®
OPEN a ACCESS Universitit Augsburg
OPUS AUGSBURG w h Universititsbibliothek

Mathematische Grundlagen als Schlussel zu einem
allgemeinbildenden Verstandnis von KI: theoretische
Perspektiven und praktische Unterrichtsideen

Sarah Schénbrodt, Reinhard Oldenburg

Angaben zur Veroéffentlichung / Publication details:

Schoénbrodt, Sarah, and Reinhard Oldenburg. 2024. “Mathematische Grundlagen als
Schlussel zu einem allgemeinbildenden Verstandnis von KI: theoretische Perspektiven und
praktische Unterrichtsideen.” Mathematik im Unterricht 15: 17-36.
https://doi.org/10.25598/miu/2024-15-2.

Nutzungsbedingungen / Terms of use: CCBY 3.0

Dieses Dokument wird unter folgenden Bedingungen zur Verfiigung gestellt: / This document is made available under these conditions:

CC-BY 3.0: Creative Ci - J @ @
Weitere Informationen finden Sie unter: / For more information see: B

https://creativecommons.org/licenses/by/3.0/de/deed.de



https://doi.org/10.25598/miu/2024-15-2
https://creativecommons.org/licenses/by/3.0/de/deed.de

Mathematik im Unterricht Ausgabe Nr.15, 2024

Mathematische Grundlagen als Schliissel zu einem allgemeinbildenden Verstandnis
von Kl: Theoretische Perspektiven und praktische Unterrichtsideen

Sarah Schonbrodt, Reinhard Oldenburg

Abstract. Im aktuellen politischen Diskurs nimmt Kiinstliche Intelligenz (KI) eine herausragende Stellung ein. Die Erwar-
tung, dass durch KI-Systeme die Lebens- und Arbeitsverhaltnisse grundlegend transformiert werden, weist der Schule die
Aufgabe zu, Lernende zu einem reflektierten, informierten Umgang mit ebendiesen Technologien und zugrundeliegenden
Methoden zu befahigen. Alle verbreiteten KI-Anwendungen basieren wesentlich auf mathematischen Grundlagen und es
stellt sich die Frage, inwieweit eine Beschaftigung mit diesen Grundlagen méglich und sinnvoll ist. Dies wird im Beitrag
sowohl theoretisch als auch auf Basis von konkreten Ideen fur den Unterricht diskutiert.

Einleitung

Es scheint breiter politischer und gesellschaftlicher Konsens zu sein, dass Kl-Technologien unsere Gesell-
schaft in nahezu allen Lebensbereichen transformieren und Kompetenzen im Umgang mit diesen sowohl im
Alltag als auch in zahlreichen Berufsfeldern immer wichtiger werden (vgl. etwa www.bundesregierung.de/breg-
de/themen/digitalisierung/kuenstliche-intelligenz). Die Europaische Kommission hebt in ihrem Bericht
“DigComp 2.2” hervor, dass hierfir durchaus auch ein grundlegendes technisches Verstandnis von Kl-
Technologien erforderlich ist (European Commission, 2022, S. 77). Zudem betont die UNESCO (2024) im “Al
Competency Framework for Students”, dass es heutzutage zur Aufgabe von (allgemeinbildenden) Schulen
gehort, Lernende in die Lage zu versetzen, KI-Entwicklungen zu bewerten sowie deren Potenziale und Gefah-
ren auf Basis von Wissen und eigener Kompetenz zu beurteilen. Sie sollen darauf vorbereitet werden, als
verantwortungsvolle Nutzer*innen und Mitgestalter*innen von Kl zu agieren (UNESCO, 2024, S. 3). Einen
Beitrag dazu kénnen vor allem die Schulfacher Mathematik und Informatik leisten, wobei in der bisherigen
Diskussion vor allem das Fach Informatik als relevant erachtet wird: So ist das Thema Kl u. a. in Bayern
(Staatsinstitut fir Schulqualitat und Bildungsforschung, 2022), Nordrhein-Westfalen (Ministerium fir Schule
und Weiterbildung des Landes Nordrhein-Westfalen, 2021, S. 18) sowie in Osterreich im Schulfach Informatik
verankert. In Osterreich wird KI zudem im Lehrplan der Digitalen Grundbildung benannt (Bundesministerium
fur Bildung, Wissenschaft und Forschung, 2024).

Der Relevanz des Informatikunterrichts fiir KI-Bildung soll hier zwar nicht widersprochen werden, dennoch soll
in diesem Beitrag herausgearbeitet werden, welche Rolle die Mathematik fiir Verfahren des maschinellen Ler-
nens spielt und welche grundlegenden Eigenschaften dieser Verfahren durch mathematische Uberlegungen
verstanden werden kénnen. Die padagogische Intention dabei ist die des “Empowerment” (Ernest, 2002), also
die Forderung von Handlungskompetenz in bestimmten Tatigkeitsbereichen mit dem Ziel, Jugendliche zum
aktiven Gestalten zu befahigen.' Dies fiihrt dazu, dass unsere Perspektive eine stark mathematisch-technolo-
gische Dimension hat. Dies soll keine Reduktion des Bildungsanspruchs auf eine technokratische Perspektive
implizieren. Vielmehr sind wir der Meinung, dass auch der gesellschaftliche Diskurs Uber die Auswirkungen
des maschinellen Lernens von einer Demystifizierung der Technik profitiert und insbesondere den in diversen
Gesellschaften vorhandenen Angsten vor Kl (Sindermann et al., 2022) durch Aufklarung entgegenwirken
kann. Gleichzeitig kann ein solcher Unterricht die fundamentale Rolle der Mathematik? fiir moderne, relevante

" Ernest (2002) klassifiziert drei Arten des Empowerments: “mathematical empowerment” (Mathematik und ihre Sprache
nutzen und anwenden kdnnen), "social empowerment" (die Nutzung mathematischer Kompetenzen zur Verbesserung der
sozialen Situation) und "epistemological empowerment" (Korrektheit und Giiltigkeit von Wissen einschatzen kénnen). Alle
drei Arten kdnnen durch die Beschaftigung mit den von uns behandelten Themen geférdert werden.

2 Diese Rolle wird nunmehr auch von den mathematischen Fachgesellschaften in ihrer Stellungnahme “Warum ist Mathe-
matik fir Kinstliche Intelligenz unentbehrlich?” betont, www.mathematik.de/dmv-blog/5090-warum-ist-mathematik-
f%C3%BCr-k%C3%BCnstliche-intelligenz-unentbehrlich. Zugegriffen: 14.08.2024.
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Technologien aus dem Bereich KI ersichtlich machen. Dass es mdglich ist, die komplexen mathematischen
Hintergriinde von Kl-Systemen auf Schulniveau zuganglich zu machen, wird in verschiedenen Verdffentlichun-
gen an exemplarischen maschinellen Lernmethoden herausgearbeitet (vgl. z. B. Biehler & Fleischer, 2021;
Hazzan & Mike, 2021; Schonbrodt et al., 2022; Kindler et al., 2023; Schonbrodt et al., 2023).

Der Begriff Kiinstliche Intelligenz wird in der Literatur sehr breit gefasst — eine einheitliche Definition sucht man
vergeblich. Im Wesentlichen bezeichnen wir Kl hier als Oberbegriff fiir alle Technologien, die Computersys-
teme in die Lage versetzen, eine Aufgabe bzw. ein Problem zu l6sen, dessen Losung gemeinhin mit Fahig-
keiten von ,intelligenten Menschen assoziiert wird und deren Beherrschung durch Maschinen Uberraschend
ist. Friher wurden auch klassische Schachcomputer oder Computeralgebrasysteme der Kl zugerechnet — in
einer modernen Sichtweise ist das nicht mehr so, da diese Probleme rein algorithmisch gelést werden kénnen
und die Algorithmen explizit programmiert werden.

Etwas greifbarer wird es, wenn man unter die Haube von modernen Kl-Systemen schaut und die zugrunde
liegenden (mathematischen) Methoden aus dem Bereich des maschinellen Lernens (ML), zu denen u. a.
kiinstliche neuronale Netze gehdren, in den Blick nimmt. Genau darauf legen wir in diesem Beitrag den Fokus.
Das ML beruht ganz wesentlich auf Mathematik und Daten. Es umfasst eine Vielzahl an Verfahren, darunter
solche aus dem Bereich des iiberwachten Lernens (supervised learning), bei dem auf einen Fundus richtiger
Beispiele zuriickgegriffen wird, und aus dem uniiberwachten Lernen (unsupervised learning), bei dem Daten
bspw. durch Clustering organisiert werden. Der Schwerpunkt dieses Beitrags liegt auf Methoden des Uber-
wachten Lernens.

Wenn Lernenden ein komplexes Thema wie die Funktionsweise von ML-Methoden nahegebracht werden soll,
stellt sich die Frage des richtigen Erklarungsmalstabs. Eine Analogie soll das erlautern: Wer das Leben mit
biologischen Begriffen verstehen will, kann bei der Zellchemie anfangen, das Zusammenwirken der Organe in
einem Organismus studieren, oder die evolutiondaren Mechanismen in ganzen Populationen. Das Phanomen
des Lebens kann also auf unterschiedlichen MaRstaben verstanden werden und alle haben offensichtlich ihre
Berechtigung. Ubertragen auf das Gebiet der Kl stellt sich die Frage, wie wichtig ein Verstandnis von Ki-
Systemen und den zugrundeliegenden ML-Methoden auf unterschiedlichen MaRstaben ist. Rahwan et al.
(2019) argumentieren, dass eine solche mehrstufige Herangehensweise auch einen geeigneten Ansatz fir
das Verstandnis von Maschinen liefert. In diesem Beitrag werden zentrale mathematische Saulen von ML-
Methoden (Daten, Optimierung, Messung von Ahnlichkeit und Distanzen, Wahrscheinlichkeit und statistische
Gutemale, s. Abb. 1) erlautert und drei verschiedenen Erklarungsmaflstaben bzw. Ebenen zugeordnet: der
Mikroebene einzelner elementarer mathematischer Objekte und Operationen, der Mesoebene, in der es um
das Zusammenspiel der elementaren mathematischen Komponenten geht und der Makroebene, auf der das
gesamte System und dessen Einbettung in die Gesellschaft betrachtet wird. Die drei Ebenen werden im Ab-
schnitt “Didaktische Einordnung” detaillierter aufgeschlisselt und es wird diskutiert, welchen spezifischen Bil-
dungsbeitrag unterrichtliche Zugange auf den drei Ebenen leisten kdnnen.

Abb. 1: Mathematische Saulen zahlreicher maschineller Lernmethoden

KI-Bildung im
Mathematikunterricht

Daten
Optimierung
Ahnlichkeits- und
DistanzmaRe
Wahrscheinlichkeit
Statistische
Glitemale

Mathematische Modellierung

Die funf (sicherlich nicht abschlieRenden) mathematischen Saulen (siehe Abb. 1) werden im Folgenden in
unterschiedlicher Tiefe beschrieben. Als mathematische Saulen wurden Konzepte bzw. Themengebiete aus-
gewahlt, die bei der Entwicklung von KI-Systemen basierend auf verschiedenen ML-Methoden eine zentrale
Rolle spielen. Besonders detailliert gehen wir auf die Saule “Optimierung” ein. Diese hat in der didaktischen
Literatur rund um die Vermittlung von ML-Methoden bisher weniger Beachtung gefunden, erscheint uns jedoch
als sehr relevant und durchaus zuganglich. Die mathematische Modellierung bildet in Abbildung 1 das Funda-
ment. Sie spielt eine tragende, saulentbergreifende Rolle. Letztlich kann der Entwicklungsprozess von Kil-
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Systemen, die auf ML-Methoden basieren, als (datenbasierte) mathematische Modellierung verstanden wer-
den.

Um die mathematischen Grundlagen von ML-Methoden im Unterricht nicht nur theoretisch zu thematisieren,
sondern computergestitzt auch umzusetzen, finden sich unter https://github.com/Schoenbrodt/KI-Bildung-im-
MU diverse Umsetzungsbeispiele in Form von Jupyter Notebooks® basierend auf der Programmiersprache
Python. Dies ermoglicht es Lernenden, ihr Verstandnis durch computergestiutzte Anwendung und Variation
der im Folgenden vorgestellten mathematischen Methoden zu Uberpriifen und den vorhandenen Code als
Basis fur eigene Anwendungen zu nutzen (und somit den Zielen des Empowerments gerecht zu werden). Eine
solche aktive Auseinandersetzung scheint gerade bei einem so tiefgriindigen und mathematisch facettenrei-
chen Thema wichtig.

Saule 1: Daten

In der Literatur wird das maschinelle Lernen haufig als Entwicklung von Computerprogrammen oder Algorith-
men beschrieben, die ,aus Erfahrung” (Mitchell, 1995, S. 2) bzw. ,aus Daten” lernen. Diese Beschreibung ist
aus unserer Sicht nicht ideal (da mystisch und mathematisch unprazise), macht aber zumindest deutlich, dass
die Basis vieler ML-Methoden (zahlreiche!) Daten sind. Der Umgang mit Daten und die Analyse und Vorver-
arbeitung der Daten mit mathematischen (insbesondere statistischen) Methoden spielt im Kontext des MLs in
vielerlei Hinsicht eine wichtige Rolle. Dazu lieRe sich einerseits ein ganzer Beitrag fiillen, andererseits gibt es
aus der Forschung zu Data Science Education und Data Literacy bereits zahlreiche Publikationen und Vor-
schlage fur die unterrichtspraktische Umsetzung (vgl. z. B. Gould et al., 2016; Gould, 2021; Engel, 2017; Dvir
et al., 2022). Wir umreif3en daher lediglich verschiedene Teilfragen und gehen auf ausgewahlte mathemati-
sche Aspekte detaillierter ein, die eng mit den weiteren mathematischen Sdulen verzahnt sind und interessante
Anregungen fur die unterrichtliche Diskussion der mathematischen Aspekte von ML-Methoden liefern.

Ausgangspunkt fir die Entwicklung von Kl-Systemen sind in der Regel reale Problemstellungen, zum Beispiel:

e Wie konnen Bilder von Gesichtern korrekt den jeweiligen Personen zugeordnet werden?
e Wie konnen Fitness-Tracker menschliche Aktivitaten méglichst genau erkennen?
e Wie kann das Risiko, an einer Herzkrankheit zu erkranken, moglichst prazise vorhergesagt werden?

Zur Beantwortung solcher Fragen mit ML-Methoden werden vergangene Daten verwendet. Beim (iberwachten
Lernen bestehen diese aus Inputdaten (auch Eingabedaten oder Werte von Pradiktorvariablen)* x; € R™ und
zugehorigen Outputdaten (auch Ausgabedaten oder Werte der Zielvariablen) y; € R™ fiiri = 1,..., N. Am Bei-
spiel der menschlichen Aktivitdtserkennung kénnen die Inputdaten bspw. aus der Zeit, der Herzfrequenz und
der Beschleunigung (d. h. x; € R®) bestehen. Die zugehérigen Outputdaten konnen die Klassen 1 (= Laufen),
2 (= Gehen), 3 (= Treppensteigen) und 4 (= Sitzen) sein, d. h. m = 1,y; € {1,2,3,4}.

Basierend auf den bekannten Daten wird ein mathematisches Modell (meist eine Funktion f: R™ - R™) entwi-
ckelt, das Zusammenhange zwischen den bekannten Input- und Outputdaten mdglichst prazise beschreiben
soll. Ziel ist es, das entwickelte mathematische Modell zu nutzen, um auch fir neue, bisher ungesehenen
Inputdaten x eine mdglichst gute Vorhersage fiir den zugehoérigen Output y berechnen zu kénnen. Um vali-
dieren zu kénnen, wie gut die Vorhersagen des Modells sind, werden die bekannten Daten in Trainings- und
Testdaten unterteilt. Die Trainingsdaten werden zur Entwicklung des mathematischen Modells verwendet — in
der KI-Sprechweise zum “Lernen bzw. Trainieren des Modells”. Die Testdaten dienen zur Validierung. Dazu
werden mithilfe des mathematischen Modells die Outputs fiir alle Inputdaten des Testdatensatzes vorherge-
sagt. Die Vorhersagen kénnen dann mit den tatsachlichen Outputs verglichen werden. Dazu kommen statisti-
sche Giitemalle zum Einsatz (vgl. Abschn. Statistische Giitemale).

Um reale Fragestellungen mit datenbasierten ML-Methoden zu I8sen, sind schon vor der eigentlichen Ent-
wicklung der Methode diverse Fragen im Hinblick auf die Verwendung und Verarbeitung der Daten relevant.

3 Im folgenden Text wird an verschiedenen Stellen auf die Jupyter Notebooks hingewiesen, indem ihr Dateiname angege-
ben wird (mit der Endung .ipynb). Alle Notebooks sind unter dem oben angegebenen Link verflgbar.

* In diesem Beitrag bezeichnet x; € R™ (fett gedruckt) den i-ten Datenvektor. Der j-te Eintrag des Vektors wird mit x; € R
bezeichnet.
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Unter anderem: Welche Informationen bzw. Daten bendtige ich? Wie kann ich diese beschaffen? Muss ich die
entsprechenden Daten zunachst selbst erheben oder aufnehmen oder gibt es bereits frei verfligbare Datens-
atze? Wie stelle ich die Daten in geeigneter Weise dar? Welche (mathematischen) Reprasentationen sind
dafir geeignet? Welche Erkenntnisse uber die Verteilung und Qualitéat der Daten liefert eine erste Erkundung,
u. a. durch Visualisierung der Daten? Sind die Daten fehlerbehaftet? Gibt es AusreiRer? Wie gehe ich mit
fehlenden Daten um? Sind meine Daten divers und reprasentativ genug, um das gegebene Problem mdéglichst
robust zu |6sen? Beinhalten die vergangenen Daten womdglich statistische Verzerrungen (Bias)? Kann es
passieren, dass statistische Verzerrungen in den vergangenen Daten durch Anwendung pradiktiver Modelle
in die Zukunft fortgeschrieben werden? Kann es damit womdglich zu Diskriminierungen kommen? Welche
ethischen und gesetzlichen Regelungen, bspw. zu Datenschutz, Privatsphare oder geschitzten Merkmalen
von Personen (u. a. das Geschlecht), missen im Hinblick auf die Verwendung der Daten beachtet werden?

Die Diskussion von Daten als Ausgangspunkt fur die Entwicklung von KI-Systemen ist im Unterricht auf unter-
schiedlichen Ebenen moglich. Auf der Mikroebene konnen bspw. detaillierte Analysen der statistischen Eigen-
schaften des Datensatzes durchgefiihrt oder statistischen Methoden zur Ausrei3eridentifikation diskutiert und
angewendet werden. Auch die Kodierung von Daten liegt auf dieser Ebene. Auf der Mesoebene konnen Daten
aggregiert und etwa mit Streu- oder Lagemalen charakterisiert werden. Auf der Makroebene kdnnen der Ein-
fluss verschiedener Trainingsdatensatze auf die Ergebnisse eines ML-Modells erkundet und ethisch-gesell-
schaftliche sowie gesetzliche Fragen im Umgang mit Daten diskutiert werden.

Séaule 2: Optimierung

Intelligenz wird oft verstanden als Anpassungsleistung — so etwa William Stern (1911), der Intelligenz als Fa-
higkeit zur Anpassung an unbekannte Situationen definierte. In gewissem — wenn auch anderem — Sinne gilt
das auch fir Systeme, die als kiinstliche Intelligenz bezeichnet werden. Diese Anpassung kann als Optimie-
rung verstanden werden — die Diskrepanz zwischen einem berechneten und einem gewinschten Ergebnis
(bekannte Outputdaten) wird verringert. Diese Sichtweise wird hier als Leitlinie verwendet, um ausgehend von
einfachen, schuliiblichen Extremwertaufgaben bis zu kiinstlichen neuronalen Netzen voranzuschreiten.

Minimierung von Funktionswerten

Die in der Schule dominierende Methode zur Bestimmung von Extremstellen von Funktionen R — R ist das
Ableitungskalkil. Numerische Verfahren kommen aber — in den einfachsten Versionen — mit viel weniger The-
orie aus. Ein Minimum einer Funktion f: R — R zu finden, ist dann ein iterativer Suchprozess: Ausgehend von
einem Startwert x, wird der Funktionswert f(x,) mit dem Wert f(x, + §) an der Stelle x, + § verglichen. Falls
f(xo + 8) < f(xo) wird im nachfolgenden Schritt die Umgebung der Stelle x;: = x, + § betrachtet. Andernfalls
wird untersucht, ob die Funktionswerte nach links kleiner werden. Gilt also f(x, — §) < f(x,) wird die Stelle
ZU x 1: = x4 — 6 geandert. Dies wird so lange fortgefuhrt, bis ein gewahltes Abbruchkriterium erfullt ist. Mogliche
Abbruchkriterien sind, dass eine maximale Anzahl an lterationsschritten erreicht wurde oder die Anderung der
Funktionswerte unter einen gewissen Schwellenwert ¢ fallt. Die konkrete Umsetzung in Python erfordert nur
wenige Programmzeilen (vgl. numerische _Optimierungsverfahren.ipynb).

Dieser simple Algorithmus, der fiir Maximierungsprobleme auch als Bergsteigeralgorithmus bezeichnet wird,
ist sehr ineffizient — es gibt viel schnellere Verfahren — aber er zeigt doch vier grundlegende Prinzipien, die er
mit den meisten effizienteren Algorithmen gemein hat:

e Die Suche beginnt bei einem Startwert und es wird mit einer gewissen, ggf. dynamischen Schrittweite
iterativ vorangeschritten.
e Das Verfahren endet, wenn ein vorgegebenes Abbruchkriterium erreicht wurde.

e Das Ergebnis kann sowohl vom Startwert als auch von der Schrittweite (im Bereich des MLs oft als
Lernrate bezeichnet) abhangen. Da in der Regel nur ein lokales Minimum gefunden wird, haben der
Startwert und die Schrittweite entscheidenden Einfluss auf das gefundene Minimum, insbesondere
wenn mehrere lokale Minima existieren (Abb. 2).

e Die Ergebnisse sind in der Regel nicht exakt, sondern lediglich numerische Approximationen.
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Numerische Algorithmen zur Minimierung sind ein klassisches Thema der mathematischen Forschung und die
Zahl der Methoden ist uniberschaubar gro3. Es gibt deutlich bessere Algorithmen, aber als mentales Modell
von deren typischer Arbeitsweise reicht das beschriebene Verfahren vollig aus.

Abb. 2: Simples numerisches Optimierungsverfahren mit Startwert x, = 0,4, Schrittweite § = 0,1 und Zielfunktion f
mit f(x) = cos(x) + 3 - sin(0,6x —2) + 3 - cos(2x — 2)

f(x)

Zielfunktion
e Iterationsschritte

-4 Startpunkt

e Lokaler Minimalpunkt

-4 -2 0 2 4
X
Im Falle von Funktionen einer reellen Variablen kdnnen in der Diskussion mit Schiler*innen die Ergebnisse
eines solchen Algorithmus den Berechnungen im Ableitungskalkil gegenubergestellt werden (sofern die Funk-
tion differenzierbar ist, was der Algorithmus nicht voraussetzt).

Mehrdimensionale Funktionen: Beim ML spielen in der Regel Funktionen eine Rolle, die von mehr als einer
Variable abhangen. Mit Schiller*innen kann sukzessive vom ein-, zum zwei-, zum N-dimensionalen Fall vo-
rangeschritten werden — gestutzt durch Visualisierungen in den ersten beiden Féllen. Die Bedeutung eines
Minimums einer Funktion in zwei reellen Variablen lasst sich am Funktionsgraph im Dreidimensionalen deut-
lich machen (Abb. 3). Auch die rechnerische Vorstellung, dass eine lokale Minimalstelle x* € R? eine Stelle
ist, an der der Funktionswert f(x*) so klein ist, dass es — zumindest in einer Umgebung — keinen kleineren
gibt, lasst sich damit aufbauen.

Abb. 3: Visualisierung des Gradientenabstiegsverfahrens an einer Zielfunktion in zwei Variablen

—e— |terationsschritte
Startwert
® lokaler Minimalpunkt

Eine simple Erweiterung unseres Minimierungsalgorithmus fiir Funktionen f auf R? ist die Folgende: Man
minimiert f(x,, x;) zunachst mit dem eindimensionalen Algorithmus bzgl. x; (x, ist fest), dann wechselt man
Zu x, (bei festem x,). Einfache Beispiele zeigen, dass es damit oft noch nicht getan ist: Man muss beide
Optimierungsschritte vielfach wiederholen, bis sich das Ergebnis stabilisiert. Das Verfahren ist rechenaufwen-
dig, aber es ist plausibel, dass Computer das fir wenige Variablen leisten kénnen. Wird dieses Verfahren
jedoch zum Ldsen von Minimierungsproblemen mit Millionen von Variablen eingesetzt (wie es bei kiinstlichen
neuronalen Netzen oft der Fall ist), ist das Vorgehen nicht effizient genug. Es braucht also raffiniertere Verfah-
ren, um moglichst schnell zu mdglichst exakten Ergebnissen zu kommen. Wir diskutieren hier einen zweiten
elementaren Algorithmus, um den Schiler*innen die Erfahrung zu ermdglichen, dass es sich lohnt, weiter an
besseren Algorithmen zu forschen.
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Ein effizienterer Algorithmus, der auch in der Praxis Einsatz findet, ist das Verfahren des steilsten Abstiegs
(Gradientenverfahren, vgl. z. B. Deisenroth et al., 2020, Kap. 7). Anstatt immer nur in eine Koordinatenrichtung
zu gehen, wird der Gradient bestimmt. Dieser gibt die Richtung des steilsten Anstiegs und entgegengesetzt
die Richtung des steilsten Abstiegs an. Wenn man in diese Richtung geht, kommt man schneller zu einem
lokalen Minimum als entlang der Koordinatenrichtung (Abb. 3). Flr eine differenzierbare Funktion f: R? - R
lautet die Iterationsvorschrift des Verfahrens x;.,.; = x;, — 6 - Vf(xy), wobei Vf(x;) der Gradient von f an der
Stelle x;, des k-ten Iterationsschritts und & die Schrittweite ist. An diesem Verfahren kénnen die Lernenden
erkennen, dass die Differentialrechnung, die in der Schule stark mit Optimierungsproblemen in einer Variablen
verbunden wird, eine grof3e Bedeutung behalt, auch wenn Computer zur approximativen Losung benutzt wer-
den. Wie erwahnt gibt es effizientere Verfahren, die aber das Gleiche leisten. Viele davon kénnen in Python
mit dem Paket scipy genutzt werden.

Es bietet sich an, Lernende computergestitzt mit unterschiedlichen Zielfunktionen, Startwerten und Schritt-
weiten experimentieren und die oben genannten vier Prinzipien numerischer Optimierungsverfahren erkunden
zu lassen. Dazu kann das Notebook numerische _Optimierungsverfahren.ipynb eingesetzt werden. Auch der
Ubergang zu Funktionen auf R™ kann computergestltzt realisiert werden.

Allgemein betrachtet bestimmen die beschriebenen Algorithmen eine Losung des allgemeinen Optimierungs-
problems minf (x) mit stetiger Zielfunktion f: R™ — R, indem sie ausgehend von einem Startwert x, € R™ ap-

proximativ ein lokales Minimum mit zugehériger Minimalstelle x* € R™ suchen — sofern eine solche existiert.
Fur eine lokale Minimalstelle muss f(x) = f(x*) fur alle x € U(x*) gelten, wobei U(x*) eine Umgebung von x*
bezeichnet. Zahlreiche ML-Methoden 16sen Spezialfalle des allgemeinen Optimierungsproblems (kinstliche
neuronale Netze, lineare Regressionsanalyse, Support Vector Machine).

Lineare Regression

Es gibt unzahlige Anwendungen von Optimierungsverfahren, hier werden nur solche aus dem Bereich des
MLs behandelt. Als eines der einfachsten ML-Verfahren gilt die lineare Regressionsanalyse, deren Kern das
Ldésen eines Optimierungsproblems ist.

Wir betrachten zunachst ein Beispiel mit zweidimensionalen Datenpunkten (x;,y;) € R%,i = 1,..., N (die Trai-
ningsdaten), aus denen ein Modell entwickelt (,gelernt“) werden soll, welches fir weitere x-Werte einen pas-
senden y-Wert vorhersagen kann. Wir unterstellen hier, dass es einen linearen Zusammenhang y = mx + b
gibt, und versuchen fir die Parameter m und b die besten Werte zu schatzen. Dazu muss definiert werden,
was mit “den besten” Werten gemeint ist. Dafiir gibt es mehrere Strategien, die auch mit Schuler*innen erar-
beitet werden kénnen (Schénbrodt & Frank, 2024). Die verbreitetste ist die Minimierung der Summe der Feh-
lerquadrate (Methode der kleinsten Quadrate): Fir x; prognostiziert das Modell den Wert §; = mx; + b. Fur die
Trainingsdaten ist der Wert der Zielvariablen y; bekannt, sodass der Fehler y; — ; berechnet werden kann.
Ziel ist es dann, die Quadratsumme der Fehler zu minimieren, also das Minimum der Zielfunktion F mit

F(m,b) =YX (y; — (mx; + b))2 zu bestimmen. Eine computergestiitzte Umsetzung, die als Ausgangspunkt
fur die unterrichtliche Erarbeitung dienen kann, findet sich im Notebook lineare_Regression.ipynb.

Da das ML-Verfahren ,Lineare Regressionsanalyse” nicht nur fir die Trainingsdaten, sondern insbesondere
fir neue Daten gute Vorhersagen liefern soll, wird das Modell auf Testdaten validiert. Die Vorhersagegenau-
igkeit auf den Testdaten dient als Abschatzung der Vorhersagegute fir ganzlich unbekannte Daten (vgl. Ab-
schn. Statistische Gutemalie).

Allgemeiner lassen sich Regressionsprobleme folgendermafien beschreiben: Gegeben sind N Paare von In-
put- und Outputdaten (x;,y;) mit x; € R*,y; € Rk furi = 1,..., N (die Trainingsdaten) und eine Modellfunktion
g:RP X R™ = R. In g(p, x) ist p € R? ein Vektor von Parametern, im obigen linearen Fall also p = (m, b) und
g((m,b),x): = mx + b. Der Wert dieser Funktion ist die Vorhersage des Modells fiir die Ausgabe zur Eingabe
x. Der Parametervektor p soll so gewahlt werden, dass das Modell die Daten mdglichst gut widerspiegelt.
Dazu wird eine Zielfunktion, z. B. F: R? - R, F(p): = X~ ||y; — 9(p, x,)||? formuliert. Das “Lernen” der optima-
len Parameter beruht somit auf dem Lésen eines Minimierungsproblems und kann mit den oben beschriebe-
nen Optimierungsverfahren geldst werden (auch wenn es spezialisierte Verfahren gibt, die effizienter sind).
Diese allgemeine Beschreibung eines Regressionsproblems macht deutlich, dass es neben dem linearen Fall
auch die Mdglichkeit gibt, die Prognosefunktion g beliebig, also z. B. nichtlinear zu wahlen. Die Nichtlinearitat
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kann die Pradiktorvariablen oder die Parameter p betreffen, im zweiten Fall spricht man von nichtlinearer
Regression.

Es lohnt sich zu reflektieren, wie viel klassische Mathematik in dieser modernen Anwendung steckt: Die Mo-
dellierung des Zusammenhangs zwischen Input- und Outputdaten mit Funktionen g, die Minimierung mit Mit-
teln der Analysis und nicht zuletzt das statistische Quantifizieren der Ergebnisse auf den Testdaten. Fir diesen
letzten Schritt kann die euklidische Norm oder eine beliebige andere Metrik verwendet werden — womit ein
weiterer klassischer Gegenstand der Mathematik relevant ist (vgl. Abschn. Ahnlichkeits- und Distanzmafe).

Zwischenfazit: Zentrale Schritte bei der Entwicklung von ML-Methoden

Die lineare Regression macht einige zentrale Elemente zahlreicher ML-Methoden ersichtlich, so auch von den
im Folgenden beschriebenen kiinstlichen neuronalen Netzen (vgl. dazu auch Biehler et al., 2024):

1. Trainings- und Testdaten: Ausgangspunkt sind bekannte Input- und zugehdrige Outputdaten. Diese
werden in der Regel geeignet vorverarbeitet und dann in Trainings- und Testdaten unterteilt.

2. Festlegung auf ein mathematisches Modell: Es wird ein mathematisches Modell festgelegt, viel-
fach eine gewisse Funktionsklasse, aus der die Funktion gewahlit werden soll, die die gegebenen
Trainingsdaten ,bestmdglich® beschreibt. Mit anderen Worten sollen gewisse Parameter der Funktion
/ des Modells bestmdglich geschatzt werden.

3. Formulierung eines Optimierungsproblems: Es ist zu klaren, was mit ,bestmdglich® gemeint ist.
Dazu wird eine Metrik gewahlt und dartber eine Fehlerfunktion definiert, die die Abweichung zwi-
schen den tatsachlichen Outputdaten y; und den Prognosen y; beschreibt.

4. Ldsen des Optimierungsproblems: Ziel ist es, die Parameter des Modells so zu wahlen, dass der
Fehler bzgl. der Trainingsdaten mdglichst klein wird. Dazu kommen meist® numerische Verfahren
zum Einsatz. Dieser Schritt wird auch als Trainingsphase bezeichnet.

5. Testen und Validieren des Modells: Bevor das Modell in die Anwendung geht, wird es auf Daten
validiert, die nicht in der Phase der Modellentwicklung eingesetzt wurden. Dazu kommen die Testda-
ten zum Einsatz. Dieser Schritt wird auch als Testphase bezeichnet.

Insbesondere in Schritt 2 und 3 wird die Rolle des oder der Modellierer*in ersichtlich: gewisse Entscheidungen
werden eben auch beim ML noch vom Menschen getroffen, z. B. die Wahl der Funktionsklasse und der Feh-
lerfunktion, aber auch Parameter (sog. Hyperparameter) im Optimierungsalgorithmus (bspw. der Startwert).

Die Regressionsanalyse ist ein Beispiel fir ein Verfahren des MLs, das sehr transparent ist: Es ist leicht ver-
standlich, wie das ,Training“ wirkt, wie auf der Basis der gelernten Parameter Vorhersagen berechnet werden
und was die Parameter darin bedeuten (s. folgendes Beispiel). Dies liegt an der simplen Modellfunktion. Wird
diese komplexer, wie das bei kiinstlichen neuronalen Netzen der Fall ist, geht die Interpretierbarkeit der ein-
zelnen Parameter oft verloren.

Beispiel: Regression zur Vorhersage von Ferienhauspreisen

Als Anwendungsbeispiel fir Regressionsprobleme betrachten wir folgende Frage: Wie lasst sich aus verschie-
denen Angaben Uber ein Ferienhaus dessen Mietpreis vorhersagen? Als Trainingsdatensatz wurden aus ei-
nem Online-Portal folgende Daten von 83 Ferienhausern auf Bornholm herausgesucht: Zahl der erlaubten
Personen, Zahl der Zimmer, Wohnflache in gm, Erlaubnis von Hunden (kodiert als nein = 0 bzw. ja = 1), Zahl
der Sterne bzgl. der Qualitat der Ausstattung (3, 4 oder 5), Meerblick (0-1-kodiert), die Entfernung zum Meer
und der Mietpreis fiir eine Woche im Spatsommer. Bei fast allen Variablen spricht ein hoher Wert fiir einen
hohen Preis — aufer bei der Entfernung zum Meer. Die Pradiktorvariablen fir jedes Haus sind
x = (Pers, Zimmer, W fl, Hund, Sterne, Meerblick, Meerentf), die Zielvariable ist der Mietpreis. Welche Prog-
nosefunktion man fur die Vorhersage nimmt, ist eine Frage, bei der man viel diskutieren und ebenso viel aus-
probieren kann. Wir haben uns fur die Funktion g mit

g, x) = cPers - Pers + cZimmer - Zimmer + cWfl- Wfl + cHund - Hund + ---

5 Im Falle der linearen Regression lieRke sich das Problem noch analytisch l6sen, dies ist bei den meisten anderen Opti-
mierungsproblemen im Kontext von ML-Methoden nicht méglich.
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) ) cMeerentf
cSterne - (Sterne — 3) + cMeerblick - Meerblick + ————=+ ¢,

\J Meerentf

und Parametervektor p = (cPers, cZimmer, c(W f1, cHund, cSterne, cMeerblick, cMeerentf,c,) € R® entschie-
den. Der Parametervektor wird durch Lésen eines Optimierungsproblems bestmdglich bestimmt. Der Ansatz
mit der Quadratwurzel der Entfernung zum Meer folgt der Intuition, dass ein Haus nahe am Meer teurer sein
sollte als ein weiter entferntes, und dass die Ndhe zum Meer den Preis treibt. Eine Realisierung findet man im
Notebook Ferienhauspreise_linReg.ipynb. Die aus der Optimierung gewonnenen optimalen Parameterwerte
kénnen zum einen genutzt werden, um bei weiteren Hausern vorherzusagen, wie teuer sie vermutlich sind,
zum anderen koénnen die Werte auch interpretiert werden: So ergibt sich etwa cPers = 10,20€ und
cZimmer = 108 €, d. h. vor allem bestimmt die Zahl der Zimmer den Preis. Der Blick aufs Wasser ist — bei
sonst gleichen Hausparametern — gar nicht so teuer: cMeerblick = 39 € .

Die Qualitat eines Regressionsmodells 1&sst sich z. B. mit dem mittleren quadratischen Fehler der Prognosen
auf den Trainings- und Testdaten bewerten. Damit I1asst sich Modellvariation systematisch betreiben. Eine
Option ware im obigen Modell zur Zielfunktion einen nichtlinearen Term cW Il - Wfl - cSterne - (Sterne — 3)
hinzuzufiigen. Die Idee dabei ist, dass hochwertige Wohnflache besonders teuer ist. Modelldiskussion und
Modellkritik ergeben sich aus einer solchen Fragestellung fast automatisch.

Klinstliche neuronale Netze

Mit einem kunstlichen neuronalen Netz (KNN) lassen sich unterschiedliche Aufgaben l6sen — insbesondere
Regressionsprobleme (y; numerisch) und Kilassifikationsprobleme (y; kategorial), aber auch das Auffinden
von Clustern in Datensatzen ist damit moglich (uniberwachtes Lernen).

Die Antworten eines KNNs stammen im Gegensatz zur recht transparenten linearen Regression meist aus flr
uns ,unergrundlichen Tiefen“ seiner inneren Vernetzung (also einer komplexen Prognosefunktion g). Gemein-
sam ist beiden Verfahren, dass sie auf ein Optimierungsproblem hinauslaufen und gewisse Parameter einer
von uns definierten Modellklasse (Funktionsklasse) optimal gewéhlt werden sollen.

Das Neuron

Die Idee von KNNs stammt aus der Biologie: Gewisse Strukturen des Nervensystems werden mit Mitteln der
Mathematik und der Informatik modelliert. Nervenzellen (Neuronen) sammeln tiber mehrere Dendriten Signale
und aggregieren diese. Zusammen bestimmen sie das Aktionspotential, das Uber das Axon und Synapsen an
weitere Neuronen weitergegeben wird, sofern ein gewisser Schwellenwert erreicht wurde. Man spricht auch
davon, dass das Neuron “feuert”.

Abb. 4: Visualisierung eines kunstlichen Neurons

In KNNs wird ein Neuron mathematisch durch eine Funktion g: R¥ - R mit g(x) = o(w - x + b) modelliert.
Hierbei sind w € R* Parameter (Gewichte), die im Skalarprodukt w - x die Sensitivitdt des Neurons auf Ein-
trage des Inputvektors x € R¥ gewichten. Der Parameter b € R ist eine Gesamtverschiebung (Bias). Schema-
tisch wird dies oft wie in Abbildung 4 dargestellt. Das “Feuern” eines biologischen Neurons wird modelliert
durch eine nichtlineare Funktion, die als Aktivierungsfunktion bezeichnet wird. Oft verwendete Aktivierungs-

funktionen sind die Sigmoid-Funktion o: R - R,0(z) = 1+i-z

diskussion) oder die ReLU-Funktion o: R - R, 0(z) = max (0, z).

(ein netter Gegenstand fir eine schnelle Kurven-
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Das Training bzw. der “Lernprozess” eines kiinstlichen (mathematischen) Neurons beruht auf der Bestimmung
der optimalen Gewichte w und des Bias-Parameters b, sodass ein unbekannter Zusammenhang zwischen
gegebenen Input- und Outputdaten bestmoglich beschrieben wird. Um dies mit Schiiler*innen zu erarbeiten,
bietet es sich an mit niedrigdimensionalen Daten einzusteigen: Es sind Inputdaten x; € R? und zugehérige
Outputdaten y; e R,i = 1,..., N gegeben. Basierend auf diesen Trainingsdaten sollen die Eintrage des Ge-
wichtsvektors w € R? und der Wert des Bias-Parameters b € R so gewahlt werden, dass die Summe der Feh-
lerquadrate zwischen den berechneten Outputs ¥; und den tatsachlichen Outputdaten y; minimal wird:

N N
minZ(a(W -x; + b) — y;)? = min Z()A’i - y)?.
wo i=1 wo i=1

Das Training eines einfachen kiinstlichen Neurons beruht damit wiederum auf dem Ldsen eines Optimierungs-
problems und funktioniert nach dem gleichen Schema wie die numerische Bestimmung der optimalen Para-
meter eines linearen Regressionsmodells. Durch die nichtlineare Aktivierungsfunktion kdnnen nun auch nicht-
lineare Zusammenhange modelliert werden. Das Training von KNNs ist demnach ein Spezialfall der nichtline-
aren Regression. Allerdings ist diese im Allgemeinen sehr rechenaufwendig. Die spezielle, im Folgenden be-
schriebene Struktur von KNNs erlaubt hingegen die Anwendung sehr effizienter Optimierungsalgorithmen.
Damit kdonnen sehr groRe Netze mit Millionen Parametern trainiert werden.

Abb. 5: Eine Ebene von Neuronen aus den Geruchsnerven eines Hundes (Quelle: https://garystockbridge617.getarchive.net/amp/me-
dia/camillo-golgis-image-of-a-dogs-olfactory-bulb-detail-2-957500)

Vom einzelnen Neuron zum neuronalen Netz

Ein einzelnes Neuron macht noch kein Netz. Reale Neuronen sind im Nervensystem und auch im Gehirn
vielfaltig verschachtelt, wie etwa Abbildung 5 aus den Geruchsnerven eines Hundes zeigt. Solche Verschach-
telungen werden durch Schichten von Neuronen idealisiert, was mathematisch auf eine Hintereinanderaus-
fuhrung von Funktionen hinauslauft. An der Eingabeschicht legt man ein Signal (einen Inputdatenpunkt)
x € R™ an, der in der ersten ,versteckten“ Schicht von k; Neuronen in Vektoren aus R¥1 transformiert wird.
Diese Vektoren dienen als Eingabe fir die nachste Schicht usw. bis an der Ausgabeschicht (L-te Schicht) ein
Vektor aus R¥. als Ausgabe berechnet wird. Zur Vereinfachung der Notation erweitert man die Sigmoid-Funk-
tion o: R —» R durch komponentenweises Anwenden auf o: R® - R"™. Damit lasst sich die Ausgabe a® einer
beliebigen Schicht l € {1,...,L} schreiben als:

a® = g0ty = WD - g0-D + pO ) € Rk

mit einer Gewichtsmatrix W® € R¥>*ki-1 und einem Bias-Vektor b(® € R¥:. Dabei entspricht a(® dem Input-
vektor. Die Gewichtsmatrix beinhaltet zeilenweise die Gewichtsvektoren der einzelnen Neuronen und der Bias-
Vektor beinhaltet die Bias-Parameter der einzelnen Neuronen einer Schicht. Das komplette Netz besteht aus
der Hintereinanderausfiihrung mehrerer solcher Funktionen g(x) = g¥) o...0 g™ (x). Dass dabei tiefe Ver-
schachtelungen mdglich sind, gab dem “deep learning” seinen Namen. Ein KNN ist im Kern somit eine vielfach
verkettete, nichtlineare Funktion. In Abbildung 6 werden an einem kleinen KNN relevante Rechnungen veran-
schaulicht.

Auch bei KNNs aus vielen Neuronen und zahlreichen Schichten besteht das Training im Lésen eines Optimie-
rungsproblems. Formal soll fiir gegebene Trainingsdaten (x;y;),x; € R",y; € R™die Zielfunktion
F®):=YY.1ly: — g(p,x;)||*> minimiert werden, wobei p = (WD, bM,... W®), b)) alle Gewichtsmatrizen
und alle Bias-Vektoren umfasst. Je nach Anwendungsproblem sind andere Definitionen der Zielfunktion sinn-
voll. Die Summe der Fehlerquadrate erleichtert jedoch die Anwendung von Methoden der Analysis.

Das Training eines KNNs ist abstrakt betrachtet die optimale Wahl der Parameter p einer Funktion
g: R* - R™, so dass die Funktion die dem Trainingsdatensatz zugrundeliegende, unbekannte Zuordnung
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x; = y; moglichst gut widerspiegelt. Nimmt man an, dass diese Zuordnung durch eine Funktion G beschrieben
wird (also y; = G(x;), evtl. mit zufalligem Fehler), beschreibt das Optimierungsproblem ein Approximations-
problem.

Abb. 6: Darstellung eines kinstlichen neuronalen Netzes mit einer versteckten Schicht aus zwei Neuronen

a® = ow® . x + bW) a® =gW® .a® + p@)

Eingabeschicht versteckte Schicht Ausgabeschicht

Die Wahl der Anzahl an Schichten und der Neuronen pro Schicht sowie der Aktivierungsfunktion ¢ und damit
die Struktur der Funktionen g beruht meist auf der Erfahrung der Person, die das KNN fiir einen bestimmten
Zweck entwirft. Klar ist aber, dass fiir o keine linearen Funktionen verwendet werden dlirfen, weil die Verket-
tung linearer Funktionen wieder eine lineare Funktion ergibt, und damit keine nichtlinearen Zusammenhange
beschrieben werden kdénnten. Wird eine nichtlineare Aktivierungsfunktion verwendet, kann bewiesen werden,
dass jede zugrundeliegende stetige Funktion G auf einer kompakten Definitionsmenge gleichmafig durch ein
hinreichend groRRes Netz approximiert werden kann (allgemeiner Approximationssatz von Cybenko (1989) und
Hornik et al. (1989), s. https://en.wikipedia.org/wiki/Universal approximation theorem fiir eine kompakte Er-
klarung). Durchaus gibt es viele andere Funktionsklassen, die eine solche gleichmaflige Approximation leisten
(etwa Polynome), aber es zeigt sich, dass neuronale Netze dies mit verhaltnismaflig wenig Schichten errei-
chen (weiterfuhrende Literatur findet man z. B. in Kutyniok, 2024).

Beispiel 1: Klassifikation mit kiinstlichen neuronalen Netzen

Klassifizierungsprobleme treten in diversen Anwendungen auf: bei der Erkennung von Pflanzenarten, in
Spamfiltern, bei der Klassifikation von Gesichtern auf Bildern oder im Bereich der medizinischen Diagnose. In
diesem Beispiel wird mit synthetischen Daten und unterschiedlichen Architekturen eines KNNs zur Klassifika-
tion experimentiert und zentrale Bausteine von KNNs auf der Mesoebene betrachtet. Im Unterricht kann man
dazu wiederum mit einem simplen Klassifizierungsproblem mit zweidimensionalen Inputdaten x; € R? und le-
diglich zwei Klassen einsteigen (Abb. 7). Fir Inputdaten x; der Klasse 1 wahlen wir als zugehoérigen Output
y; = 0 und fur Daten der Klasse 2 y; = 1. Andere Kodierungen der Klassenzuordnungen (Labels) sind durch-
aus denkbar.6

Wie geht man nun an die Entwicklung eines KNNs zum Ldsen des Klassifizierungsproblems heran? Die In-
putdaten sind zweidimensional, entsprechend sollte die Eingabeschicht aus zwei Neuronen bestehen. Die
Outputdaten haben wir eindimensional gewahlt, d. h. es wird ein Ausgabeneuron bendétigt. Die Vorhersagen
sollen in [0,1] liegen. Damit sollte in der letzten Schicht eine Aktivierungsfunktion eingesetzt werden, die in
dieses Intervall abbildet — bspw. die Sigmoid-Funktion. Die Schichten dazwischen kénnen relativ beliebig ge-
wahlt werden. Wir starten mit zwei versteckten Schichten aus je 10 Neuronen und verwenden in jeder Schicht

6 Oft werden Outputvektoren verwendet, deren Lange der Anzahl der gegebenen Klassen entspricht. Die Eintrage eines
vorhergesagten Outputvektors kénnen dann als Wahrscheinlichkeiten interpretiert werden, mit denen ein Datenpunkt den
jeweiligen Klassen angehort.
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als Aktivierungsfunktion die Sigmoid-Funktion. Den Fehler (und damit die Zielfunktion des Optimierungsprob-
lems) definieren wir Uber die Summe der Fehlerquadrate’. Im Notebook Klassifikation KNN.ijpynb kann (auf
der Mesoebene) erkundet werden, wie sich die Anderungen der Netzstruktur (Hinzunahme von Schichten oder
Neuronen; Anderung der Aktivierungsfunktion) auf die Genauigkeit der Klassifikation auswirkt.

Abb. 7: Zwei Trainingsdatensatze und Entscheidungsgrenzen des jeweiligen KNNs

Trainingsdatensatz 1 8 Trainingsdatensatz 2
10 e Trainingsdaten Klasse 1 e Trainingsdaten Klasse 1
Trainingsdaten Klasse 2 6 Trainingsdaten Klasse 2
8
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Wir trainieren fur zwei verschiedene Trainingsdatensatzen je ein KNN (Abb. 7). Datensatz 1 ist simpel, da die
Datenpunkte der beiden Klassen linear separierbar sind. Bei Datensatz 2 sieht das anders aus. Hier brauchen
wir ein komplexeres, nichtlineares Modell.

Mit der oben beschriebenen Struktur der KNNs ergeben sich die in Abbildung 7 dargestellten Entscheidungs-
grenzen. Diese Grenzen veranschaulichen, welche Klassenzuordnung das jeweilige Modell fir Inputdaten aus
verschiedenen Bereichen des Merkmalsraums (hier: R?) vorhersagt. Die Entscheidungsgrenze kann bei KNNs
oft nicht explizit durch eine geschlossene mathematische Formel dargestellt werden. Um die Grenze zu be-
stimmen, wird der Merkmalsraum in ein feines Gitter unterteilt (also diskrete Punkte ausgewahlt). Fir jeden
Gitterpunkt wird die Klassenzuordnung berechnet. So ergibt sich die ndherungsweise Unterteilung in Bereiche
und die Entscheidungsgrenze. Zur spielerischen Erkundung des Einflusses verschiedener Netzstrukturen ei-
nes KNNs fir Kilassifizierungs- und Regressionsprobleme kann der Tensorflow Playground
(https://playground.tensorflow.org) oder eine deutschsprachige Variante davon auf https://kiwi.schule einge-
setzt werden.

Beispiel 2: Neuronales Netzwerk als Kantendetektor

Das folgende Beispiel soll zeigen, wie das Training eines KNNs zum Erkennen von Strukturen in Pixelbildern
funktioniert. Das Netz soll erkennen, ob in einem Bild aus 2x2 Pixeln eher vertikale oder horizontale Strukturen
vorliegen. Dies ist eine extrem vereinfachte Situation, die aber doch wesentliche Prinzipien der Bilderkennung
mit KNNs zeigt.

Um die Eingabe des Netzes in einen Vektor zu Uberflhren, strukturieren wir die Pixel in einer linearen Anord-
nung. Dazu nummerieren wir diese von 1 bis 4 (Abb. 8) und kodieren ihre Helligkeitswerte als Zahlen zwischen
0 (weil) und 1 (schwarz). Die Eingabevektoren x;,i = 1,...,N sind in diesem Fall also aus R*.

Abb. 8: Links Anordnung der Pixel, mittig ein Bild, das als (1,0,1,0) kodiert wird, rechts ein Bild, das (0,0,1,0.5) entspricht

1 2

3 | 4

Als Ausgabevektoren y; wahlen wir Vektoren im R? mit Eintragen zwischen 0 und 1. Ein hoher Wert des ersten
Eintrags signalisiert das Vorliegen von vertikalen Strukturen. Analog zeigt der zweite Eintrag des Ausgabe-
vektors eher horizontale Strukturen an. Als Netzstruktur wahlen wir (da gibt es erneut viel willkirliche Freiheit)

7 Anstelle der Summe der Fehlerquadrate werden bei Klassifizierungsproblemen oft komplexere Fehlerfunktionen verwen-
det, bspw. die Kreuzentropie.
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eine versteckte Schicht mit drei Neuronen: Zunéchst wird der R* also auf den R® und schlieBlich auf R? abge-
bildet. Als Fehlerfunktion betrachten wir die Summe der Fehlerquadrate zwischen den gewlinschten Ausgaben
und den vorhergesagten Ausgaben (vgl. Kantendetektor KNN.ipynb).

Um von diesem Beispiel zu echten Anwendungen zu kommen, etwa dem Erkennen einer Person auf einem
Bild, muss man vor allem grof3 denken: Statt 2x2 Bildern als Eingabe werden Bilder in authentischer, deutlich
héherer Auflésung verwendet. Damit sind die Eingabedaten hochdimensional. Statt einer versteckten Schicht
gibt es viele Schichten und auch die Anzahl Neuronen pro Schicht wird oft sehr grol3 gewahlt. Dies gilt auch
fur die Ausgabeschicht. Wenn es etwa um die Gesichtserkennung geht, hat man fiir jede Klasse, d. h. jeden
zu erkennenden Menschen, ein Ausgabeneuron.

Die Beschreibung macht klar, dass in authentischen Anwendungen Millionen, wenn nicht Milliarden von Para-
metern zu bestimmen sind. Die Anpassung der Gewichte mit einem simplen Minimierungsalgorithmus, wie
dem beschriebenen Verfahren des steilsten Abstiegs, wiirde dann zu viel Rechenzeit beanspruchen. Dies liegt
unter anderem daran, dass die direkte Berechnung des Gradienten sehr zeitaufwendig ist. Verschiedene Stra-
tegien helfen, dieses Problem zu I6sen. Zum einen wird die Zielfunktion nicht auf einmal gebildet; stattdessen
werden die Trainingsdaten schrittweise eingegeben und die Gewichte nach und nach angepasst. Ein Algorith-
mus, der das leistet, ist das Backpropagation (z. B. Deisenroth et al., 2020). Zum anderen kdnnen haufig viele
Geuwichte in solchen Netzen fest auf Null gesetzt werden. Dies hat sich bei der Bilderkennung als effektiv
erwiesen, da benachbarte Pixel gemeinsam verarbeitet werden, wahrend weit entfernte Pixel erst in spateren
Schichten miteinander in Kontakt kommen. Dieses Vorgehen ist die Idee hinter sogenannten Faltungsnetzen
(engl. Convolutional Neural Networks).

Beispiel 3: Regression mit kiinstlichen neuronalen Netzen

KNNs werden zum Lésen von (komplexen, nichtlinearen) Regressionsproblemen eingesetzt. Auch das Feri-
enhausbeispiel kann mit einem neuronalen Netz modelliert werden (siehe Ferienhauspreise_KNN.ipynb). Da
KNNs durch Hinzunahme weiterer Schichten und zuséatzlicher Neuronen pro Schicht systematisch vergréRert
werden kdnnen, 13sst sich eine hohe Flexibilitdt in der Anpassung erreichen, was oft zu besseren Vorhersagen
auf den Trainingsdaten fihrt, als wenn der Modellierende eine feste Modellfunktion vorgibt. Nachteil ist aber,
dass die Parameter schlechter zu interpretieren sind. Auf’erdem steigt mit der Zahl der Neuronen und damit
der Parameter auch der Rechenaufwand und der Bedarf an Trainingsdaten, um die Parameter hinreichend
gut festzulegen.

Abb. 9: Trainingsdatensatz, Testdatensatz und Vorhersagen eines KNNs

Trainingsdaten Testdaten und Vorhersagen

° Testdaten
Vorhersagen _*

) .'- ' |

#%

y (Zielvariable)
y (Zielvariable)

0 2 8 10 0 2 8 10

4 6 4 6
x (Pradiktorvariable) x (Pradiktorvariable)

Im Unterricht kbnnen KNNs im Kontext der Regression am Beispiel eines Datensatzes mit eindimensionalen
Inputdaten x; € R und Outputdaten y; € R erarbeitet und der Einfluss der Struktur eines KNNs erkundet wer-
den. Im Notebook Regression_KNN.ipynb wird dazu der Datensatz aus Abbildung 9 (links) bereitgestellt und
ein KNN mit zwei versteckten Schichten mit je 10 Neuronen trainiert. Die Vorhersage berechnet sich gemaf

9 = g.x) = WO (@(W®(@(WDx; + bD)) + b®)) + b,

wobei p= WD, pbO, W2 p& WA p3) und WD e R1*  pM e RO W e RI¥0  p@ g RO,
w® e R™10 p(3) g R, sowie ¢ der ReLU-Funktion entspricht. Als Fehlerfunktion wurde die mittlere Summe
der Fehlerquadrate gewahlt. Bei Regressionsproblemen wird in der Ausgabeschicht oft keine Aktivierungs-
funktion eingesetzt. Grund ist, dass die Outputs je nach Anwendungsfall nicht auf den Wertebereich der Akti-
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vierungsfunktion beschrankt werden sollen. Das Training des KNNs besteht nun im Ldsen des Optimierungs-

problems min%Z’i"zl(yi — g(p, x;))?. Mit dem trainierten KNN aus nur wenigen Schichten und Neuronen kén-
P

nen die Testdaten bereits einigermalien genau vorhergesagt werden (Abb. 9 rechts).

Lernende kdnnen das Notebook als Ausgangspunkt nutzen, um verschiedene Aktivierungsfunktionen zu tes-
ten (Mikroebene), oder die Anzahl der versteckten Schichten und die Anzahl der Neuronen pro Schicht zu
variieren und den Einfluss auf den Fehler bzgl. der Trainings- und Testdaten zu erkunden (Mesoebene).

Zwischenfazit: Optimierung

Die ML-Saule der Optimierung besteht darin, Parameter einer Modellfunktion durch Minimierung einer Fehler-
funktion (Zielfunktion) zu bestimmen. Diese Fehlerfunktion basiert in der Regel auf dem Abstand zwischen
den gewulnschten und den tatsachlichen Ausgaben. Neben der Minimierung einer Funktion spielt daher auch
die Modellierung von Abstanden eine zentrale Rolle. Daflr gibt es viele mathematische Ansatze, die auch von
der Schulmathematik bereitgestellt werden (vgl. folgender Abschnitt).

Optimierungsprobleme sind zentraler Bestandteil zahlreicher weiterer ML-Methoden wie beispielsweise der
Support Vector Machine, mit der u. a. Klassifizierungsprobleme geldst werden kénnen. Bei dieser wird eine
Gerade oder Ebene oder Hyperebene so gewahlt, dass sie die Datenpunkte zweier Klassen bestmdglich von-
einander trennt. Auch diese Methode lasst sich auf schulmathematische Inhalte reduzieren und bietet neben
der Optimierung eine schone Anwendung von Inhalten der analytischen Geometrie (Schénbrodt et al., 2022).

Siule 3: Ahnlichkeits- und DistanzmaRe

Das Messen von Ahnlichkeiten und Abstéanden zwischen Datenpunkten spielt eine wichtige Rolle im Bereich
des MLs. Ansétze der Ahnlichkeits- und Abstandsmessung sind durchaus eng verknupft. Der Blickwinkel ist
jedoch ein leicht anderer: Ahnlichkeitsmale geben typischerweise an, wie dhnlich sich zwei Datenpunkte sind
(hoher Wert = groRe Ahnlichkeit), wohingegen Metriken zur Bestimmung von Abstanden angeben, wie unahn-
lich zwei Datenpunkte sind (hoher Wert = groRer Unterschied). Ahnlichkeitsmale lassen sich oft aus Metriken
gewinnen, indem bspw. die Inverse betrachtet wird.

Oben haben wir bereits gesehen, dass die Modellierung von Abstanden zwischen Datenpunkten bei der Be-
schreibung der Zielfunktion eines KNNs eine wichtige Rolle spielt. Auch bei der statistischen Bewertung eines
ML-Modells anhand von Testdaten (vgl. Abschn. Statistische GiitemalRe) sind Metriken wesentlich. Einige ML-
Verfahren beruhen dariiber hinaus auf der direkten Messung von Ahnlichkeiten bzw. Abstanden zwischen
Datenpunkten — bspw. die k-nachste-Nachbarn-Methode, die zum Lésen von Klassifizierungsproblemen ein-
gesetzt werden kann. Um einen neuen Datenpunkt einer Klasse zuzuordnen, wird die “Nahe” des neuen Da-
tenpunktes zu allen Trainingsdatenpunkten quantifiziert. Der Datenpunkt wird dann per Mehrheitsentscheid
der Klasse zugewiesen, von denen unter den k ,nachsten® Datenpunkten die meisten vorliegen. Dazu muss
also die Ahnlichkeit oder Distanz zwischen zwei Vektoren u = (uy,...,u,) und v = (vy,...,v,) mathematisch
beschrieben und quantifiziert werden. Wesentliche auch fiir Schilerinnen verstandliche Ansatze sind (Olden-
burg, 2021; eine elementare Realisierung in Python findet sich in Oldenburg, 2011):

e Die euklidische Norm: Zwei Vektoren u und v sind umso ahnlicher, je kleiner die euklidische Norm
ihrer Differenz ist: ||lu — v||,.

e Die Kosinus-Ahnlichkeit: Zwei Vektoren u und v sind umso ahnlicher, je gréRer der Kosinus des

Winkels a, d. h. je kleiner der Winkel zwischen den beiden Vektoren ist: cos(a) = ”uﬁ:ﬁv” .

e Skalarproduktéhnlichkeit: Zwei Vektoren u und v sind umso ahnlicher, je gréRer ihr Skalarprodukt
ist. Dies entspricht der Kosinus-Ahnlichkeit, wenn mit normierten Vektoren gearbeitet wird.

Vor- und Nachteile dieser Ansatze liegen auf der Hand: Kommt es in einer konkreten Anwendung nur auf die
Richtung oder auch auf die Lange der Vektoren an? Davon abgesehen ist die Wahl nicht immer kritisch, wie
die folgende Ubungsaufgabe zeigt: Wenn alle Vektoren auf Lange 1 normiert sind, und u ahnlicher zu v ist als
zu w mit einem dieser Ahnlichkeits- bzw. Distanzmale, dann gilt das Gleiche mit den anderen MaRen.
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Daruber hinaus gibt es viele weitere Ansatze (Levy et al., 2024). Erfahrungsgemald finden Lernende die
Summe der absoluten Abweichungen oft intuitiv einleuchtend, also den Ausdruck Y-, |u; — v;|. Die Verwen-
dung dieser Metrik zur Definition einer Zielfunktion hat jedoch numerische Nachteile, da sie nicht differenzier-
bar ist.

Auch beim Clustern (uniiberwachtes Lernen) ist die Messung von Ahnlichkeiten bzw. Distanzen relevant. Hier
wird versucht, ahnliche Datenpunkte zu Clustern zu gruppieren. Ein Beispiel fiir eine solche Methode ist der
k-means-Algorithmus.

Ansatze der Ahnlichkeitsmessung verbergen sich zudem hinter groRen Sprachmodellen. Diese iibersetzen
Texte zunachst in eine Folge von Tokens. Das sind naturliche Zahlen, die bei vielen modernen Sprachmodel-
len in der GroRenordnung von 10° liegen, und die fiir Worter, Wortteile oder Satzzeichen stehen. Die Tokens
werden dann in einen hochdimensionalen reellen Vektorraum abgebildet. Bei dieser Vorverarbeitung spielt
Ahnlichkeit eine wichtige Rolle: inhaltlich &hnliche Tokens werden i.d.R. Vektoren zugeordnet, die dhnlich sind.
Im Notebook wordEmbeddings.ipynb kann ausprobiert werden, wie solche Embedding-Vektoren bestimmt und
wie mit ihnen gerechnet werden kann.

Saule 4: Wahrscheinlichkeiten

Eine weitere mathematische Saule sind Wahrscheinlichkeiten. Diese haben Auswirkungen auf die Entwicklung
und Evaluierung von ML-Methoden. Bei der Entwicklung ist zu bedenken, dass die Trainingsdaten i.d.R eine
Zufallsstichprobe darstellen. Bei der Evaluierung kann nicht geprift werden, ob alle Gewichte “richtig” gewahlt
sind — es kdnnen nur Statistiken Uber richtige Vorhersagen angelegt werden.

Wahrscheinlichkeiten spielen auch bei der Entwicklung von Sprachmodellen eine zentrale Rolle. Dies kénnen
Nutzer*innen von Smartphones nachvollziehen, wenn beim Tippen ein Fehler passiert und eine plausible Kor-
rektur vorgeschlagen wird. Angenommen, es wurde getippt ,Ein schmackhafter Affel“. Das letzte Wort ist nicht
im Worterbuch enthalten. Das System sollte also einen Korrekturvorschlag machen. Zunachst wird wieder das
Prinzip der gréRtméglichen Ahnlichkeit bemiiht: viele Fehler passieren vermutlich so, dass das gemeinte Wort
ahnlich dem fehlerhaft getippten Wort sein dirfte. Im Worterbuch finden sich beispielsweise ,Apfel“ und ,Affe.
Beide Worter liegen nahe an dem eingetippten Wort in dem Sinne, dass nur ein falscher/lberschiissiger Tas-
tendruck ausreicht, um zu erklaren, wie aus dem gemeinten Wort ,Affel* wurde.

Wie spielen nun Wahrscheinlichkeiten in Systeme der Wortkorrektur hinein? Ausgangspunkt ist ein umfang-
reicher Textkorpus der deutschen Sprache, gegebenenfalls ergdnzt um Texte, die der Benutzer schon selbst
verfasst hat. Fur diesen Text Iasst sich auszahlen, wie oft auf das Wort “schmackhafter das Wort ,Apfel* bzw.
wie oft das Wort ,Affe” folgt. Dividiert man die jeweiligen absoluten Haufigkeiten der Wortibergange durch die
Gesamtzahl des Auftretens des vorangegangenen Wortes (hier: Auftretenshaufigkeit des Wortes “schmack-
haft”), so liefert dies relative Haufigkeiten fir die entsprechenden Wortlibergange. Aus diesen lassen sich die
bedingten Wahrscheinlichkeiten (Wahrscheinlichkeit, dass Wort B folgt, unter der Bedingung das Wort A ge-
tippt wurde) schatzen und damit auswahlen, welches Wort vermutlich gemeint war. Noch besser wird die
Prognose, wenn nicht nur das direkt vorhergehende Wort, sondern 2,3, 4, ... vorhergehende Worte bei der
Schatzung der bedingten Wahrscheinlichkeiten beriicksichtigt werden. Dieses Modell wird im Bereich der na-
tirlichen Sprachverarbeitung auch als N-Gramm-Modell bezeichnet. Dabei steht N fiir die Anzahl der betrach-
teten Woérter, die fir die Schatzung der Ubergangswahrscheinlichkeit herangezogen werden (Oldenburg,
2008, fur eine didaktische Elementarisierung).

Das N-Gramm-Modell kann nicht nur zur Wortkorrektur, sondern auch zum Erzeugen von Wortvorschlagen
beim Tippen einer Nachricht am Smartphone (vgl. Hofmann & Frank, 2022) oder gar zum “Generieren” eines
ganzen Textes eingesetzt werden: Gibt man einen beliebigen Textanfang vor, kann das System die Wahr-
scheinlichkeiten maoglicher Folgeworter berechnen und so das wahrscheinlichste nachste Wort ermitteln.
Durch Wiederholung entsteht ein maschinell erzeugter Text. Kurze Teile davon sind in der Regel grammatika-
lisch einigermalien okay, beispielsweise passen die Geschlechter von Artikeln und Nomen zusammen. Das
andert sich, wenn die Grammatik verlangt, dass im Satz Worter in Beziehung stehen, die weiter entfernt sind
als bei der Bestimmung der bedingten Wahrscheinlichkeiten beriicksichtigt. Der Text ist deswegen in der Regel
sinnlos. Die explizite Berechnung der relativen Haufigkeiten wird erschwert, je langer die Textstiicke sind, da
die Auftretenshaufigkeiten insgesamt gering sind. Es ware also weder praktikabel noch sinnvoll, Folgen von
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zehn Woértern in den bedingten Wahrscheinlichkeiten zu berticksichtigen. Daher braucht es komplexere Me-
thoden, beispielsweise KNNs.

Auch wenn die direkte Berechnung der bedingten Wahrscheinlichkeiten sehr aufwendig ist, liefert dies doch
ein brauchbares Modell fiir ein grobes Verstandnis von generativen Sprachmodellen wie ChatGPT: Basierend
auf einem riesigen Datensatz an Texten lernt ein KNN, bei der Eingabe einer Folge von Woértern das wahr-
scheinlichste nachste Wort vorherzusagen. Dazu wird der Eingabetext (“Prompt”) in Token kodiert. Die daraus
berechneten Embeddingvektoren sind dann die Inputdaten des Netzes. Fur jedes mdgliche Folge-Token gibt
es ein Ausgabeneuron. Das Token mit dem héchsten Outputwert gilt als das Wahrscheinlichste. Ist der Text
um ein Token verlangert, dient er als neue Eingabe. So wird der Text Token um Token generiert.

Dies ist ein grobes Modell auf der Mesoebene. Es ist trotz seiner Vereinfachungen nitzlich, weil es einerseits
Lernenden, die sich fur die Funktion im Detail interessieren, einen Weg aufzeigt, auf die Mikroebene hinabzu-
steigen, und andererseits eine Einschatzung wichtiger Fragen auf der Makroebene ermdglicht — bspw. das
Phanomen des “Halluzinierens” von ChatGPT oder etwa die Abhangigkeit von den Trainingsdaten.

Saule 5: Statistische Giitemale

Die Testdaten dienen dazu, die Generalisierbarkeit des entwickelten ML-Modells auf neue, zuvor ungesehene
Daten zu bewerten. Bisher wurde nur am Rande diskutiert, wie die Ergebnisse, die das entwickelte Modell auf
den Testdaten liefert, quantifiziert und statistisch bewertet werden kdnnen. Welche statistischen Glitemale
geben hier aufschlussreiche Einblicke und wie sind diese zu interpretieren? Dies lasst sich auch ohne tiefer-
gehendes Verstandnis der mathematischen Grundlagen der jeweiligen ML-Methode (bspw. eines KNNs) im
Unterricht diskutieren — wir bewegen uns auf der Makroebene. Im Zentrum dieser Diskussion steht die Er-
kenntnis, dass die Ergebnisse von ML-Methoden nur statistisch bewertet werden kdnnen. Je nach Problem-
klasse (Regressions- oder Klassifizierungsproblem) werden unterschiedliche statistische Gitemale einge-
setzt.

Klassifizierungsergebnisse werden oft in einer Wahrheitsmatrix (Konfusionsmatrix) zusammengefasst. Diese
liefert eine kompakte Ubersicht (iber die vorhergesagten und die tatséachlichen Klassenzuordnungen. Ein Bei-
spiel mit fiktiven Ergebnissen eines Klassifizierungsmodells auf 300 Testdatenpunkten ist in Tabelle 1 darge-
stellt. Die fett gedruckten Werte auf der Diagonalen geben die Anzahl der korrekten Klassifikationen je Klasse
an.

Tab. 1: Wahrheitsmatrix fir die Ergebnisse eines Klassifizierungsmodells auf 300 Testdaten

Vorhergesagt als Vorhergesagt als Vorhergesagt als
Klasse A Klasse B Klasse C

Tatsachlich

Klasse A v 5 7
Tatsachlich

Klasse B 22 o 2
Tatsachlich

Klasse C 13 4 e

Typische statistische Gitemale, die sich basierend auf der Wahrheitsmatrix leicht berechnen lassen, sind:

e Genauigkeit: Anteil der korrekten Klassifikationen an der Gesamtzahl aller Testdaten. Im Beispiel aus
7+98+142

Tabelle 1 also = 0,82.
300

e Fehlerrate: Anteil der Fehlklassifikationen an der Gesamtzahl aller Daten (d. h. 1 - Genauigkeit).

e Prazision (bzgl. einer Klasse): Anteil der korrekt als Klasse i klassifizierten Datenpunkte an der Anzahl
aller als Klasse i klassifizierten Datenpunkte (Klasse A: 0,17; Klasse B: 0,92; Klasse C: 0,94).

e Recall (auch Sensitivitat): Anteil der korrekt als Klasse i klassifizierten Datenpunkte an der Anzahl
aller zu Klasse i gehérenden Datenpunkte (Klasse A: 0,37; Klasse B: 0,80; Klasse C: 0,89).

An der Wahrheitsmatrix aus Tabelle 1 wird schnell ersichtlich, warum es nicht ausreicht, ein Klassifizierungs-
modell nur anhand der Gesamtgenauigkeit zu validieren. Dies ordnen wir am Beispiel der automatisierten
Einstufung von Bewerber*innen fur ein Studienstipendium ein. Die Bewerber*innen gehdren einer der Klassen
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“Ablehnen” (A), “Warteliste” (B) oder “Annehmen” (C) an.® Die Genauigkeit ist mit 82 % einigermaRen hoch
(was als akzeptabel angesehen wird, hangt natirlich stark von der Anwendung ab); die Prazision fiur die Klasse
“Ablehnen” ist jedoch gering. Personen werden somit abgelehnt und damit nicht fir ein Stipendium berick-
sichtigt, obwohl sie daflir durchaus in Frage kdmen. Auch der Recall ist fur diese Klasse niedrig, d. h., es
werden diverse Bewerber*innen ausgewabhlt, obwohl sie fiir das Stipendium eher nicht geeignet sind.

Ein Grund fiir derartige Ergebnisse kdnnte die Wahl des Trainingsdatensatzes sein. Wenn das Modell auf
historischen Daten trainiert wurde, die Vorurteile enthalten oder aus Kontexten mit bestehenden oder friiheren
Ungleichverteilungen stammen, kann dies dazu fuhren, dass bestimmte Gruppen entweder Uber- oder unter-
reprasentiert sind und Vorurteile bzw. Ungleichverteilungen reproduziert oder verstarkt werden. Beispielsweise
kénnten Absolvent*innen bestimmter Schulen oder Geschlechter systematisch benachteiligt werden, wenn
deren Bewerbungen haufiger als ,abgelehnt® eingestuft wurden und weiterhin werden. Auch Uber derartige
gesellschaftliche / ethische Implikationen sollte im Unterricht diskutiert werden (vgl. Orwat, 2019 fiir verschie-
dene Fallbeispiele). Im Notebook Kilassifikation KNN.ipynb kénnen die Auswirkungen unausgeglichener Klas-
sen auf die Klassifikationsergebnisse mithilfe der hier diskutierten statistischen GitemalRe untersucht werden.

Das gewahlte Beispiel ist nicht nur mit Blick auf die Interpretation der statistischen Giitemale, sondern auch
dariiber hinaus diskussionswiirdig: Nach welchen Kriterien wurden die Klassenlabels festgelegt? Wurde allein
der Erfolg im Studium als Kriterium verwendet, um die Trainingsdaten und damit die Studierenden zu “labeln”?
Ist die Auswahl der Trainingsdaten und die Kodierung der Klassenlabels womdglich bereits fragwirdig? Zwar
wurde in diesem Abschnitt nicht mit realen Daten argumentiert, verwandte Szenarien haben im Kontext der
Bewerberauswahl oder der Zulassung von Studierenden an Universitaten jedoch in realen Anwendungen
durchaus schon zu kritischen Diskussionen gefihrt (vgl. Orwat, 2019).

Die Bewertung von Klassifizierungsergebnissen bietet die Méglichkeit klassische schulmathematische Inhalte
aus dem Bereich “Daten & Zufall” im Kontext von Kl zu thematisieren und neu zu akzentuieren: Vierfeldertafeln
und Fehler 1. und 2. Art. Die Prazision und der Recall stehen in direktem Zusammenhang mit diesen Fehler-
typen, die typischerweise fur zwei Klassen (positiv und negativ) betrachtet werden. Bei Problemen mit mehr
als zwei Klassen kann dies wie folgt ausgeweitet werden: eine ausgewahlte Klasse i wird als positiv und alle
Ubrigen Klassen zusammengenommen als negativ betrachtet. Eine niedrige Prazision fiir Klasse i bedeutet,
dass viele Daten falsch der Klasse i zugeordnet wurden (falsch Positive) und geht mit einem hohen Fehler 1.
Art einher. Ein niedriger Recall bedeutet, dass viele Datenpunkte der Klasse i einer anderen Klasse zugeord-
net wurden (falsch Negative) und geht mit einem hohen Fehler 2. Art einher.

Fir die Bewertung von Regressionsergebnissen werden bspw. die mittlere quadratische Abweichung und die
mittlere absolute Abweichung verwendet. Auch hierzu lieRen sich interessante Diskussionen fihren; bspw.
Uber die hohere Sensitivitat der mittleren quadratischen Abweichung fir Ausrei3er oder die leichtere Interpre-
tierbarkeit der mittleren absoluten Abweichung, da diese die durchschnittliche Grofie des Fehlers in der Einheit
der Outputdaten angibt.

Didaktische Einordnung

Oben wurde auf elementarer mathematischer Ebene (Mikroebene) erlautert, wie kiinstliche neuronale Netze
mathematisch modelliert werden kénnen. Neben dieser Detailbetrachtung sind auch dariber liegende Be-
trachtungsebenen, die Meso- und Makroebene, mdglich.

Auf der Mesoebene geht es um das Zusammenspiel der elementaren Objekte der Mikroebene. Die Beschrei-
bung eines neuronalen Netzes als vielfach verkettete Funktion, die sich aus affin-linearen und nichtlinearen
Funktionen zusammensetzt, oder die Beschreibung der Schritte des Word-Embeddings liegen auf dieser
Ebene.

Auf der Makroebene werden Details der mathematischen Beschreibung und programmtechnischen Umset-
zung der einzelnen Komponenten einer ML-Methode (bspw. Neuronen) und des Trainierens nicht betrachtet.
Stattdessen befasst man sich ausfuhrlicher mit dem System als Ganzes (bspw. ein KNN als Funktion, die

8 Hier lieRe sich auch der klassische Anwendungsfall der medizinischen Diagnose bemiihen (Klasse A = Krankheit A,
Klasse B = Krankheit B, Klasse C = gesund).
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Inputdaten gewissen Outputdaten zuordnen), mit der Bewertung der Performanz basierend auf statistischen
Gutemalen und mit der Auswahl und dem Einfluss von Trainings- und Testdaten auf die Ergebnisse. Auch
die Diskussion von Problemen des Systems und maogliche, resultierende Auswirkungen auf die Gesellschaft
bzw. auf einzelne Personengruppen zahlen wir zu dieser Ebene.

In Tabelle 2 werden am Beispiel von KNNs die drei Betrachtungsebenen, relevante mathematische Inhalte,
der jeweilige Bildungswert und der Beitrag zum Empowerment aufgeschlisselt. Diese Einordnung lieRe sich

in ahnlicher Weise fir weitere ML-Methoden realisieren.

Tab. 2: Ebenen der Durchdringung von KI-Systemen am Beispiel von KNNs mit Einordnung des Bildungswertes

Ebene Mathematik Bildungswert Empowerment
Mikroebene Skalarprodukt, Matrix-Vek- Innermathematisch Teilkomponenten eines KNNs
tor-Multiplikation, euklidi- Anwendung und Vertie- implementieren (d. h. Implemen-
scher Abstand, Optimie- fung von Schulmathema- tierung “from Scratch”)
rungsproblem und numeri- tik an relevanten Frage-
sche Optimierungsverfahren stellungen
Demystifizierung von KI
Mesoebene Kunstliches Neuron als Innermathematisch KNN auf Basis der Nutzung von
Funktion, die sich aus der Anwendung und Vertie- Softwarepaketen (bspw. Py-
Verkettung einer linearen mit fung von Schulmathema- Torch, Tensorflow) implementie-
einer nichtlinearen Funktion tik an relevanten Frage- ren
zusammensetzt stellungen
Zusammenspiel von Schich- Komplexitatsbeherr- o
ten in einem KNN als Verket- schung durch Modularisie-
tung von Funktionen rung
Demystifizierung von KI
Makroebene KNN als Funktion, die einem Bias, Diskriminierung, Mo- | Analysieren und Bewerten der
. Input einen Output zuordnet dellkritik Leistung eines trainierten KNN
Einzelnes ) )
KI-System Einfluss von Trainings- und Ethische / gesellschaﬂ!l- Kl-Anwendungen und ihre Rolle
Testdaten; Validierung mit chg Fragestellungen dis- in und fir unsere Gesellschaft
Gesellschaft statistischen Giitemalen kutieren kritisch reflektieren

Es stellt sich die didaktische Frage, auf welcher Ebene allgemeinbildender Unterricht zur KI ansetzen sollte.
Die Makroebene zielt darauf ab, Schiler*innen zu befahigen, Outputs von KI-Systemen kritisch einzuordnen
und deren gesellschaftliche Auswirkungen einzuschatzen. Damit ist offensichtlich, dass die Makroebene eine
zentrale Rolle bei der Lebensvorbereitung in einem Kl-getriebenen Alltag spielt und damit gemal Heymann
(1989) allgemeinbildenden Wert hat. Zu klaren bleibt, ob diese Ebene unabhangig von den beiden darunter
liegenden Ebenen in einer Art und Weise im Unterricht behandelt werden kann, die nachhaltige Bildung er-
moglicht und damit junge Menschen in die Lage versetzt, KI-Systeme reflektiert und zielfihrend zu nutzen, zu
bewerten und selbst zu gestalten.

Unsere Hypothese ist, dass Wissen und Kompetenzen der unteren Ebenen durchaus auf die Makroebene
durchschlagen. Werden KNNs auf der Mikro- oder Mesoebene erarbeitet, so wird greifbar, dass bei der Ent-
wicklung von KI-Systemen mit ML-Methoden oftmals verschiedene Modellentscheidungen denkbar sind und
von Menschen getroffen werden, bspw. die Wahl der Metrik zur Definition der Fehlerfunktion eines KNNs. Es
wird deutlich, dass die Entwicklung von KI-Systemen ganz wesentlich auf Daten und elementarer Mathematik
und mathematischer Modellierung beruht (gepaart mit sehr effizienten Implementierungen). Die Mikro- und
Mesoebene spielen damit eine besondere Rolle bei der Demystifizierung von K.

Weitere Beispiele, wie Wissen aus der Mikro- und Mesoebene auf der Makroebene relevant wird: Angenom-
men, ein groRes Sprachmodell gibt falschlicherweise aus, dass eine Person im Jahr 1980 geboren sei. Der/Die
Nutzer*in beschwert sich. Dann kann der Anbieter des Sprachmodells, anders als bei Datenbanken, nicht
einfach eine Zahl andern, weil die 1980 nicht an einer einzigen Stelle codiert ist. Wegen der Komplexitat des
Netzes sind die Gewichte nicht interpretierbar und das Zustandekommen einer spezifischen Ausgabe ist fur
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Menschen nicht nachvollziehbar. Diese Erkenntnis ist durch ein tieferes Verstandnis der mathematischen
Struktur eines KNNs auf der Mikro- oder Mesoebene mdglich. Das Verstandnis von KNNs (oder N-Gramms)
auf der Mesoebene erlaubt es zudem zu verstehen, warum groRe Sprachmodelle Logikfehler machen, teil-
weise bei simplen Rechenaufgaben versagen oder “halluzinieren”: Diese Systeme liefern basierend auf gege-
benen Trainingstexten mithilfe von mathematischen Modellen eben nur Naherungen fiir wahrscheinliche To-
kens (und damit Woérter). Aufgrund ihrer nicht volligen Zuverlassigkeit sind grol3e Sprachmodelle also in einem
gewissen Sinne das Gegenstlick zur Mathematik, die Sicherheit und maximale Transparenz der Begriindung
anstrebt.

Diese Beispiele zeigen exemplarisch, dass technische Bildung auf Mikro- und Mesoebene zu einer kompeten-
ten Einschatzung eines komplexen Kl-Systems befahigt und auf die Makroebene durchschlagt.

Fazit

Die Gestaltung von Mathematikunterricht zu den in diesem Beitrag behandelten Themen eréffnet Chancen,
steht aber auch vor Herausforderungen.

Einerseits kann das Thema die Bedeutung von (Schul-)Mathematik fiir die Entwicklung von KI-Anwendungen
im Mathematikunterricht betonen. Die Forschung und Entwicklung im Bereich Kl Iasst sich eben nicht nur der
Informatik zuordnen. Auch die Mathematik leistet einen wesentlichen Beitrag und es gibt durchaus zahlreiche
offene Forschungsfragen im Kontext des maschinellen Lernens, an denen in der Mathematik derzeit aktiv
geforscht wird (Kutyniok, 2024). Positiv ist auch, dass das Thema eine Reihe von mathematischen Teilgebie-
ten verbindet, etwa Analysis, Vektorrechnung und Wahrscheinlichkeitsrechnung. Der Unterricht kann damit
deutlich machen, dass Mathematik bei realen Anwendungen vielfaltig vernetzt Einsatz findet. Als verbindendes
Element ist zudem die mathematische Modellierung hervorzuheben. Bei der Diskussion von ML-Methoden auf
der Mikro- oder Mesoebene wurde an diversen Stellen ersichtlich, dass oft verschiedene Modellentscheidun-
gen mdglich sind. Dies betrifft etwa die Kodierung der Klassenlabels bei Klassifizierungsproblemen, die Wahl
des Ahnlichkeits- oder Distanzmales bei der k-nachste-Nachbarnmethode, die Festlegung der Zielfunktion
bei der Optimierung von KNNs oder die Wahl der Gesamtstruktur eines KNNs (Anzahl Schichten etc). Dies
kann zur Erkenntnis beitragen, dass zahlreiche Entscheidungen bei der Entwicklung von KI-Systemen eben
doch von Menschen getroffen werden und diese Systeme sich nicht voll autonom einstellen und “selbst ent-
wickeln”. Damit besteht die Chance zur Demystifizierung von Kl beizutragen.

Eine Herausforderung ist die Behandlung von Funktionen in mehr als einer Variablen, die in den diskutierten
Beispielen auftreten. Da diese im Mathematikunterricht aber ohnehin implizit vorkommen (zum Beispiel als
Formel fir das Pyramidenvolumen) und in Tabellenkalkulationen genutzt werden, erscheint eine unterrichtli-
che Behandlung konsequent (vgl. dazu auch Schweiger, 2023).

Die technologiegestitzte Umsetzung von Unterrichtseinheiten zu den mathematischen Hintergriinden von Ki-
Systemen auf der Mikro- oder Mesoebene erfordert ein gewisses Mal an informatischer Bildung, sobald mehr
Eigenaktivitat der Lernenden ermdglicht werden soll. Dies stellt aktuell noch eine Herausforderung fiir den
Mathematikunterricht dar. Da Informatik als Schulfach jedoch mittlerweile in mehr und mehr Landern verpflich-
tend eingeflihrt wird, sollte dieses Problem auf Seiten der Lernenden mit der Zeit kleiner werden. Zugleich
bedarf es auch eines Umdenkens in der Aus- und Weiterbildung von Mathematiklehrkraften, die Gelegenheit
bekommen mussen, selbst informatische Grundkenntnisse zu erwerben.

Aus der Perspektive der Allgemeinbildung ist an diesem Thema reizvoll (mit Blick auf das Lernen in abge-
grenzten Schulfachern zugleich herausfordernd), dass neben Mathematik und Informatik auch weitere Bil-
dungsbereiche involviert sind: Dies betrifft die Biologie, die das Vorbild fir die mathematische Modellierung
von neuronalen Netzen geliefert hat und die durch Forschung in der Bioinformatik auch wesentlich von Kil-
getriebenen Innovationen beeinflusst wird (bspw. AlphaFold). Es betrifft auch die Physik, denn zahlireiche Kl-
Systeme werden basierend auf Sensordaten entwickelt (bspw. Fitness-Tracker, aber auch Kl-Systeme in au-
tonom fahrenden Autos) — ein grundlegendes physikalisches Verstandnis ist beim Umgang mit diesen Daten
hilfreich. Offensichtlich ist auch die Relevanz gesellschaftswissenschaftlicher Facher und der Ethik fir Ki-
Bildung. Hier ergeben sich u. a. Fragen nach der Verantwortung, Datenschutz, Privatsphare und Diskriminie-
rung. Auch philosophische Fragen ergeben sich, bspw. ob der Erfolg von grol3en Sprachmodellen zeigt, dass
man Lernen auf das Konsumieren von viel Text reduzieren kann.
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Es lasst sich argumentieren, dass ein detailliertes technisches Verstandnis tber Kl nicht notwendig sei, weil
man auch nichts tiber Motoren wissen misse, um Auto zu fahren. Aber selbst in dieser Metapher zeigt sich,
dass die Mesoebene relevant ist: Aus Wissen liber die Eigenschaften von Verbrennungs- und Elektromotoren
kann man etwa ableiten, wie man energiesparend fahrt, oder dass im Stadtverkehr ein Elektroauto Effizienz-
vorteile hat. Selbstverstandlich muss man dieses Wissen nicht unbedingt selbst herleiten, sondern kann es
von Expert*innen Ubernehmen. Es ist jedoch allemal effizienter, einige wenige Grundprinzipien zu erlernen
und daraus Schliisse zu ziehen, als viele Einzelfakten von Expert*innen zu ibernehmen — denen man zudem
vertrauen muss. Wir sind deswegen Uberzeugt, dass auch mathematische Grundlagen der Kl in allgemeinbil-
dende Schulen gehdren, wenn diese der Forderung von Hartmut von Hentig (2002) gentigen sollen, dass die
Menschen der technischen Zivilisation gewachsen bleiben sollen.
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