
generated according to the same setup as used for the empirical studies presented by Ozenne
et al. (2020): The authors considered 12 independent covariates with distinct effects on the prob-
ability of treatment as well as on the event of interest, a competing event, and censoring. A data
generation approach based on cause-specific hazards was employed to model the event times. In
the next step, Efron’s bootstrap, the influence function approach, and the wild bootstrap (with
standard normal, centred Poisson, and weird bootstrap multipliers) were applied to determine
confidence intervals and time-simultaneous confidence bands, respectively.

Rühl and Friedrich (2024) investigated different scenarios, including settings with no,
light or heavy censoring, low or high probability of treatment, and differing variance of the
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covariates. Sample sizes ranged between 50 and 300 and in addition, the extent of the treatment
effect varied. Each scenario was simulated 5000 times and the performance of the three
resampling methods was compared considering the 95% coverage probabilities as well as the
mean widths of the confidence intervals and bands.

In general, the confidence intervals computed by the wild bootstrap achieved coverage proba-
bilities that were the closest to the nominal level of 95%, in particular at later time points when a
sufficient amount of events had been observed (regardless of the choice of the multiplier). Efron’s
bootstrap was more conservative, yielding coverages above those produced by the wild bootstrap,
whereas the intervals based on the influence function attained the lowest coverage levels. Excep-
tions occurred, however, if the event of interest was observed only rarely, due to a prevalence
of the competing event. In that case, all methods produced conservative confidence intervals,
such that the influence function approach became (slightly) more accurate than the remaining
approaches. The same applied if the sample size was very small (i.e., below 75–100) or covariates
varied strongly.

The simulations revealed similar outcomes with respect to the time-simultaneous confidence
bands, in the sense that the classical bootstrap and the influence function approach yielded more
conservative and more liberal bands than the wild bootstrap, respectively. However, there was an
increased number of settings where the coverage probability of the bands obtained by the wild
bootstrap was less accurate compared to Efron’s bootstrap.

The widths of the confidence intervals and bands corresponding to the influence function
were overall the smallest. With increasing sample sizes, the differences between the methods
became irrelevant, though.

Last but not least, it should be mentioned that Efron’s bootstrap takes considerably more com-
putation time than the influence function approach and the wild bootstrap. This might be relevant
in practical analyses, in particular when sample sizes are large.

For more details on the simulations, readers are referred to Rühl and Friedrich (2024).

6.2 Real data application

The application of the three resampling methods is further exemplified by means of data collected
from the OAI (Nevitt et al., 2006). In a prospective cohort study, adults who suffer from or are at
risk of symptomatic femoral-tibial knee osteoarthritis were enrolled at five clinical sites located
in the United States, and between 2004 and 2014, the progression of their osteoarthritis was mon-
itored. At the 48-month visit, researchers additionally obtained minute-by-minute accelerometer
counts to record the participants’ physical activity.

The goal of our analysis is to examine the effect of attaining the aerobic guideline of the U.S.
Department of Health and Human Services (DHHS) (2008) for adults with arthritis (i.e., spending
150 min per week with moderately-to-vigorously intense activity that leads to at least 2020 activ-
ity counts per minute) on the time to knee replacement. The latter is determined by self-report or
medical records, and death (as obtained from documentation) is considered as competing event.
We only take into account individuals who contributed valid accelerometry data for at least four
consecutive days (with activity counts being measured for 10 or more hours per day, as well as
weekly activity being estimated on the basis of the available wear days if necessary). Eligible
subjects also need to have a Kellgren–Lawrence grade of 3 or 4 in at least one knee (as agreed
upon by two readers assessing the respective x-rays), while not having had any knee replace-
ment until the 48-month visit (cf. Master et al., 2021). Besides, only participants with complete
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F I G U R E 1 Confidence intervals and bands for the average effect of attaining the US Department of Health
and Human Services (DHHS) activity guideline on the risk of knee replacement.

data on the covariates presented in Table A1 are investigated. Our analysis ultimately comprises
461 subjects.

The estimated average effect of attaining the DHHS activity guideline on the risk of knee
replacement is illustrated in Figure 1: Our analysis implies that if every participant had achieved
the recommended amount of physical activity, the 6-year risk of knee replacement would have
been reduced by 7.11% as opposed to a setting where no one had attained the guideline. Con-
fidence intervals and time-simultaneous confidence bands for the average effect are calculated
using the resampling methods presented earlier. As it can be seen, the classical bootstrap yields
confidence intervals with somewhat greater limits. Other than that, the influence function
approach leads to the narrowest confidence regions and the wild bootstrap (with standard normal
multipliers) produces slightly wider limits, which is in line with the outcomes of the simulation
study discussed in the previous section.

7 DISCUSSION

In this manuscript, we consider time-to-event data subject to competing risks and defined the
ATE as the difference between the t-year absolute risks for the event of interest. We derived
the asymptotic distribution of the g-formula estimator and on the basis thereof, examined three
resampling methods that are useful for statistical inference. These include Efron’s nonparamet-
ric bootstrap, an approach based on the influence function and the wild bootstrap. Simulations
(Rühl & Friedrich, 2024) as well as an applied data analysis showed that confidence regions
derived by the classical bootstrap generally were wider, whereas the influence function approach
results in the least conservative intervals and bands. The wild bootstrap mostly ranged in between
and therefore suggests itself as a reasonable choice, unless the event of interest is rarely observed.
In that case, one might prefer the influence function. It is further worth noting that—in particu-
lar, for large samples—the computation time of the classical bootstrap significantly exceeds that
of the two remaining approaches.

Beside quantifying its uncertainty, estimating the ATE also presents a number of challenges.
While we based our estimation on cause-specific Cox models, our estimand of interest was the
causal risk difference, i.e. a contrast of the cumulative incidence functions. Thus, we do not
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interpret the hazard ratio in a causal way, see Hernán (2010), Aalen et al. (2015), Martinussen
and Vansteelandt (2013) for detailed discussions on the drawbacks of the hazard ratio in a causal
context. As Martinussen and Stensrud (2023) point out, this estimand only captures the total effect
of the treatment on the event of interest, while a distinction in terms of direct and indirect effects
is not possible, see also Young et al. (2020). Alternative approaches (which both rely on untestable
assumptions, though) are discussed by Rubin (2006) and Stensrud et al. (2022), including princi-
pal stratification and separable effects. Martinussen and Stensrud (2023) propose an estimator for
the latter based on the efficient influence function and use the nonparametric bootstrap to esti-
mate its variance. As the classical bootstrap has been shown to perform insufficiently in certain
situations (Friedrich et al., 2017; Nießl et al., 2023; Rühl et al., 2023; Singh, 1981), extensions of
the wild bootstrap to this situation merit further research.

Another aspect concerns modeling of the association between the covariates and the outcome.
In our work, we focused on Cox proportional hazards models, but did not go into aspects such
as variable selection or model misspecification. The latter is covered to some extent by Ozenne
et al. (2020) considering the classical bootstrap. Recently, Vansteelandt et al. (2022) proposed an
approach that allows for more flexible modeling of the association between covariates and an
outcome. Integration of this so-called assumption-lean Cox regression into our resampling frame-
work is part of future research. Alternatively, other regression models such as Aalen’s additive
hazards model (Aalen, 1989) or a Cox–Aalen model (Scheike & Zhang, 2002) might be used,
however, the proofs presented here need to be adapted accordingly. Exploiting the properties of
the martingale residuals underlying these models will be helpful and, in addition, facilitate the
integration of, for example, left-truncation.
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APPENDIX

A.1 PROOFS OF LEMMAS 2, 3, AND 4

Proof of Lemma 2. Because Nki jumps at most once,
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.

Recall that on  × [0, 𝜏], S(0) converges uniformly to s(0), which is bounded away
from zero, and that ̂𝜷k is strongly consistent. For that reason, the expression above
converges to 0 ∀tr ∈ {t1,…, tl} almost surely as n →∞.

In addition,
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Using the previous considerations and the fact that s(1) and s(2) are bounded on
 × [0, 𝜏] (Fleming & Harrington, 2005, Sec. 8.4), we can also conclude that the above
maximum vanishes ∀tr ∈ {t1,…, tl} as n tends to ∞, which implies condition (i).

Moreover, for time points tr and ts with 0 ≤ tr ≤ ts ≤ 𝜏,

n∑

i=1
X (k)

n,i (tr) X (k)
n,i (ts) =

1
n

n∑

i=1
∫

tr

0

̂
̃Hk1(u, tr) ̂̃Hk1(u, ts)

dNki(u)
(

S(0)( ̂𝜷k,u)
)2

+ 1
n

n∑

i=1
∫

tr

0

̂
̃Hk1(u, tr)

(
̂
̃Hk2(ts)

)T
̂𝚺−1

k

((
Ai,ZT

i
)T − E( ̂𝜷k,u)

) dNki(u)
S(0)( ̂𝜷k,u)

+ 1
n

n∑

i=1
∫

ts

0

(
̂
̃Hk2(tr)

)T
̂𝚺−1

k

((
Ai,ZT

i
)T − E( ̂𝜷k,u)

)
̂
̃Hk1(u, ts)

dNki(u)
S(0)( ̂𝜷k,u)

+ 1
n

n∑

i=1
∫

𝜏

0

(
̂
̃Hk2(tr)

)T
̂𝚺−1

k

((
Ai,ZT

i
)T − E( ̂𝜷k,u)

)

⋅
(
̂
̃Hk2(ts)

)T
̂𝚺−1

k

((
Ai,ZT

i
)T − E( ̂𝜷k,u)

)
dNki(u), (A1)

as Nki is a one-jump process. The first term of Equation (A1) equals

1
n

n∑

i=1
∫

tr

0

̂
̃Hk1(u, tr) ̂̃Hk1(u, ts)

dMki(u)
(

S(0)( ̂𝜷k,u)
)2 + ∫

tr

0

̂
̃Hk1(u, tr) ̂̃Hk1(u, ts)

dΛ0k(u)
S(0)( ̂𝜷k,u)

.

Due to the strong consistency of ̂𝜷k and ̂Λ0k, ̂̃Hk1 is uniformly consistent, and so is
S(0) on  × [0, 𝜏] (with estimand s(0), which is bounded away from zero). It follows
by application of the martingale central limit theorem that the first summand of the
expression above converges to zero as n → ∞. Using the same arguments on the
remaining terms in Equation (A1), we obtain
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n∑

i=1
X (k)

n,i (tr) X (k)
n,i (ts)

P
−−→
∫

tr

0
̃Hk1(u, tr) ̃Hk1(u, ts)

dΛ0k(u)
s(0)(𝜷0k,u)

+
∫

tr

0
̃Hk1(u, tr)

(
̃Hk2(ts)

)T𝚺−1
k
(

s(1)(𝜷0k,u) − e(𝜷0k,u) s(0)(𝜷0k,u)
)

× dΛ0k(u)
s(0)(𝜷0k,u)

+
∫

ts

0

(
̃Hk2(tr)

)T𝚺−1
k
(

s(1)(𝜷0k,u) − e(𝜷0k,u) s(0)(𝜷0k,u)
)
̃Hk1(u, ts)

× dΛ0k(u)
s(0)(𝜷0k,u)

+
(
̃Hk2(tr)

)T𝚺−1
k

(

∫

𝜏

0

(
s(2)(𝜷0k,u) − s(1)(𝜷0k,u)

(
e(𝜷0k,u)

)T
)

dΛ0k(u)
)

×
(
𝚺−1

k
)T
̃Hk2(ts)

=
∫

tr

0
̃Hk1(u, tr) ̃Hk1(u, ts)

dΛ0k(u)
s(0)(𝜷0k,u)

+
(
̃Hk2(tr)

)T𝚺−1
k 𝚺k𝚺−1

k
̃Hk2(ts),

and thus, condition (ii) follows. □

Proof of Lemma 3.

√
nmax

1≤i≤n
|||X

(k)
n,i (ts) − X (k)

n,i (tr)
|||

≤ max
1≤i≤n

{

∫

ts

0

|||
̂
̃Hk1(u, ts) − 1{u ≤ tr} ⋅ ̂̃Hk1(u, tr)

|||
dNki(u)

S(0)( ̂𝜷k,u)

+
∫

𝜏

0

||||

(
̂
̃Hk2(ts) − ̂

̃Hk2(tr)
)T
̂𝚺−1

k

((
Ai,ZT

i
)T − E( ̂𝜷k,u)

)||||
dNki(u)

}

<

2
(
exp
(
̂
𝛽kA
)
+ 1
)

max
1≤i≤n

exp
(
̂𝜷

T
kZZi

)

inf
u∈[0,𝜏]

S(0)( ̂𝜷k,u)

+ max
1≤i≤n

sup
u,tr ,ts∈[0,𝜏]

||||

(
̂
̃Hk2(ts) − ̂

̃Hk2(tr)
)T
̂𝚺−1

k

((
Ai,ZT

i
)T − E( ̂𝜷k,u)

)||||
,

i.e.
√

n max1≤i≤n
|||X

(k)
n,i (ts) − X (k)

n,i (tr)
||| ∈ Op(1) (cf. the proof of Lemma 2).

Proof of Lemma 4. Using condition (iv) of Theorem 3, one can show that the
expectation in Lemma 4 has the upper bound

max
1≤j≤n

E

(
G4

j
|||ℱ𝜏

) n∑

i=1

(
X (k)

n,i (tr) − X (k)
n,i (tq)

)2(
X (k)

n,i (ts) − X (k)
n,i (tr)

)2

+ 2 max
1≤j1≤n

||||
E

(
G3

j1

|||ℱ𝜏

)||||
max

1≤j2≤n

||||
E

(
Gj2

|||ℱ𝜏

)||||

n∑

i1=1

(
X (k)

n,i1
(tr) − X (k)

n,i1
(tq)
)2|||X

(k)
n,i1
(ts) − X (k)

n,i1
(tr)
|||

⋅
n∑

i2=1

|||X
(k)
n,i2
(ts) − X (k)

n,i2
(tr)
|||
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+ 2 max
1≤j1≤n

||||
E

(
Gj1

|||ℱ𝜏

)||||
max

1≤j2≤n

||||
E

(
G3

j2

|||ℱ𝜏

)||||

n∑

i1=1

|||X
(k)
n,i1
(tr) − X (k)

n,i1
(tq)
|||

⋅
n∑

i2=1

|||X
(k)
n,i1
(tr) − X (k)

n,i1
(tq)
|||

(
X (k)

n,i2
(ts) − X (k)

n,i2
(tr)
)2

+ max
1≤j≤n

(
E

(
G2

j
|||ℱ𝜏

))2 n∑

i1=1

(
X (k)

n,i1
(tr) − X (k)

n,i1
(tq)
)2 n∑

i2=1

(
X (k)

n,i2
(ts) − X (k)

n,i2
(tr)
)2

+ 2max
1≤j≤n

(
E

(
G2

j
|||ℱ𝜏

))2
( n∑

i=1

|||X
(k)
n,i (tr) − X (k)

n,i (tq)
|||
|||X

(k)
n,i (ts) − X (k)

n,i (tr)
|||

)2

+ max
1≤j1≤n

E

(
G2

j1

|||ℱ𝜏

)
max
1≤j≤n

(
E

(
Gj
|||ℱ𝜏

))2 n∑

i1=1

(
X (k)

n,i1
(tr) − X (k)

n,i1
(tq)
)2

×

( n∑

i=1

|||X
(k)
n,i (ts) − X (k)

n,i (tr)
|||

)2

+ 4 max
1≤j2≤n

E

(
G2

j2

|||ℱ𝜏

)
max
1≤j≤n

(
E

(
G2

j
|||ℱ𝜏

))2 n∑

i1=1

|||X
(k)
n,i1
(tr) − X (k)

n,i1
(tq)
|||

×
n∑

i2=1

|||X
(k)
n,i2
(tr) − X (k)

n,i2
(tq)
|||
|||X

(k)
n,i2
(ts) − X (k)

n,i2
(tr)
||| ⋅

n∑

i3=1

|||X
(k)
n,i3
(ts) − X (k)

n,i3
(tr)
|||

+ max
1≤j≤n

(
E

(
Gj
|||ℱ𝜏

))2
max

1≤j3≤n
E

(
G2

j3

|||ℱ𝜏

)( n∑

i=1

|||X
(k)
n,i (tr) − X (k)

n,i (tq)
|||

)2 n∑

i3=1

(
X (k)

n,i3
(ts) − X (k)

n,i3
(tr)
)2

+ max
1≤j≤n

(
E

(
Gj
|||ℱ𝜏

))4
( n∑

i1=1

|||X
(k)
n,i1
(tr) − X (k)

n,i1
(tq)
|||

)2( n∑

i2=1

|||X
(k)
n,i2
(ts) − X (k)

n,i2
(tr)
|||

)2

,

which we denote by (A2). According to the proof of Lemma 2, the first term can
(informally) be expressed as

max
1≤j≤n

E

(
G4

j
|||ℱ𝜏

) 1
n2

n∑

i=1

(

∫

tr

0
dNki(u) ⋅ Op(1) +

∫

𝜏

0
dNki(u) ⋅ Op(1)

)2

×
(

∫

ts

0
dNki(u) ⋅ Op(1) +

∫

𝜏

0
dNki(u) ⋅ Op(1)

)2

,

which may be further reduced to max1≤j≤n E

(
G4

j
|||ℱ𝜏

)
1
n
⋅ Op(1), as Nki is a one-jump

process. The term at hand is therefore negligible if n → ∞ due to condition (iii) of the
theorem.

Furthermore, the second and third summands in (A2) have the upper bound

max
1≤j1≤n

||||
E

(
G3

j1

|||ℱ𝜏

)||||
max

1≤j2≤n

||||
E

(
Gj2

|||ℱ𝜏

)||||
max

(to,tp)∈{(tq,tr),(tr ,ts)}

( n∑

i=1

(
X (k)

n,i (tp) − X (k)
n,i (to)

)2
)3∕2

×
√

n Op(n−1∕2),
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as a consequence of the Cauchy–Schwarz inequality and Lemma 3. With condition (i)
as well as a combination of Jensen’s inequality and condition (iii), we eventually
obtain the representation

max
(to,tp)∈{(tq,tr),(tr ,ts)}

( n∑

i=1

(
X (k)

n,i (tp) − X (k)
n,i (to)

)2
)3∕2

Op(1).

This expression turns out to be a general upper bound for the expectation in Lemma 4
by application of similar considerations, involving the Cauchy–Schwarz inequality,
Lemma 3 and the conditions of Theorem 3, to the remaining terms in (A2). Note that
the Op(1) term does not depend on tq, tr, ts!

For (to, tp) ∈ {(tq, tr), (tr, ts)}, it thus remains to show that

n∑

i=1

(
X (k)

n,i (tp) − X (k)
n,i (to)

)2
≤

(
L(k)n (ts) − L(k)n (tq)

)
Op(1).

The inequality (a + b)2 ≤ 2a2 + 2b2, a, b ∈ R, suggests that

n∑

i=1

(
X (k)

n,i (tp) − X (k)
n,i (to)

)2
≤

2
n

n∑

i=1

⎛
⎜
⎜
⎝

(

∫

tp

0

̂
̃Hk1(u, tp)

dNki(u)
S(0)( ̂𝜷k,u)

−
∫

to

0

̂
̃Hk1(u, t0)

dNki(u)
S(0)( ̂𝜷k,u)

)2

+
(

∫

𝜏

0

(
̂
̃Hk2(tp) − ̂

̃Hk2(to)
)T
̂𝚺−1

k

×
((

Ai,ZT
i
)T − E( ̂𝜷k,u)

)
dNki(u)

)2
)
. (A3)

Due to the definition of ̂̃Hk1, the first summand in (A3) has the upper bound

2
n

n∑

i=1

(
1
n

n∑

j=1

(
2 exp

(
̂
𝛽kA
)
+ 2
)

exp
(
̂𝜷

T
kZZj

)

∫

tp

to

dNki(u)
S(0)( ̂𝜷k,u)

+ 1
n

n∑

j=1

(
exp
(
̂
𝛽kA
)
+ 1
)

exp
(
̂𝜷

T
kZZj

)

∫

tp

to

dNki(u)
S(0)( ̂𝜷k,u)

+ 1
n

n∑

j=1

((
̂F1

(
tp
|||A = 1,Zj

)
− ̂F1

(
to
|||A = 1,Zj

))
exp
(
̂
𝛽kA
)

+
(
̂F1

(
tp
|||A = 0,Zj

)
− ̂F1

(
to
|||A = 0,Zj

)))

⋅ exp
(
̂𝜷

T
kZZj

)

∫

to

0

dNki(u)
S(0)( ̂𝜷k,u)

)2

≤
2
n

n∑

i=1

⎛
⎜
⎜
⎝

2
n

n∑

j=1

(
9 exp

(
2 ̂𝛽kA

)
+ 18 exp

(
̂
𝛽kA
)
+ 9
)

exp
(

2 ̂𝜷T
kZZj

)

∫

ts

tq

dNki(u)
(

S(0)( ̂𝜷k,u)
)2
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+ 2
n

n∑

j=1

(
2
((

̂F1

(
ts
|||A = 1,Zj

))2
−
(
̂F1

(
tq
|||A = 1,Zj

))2
)

exp
(
2 ̂𝛽kA

)

+2
((

̂F1

(
ts
|||A = 0,Zj

))2
−
(
̂F1

(
tq
|||A = 0,Zj

))2
))

exp
(

2 ̂𝜷T
kZZj

)

∫

𝜏

0

dNki(u)
(

S(0)( ̂𝜷k,u)
)2

⎞
⎟
⎟
⎠
.

(A4)

For the last step, we used again that (a + b)2 ≤ 2a2 + 2b2, as well as the
Cauchy–Schwarz inequality and (a − b)2 ≤ a2 − b2 for 0 ≤ b ≤ a.

The second summand in (A3) is further equal to

2
n

n∑

i=1

(
̂
̃Hk2(tp) − ̂

̃Hk2(to)
)T
̂𝚺−1

k ̃𝚺ki ̂𝚺
−1
k

(
̂
̃Hk2(tp) − ̂

̃Hk2(to)
)
,

because ̃𝚺ki is symmetric and Nki is a one-jump process. Note that

̂
̃Hk2(tp) − ̂

̃Hk2(to) =
1
n∫

tp

to

(
𝝌̂k1, A=1(u, tp) − 𝝌̂k1, A=0(u, tp)

) n∑

i=1

dNk,i(u)
S(0)( ̂𝜷k,u)

− 1
n∫

to

0

(
𝝌̂k2, A=1(u, to, tp) − 𝝌̂k2, A=0(u, to, tp)

) n∑

i=1

dNk,i(u)
S(0)( ̂𝜷k,u)

,

with

𝝌̂k1, a(u, t) =
1
n

n∑

i=1

(
1{k = 1} ⋅ ̂S

(
u − |||a,Zi

)
− ̂F1

(
t|||a,Zi

)
+ ̂F1

(
u|||a,Zi

))

×
((

a,ZT
i
)T − E( ̂𝜷k,u)

)
⋅ exp

(
̂
𝛽kA ⋅ a + ̂𝜷

T
kZZi

)
,

𝝌̂k2, a(u, s, t) =
1
n

n∑

i=1

(
̂F1

(
t|||a,Zi

)
− ̂F1

(
s|||a,Zi

))((
a,ZT

i
)T − E( ̂𝜷k,u)

)
exp
(
̂
𝛽kA ⋅ a + ̂𝜷

T
kZZi

)
.

Besides, the product ̂𝚺−1
k ̃𝚺ki ̂𝚺

−1
k is positive definite because of the definitions of ̂𝚺k

and ̃𝚺ki. Since

(a − b)TA (a − b) ≤ 2 aTA a + 2 bTA b and

( n∑

i1=1
ai1

)T

A

( n∑

i2=1
ai2

)

≤ n
n∑

i=1
aT

i A ai,

for a positive (semi-)definite matrix A and vectors a, b, a1,…,an, the second summand
in (A3) has the upper bound

2
n

n∑

i=1

⎛
⎜
⎜
⎝

2
n∫

tp

to

(
𝝌̂k1, A=1(u, tp) − 𝝌̂k1, A=0(u, tp)

)T
̂𝚺−1

k ̃𝚺ki ̂𝚺
−1
k
(
𝝌̂k1, A=1(u, tp) − 𝝌̂k1, A=0(u, tp)

)

× dNk(u)
(

S(0)( ̂𝜷k,u)
)2 +

2
n∫

to

0

(
𝝌̂k2, A=1(u, to, tp) − 𝝌̂k2, A=0(u, to, tp)

)T

× ̂𝚺−1
k ̃𝚺ki ̂𝚺

−1
k
(
𝝌̂k2, A=1(u, to, tp) − 𝝌̂k2, A=0(u, to, tp)

)
⋅

dNk(u)
(

S(0)( ̂𝜷k,u)
)2

⎞
⎟
⎟
⎠
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≤
2
n

n∑

i=1

(
4

n2

n∑

j=1
exp
(

2 ̂𝛽kA + 2 ̂𝜷T
kZZj

)

∫

ts

tq

((
1,ZT

j

)T
− E( ̂𝜷k,u)

)T

× ̂𝚺−1
k ̃𝚺ki ̂𝚺

−1
k

((
1,ZT

j

)T
− E( ̂𝜷k,u)

)
dNk(u)

(
S(0)( ̂𝜷k,u)

)2

+ 4
n2

n∑

j=1
exp
(

2 ̂𝜷T
kZZj

)

∫

ts

tq

((
0,ZT

j

)T
− E( ̂𝜷k,u)

)T

× ̂𝚺−1
k ̃𝚺ki ̂𝚺

−1
k

((
0,ZT

j

)T
− E( ̂𝜷k,u)

)
dNk(u)

(
S(0)( ̂𝜷k,u)

)2

+ 4
n2

n∑

j=1

⎛
⎜
⎜
⎜
⎝

⎛
⎜
⎜
⎝

̂F1

(
ts
|||A = 1,Zj

)⎞
⎟
⎟
⎠

2

−
(
̂F1

(
tq
|||A = 1,Zj

))2
⎞
⎟
⎟
⎟
⎠

exp
(

2 ̂𝛽kA + 2 ̂𝜷T
kZZj

)

⋅
∫

𝜏

0

((
1,ZT

j

)T
− E( ̂𝜷k,u)

)T
̂𝚺−1

k ̃𝚺ki ̂𝚺
−1
k

((
1,ZT

j

)T
− E( ̂𝜷k,u)

)
dNk(u)

(
S(0)( ̂𝜷k,u)

)2

+ 4
n2

n∑

j=1

((
̂F1

(
ts
|||A = 0,Zj

))2
−
(
̂F1

(
tq
|||A = 0,Zj

))2
)

exp
(

2 ̂𝜷T
kZZj

)

⋅
∫

𝜏

0

((
0,ZT

j

)T
− E( ̂𝜷k,u)

)T
̂𝚺−1

k ̃𝚺ki ̂𝚺
−1
k

((
0,ZT

j

)T
− E( ̂𝜷k,u)

)
dNk(u)

(
S(0)( ̂𝜷k,u)

)2

⎞
⎟
⎟
⎠
.

For the last two terms, we used that for 0 ≤ b ≤ a, (a − b)2 ≤ a2 − b2. Note also that
it is possible to extend the integral limits here because of the positive definiteness of
̂𝚺−1

k ̃𝚺ki ̂𝚺
−1
k .

Together with (A4), it follows finally that
n∑

i=1

(
X (k)

n,i (tp) − X (k)
n,i (to)

)2
≤ 36

(
L(k)n (ts) − L(k)n (t1)

)
,

∀k ∈ {1,…,K}. □
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T A B L E A1 Summary of the OAI data subset analyzed.

DHHS aerobic activity guideline attained

No Yes

Covariate (n = 414) (n = 47)
Site

A 58 (14.01%) 9 (19.15%)

B 104 (25.12%) 10 (21.28%)

C 147 (35.51%) 17 (36.17%)

D 69 (16.67%) 10 (21.28%)

E 36 (8.70%) 1 (2.13%)

Sex: male 191 (46.14%) 34 (72.34%)

Age, mean (SD) 68.08 (8.56) 63.74 (7.67)

BMI, mean (SD) 29.59 (4.80) 26.43 (2.85)

Pack-years of smoking, mean (SD) 10.29 (18.07) 10.43 (17.00)

Race: White 335 (80.92%) 44 (93.62%)

Education: college degree 254 (61.35%) 40 (85.11%)

Comorbidity score

0 270 (65.22%) 35 (74.47%)

1 86 (20.77%) 4 (8.51%)

2 31 (7.49%) 5 (10.64%)

3–6 27 (6.52%) 3 (6.38%)

Average knee pain over the last week

0 116 (28.02%) 23 (48.94%)

1–3 161 (38.89%) 14 (29.79%)

4–6 105 (25.36%) 8 (17.02%)

7–10 32 (7.73%) 2 (4.26%)

Kellgren–Lawrence grade: 4 135 (32.61%) 12 (25.53%)

Prior knee surgery 166 (40.10%) 24 (51.06%)

Average accelerometer count per day 180,829 (82,884) 370,055 (113,784)

Abbreviations: DHHS, US Department of Health and Human Services; OAI, Osteoarthritis Initiative.
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