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Abstract 
Background.  The term gliomatosis cerebri (GC), a radiology-defined highly infiltrating diffuse glioma, has been 
abandoned since molecular GC-associated features could not be established.
Methods.  We conducted a multinational retrospective study of 104 children and adolescents with GC providing 
comprehensive clinical and (epi-)genetic characterization.
Results.  Median overall survival (OS) was 15.5 months (interquartile range, 10.9–27.7) with a 2-year survival rate 
of 28%. Histopathological grading correlated significantly with median OS: CNS WHO grade II: 47.8 months (25.2–
55.7); grade III: 15.9 months (11.4–26.3); grade IV: 10.4 months (8.8–14.4). By DNA methylation profiling (n = 49), 
most tumors were classified as pediatric-type diffuse high-grade glioma (pedHGG), H3-/IDH-wild-type (n = 31/49, 
63.3%) with enriched subclasses pedHGG_RTK2 (n = 19), pedHGG_A/B (n = 6), and pedHGG_MYCN (n = 5), but only 
one pedHGG_RTK1 case. Within the pedHGG, H3-/IDH-wild-type subgroup, recurrent alterations in EGFR (n = 10) 
and BCOR (n = 9) were identified. Additionally, we observed structural aberrations in chromosome 6 in 16/49 tu-
mors (32.7%) across tumor types. In the pedHGG, H3-/IDH-wild-type subgroup TP53 alterations had a significant 
negative effect on OS.

Gliomatosis cerebri in children: A poor prognostic 
phenotype of diffuse gliomas with a distinct molecular 
profile  

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://
creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, 
provided the original work is properly cited.
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Conclusions.  Contrary to previous studies, our representative pediatric GC study provides evidence that 
GC has a strong predilection to arise on the background of specific molecular features (especially pedHGG_
RTK2, pedHGG_A/B, EGFR and BCOR mutations, chromosome 6 rearrangements).

Key Points

• The presence of gliomatosis cerebri (GC) phenotype may be considered as an 
independent dismal prognostic factor in hemispheric pediatric-type diffuse 
gliomas.

• The methylome-based subtypes pediatric-type diffuse high-grade glioma 
(pedHGG)_RTK2A/B and (provisional) pedHGG_A/B were significantly associated 
with GC.

• EGFR and BCOR alterations and rearrangements of chromosome 6 were the most 
common genetic features in pediatric GC.

It is now widely acknowledged that pediatric diffuse 
gliomas differ fundamentally in key biological features 
compared to their adult counterparts.1–5 In recognition 
of these findings, the fifth edition of the World Health 
Organization (WHO) Classification of Tumors of the Central 
Nervous System (CNS) differentiates a priori between 
adult- and pediatric-type diffuse gliomas based on estab-
lished molecular hallmarks.6 In this regard, methylome 
profiling has emerged as a remarkably robust and repro-
ducible diagnostic tool for the classification of CNS tu-
mors.7,8 However, this molecular-defined approach may 
neglect the clinical manifestations in various glioma (sub)
types. For example, gliomatosis cerebri (GC) was originally 
defined as a diffuse glioma characterized by an extensively 
infiltrating growth pattern affecting at least 3 contiguous 
hemispheric lobes of the brain.9 With the revised fourth 
edition of the WHO classification, GC was no longer con-
sidered a distinct entity, but a phenotype characterized by 
a specific growth pattern of an underlying diffuse glioma 
without a distinct molecular signature.10 So far, similar 
(epi-)genetic characteristics were identified in tumors 
presenting a GC growth pattern as seen in various adult 
and pediatric types of non-GC gliomas of corresponding 
age groups.11,12 Since these data have been derived from 
adults or small pediatric case series, the biology of GC 

in children has not yet been conclusively defined. Thus, 
we conducted a multinational retrospective study of 
104 children and adolescents with GC providing a com-
prehensive radiological, histopathological, clinical, and   
(epi-)genetic characterization.

Methods

Study Design

Following institutional review board (IRB number: 33–547 
ex 20/21) approval by the Medical University of Graz, 
Austria, a Europe-wide multi-institutional, retrospective in-
itiative was started to collect data of pediatric GC patients 
fulfilling the following inclusion criteria: (i) age <21 years 
at diagnosis, (ii) magnetic resonance imaging (MRI) at di-
agnosis showing a GC phenotype, (iii) neuropathological 
confirmation of diffuse glioma. Secondary GC following 
the progression of an initially localized glioma as well 
as primarily multifocal glioma were excluded. Fourteen 
European countries contributed to this study. For each in-
cluded patient, either formalin-fixed paraffin-embedded 
and/or fresh-frozen tumor tissue was requested for his-
topathological and molecular analyses. The majority of 

Importance of the Study

Gliomatosis cerebri (GC) is a rare, highly infiltrative phe-
notype of a diffuse glioma. Previous studies have failed 
to identify a molecular signature in GC compared with 
unselected gliomas in both children and adults. Our case 
series of more than 100 children and adolescents with 
GC represents a large GC cohort characterized by cen-
tral radiological and pathological review. Several clin-
ical (eg, treatment modalities, contrast enhancement), 
and histomolecular prognostic factors (eg, histopath-
ological grading, presence of TP53 mutations) were 
detected. For the first time, we were able to identify a 

molecular profile: the methylation subclasses pediatric-
type diffuse high-grade glioma (pedHGG)_RTK2A/B and 
pedHGG_A/B were significantly associated with pe-
diatric GC. Additionally, EGFR and BCOR alterations 
as well as rearrangements of chromosome 6 were the 
most common genetic features across tumor types. 
Taken together, these results may reopen a discussion 
on the nature of pediatric GC and provide insight into 
the disease biology of extensively infiltrating gliomas in 
children.

D
ow

nloaded from
 https://academ

ic.oup.com
/neuro-oncology/article/26/9/1723/7667099 by Augsburg U

niversity Library user on 20 January 2025



1725Nussbaumer et al.: Distinct molecular profile in pediatric gliomatosis cerebri
N

eu
ro-

O
n

colog
y

methylation arrays and whole-exome sequencing (WES) 
were performed at the Institute of Cancer Research, 
London, in collaboration with the DKFZ, Heidelberg, for 
the purpose of this study. A subgroup (methylation array: 
n = 10; WES: n = 14) was performed at the Gustave Roussy 
Cancer Research Center, Paris.

Neuroradiological Criteria

Central neuroradiological review was mandatory and per-
formed in accordance with the 2007 WHO classification 
of CNS tumors,9 the last version in which GC was still de-
scribed as a distinct entity. Only tumors showing a diffuse 
infiltrative process involving at least 3 contiguous cerebral 
lobes of the brain were included. The extent of infiltration 
was assessed on T2- or fluid-attenuated inversion recovery 
(FLAIR)-weighted MR-imaging. The lobus insularis was not 
counted as a separate lobe. All MRI scans were reviewed 
centrally by one of two experienced neuroradiologists 
(B.B. and M.W.-M.).

Clinical Data

Apart from basic clinical parameters, clinical data included 
surgical procedures and nonsurgical oncological treat-
ment. The type of resection was grouped into “biopsy” 
regardless of whether open or stereotactic, or “partial re-
section” if the extent exceeded pure diagnostic purposes 
acknowledging that effective debulking cannot be achieved 
in GC. Upfront treatment modalities were divided into ra-
diotherapy, chemotherapy, or the combination of both. 
Because of the retrospective multicenter study design, 
chemotherapy regimens were highly heterogeneous. 
Therefore, data were harmonized by dividing them into 3 
groups: “TMZ-Mono” if only temozolomide (TMZ) was ap-
plied, “TMZ-Multi” if TMZ was used in combination with 
other cytotoxic drugs or “Other” if chemotherapeutic re-
gimes without TMZ were administered. Additionally, the 
administration of targeted therapies was recorded. The 
classification of cytotoxic therapies was performed regard-
less of dose, number of cycles, treatment duration, etc. 
Progression status was determined from local clinical and/
or radiological reports.

Neuropathological Assessment

Histopathological confirmation of a diffusely infiltrating 
glioma was mandatory. Data regarding histological tumor 
type and grade were extracted from local reports based on 
the WHO classification of tumors of the CNS at the time 
of diagnosis (WHO CNS classification 20079 or 201610). 
Therefore, Roman numerals have been retained here. 
WHO grade II tumors were summarized as “GC with low-
grade features” (LGC), WHO grade III and IV tumors as “GC 
with high-grade features” (HGC). In a second step, all cases 
with available tumor material were centrally reviewed for 
the purpose of this study by 1 experienced neuropatholo-
gist or in the context of a neuropathological panel (consti-
tuted by G.H.G., P.V., T.Pi., F.G., S.Ro., M.A., J.Z., and P.W.) 
validating glial differentiation and grading. Reclassification 

according to WHO CNS 20216 was performed retrospec-
tively in synopsis with all molecular findings including 
DNA methylation profiles and the presence of pathogno-
monic mutations.

Genome-Wide DNA Methylation Array Profiling

DNA methylation analysis was performed using ei-
ther Illumina 450K or EPIC BeadArrays. Data were pre-
processed using the minfi package [v1.46.0]13 and mnp.
v12b6 (DKFZ). The MNP12.5 random forest brain tumor 
classifier (molecularneuropathology.org) was used to as-
sign a calibrated score to each case, associating it with 1 of 
184 tumor types comprising the 2021 WHO Classification of 
CNS tumors and novel subclasses. DNA copy number was 
deduced from combined intensities using the conumee 
package [v1.34.0]14 as processed as combined log2 inten-
sity data based upon an internal median processed using 
the R packages minfi and conumee. t-Distributed stochastic 
neighbor embedding (t-SNE) dimensionality reduction was 
carried out using the MNP12.5 classifier 10 000 training 
probes data. The t-SNE algorithm was applied using the 
Rtsne package [v0.16]15 on a distance matrix generated 
using 1-Pearson correlation, using default Rtsne package 
parameters except for “theta=0” and “max_iter=1000,” and 
primed with a numeric seed 12345 prior to execution for 
reproducibility. A clear allocation in t-SNE and/or a score of 
at least 0.6 was mandatory for subclass allocation.

Whole-Exome Sequencing

For whole-exome sequencing, variants were called using 
GATK/mutect2 using current best practices. In summary, 
reads were aligned to GRCh37 using bwa [v0.7.17]16 
and duplicates were removed with Picard Tools (http://
broadinstitute.github.io/picard/) MarkDuplicates [v2.23.8]. 
After base quality score recalibration with GATK 4.1.9.0 
variants were called with Mutect2 in joint calling mode in-
cluding a panel of normal germline samples. Allelic depth 
was assigned by GATK VariantsToTable and variants were 
annotated for functional consequences with the ensembl 
variant effect predictor [v101.0].17 DNA copy number was 
calculated from normalized coverage using Picard Tools 
CollectHsMetrics and segmented with DNAcopy [v1.72.3].18 
Integration of mutations and copy-number alterations into 
oncoprint representations was performed with custom 
scripts in R Studio 2023.03 and R version 4.2.2.19

Statistical Analysis and Reference Cohorts

Data analysis was carried out with the software SPSS (v27)20 
and R (v4.0.3)19 using a survival analysis package.21 Survival 
analyses were performed via Log-Rank test, Kaplan–Meier 
plots, and Cox-Regression (multivariate case). Comparisons 
between two groups regarding qualitative/quantitative 
variables were conducted using Fisher’s exact test/Mann–
Whitney U test, respectively. In all analyses, alpha was set 
at 0.05 as the threshold for statistical significance. Since 
interpretations were explorative, adjustment of P-values 
for multiple testing was not performed. As a reference for 
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comparison of molecular findings in GC, published data of 
adults and pediatric GC case series by Herrlinger et al.11 and 
Broniscer et al.12 were used. In both cohorts, methylation-
derived data were updated and reclassified according to 
the MNP12.5 classifier. Published data on a population-
based cohort of supratentorial diffuse gliomas in children 
(n = 80) by Sturm et al.22 served as a reference for com-
parison of the relative frequency of the different molecular 
glioma subtypes excluding nondiffuse methylation-defined 
neuroepithelial tumor subclasses, isolated midline loca-
tion, and/or calibrated score <0.9. There was an overlap 
between these two collectives as two cases occurred in 
both the here-reported GC and this control cohort. As a 
reference for survival comparison in HGC, a cohort of un-
selected hemispheric HGGs in children (n = 108) extracted 
from the prospective German HIT trials (HIT-GBM-A/-B/-
C/-D, interimGBM-D, HIT-HGG-2007/-2013) was compiled 
including tumors which were biopsied or partially resected 
only. Age limits were adjusted to those of the GC cohort. GC 
cases in the control group were excluded.

Results

Radiological, Clinical, and Histopathological 
Analyses Identify Prognostic Factors in Pediatric 
GC

From screening 145 patients, a total of 104 children and 
adolescents with GC were included (Figure 1A). In most 
patients (n = 95, 91.5%), 3–5 cerebral lobes were affected 
(range 3–8). In 56 cases (53.8%), both cerebral hemispheres 
were involved. An additional uni- or bilateral involvement 
of the thalamus was observed in 48/30 (46.1%/28.9%) pa-
tients, respectively. Contrast enhancement was absent in 
50 patients (48.1%) and in 49 children (47.1%) a predom-
inantly focal enhancement was present. A representative 
MRI is displayed in Figure 2A.

The median age at diagnosis was 11.8 years (range 
1.3–18.8) with a male predominance of approximately 2:1. 
Seizures were the most frequent symptom (n = 48, 46.2%). 
Most tumors (n = 68, 65.4%) were described as histopatho-
logical WHO grade III, followed by grade IV (n = 21, 20.2%) 
and grade II (n = 12, 11.5%) according to the WHO classifi-
cations of CNS tumors of 2007 or 2016. Respective photo-
graphs of the histopathologic grades in GC are shown in 
Figure 2B. Overall, central neuropathological review was 
performed in 81 tumors (77.9%).

Seventy-nine children (75.9%) underwent initial radio-
therapy. Ninety-four children (90.4%) received upfront che-
motherapy (mono/combined) and, hereof, monotherapy 
with temozolomide was most frequently used (n = 52, 
50.0%). A primary combined modality treatment of che-
motherapy and radiotherapy (parallel and/or consecu-
tive) was performed in 73 children (70.2%). Twelve patients 
(11.5%) received upfront targeted therapies such as anti-
EGFR (n = 7) or anti-VEGF (n = 5), mostly in combination 
with other agents, for example, Vinorelbine or TMZ. Eight 
children (7.7%) underwent re-irradiation. Comprehensive 
radiological and clinical characteristics are summarized in 
Supplementary Tables 1 and 2A.

At the last follow-up, 7 patients (6.8%) were alive with a 
median follow-up of 83.1 months (range 13.1–138.8), and 4 
of them (3.8%) survived >5 years after diagnosis. Ninety-
three children (89.4%) died due to disease progression. The 
median progression-free (PFS) and overall survival (OS) 
were 8.6 months (interquartile range [Q1–Q3]: 4.3–14.0) 
and 15.5 months (Q1–Q3: 10.9–27.7) with 1-year and 2-year 
OS rates of 68.0% and 28.1%, respectively (Supplementary 
Table 2B).

In univariate analysis, none of the following parameters 
were significantly associated with PFS or OS: number 
of affected cerebral lobes (<5 vs. ≥5), bihemispheric or 
infratentorial involvement, bilateral involvement of basal 
ganglia, contrast enhancement, sex, age at diagnosis (±4 
and ±10 years of age). However, patients with bithalamic 
involvement showed significantly shorter PFS (median 
PFS: 6.5 months [Q1–Q3: 3.0–14.0] vs. 10.4 months [Q1–
Q3: 5.7–14.9]; P = .025) and a tendency toward decreased 
overall survival (P = .059). Furthermore, WHO grade 
was significantly associated with PFS (P = .004) and OS 
(P < .001) (Figure 2D). Median OS of patients with histolog-
ical low- (WHO grade II [≙ “LGC”]) and high-grade features 
(WHO grade III/IV [≙ ‘HGC’]) was 52.4 (Q1–Q3: 23.7–59.0) 
and 14.6 months (Q1–Q3: 10.4–21.2), respectively. In HGC, 
contrast enhancement was associated with inferior PFS 
(median PFS: 6.2 months [Q1–Q3: 3.6–11.7] vs. 10.7 months 
[Q1–Q3: 6.3–14.9]; P = .044). Patients with high-grade tu-
mors were more commonly treated by combined modality 
approaches during first-line therapy compared to patients 
with WHO grade II tumors (P = .017) (Figure 2C). Treatment 
modalities had a significant impact on PFS in the HGC sub-
group: combination of radio- and chemotherapy was asso-
ciated with longer PFS compared to chemotherapy alone 
(median PFS: 9.6 months [Q1–Q3: 5.7–14.0] vs. 4.3 months 
[Q1–Q3: 3.0–7.4]; P < .001), whereas the administration of 
targeted therapy or total irradiation dose (<50 vs. >50 Gy) 
did not affect PFS in the whole cohort. By contrast, in terms 
of treatment modalities, no difference in PFS was observed 
in the LGC subgroup. However, neither in the HGC nor 
in the LGC subgroup, OS was significantly influenced by 
the treatment strategy including re-irradiation or targeted 
therapies (VEGF or EGFR inhibition) in the respective histo-
pathological subgroup. Multivariate analysis of the whole 
cohort confirmed the impact of WHO grade on PFS and OS, 
as well as that of treatment groups and contrast enhance-
ment on PFS (Supplementary Table 3).

To determine whether GC phenotype may represent an 
independent prognostic parameter, the HGC cohort was 
compared with a reference collective composed of hem-
ispheric HGGs from the German pedHGG study cohorts. 
Since GC by nature cannot be completely resected, and 
the extent of resection in pedHGG is a recognized prog-
nostic parameter,23,24 for better comparability, we only in-
cluded hemispheric tumors that were partially resected at 
best in the control group. Compared to this reference co-
hort (n = 108), HGC showed inferior overall survival (me-
dian OS: 14.6 months [Q1–Q3: 10.4–21.2] vs. 16.5 months 
[Q1–Q3: 11.9–34.8]; P = .007). GC phenotype, extent of 
resection, and histopathologic grading remained statis-
tically significant in multivariate testing (Supplementary 
Figure 1 A and 1B).
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Figure 1: (A) Flowchart of the study cohort. (A) A total of 145 children and adolescents from 14 European countries were screened for suspected 
GC. †39 cases did not fulfill the neuroradiological criteria and were excluded. ‡Two tumors were excluded as a glial process could not be con-
firmed unambiguously through central neuropathological review. (B) Composition of the subgroup with available molecular data comprising DNA 
methylation profiling and whole exome sequencing.
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Accumulation of Certain DNA Methylation-Based 
Subclasses and Chromosome 6 Alterations

Within our cohort of pediatric GC, tumor material was 
available from 52 patients (50.0%), of which 49 were sub-
jected to DNA methylation profiling and 46 to whole-
exome sequencing (WES); in 43 cases (41.3%), both DNA 
methylation and WES were conducted (Figure 1B).

GC tumors analyzed by methylation arrays underwent 
subclassification by the MNP12.5 classifier and were pro-
jected by t-distributed stochastic neighbor embedding 
(t-SNE) alongside a reference background of n = 2305 
gliomas7,25–28 of all ages, grades, classes, and subclasses 
(Figure 3A). A total of 9 GC cases (9/49, 18.4%) were ex-
cluded due to poor classification scores (<0.6), and/or 
inconsistent clustering by t-SNE, hereafter described as 
“NEC” (Not Elsewhere Classified). The vast majority of 
successfully allocated tumors (30/40, 75.0%) were as-
signed to the closely clustering subclasses of pedHGG_
RTK2A/B (n = 16 + 3, 47.5%), pedHGG_MYCN (n = 5, 
12.5%), or pedHGG_A/B (n = 2 + 4, 15.0%). The latter 
are considered novel, not yet published (provisional) 

molecular subclasses according to MNP12.5.7 There were 
3 additional tumors (7.5%) of the pediatric-type DHG_G34, 
and individual cases (n = 1, 2.5% each) representing the 
midline DMG_EGFR subclass, or MYB(L1)-altered diffuse 
glioma, subtype D. Notably, there was only 1 tumor of the 
pedHGG_RTK1A/B/C subclass of a child, who had received 
previous CNS irradiation for leukemia. The remaining 4 
tumors (10.0%) presented adult-type entities clustering as 
follows: A_IDH_LG (n = 2), GBM_RTK2 (n = 1), and GBM_
MES_ATYP (n = 1).

Compared with the population-based cohort of 
methylome-defined hemispheric diffuse gliomas by Sturm 
et al.22 (n = 80), there were distinct differences in the sub-
class distributions between the 2 collectives: apart from 
the absence of hemispheric infant-type, H3-wild-type (wt) 
tumors in the GC collective, the reference cohort showed a 
significantly increased frequency of pedHGG_RTK1 cases 
(10/20 vs. 1/31, P < .001) while tumors of the pedHGG_
RTK2A/B subclass were almost absent (1/20 vs. 19/31, 
P = .005). Due to the small number of samples, no mean-
ingful comparison regarding the pedHGG_MYCN and 
pedHGG_A/B subclass could be drawn (Figures 4A and 4B).
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Figure 2: Collage of clinical data of the whole cohort. (A) Representative MRI of a pediatric patient with GC. Upper row: Fluid-attenuated in-
version recovery (FLAIR): high signal as a sign of diffuse tumor infiltration primarily in the right occipital, parietal, and temporal lobe as well as 
involvement of the contralateral hemisphere with little mass effect. Lower row: contrast-enhanced T1-weighted images: the occipital part of the 
tumor shows typical mild multifocal enhancement. (B) Histopathological features of GC. Microscopical examination of three representative GC 
tumors according to histopathological grading: the left side shows HE staining and the right Ki-67 immunohistochemistry of the respective case: 
GC_74, WHO grade II; GC_51, WHO grade III; GC_35, WHO grade IV. With higher WHO grade, increasing cellularity and proliferative activity can 
be detected. Scale bar equate to 100 µm in each case. (C) Composition of the treatment groups according to the WHO grade. 1PFS and OS given as 
median and the interquartile range in parentheses. †Three cases were excluded for this analysis due to absent WHO grading. ‡These patients did 
not receive an upfront cytotoxic treatment. (D) Kaplan–Meier plot including p-value of the (left) PFS and (right) OS in months according to WHO 
grading.
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In DNA copy-number profiles generated from the 
methylation array data, common alterations seen in 
pedHGG such as gain of chromosome 1q (11/49, 22.4%) 
were present in several cases of different methylome-
defined subclasses. A significant proportion of gliomas 
harbored structural alterations of chromosome 6 (18/49, 
36.7%). These included cases with highly complex 

rearrangements, partial or whole arm losses, or gains/
amplifications (Figure 3B and 3C). These aberrations were 
found in 5/6 tumors classified as pedHGG_A/B as well 
as in several other subclasses, but were mutually exclu-
sive with the pedHGG_RTK2A subclass (0/16), which har-
bored relatively few copy-number alterations in general 
(Supplementary Figure 2).
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PA_INF (Pilocytic astrocytoma, infratentorial)

HGAP (High grade astrocytoma with piloid features)

RGNT (Rosette-forming glioneuronal tumour)

IHG (lnfant-type hemispheric glioma)

DIG_DIA (Desmoplastic infantile ganglioglioma / astrocytoma)

GG (Ganglioglioma)

PXA (Pleomorphic xanthoastrocytoma)

LGG_MYB_B (Diffuse astrocytoma, MYB/MYBL1-altered, subtype B)

LGG_MYB_C (Diffuse astrocytoma, MYB/MYBL1-attered, subtype C)

LGG_MYB_D (Diffuse astrocytoma, MYB/MYBL1-altered, subtype D)

DMG_K27 (Diffuse midline glioma, H3 K27-altered, subtype H3 K27-mutant or EZHIP overexpressing)

DMG_EGFR (Diffuse midline glioma, H3 K27-altered, subtype EGFR-altered)

DHG_G34 (Diffuse hemispheric glioma, H3 G34-mutant)

pedHGG_RTK1A (Diffuse paediatric-type high grade glioma, RTK1 subtype, subclass A)
pedHGG_RTK1B (Diffuse paediatric-type high grade glioma, RTK1 subtype, subclass B)

pedHGG_RTK1C (Diffuse paediatric-type high grade glioma, RTK1 subtype, subclass C)

pedHGG_RTK2A (Diffuse paediatric-type high grade glioma, RTK2 subtype, subclass A)

pedHGG_RTK2B (Diffuse paediatric-type high grade glioma, RTK2 subtype, subclass B)

pedHGG_MYCN (Diffuse paediatrie-type high grade glioma, MYCN subtype)

pedHGG_A (Diffuse paediatric-type high grade glioma, H3/IDH-wt, subtype A)

pedHGG_B (Diffuse paediatric-type high grade glioma, H3/IDH-wt, subtype B)

HGG_B (Adult-type diffuse high-grade glioma, IDH-wt, subtype B)
HGG_E (Adult-type diffuse high-grade glioma, IDH-wt, subtype E)

GBM_RTK1 (Glioblastoma, IDH-wt, RTK1 subtype)
GBM_RTK2 (Glioblastoma, IDH-w1, RTK2 subtype)

GBM_MES_TYP (Glioblastoma, IDH-wt, mesenchyma subtype)
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DNET (Dysembryoplastic neuroepithelial tumour)
DLGNT_1 (Diffuse leptomeningeal glioneuronal tumour, subtype 1)

Figure 3: DNA methylation profiling in pediatric GC. (A) t-Statistic-based stochastic neighbor embedding (t-SNE) projection of a combined meth-
ylation dataset according to the MNP12.5 classifier comprising the pediatric GC cases from this study (circled, n = 40/49) plus a reference set of 
glioma subtypes (n = 2305). The first 2 projections are plotted on the x and y axes, with samples represented by dots colored by the respective 
subclass as labeled on the figure. (B, C) DNA copy-number plots for the cases GC_098 and GC_085 derived from methylation array data, with 
log2 ratios plotted (y axis) against genomic location by chromosome (x axis), and colored red for gain, and blue for loss. Above—whole genome; 
below—chromosome 6 illustrating representing examples of the structural alteration observed in our cohort.
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Comparison Between Different GC Cohorts 
Confirms Prevalence of Certain Subclasses

To determine the applicability of these results in other GC 
datasets, methylation array data from published case series 
of 18 pediatric12 and 25 adult GC cases11 were reclassified 

according to MNP12.5: in the pediatric set (median age: 11 
years, range: 1–19), a similar pattern of molecular profiles 
was observed as in the present GC cohort: besides IDH-
mutant (n = 3), DHG_G34 (n = 2), and DMG_EGFR (n = 1) 
subclasses, the remaining classifiable cases clustered as 
either pedHGG_RTK2A/B (n = 6), pedHGG_A (n = 1), or 
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Figure 4: Distribution of methylation-based subclasses. (A) Comparison of DNA methylation data according to MNP12.5 of the GC cohort (n = 40) 
and the published population-based collective by Sturm et al.22 (n = 80). The subclasses were arranged based on the WHO CNS 2021 classi-
fication. In the cohort by Sturm et al., only supratentorial cases with hemispheric location were included. All non-diffuse glioma subclasses, 
isolated midline location, and with a calibrated score <0.9 were excluded. Infant-type H3-wild-type tumors were not considered in the analysis 
to approximate the age distribution between the 2 cohorts (median 12 years [1–21] vs. 11.8 years [1.3–18.8]). In the category “others” 22 tumors 
of “pleomorphic xanthoastrocytoma (-like)” and 2 tumors of the subclass “neuroepithelial tumor, PLAGL1-fused” were present. There was an 
overlap between these 2 collectives as 2 cases occurred in both the here-reported GC and the control cohort. Therefore, in the subclasses 
pedHGG_A/B and pedHGG_RTK2A/B, 1 patient is listed once in each of the 2 cohorts. Of note, the only pedHGG_A/B-case in the reference col-
lective was a child from the here-presented GC cohort. (B) Relative frequencies of different subclasses in the diffuse pediatric-type high-grade 
glioma, H3-wild-type, and IDH-wild-type subgroup of the 2 above-mentioned cohorts. *There was a significant difference in the frequencies of 
pedHGG_RTK2A/B- and pedHGG_RTK1A/B/C subclasses between the 2 cohorts.
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pedHGG_MYCN (n = 1). Likewise, no cases of pedHGG_
RTK1A/B/C group were detected in the pediatric GC-control 
group (Supplementary Figure 3A). By contrast, in the adult 
series (median age: 50 years, range 24–77), an enrichment 
in age-typical subclasses such as A_- or O_IDH (n = 11), 
GBM_RTK1 (n = 4), and GBM_MES_TYP (n = 3) was present. 
Interestingly, within the adult cohort, there was 1 case of 
pedHGG_B in a 39-year-old GC patient (Supplementary 
Figure 3B). Notably, cases in both series (pediatric 4/18, 
22.2%; adult 3/25, 12.0%) were also found to harbor struc-
tural chromosome 6 alterations including 1 pedHGG_B 
tumor, which was considered as chromothripsis, whereas 
the general pattern of DNA copy-number changes reflected 
the wider diffuse glioma landscapes in the respective age 
groups (ie, 1q+ in children, 7+/10− in adults) (Supplementary 
Figure 4A and 4B).

Enrichment of EGFR and BCOR Alteration in 
Pediatric GC

Exome sequencing identified subtype-specific alterations 
enriched in our GC series (Figure 5A). In addition to pathog-
nomonic mutations in specific diffuse glioma subtypes 
(n = 5 of IDH_R132H, n = 1 each of H3F3A_G34R, H3F3A_
K27M, HIST1H3B_K27M), a low frequency of common 
alterations in hemispheric pedHGG, such as CDKN2A/B 
deletion (4/46, 8.7%), ATRX mutation/deletion (3/46, 6.5%), 
or PDGFRA activating mutation/amplification (3/46, 6.5%) 
was detected. Alterations (mainly missense mutations) in 
EGFR were found in 12/46 (26.1%) tumors, particularly in 
the pedHGG_RTK2A/B subgroup (8/17, 47.1%), and were 
largely found in the extracellular domains, though with 
no recurrent hotspot mutations (Figure 5B). The equally 
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Figure 5: Whole-exome sequencing of pediatric GC. (A) Oncoprint representation of an integrated annotation of single-nucleotide variants and 
DNA copy-number changes for pediatric GC (n = 46). Samples are arranged in columns with genes labeled along rows. Clinicopathological and 
molecular annotations are provided as bars according to the included key. (B) Lollipop plot of specific variants identified in pediatric GC cases 
in EGFR (left) and BCOR (right), scaled by number and colored according to the key provided. Abbreviations: cysteine-rich domain (cysteine); re-
ceptor L-domain (receptor); growth factor receptor domain 4 (GFR); protein kinase domain (protein kinase); non-ankyrin-repeat domain (NARD); 
ankyrin repeat domain (ARD); PCGF1-binding domain (PCGF).
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most common mutated genes were TP53 and BCOR, with 
predicted inactivating mutations found in 12 cases each 
(26.1%). Three-quarters of BCOR alterations (n = 9) were 
present in pedHGG_RTK2A, the other 3 in the NEC sub-
group. Additional common mutations in the pedHGG_
RTK2A subgroup included PIK3CA (n = 4; plus 4 in NEC), 
FBXW7 (n = 4 + 2) and SETD2 (n = 5 + 1) (Figure 5A).

Synthesis of Molecular Data According to WHO 
CNS 2021

Subsequently, all tumors with molecular data available 
(n = 52) were reclassified using the integrated diagnostic 
criteria according to the WHO classification of CNS tumors 
of 2021,6 based on methylation arrays and the presence 
of pathognomonic mutations. The majority of tumors (in-
cluding patients with the provisional pedHGG_A/B sub-
class) were classified as diffuse pedHGG, H3-wt, and 
IDH-wt (pedHGG_H3-/IDH-wt) (n = 32/52, 61.5%), followed 
by astrocytoma, IDH1-mutant (n = 5, 9.6%), and diffuse 
hemispheric glioma, H3 G34-mutant (n = 3, 5.8%). Two tu-
mors each (3.8%) belonged to the diffuse midline glioma, 
H3 K27-altered, the diffuse LGG, MYB/MYBL1-altered, and 
the adult-type glioblastoma, IDH-wt, tumor (sub-)types, re-
spectively. In none of the IDH1-altered tumor samples, oli-
godendroglial features or 1p/19q-codeletion were present. 
Six tumors (11.5%) were still considered as NEC. A sum-
mary of the molecular findings is shown in Figure 6A. 
Compared with the pedHGG_H3-/IDH-wt subtype (median 
OS: 15.2 months [Q1–Q3: 10.9–23.7]), IDH1-mutant gliomas 
showed prolonged survival (median OS: 54.6 months [Q1–
Q3: 27.7–131.2]), whereas the number of cases is too small 
to draw a statistical conclusion (Figure 6B). Of the 9 LGC tu-
mors available for molecular analysis, 4 cases were IDH1-
mutant tumors, 2 cases turned out to be pedHGG_RTK2A, 
and 1 was MYB/MYBL-altered (2 tumors were still classi-
fied as NEC).

Characteristics of the pedHGG_H3-/IDH-wt 
Subgroup With GC Phenotype

In the pedHGG_H3-/IDH-wt subgroup, 29 of the 32 patients 
(90.6%) succumbed to their disease. Within this cohort, 
several prognostic factors were observed: with a median 
age of 12.1 years [Q1–Q3: 8.1–14.2], children under 10 
years of age (n = 10) showed decreased OS compared to 
older patients (median OS 10.3 months [Q1–Q3: 9.7–14.4] 
vs. 17.7 months [Q1–Q3: 12.4–33.2]; P = .004). With regard 
to the 3 different subtypes, patients of the pedHGG_MYCN 
subtype were younger than patients with pedHGG_
RTK2A/B- and pedHGG_A/B gliomas (median age 5.3 years 
[range: 2.9–7.8] vs. 12.8 years [range 6.3–18.0]). Cases of 
pedHGG_RTK2A showed a tendency for a more extensive 
growth pattern at diagnosis with a median of 5 affected 
cerebral lobes (Q1–Q3: 4–5) versus 3 lobes ([Q1–Q3: 3–5] 
in both other subclasses (P = .073) (Supplementary Figure 
5). In univariate analysis, neither the different methylation-
based subtypes (pedHGG_RTK2A/B vs. pedHGG_MYCN 
vs. pedHGG_A/B) (Figure 6C), nor the presence of struc-
tural alterations of chromosome 6 were associated with 

survival. Of all WES-derived molecular alterations tested 
(including EGFR, BCOR, PIK3CA, FBXW7, SETD2, MYCN), 
only the presence of TP53 alterations had a significant 
negative effect on OS (median OS: 9.7 [Q1–Q3: 8.8–12.4] 
vs. 18.4 months [Q1–Q3: 14.2–28.2]; P < .001). Due to the 
small number of cases, the statistical analysis of the im-
pact of administrating VEGF or EGFR inhibitors in the re-
spective methylation-based subgroup or in EGFR-altered 
tumors could not be investigated in a meaningful way. In 
multivariate analysis of the pedHGG_H3-/IDH-wt subgroup 
comprising age, methylation subclass, and TP53-status, 
only the latter remained to affect OS significantly (P = .008) 
(Supplementary Table 4).

Discussion

This large multi-institutional study on childhood GC aimed 
at improving the knowledge of this exceptional phenotype 
of diffuse gliomas. In comparison to hemispheric pedHGG, 
we showed that GC growth pattern per se is associated 
with an inferior prognosis. Grading according to the WHO 
classification of CNS tumors 2007/2016 demonstrated a 
significant impact on outcome: conventional histological 
grading was found to be an overall and HGC-related prog-
nostic marker, whereas the absence of histopathological 
high-grade features was associated with a survival ben-
efit. We also demonstrated that GC with low-grade fea-
tures does not behave clinically like pediatric low-grade 
glioma (pedLGG) since the majority of children with LGC 
succumbed eventually to tumor progression, whereas 
pedLGGs are associated with low mortality in general.29,30 
In molecular analyses, besides MYB/L-altered tumors, no 
pathognomic pedLGG alteration could be identified. On 
the contrary, 4 of the 9 LGC tumors available for workup 
were IDH-altered, which underlines the different molecular 
origin between pedLGG and LGC. The presence of MYB/L- 
and IDH-altered tumors, which are associated with more 
favorable survival in diffuse glioma in children/adoles-
cents,31–34 might contribute to the prolonged survival in the 
LGC subgroup. In summary, with respect to mortality rates 
and our scarce molecular data in this subgroup, we sup-
port the concept that GC with histological low-grade char-
acteristics—even in the absence of molecular high-grade 
features—should be considered high-grade entities and 
approached as such. The adequate treatment strategy for 
MYB/L or IDH-altered tumors with GC phenotype remains 
to be determined.

We demonstrated that certain subtypes of diffuse 
gliomas as defined by the WHO CNS 2021 classification 
are significantly associated with a GC phenotype. Diffuse 
pediatric-type HGG, H3-wt and IDH-wt, was the most 
common WHO type, consisting mainly of DNA methyl-
ation subclasses pedHGG_RTK2A/B, pedHGG_A/B, and 
pedHGG_MYCN. Except for single clinical parameters (eg, 
younger age in pedHGG_MYCN), these subclasses were 
associated with similar clinical phenotypes and cluster 
closely on t-SNE. Interestingly, gliomas of the pedHGG_
RTK1A/B/C subclass, which may account for approximately 
one-third in unselected pedHGG_H3-/IDH-wt cases35 and 
accounted for half in our control group,22 were virtually 
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absent in our series as well as in another independent pe-
diatric GC cohort published by Broniscer et al.12

Besides, our study indicates that the accumulation of 
some genetic aberrations may promote a GC phenotype as 
well. For example, gene aberrations in EGFR and BCOR were 
found at unexpectedly high frequencies in our pediatric GC 
series. Within published hemispheric cohorts of pedHGG, 
the frequency of EGFR mutations was 11/326 (3.4%)25 and 
2/86 (2.3%).26 Unselected pedHGG_H3-/IDH-wt tumors may 
show EGFR amplifications,35 but EGFR mutations as de-
scribed in our series are uncommon outside of the newly 
recognized DMG-EGFR methylation-based subclass.36,37 
These diffusely infiltrating (often bithalamic) pediatric dif-
fuse midline gliomas show phenotypic similarities with 
GC. However, unlike DMG-EGFR characterized by hotspot 
EGFR mutations, in our EGFR-mutated GC tumors, the mu-
tations did not cluster in specific regions of the gene. BCOR 
and FBXW7 alterations have previously been described 
mainly in H3-altered HGGs,25 and SETD2 alterations in hem-
ispheric H3-wt pedHGG.38 Whether alterations in BCOR, 
PIK3CA, FBXW7, or SETD2, which occurred mainly in our 
pedHGG_RTK2A subgroup, are significantly associated with 
this specific methylome-based subclass or with GC per se, 
has to be clarified in future studies with a higher number of 
tumors. Korshunov et al.35 published a small, unselected co-
hort of pedHGG_RTK2 cases (n = 18), which were primarily 
supratentorial and frequently carried EGFR amplification, 
but they did not perform WES to determine the status of 
the mutations mentioned above. Furthermore, they showed 
that PDGFRA amplifications are a hallmark of pedHGG_
RTK1 tumors, which often arise subsequently to cranial ir-
radiation or in the context of a replication repair deficiency 
such as Lynch syndrome.39,40 Consistent with the absence of 
pedHGG_RTK1 gliomas, PDGFRA mutations/amplifications, 
which are found in up to 16% of hemispheric pedHGG,26,41 
were scarce in our cohort. Our pediatric GC collection was 
characterized by structural aberrations in chromosome 6 
across various WHO 2021 CNS tumor (sub-)types as well. 
Chromosome 6 alterations have not yet been described in 
pedHGG in general, and their significance needs to be in-
vestigated in further studies on the various subtypes. Taken 
together, the dominance of the methylome-subclasses 
pedHGG_RTK2A/B and pedHGG_A/B, and the absence of 
certain other subclasses, which we could reproduce in an 
independent, reclassified case series by Broniscer et al.,12 
as well as the exceptional genetic repertoire of pediatric-
type diffuse gliomas with GC phenotype underlines a dis-
tinct molecular profile in these tumors. This is in contrast 
to earlier reports primarily due to smaller case numbers, 
an earlier version of the methylation classifier, and a lack of 
comprehensive exome sequencing.

Specific treatment recommendations for GC in children 
are lacking. Therapy proposals within case reports or small 
case series were based on approaches in unselected diffuse 
gliomas, but their impact in GC remained unclear.42,43 In 
HGC, we observed a marked difference in PFS between up-
front therapy modalities favoring a combination of chemo- 
and radiotherapy versus chemotherapy alone. However, 
the OS of the whole cohort and of different subgroups was 
not significantly influenced by the initial treatment modal-
ities, possibly due to the fact that irradiation, which had 
been omitted primarily, in most cases was subsequently 

administered after disease progression. Overall, our data 
showed that children with GC were treated very heteroge-
neously. Since these tumors behave very aggressively and 
differ clinically as well as molecularly from unselected hem-
ispheric pedHGG, GC might warrant specific treatment ap-
proaches but due to its rarity prospective trials are difficult 
to conduct. We advocate that GC should be given special 
consideration in future studies on pedHGG, for example, 
by introducing an additional radiological label for GC-like 
diffuse glioma in clinical trials or by focusing on the radio-
logical growth pattern in studies on methylation-based sub-
classes. By implementing a GC label, more attention would 
be paid to the clinical impact of this extensively infiltrating 
growth pattern, and further insights can be gained about this 
phenotype. In general, therapeutic approaches in GC should 
consider individual genetic alterations and should evaluate 
systematically the efficacy of tailored treatments (eg, EGFR 
inhibitors) as part of the multimodal approach. In our collec-
tive, the significance of such a targeted therapy could not 
be assessed due to the small number of cases. Clinical trial 
participation based on a GC phenotype, presence of specific 
genetic alterations, or on methylome would make study 
results more comparable and provide person-centered 
treatment options for GC patients, who have often been ex-
cluded from participation in clinical trials in the past.44

In conclusion, we provide evidence for molecular sig-
natures enriched in pediatric-type diffuse gliomas with 
GC phenotype: predominance of pedHGG_RTK2A/B and 
pedHGG_A/B methylation-defined subclasses as well as of 
EGFR, BCOR, and chromosome 6 alterations; the absence of 
the pedHGG_RTK1A/B/C subclasses and of CDKN2A/B and 
PDGFRA alterations. Furthermore, we assembled compre-
hensive clinical and radiological characterization and could 
identify certain prognostic parameters (eg, histopatholog-
ical grading in the whole cohort, contrast enhancement in 
HGC, the presence of TP53 mutations in the pedHGG_H3-/
IDH-wt subgroup). Taken together, these findings expand 
the current knowledge of GC and provide insight into dis-
ease biology of extensively infiltrating gliomas in children.
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Supplementary material is available online at Neuro-
Oncology (https://academic.oup.com/neuro-oncology).
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