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Abstract. Im aktuellen politischen Diskurs nimmt Künstliche Intelligenz (KI) eine herausragende Stellung ein. Die Erwar-
tung, dass durch KI-Systeme die Lebens- und Arbeitsverhältnisse grundlegend transformiert werden, weist der Schule die 
Aufgabe zu, Lernende zu einem reflektierten, informierten Umgang mit ebendiesen Technologien und zugrundeliegenden 
Methoden zu befähigen. Alle verbreiteten KI-Anwendungen basieren wesentlich auf mathematischen Grundlagen und es 
stellt sich die Frage, inwieweit eine Beschäftigung mit diesen Grundlagen möglich und sinnvoll ist. Dies wird im Beitrag 
sowohl theoretisch als auch auf Basis von konkreten Ideen für den Unterricht diskutiert.  

Einleitung  

Es scheint breiter politischer und gesellschaftlicher Konsens zu sein, dass KI-Technologien unsere Gesell-
schaft in nahezu allen Lebensbereichen transformieren und Kompetenzen im Umgang mit diesen sowohl im 
Alltag als auch in zahlreichen Berufsfeldern immer wichtiger werden (vgl. etwa www.bundesregierung.de/breg-
de/themen/digitalisierung/kuenstliche-intelligenz). Die Europäische Kommission hebt in ihrem Bericht 
“DigComp 2.2” hervor, dass hierfür durchaus auch ein grundlegendes technisches Verständnis von KI-
Technologien erforderlich ist (European Commission, 2022, S. 77). Zudem betont die UNESCO (2024) im “AI 
Competency Framework for Students”, dass es heutzutage zur Aufgabe von (allgemeinbildenden) Schulen 
gehört, Lernende in die Lage zu versetzen, KI-Entwicklungen zu bewerten sowie deren Potenziale und Gefah-
ren auf Basis von Wissen und eigener Kompetenz zu beurteilen. Sie sollen darauf vorbereitet werden, als 
verantwortungsvolle Nutzer*innen und Mitgestalter*innen von KI zu agieren (UNESCO, 2024, S. 3). Einen 
Beitrag dazu können vor allem die Schulfächer Mathematik und Informatik leisten, wobei in der bisherigen 
Diskussion vor allem das Fach Informatik als relevant erachtet wird: So ist das Thema KI u. a. in Bayern 
(Staatsinstitut für Schulqualität und Bildungsforschung, 2022), Nordrhein-Westfalen (Ministerium für Schule 
und Weiterbildung des Landes Nordrhein-Westfalen, 2021, S. 18) sowie in Österreich im Schulfach Informatik 
verankert. In Österreich wird KI zudem im Lehrplan der Digitalen Grundbildung benannt (Bundesministerium 
für Bildung, Wissenschaft und Forschung, 2024).  

Der Relevanz des Informatikunterrichts für KI-Bildung soll hier zwar nicht widersprochen werden, dennoch soll 
in diesem Beitrag herausgearbeitet werden, welche Rolle die Mathematik für Verfahren des maschinellen Ler-
nens spielt und welche grundlegenden Eigenschaften dieser Verfahren durch mathematische Überlegungen 
verstanden werden können. Die pädagogische Intention dabei ist die des “Empowerment” (Ernest, 2002), also 
die Förderung von Handlungskompetenz in bestimmten Tätigkeitsbereichen mit dem Ziel, Jugendliche zum 
aktiven Gestalten zu befähigen.1 Dies führt dazu, dass unsere Perspektive eine stark mathematisch-technolo-
gische Dimension hat. Dies soll keine Reduktion des Bildungsanspruchs auf eine technokratische Perspektive 
implizieren. Vielmehr sind wir der Meinung, dass auch der gesellschaftliche Diskurs über die Auswirkungen 
des maschinellen Lernens von einer Demystifizierung der Technik profitiert und insbesondere den in diversen 
Gesellschaften vorhandenen Ängsten vor KI (Sindermann et al., 2022) durch Aufklärung entgegenwirken 
kann. Gleichzeitig kann ein solcher Unterricht die fundamentale Rolle der Mathematik2 für moderne, relevante 

 

1 Ernest (2002) klassifiziert drei Arten des Empowerments: “mathematical empowerment” (Mathematik und ihre Sprache 
nutzen und anwenden können), "social empowerment" (die Nutzung mathematischer Kompetenzen zur Verbesserung der 
sozialen Situation) und "epistemological empowerment" (Korrektheit und Gültigkeit von Wissen einschätzen können). Alle 
drei Arten können durch die Beschäftigung mit den von uns behandelten Themen gefördert werden.  
2 Diese Rolle wird nunmehr auch von den mathematischen Fachgesellschaften in ihrer Stellungnahme “Warum ist Mathe-
matik für Künstliche Intelligenz unentbehrlich?” betont, www.mathematik.de/dmv-blog/5090-warum-ist-mathematik-
f%C3%BCr-k%C3%BCnstliche-intelligenz-unentbehrlich. Zugegriffen: 14.08.2024. 
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Technologien aus dem Bereich KI ersichtlich machen. Dass es möglich ist, die komplexen mathematischen 
Hintergründe von KI-Systemen auf Schulniveau zugänglich zu machen, wird in verschiedenen Veröffentlichun-
gen an exemplarischen maschinellen Lernmethoden herausgearbeitet (vgl. z. B. Biehler & Fleischer, 2021; 
Hazzan & Mike, 2021; Schönbrodt et al., 2022; Kindler et al., 2023; Schönbrodt et al., 2023). 

Der Begriff Künstliche Intelligenz wird in der Literatur sehr breit gefasst – eine einheitliche Definition sucht man 
vergeblich. Im Wesentlichen bezeichnen wir KI hier als Oberbegriff für alle Technologien, die Computersys-
teme in die Lage versetzen, eine Aufgabe bzw. ein Problem zu lösen, dessen Lösung gemeinhin mit Fähig-
keiten von „intelligenten“ Menschen assoziiert wird und deren Beherrschung durch Maschinen überraschend 
ist. Früher wurden auch klassische Schachcomputer oder Computeralgebrasysteme der KI zugerechnet – in 
einer modernen Sichtweise ist das nicht mehr so, da diese Probleme rein algorithmisch gelöst werden können 
und die Algorithmen explizit programmiert werden. 

Etwas greifbarer wird es, wenn man unter die Haube von modernen KI-Systemen schaut und die zugrunde 
liegenden (mathematischen) Methoden aus dem Bereich des maschinellen Lernens (ML), zu denen u. a. 
künstliche neuronale Netze gehören, in den Blick nimmt. Genau darauf legen wir in diesem Beitrag den Fokus. 
Das ML beruht ganz wesentlich auf Mathematik und Daten. Es umfasst eine Vielzahl an Verfahren, darunter 
solche aus dem Bereich des überwachten Lernens (supervised learning), bei dem auf einen Fundus richtiger 
Beispiele zurückgegriffen wird, und aus dem unüberwachten Lernen (unsupervised learning), bei dem Daten 
bspw. durch Clustering organisiert werden. Der Schwerpunkt dieses Beitrags liegt auf Methoden des über-
wachten Lernens. 

Wenn Lernenden ein komplexes Thema wie die Funktionsweise von ML-Methoden nahegebracht werden soll, 
stellt sich die Frage des richtigen Erklärungsmaßstabs. Eine Analogie soll das erläutern: Wer das Leben mit 
biologischen Begriffen verstehen will, kann bei der Zellchemie anfangen, das Zusammenwirken der Organe in 
einem Organismus studieren, oder die evolutionären Mechanismen in ganzen Populationen. Das Phänomen 
des Lebens kann also auf unterschiedlichen Maßstäben verstanden werden und alle haben offensichtlich ihre 
Berechtigung. Übertragen auf das Gebiet der KI stellt sich die Frage, wie wichtig ein Verständnis von KI-
Systemen und den zugrundeliegenden ML-Methoden auf unterschiedlichen Maßstäben ist. Rahwan et al. 
(2019) argumentieren, dass eine solche mehrstufige Herangehensweise auch einen geeigneten Ansatz für 
das Verständnis von Maschinen liefert. In diesem Beitrag werden zentrale mathematische Säulen von ML-
Methoden (Daten, Optimierung, Messung von Ähnlichkeit und Distanzen, Wahrscheinlichkeit und statistische 
Gütemaße, s. Abb. 1) erläutert und drei verschiedenen Erklärungsmaßstäben bzw. Ebenen zugeordnet: der 
Mikroebene einzelner elementarer mathematischer Objekte und Operationen, der Mesoebene, in der es um 
das Zusammenspiel der elementaren mathematischen Komponenten geht und der Makroebene, auf der das 
gesamte System und dessen Einbettung in die Gesellschaft betrachtet wird. Die drei Ebenen werden im Ab-
schnitt “Didaktische Einordnung” detaillierter aufgeschlüsselt und es wird diskutiert, welchen spezifischen Bil-
dungsbeitrag unterrichtliche Zugänge auf den drei Ebenen leisten können. 

Abb. 1: Mathematische Säulen zahlreicher maschineller Lernmethoden  

 

Die fünf (sicherlich nicht abschließenden) mathematischen Säulen (siehe Abb. 1) werden im Folgenden in 
unterschiedlicher Tiefe beschrieben. Als mathematische Säulen wurden Konzepte bzw. Themengebiete aus-
gewählt, die bei der Entwicklung von KI-Systemen basierend auf verschiedenen ML-Methoden eine zentrale 
Rolle spielen. Besonders detailliert gehen wir auf die Säule “Optimierung” ein. Diese hat in der didaktischen 
Literatur rund um die Vermittlung von ML-Methoden bisher weniger Beachtung gefunden, erscheint uns jedoch 
als sehr relevant und durchaus zugänglich. Die mathematische Modellierung bildet in Abbildung 1 das Funda-
ment. Sie spielt eine tragende, säulenübergreifende Rolle. Letztlich kann der Entwicklungsprozess von KI-
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Systemen, die auf ML-Methoden basieren, als (datenbasierte) mathematische Modellierung verstanden wer-
den. 

Um die mathematischen Grundlagen von ML-Methoden im Unterricht nicht nur theoretisch zu thematisieren, 
sondern computergestützt auch umzusetzen, finden sich unter https://github.com/Schoenbrodt/KI-Bildung-im-
MU diverse Umsetzungsbeispiele in Form von Jupyter Notebooks3 basierend auf der Programmiersprache 
Python. Dies ermöglicht es Lernenden, ihr Verständnis durch computergestützte Anwendung und Variation 
der im Folgenden vorgestellten mathematischen Methoden zu überprüfen und den vorhandenen Code als 
Basis für eigene Anwendungen zu nutzen (und somit den Zielen des Empowerments gerecht zu werden). Eine 
solche aktive Auseinandersetzung scheint gerade bei einem so tiefgründigen und mathematisch facettenrei-
chen Thema wichtig.  

Säule 1: Daten  

In der Literatur wird das maschinelle Lernen häufig als Entwicklung von Computerprogrammen oder Algorith-
men beschrieben, die „aus Erfahrung” (Mitchell, 1995, S. 2) bzw. „aus Daten” lernen. Diese Beschreibung ist 
aus unserer Sicht nicht ideal (da mystisch und mathematisch unpräzise), macht aber zumindest deutlich, dass 
die Basis vieler ML-Methoden (zahlreiche!) Daten sind. Der Umgang mit Daten und die Analyse und Vorver-
arbeitung der Daten mit mathematischen (insbesondere statistischen) Methoden spielt im Kontext des MLs in 
vielerlei Hinsicht eine wichtige Rolle. Dazu ließe sich einerseits ein ganzer Beitrag füllen, andererseits gibt es 
aus der Forschung zu Data Science Education und Data Literacy bereits zahlreiche Publikationen und Vor-
schläge für die unterrichtspraktische Umsetzung (vgl. z. B. Gould et al., 2016; Gould, 2021; Engel, 2017; Dvir 
et al., 2022). Wir umreißen daher lediglich verschiedene Teilfragen und gehen auf ausgewählte mathemati-
sche Aspekte detaillierter ein, die eng mit den weiteren mathematischen Säulen verzahnt sind und interessante 
Anregungen für die unterrichtliche Diskussion der mathematischen Aspekte von ML-Methoden liefern.  

Ausgangspunkt für die Entwicklung von KI-Systemen sind in der Regel reale Problemstellungen, zum Beispiel: 

● Wie können Bilder von Gesichtern korrekt den jeweiligen Personen zugeordnet werden?  

● Wie können Fitness-Tracker menschliche Aktivitäten möglichst genau erkennen?  

● Wie kann das Risiko, an einer Herzkrankheit zu erkranken, möglichst präzise vorhergesagt werden? 

Zur Beantwortung solcher Fragen mit ML-Methoden werden vergangene Daten verwendet. Beim überwachten 
Lernen bestehen diese aus Inputdaten (auch Eingabedaten oder Werte von Prädiktorvariablen)4 𝒙௜ ∈ ℝ௡ und 
zugehörigen Outputdaten (auch Ausgabedaten oder Werte der Zielvariablen) 𝒚௜ ∈ ℝ௠ für 𝑖 ൌ 1, . . . ,𝑁. Am Bei-
spiel der menschlichen Aktivitätserkennung können die Inputdaten bspw. aus der Zeit, der Herzfrequenz und 
der Beschleunigung (d. h. 𝒙௜ ∈ ℝଷሻ bestehen. Die zugehörigen Outputdaten können die Klassen 1 (= Laufen), 
2 (= Gehen), 3 (= Treppensteigen) und 4 (= Sitzen) sein, d. h. 𝑚 ൌ 1,𝑦௜ ∈ ሼ1,2,3,4ሽ.  

Basierend auf den bekannten Daten wird ein mathematisches Modell (meist eine Funktion 𝑓:ℝ௡ → ℝ௠) entwi-
ckelt, das Zusammenhänge zwischen den bekannten Input- und Outputdaten möglichst präzise beschreiben 
soll. Ziel ist es, das entwickelte mathematische Modell zu nutzen, um auch für neue, bisher ungesehenen 
Inputdaten 𝒙 eine möglichst gute Vorhersage für den zugehörigen Output 𝐲 berechnen zu können. Um vali-
dieren zu können, wie gut die Vorhersagen des Modells sind, werden die bekannten Daten in Trainings- und 
Testdaten unterteilt. Die Trainingsdaten werden zur Entwicklung des mathematischen Modells verwendet – in 
der KI-Sprechweise zum “Lernen bzw. Trainieren des Modells”. Die Testdaten dienen zur Validierung. Dazu 
werden mithilfe des mathematischen Modells die Outputs für alle Inputdaten des Testdatensatzes vorherge-
sagt. Die Vorhersagen können dann mit den tatsächlichen Outputs verglichen werden. Dazu kommen statisti-
sche Gütemaße zum Einsatz (vgl. Abschn. Statistische Gütemaße). 

Um reale Fragestellungen mit datenbasierten ML-Methoden zu lösen, sind schon vor der eigentlichen Ent-
wicklung der Methode diverse Fragen im Hinblick auf die Verwendung und Verarbeitung der Daten relevant. 

 

3 Im folgenden Text wird an verschiedenen Stellen auf die Jupyter Notebooks hingewiesen, indem ihr Dateiname angege-
ben wird (mit der Endung .ipynb). Alle Notebooks sind unter dem oben angegebenen Link verfügbar. 
4 In diesem Beitrag bezeichnet 𝒙௜ ∈ ℝ௡ (fett gedruckt) den 𝑖-ten Datenvektor. Der 𝑗-te Eintrag des Vektors wird mit 𝑥௝ ∈ ℝ 
bezeichnet.  
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Unter anderem: Welche Informationen bzw. Daten benötige ich? Wie kann ich diese beschaffen? Muss ich die 
entsprechenden Daten zunächst selbst erheben oder aufnehmen oder gibt es bereits frei verfügbare Datens-
ätze? Wie stelle ich die Daten in geeigneter Weise dar? Welche (mathematischen) Repräsentationen sind 
dafür geeignet? Welche Erkenntnisse über die Verteilung und Qualität der Daten liefert eine erste Erkundung, 
u. a. durch Visualisierung der Daten? Sind die Daten fehlerbehaftet? Gibt es Ausreißer? Wie gehe ich mit 
fehlenden Daten um? Sind meine Daten divers und repräsentativ genug, um das gegebene Problem möglichst 
robust zu lösen? Beinhalten die vergangenen Daten womöglich statistische Verzerrungen (Bias)? Kann es 
passieren, dass statistische Verzerrungen in den vergangenen Daten durch Anwendung prädiktiver Modelle 
in die Zukunft fortgeschrieben werden? Kann es damit womöglich zu Diskriminierungen kommen? Welche 
ethischen und gesetzlichen Regelungen, bspw. zu Datenschutz, Privatsphäre oder geschützten Merkmalen 
von Personen (u. a. das Geschlecht), müssen im Hinblick auf die Verwendung der Daten beachtet werden?  

Die Diskussion von Daten als Ausgangspunkt für die Entwicklung von KI-Systemen ist im Unterricht auf unter-
schiedlichen Ebenen möglich. Auf der Mikroebene können bspw. detaillierte Analysen der statistischen Eigen-
schaften des Datensatzes durchgeführt oder statistischen Methoden zur Ausreißeridentifikation diskutiert und 
angewendet werden. Auch die Kodierung von Daten liegt auf dieser Ebene. Auf der Mesoebene können Daten 
aggregiert und etwa mit Streu- oder Lagemaßen charakterisiert werden. Auf der Makroebene können der Ein-
fluss verschiedener Trainingsdatensätze auf die Ergebnisse eines ML-Modells erkundet und ethisch-gesell-
schaftliche sowie gesetzliche Fragen im Umgang mit Daten diskutiert werden. 

Säule 2: Optimierung  

Intelligenz wird oft verstanden als Anpassungsleistung – so etwa William Stern (1911), der Intelligenz als Fä-
higkeit zur Anpassung an unbekannte Situationen definierte. In gewissem – wenn auch anderem – Sinne gilt 
das auch für Systeme, die als künstliche Intelligenz bezeichnet werden. Diese Anpassung kann als Optimie-
rung verstanden werden – die Diskrepanz zwischen einem berechneten und einem gewünschten Ergebnis 
(bekannte Outputdaten) wird verringert. Diese Sichtweise wird hier als Leitlinie verwendet, um ausgehend von 
einfachen, schulüblichen Extremwertaufgaben bis zu künstlichen neuronalen Netzen voranzuschreiten. 

Minimierung von Funktionswerten 

Die in der Schule dominierende Methode zur Bestimmung von Extremstellen von Funktionen ℝ → ℝ ist das 
Ableitungskalkül. Numerische Verfahren kommen aber – in den einfachsten Versionen – mit viel weniger The-
orie aus. Ein Minimum einer Funktion 𝑓:ℝ → ℝ zu finden, ist dann ein iterativer Suchprozess: Ausgehend von 
einem Startwert 𝑥଴ wird der Funktionswert 𝑓ሺ𝑥଴ሻ mit dem Wert 𝑓ሺ𝑥଴ ൅ 𝛿ሻ an der Stelle 𝑥଴ ൅ 𝛿 verglichen. Falls 
𝑓ሺ𝑥଴ ൅ 𝛿ሻ ൏ 𝑓ሺ𝑥଴ሻ wird im nachfolgenden Schritt die Umgebung der Stelle 𝑥ଵ:ൌ 𝑥଴ ൅ 𝛿 betrachtet. Andernfalls 
wird untersucht, ob die Funktionswerte nach links kleiner werden. Gilt also 𝑓ሺ𝑥଴ െ 𝛿ሻ ൏ 𝑓ሺ𝑥଴ሻ wird die Stelle 
zu 𝑥 ଵ:ൌ 𝑥଴ െ 𝛿 geändert. Dies wird so lange fortgeführt, bis ein gewähltes Abbruchkriterium erfüllt ist. Mögliche 
Abbruchkriterien sind, dass eine maximale Anzahl an Iterationsschritten erreicht wurde oder die Änderung der 
Funktionswerte unter einen gewissen Schwellenwert 𝜖 fällt. Die konkrete Umsetzung in Python erfordert nur 
wenige Programmzeilen (vgl. numerische_Optimierungsverfahren.ipynb).  

Dieser simple Algorithmus, der für Maximierungsprobleme auch als Bergsteigeralgorithmus bezeichnet wird, 
ist sehr ineffizient – es gibt viel schnellere Verfahren – aber er zeigt doch vier grundlegende Prinzipien, die er 
mit den meisten effizienteren Algorithmen gemein hat: 

● Die Suche beginnt bei einem Startwert und es wird mit einer gewissen, ggf. dynamischen Schrittweite 
iterativ vorangeschritten.  

● Das Verfahren endet, wenn ein vorgegebenes Abbruchkriterium erreicht wurde. 

● Das Ergebnis kann sowohl vom Startwert als auch von der Schrittweite (im Bereich des MLs oft als 
Lernrate bezeichnet) abhängen. Da in der Regel nur ein lokales Minimum gefunden wird, haben der 
Startwert und die Schrittweite entscheidenden Einfluss auf das gefundene Minimum, insbesondere 
wenn mehrere lokale Minima existieren (Abb. 2). 

● Die Ergebnisse sind in der Regel nicht exakt, sondern lediglich numerische Approximationen. 
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Numerische Algorithmen zur Minimierung sind ein klassisches Thema der mathematischen Forschung und die 
Zahl der Methoden ist unüberschaubar groß. Es gibt deutlich bessere Algorithmen, aber als mentales Modell 
von deren typischer Arbeitsweise reicht das beschriebene Verfahren völlig aus.  

Abb. 2: Simples numerisches Optimierungsverfahren mit Startwert 𝑥଴ ൌ 0,4, Schrittweite 𝛿 ൌ 0,1 und Zielfunktion 𝑓  
mit 𝑓ሺ𝑥ሻ ൌ 𝑐𝑜𝑠ሺ𝑥ሻ ൅ 3 ⋅ 𝑠𝑖𝑛ሺ0,6𝑥 െ 2ሻ ൅ 3 ⋅ 𝑐𝑜𝑠ሺ2𝑥 െ 2ሻ 

 

Im Falle von Funktionen einer reellen Variablen können in der Diskussion mit Schüler*innen die Ergebnisse 
eines solchen Algorithmus den Berechnungen im Ableitungskalkül gegenübergestellt werden (sofern die Funk-
tion differenzierbar ist, was der Algorithmus nicht voraussetzt). 

Mehrdimensionale Funktionen: Beim ML spielen in der Regel Funktionen eine Rolle, die von mehr als einer 
Variable abhängen. Mit Schüler*innen kann sukzessive vom ein-, zum zwei-, zum N-dimensionalen Fall vo-
rangeschritten werden – gestützt durch Visualisierungen in den ersten beiden Fällen. Die Bedeutung eines 
Minimums einer Funktion in zwei reellen Variablen lässt sich am Funktionsgraph im Dreidimensionalen deut-
lich machen (Abb. 3). Auch die rechnerische Vorstellung, dass eine lokale Minimalstelle 𝒙∗ ∈ ℝଶ eine Stelle 
ist, an der der Funktionswert 𝑓ሺ𝒙∗ሻ so klein ist, dass es – zumindest in einer Umgebung – keinen kleineren 
gibt, lässt sich damit aufbauen. 

Abb. 3: Visualisierung des Gradientenabstiegsverfahrens an einer Zielfunktion in zwei Variablen 

 

Eine simple Erweiterung unseres Minimierungsalgorithmus für Funktionen 𝑓 auf ℝଶ ist die Folgende: Man 
minimiert 𝑓ሺ𝑥ଵ, 𝑥ଶሻ zunächst mit dem eindimensionalen Algorithmus bzgl. 𝑥ଵ (𝑥ଶ ist fest), dann wechselt man 
zu 𝑥ଶ (bei festem 𝑥ଵ). Einfache Beispiele zeigen, dass es damit oft noch nicht getan ist: Man muss beide 
Optimierungsschritte vielfach wiederholen, bis sich das Ergebnis stabilisiert. Das Verfahren ist rechenaufwen-
dig, aber es ist plausibel, dass Computer das für wenige Variablen leisten können. Wird dieses Verfahren 
jedoch zum Lösen von Minimierungsproblemen mit Millionen von Variablen eingesetzt (wie es bei künstlichen 
neuronalen Netzen oft der Fall ist), ist das Vorgehen nicht effizient genug. Es braucht also raffiniertere Verfah-
ren, um möglichst schnell zu möglichst exakten Ergebnissen zu kommen. Wir diskutieren hier einen zweiten 
elementaren Algorithmus, um den Schüler*innen die Erfahrung zu ermöglichen, dass es sich lohnt, weiter an 
besseren Algorithmen zu forschen. 
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Ein effizienterer Algorithmus, der auch in der Praxis Einsatz findet, ist das Verfahren des steilsten Abstiegs 
(Gradientenverfahren, vgl. z. B. Deisenroth et al., 2020, Kap. 7). Anstatt immer nur in eine Koordinatenrichtung 
zu gehen, wird der Gradient bestimmt. Dieser gibt die Richtung des steilsten Anstiegs und entgegengesetzt 
die Richtung des steilsten Abstiegs an. Wenn man in diese Richtung geht, kommt man schneller zu einem 
lokalen Minimum als entlang der Koordinatenrichtung (Abb. 3). Für eine differenzierbare Funktion 𝑓:ℝଶ → ℝ 
lautet die Iterationsvorschrift des Verfahrens 𝒙௞ାଵ ≔ 𝒙௞ െ 𝛿 ⋅ 𝛻𝑓ሺ𝒙௞ሻ, wobei 𝛻𝑓ሺ𝒙௞ሻ der Gradient von 𝑓 an der 
Stelle 𝒙௞ des 𝑘-ten Iterationsschritts und 𝛿 die Schrittweite ist. An diesem Verfahren können die Lernenden 
erkennen, dass die Differentialrechnung, die in der Schule stark mit Optimierungsproblemen in einer Variablen 
verbunden wird, eine große Bedeutung behält, auch wenn Computer zur approximativen Lösung benutzt wer-
den. Wie erwähnt gibt es effizientere Verfahren, die aber das Gleiche leisten. Viele davon können in Python 
mit dem Paket scipy genutzt werden. 

Es bietet sich an, Lernende computergestützt mit unterschiedlichen Zielfunktionen, Startwerten und Schritt-
weiten experimentieren und die oben genannten vier Prinzipien numerischer Optimierungsverfahren erkunden 
zu lassen. Dazu kann das Notebook numerische_Optimierungsverfahren.ipynb eingesetzt werden. Auch der 
Übergang zu Funktionen auf ℝ௡ kann computergestützt realisiert werden. 

Allgemein betrachtet bestimmen die beschriebenen Algorithmen eine Lösung des allgemeinen Optimierungs-
problems min

𝒙
𝑓ሺ𝒙ሻ mit stetiger Zielfunktion 𝑓:ℝ௡ → ℝ, indem sie ausgehend von einem Startwert 𝒙଴ ∈ ℝ௡ ap-

proximativ ein lokales Minimum mit zugehöriger Minimalstelle 𝒙∗ ∈ ℝ௡ suchen – sofern eine solche existiert. 
Für eine lokale Minimalstelle muss 𝑓ሺ𝒙ሻ ൒ 𝑓ሺ𝒙∗ሻ für alle 𝒙 ∈ 𝑈ሺ𝒙∗ሻ gelten, wobei 𝑈ሺ𝒙∗ሻ eine Umgebung von 𝒙∗ 
bezeichnet. Zahlreiche ML-Methoden lösen Spezialfälle des allgemeinen Optimierungsproblems (künstliche 
neuronale Netze, lineare Regressionsanalyse, Support Vector Machine).  

Lineare Regression 

Es gibt unzählige Anwendungen von Optimierungsverfahren, hier werden nur solche aus dem Bereich des 
MLs behandelt. Als eines der einfachsten ML-Verfahren gilt die lineare Regressionsanalyse, deren Kern das 
Lösen eines Optimierungsproblems ist. 

Wir betrachten zunächst ein Beispiel mit zweidimensionalen Datenpunkten ሺ𝑥௜ ,𝑦௜ሻ ∈ ℝଶ, 𝑖 ൌ 1, . . . ,𝑁 (die Trai-
ningsdaten), aus denen ein Modell entwickelt („gelernt“) werden soll, welches für weitere 𝑥-Werte einen pas-
senden 𝑦-Wert vorhersagen kann. Wir unterstellen hier, dass es einen linearen Zusammenhang 𝑦 ൌ 𝑚𝑥 ൅ 𝑏 
gibt, und versuchen für die Parameter 𝑚 und 𝑏 die besten Werte zu schätzen. Dazu muss definiert werden, 
was mit “den besten” Werten gemeint ist. Dafür gibt es mehrere Strategien, die auch mit Schüler*innen erar-
beitet werden können (Schönbrodt & Frank, 2024). Die verbreitetste ist die Minimierung der Summe der Feh-
lerquadrate (Methode der kleinsten Quadrate): Für 𝑥௜ prognostiziert das Modell den Wert 𝑦ො௜ ൌ 𝑚𝑥௜ ൅ 𝑏. Für die 
Trainingsdaten ist der Wert der Zielvariablen 𝑦௜  bekannt, sodass der Fehler 𝑦௜ െ 𝑦ො௜ berechnet werden kann. 
Ziel ist es dann, die Quadratsumme der Fehler zu minimieren, also das Minimum der Zielfunktion 𝐹 mit 

𝐹ሺ𝑚, 𝑏ሻ ≔ ∑ ൫𝑦௜ െ ሺ𝑚𝑥௜ ൅ 𝑏ሻ൯
ଶே

௜ୀଵ  zu bestimmen. Eine computergestützte Umsetzung, die als Ausgangspunkt 

für die unterrichtliche Erarbeitung dienen kann, findet sich im Notebook lineare_Regression.ipynb. 

Da das ML-Verfahren „Lineare Regressionsanalyse” nicht nur für die Trainingsdaten, sondern insbesondere 
für neue Daten gute Vorhersagen liefern soll, wird das Modell auf Testdaten validiert. Die Vorhersagegenau-
igkeit auf den Testdaten dient als Abschätzung der Vorhersagegüte für gänzlich unbekannte Daten (vgl. Ab-
schn. Statistische Gütemaße).  

Allgemeiner lassen sich Regressionsprobleme folgendermaßen beschreiben: Gegeben sind 𝑁 Paare von In-
put- und Outputdaten ሺ𝒙௜ ,𝒚௜ሻ mit 𝒙௜ ∈ ℝ௡,𝒚௜ ∈ ℝ௞ für 𝑖 ൌ 1, . . . ,𝑁 (die Trainingsdaten) und eine Modellfunktion 
𝑔:ℝ௣ ൈ ℝ௡ → ℝ. In 𝑔ሺ𝒑,𝒙ሻ ist 𝒑 ∈ ℝ௣ ein Vektor von Parametern, im obigen linearen Fall also 𝒑 ൌ ሺ𝑚, 𝑏ሻ und 
𝑔ሺሺ𝑚, 𝑏ሻ, 𝑥ሻ:ൌ 𝑚𝑥 ൅ 𝑏. Der Wert dieser Funktion ist die Vorhersage des Modells für die Ausgabe zur Eingabe 
𝑥. Der Parametervektor 𝒑 soll so gewählt werden, dass das Modell die Daten möglichst gut widerspiegelt. 
Dazu wird eine Zielfunktion, z. B. 𝐹:ℝ௣ → ℝ,𝐹ሺ𝒑ሻ:ൌ ∑ ||𝒚௜ െ 𝑔ሺ𝒑,𝒙௜ሻ||ଶ

ே
௜ୀଵ  formuliert. Das “Lernen” der optima-

len Parameter beruht somit auf dem Lösen eines Minimierungsproblems und kann mit den oben beschriebe-
nen Optimierungsverfahren gelöst werden (auch wenn es spezialisierte Verfahren gibt, die effizienter sind). 
Diese allgemeine Beschreibung eines Regressionsproblems macht deutlich, dass es neben dem linearen Fall 
auch die Möglichkeit gibt, die Prognosefunktion 𝑔 beliebig, also z. B. nichtlinear zu wählen. Die Nichtlinearität 
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kann die Prädiktorvariablen oder die Parameter 𝒑 betreffen, im zweiten Fall spricht man von nichtlinearer 
Regression.  

Es lohnt sich zu reflektieren, wie viel klassische Mathematik in dieser modernen Anwendung steckt: Die Mo-
dellierung des Zusammenhangs zwischen Input- und Outputdaten mit Funktionen 𝑔, die Minimierung mit Mit-
teln der Analysis und nicht zuletzt das statistische Quantifizieren der Ergebnisse auf den Testdaten. Für diesen 
letzten Schritt kann die euklidische Norm oder eine beliebige andere Metrik verwendet werden – womit ein 
weiterer klassischer Gegenstand der Mathematik relevant ist (vgl. Abschn. Ähnlichkeits- und Distanzmaße). 

Zwischenfazit: Zentrale Schritte bei der Entwicklung von ML-Methoden 

Die lineare Regression macht einige zentrale Elemente zahlreicher ML-Methoden ersichtlich, so auch von den 
im Folgenden beschriebenen künstlichen neuronalen Netzen (vgl. dazu auch Biehler et al., 2024): 

1. Trainings- und Testdaten: Ausgangspunkt sind bekannte Input- und zugehörige Outputdaten. Diese 
werden in der Regel geeignet vorverarbeitet und dann in Trainings- und Testdaten unterteilt.  

2. Festlegung auf ein mathematisches Modell: Es wird ein mathematisches Modell festgelegt, viel-
fach eine gewisse Funktionsklasse, aus der die Funktion gewählt werden soll, die die gegebenen 
Trainingsdaten „bestmöglich“ beschreibt. Mit anderen Worten sollen gewisse Parameter der Funktion 
/ des Modells bestmöglich geschätzt werden.  

3. Formulierung eines Optimierungsproblems: Es ist zu klären, was mit „bestmöglich“ gemeint ist. 
Dazu wird eine Metrik gewählt und darüber eine Fehlerfunktion definiert, die die Abweichung zwi-
schen den tatsächlichen Outputdaten 𝒚௜ und den Prognosen 𝒚ෝ௜ beschreibt.  

4. Lösen des Optimierungsproblems: Ziel ist es, die Parameter des Modells so zu wählen, dass der 
Fehler bzgl. der Trainingsdaten möglichst klein wird. Dazu kommen meist5 numerische Verfahren 
zum Einsatz. Dieser Schritt wird auch als Trainingsphase bezeichnet. 

5. Testen und Validieren des Modells: Bevor das Modell in die Anwendung geht, wird es auf Daten 
validiert, die nicht in der Phase der Modellentwicklung eingesetzt wurden. Dazu kommen die Testda-
ten zum Einsatz. Dieser Schritt wird auch als Testphase bezeichnet. 

Insbesondere in Schritt 2 und 3 wird die Rolle des oder der Modellierer*in ersichtlich: gewisse Entscheidungen 
werden eben auch beim ML noch vom Menschen getroffen, z. B. die Wahl der Funktionsklasse und der Feh-
lerfunktion, aber auch Parameter (sog. Hyperparameter) im Optimierungsalgorithmus (bspw. der Startwert).  

Die Regressionsanalyse ist ein Beispiel für ein Verfahren des MLs, das sehr transparent ist: Es ist leicht ver-
ständlich, wie das „Training“ wirkt, wie auf der Basis der gelernten Parameter Vorhersagen berechnet werden 
und was die Parameter darin bedeuten (s. folgendes Beispiel). Dies liegt an der simplen Modellfunktion. Wird 
diese komplexer, wie das bei künstlichen neuronalen Netzen der Fall ist, geht die Interpretierbarkeit der ein-
zelnen Parameter oft verloren. 

Beispiel: Regression zur Vorhersage von Ferienhauspreisen 

Als Anwendungsbeispiel für Regressionsprobleme betrachten wir folgende Frage: Wie lässt sich aus verschie-
denen Angaben über ein Ferienhaus dessen Mietpreis vorhersagen? Als Trainingsdatensatz wurden aus ei-
nem Online-Portal folgende Daten von 83 Ferienhäusern auf Bornholm herausgesucht: Zahl der erlaubten 
Personen, Zahl der Zimmer, Wohnfläche in qm, Erlaubnis von Hunden (kodiert als nein = 0 bzw. ja = 1), Zahl 
der Sterne bzgl. der Qualität der Ausstattung (3, 4 oder 5), Meerblick (0-1-kodiert), die Entfernung zum Meer 
und der Mietpreis für eine Woche im Spätsommer. Bei fast allen Variablen spricht ein hoher Wert für einen 
hohen Preis – außer bei der Entfernung zum Meer. Die Prädiktorvariablen für jedes Haus sind  
𝒙 ൌ ሺ𝑃𝑒𝑟𝑠,𝑍𝑖𝑚𝑚𝑒𝑟,𝑊𝑓𝑙,𝐻𝑢𝑛𝑑, 𝑆𝑡𝑒𝑟𝑛𝑒,𝑀𝑒𝑒𝑟𝑏𝑙𝑖𝑐𝑘,𝑀𝑒𝑒𝑟𝑒𝑛𝑡𝑓ሻ, die Zielvariable ist der Mietpreis. Welche Prog-
nosefunktion man für die Vorhersage nimmt, ist eine Frage, bei der man viel diskutieren und ebenso viel aus-
probieren kann. Wir haben uns für die Funktion 𝑔 mit 

𝑔ሺ𝒑,𝒙ሻ ൌ 𝑐𝑃𝑒𝑟𝑠 ⋅ 𝑃𝑒𝑟𝑠 ൅ 𝑐𝑍𝑖𝑚𝑚𝑒𝑟 ⋅ 𝑍𝑖𝑚𝑚𝑒𝑟 ൅ 𝑐𝑊𝑓𝑙 ⋅ 𝑊𝑓𝑙 ൅ 𝑐𝐻𝑢𝑛𝑑 ⋅ 𝐻𝑢𝑛𝑑 ൅⋯ 

 

5 Im Falle der linearen Regression ließe sich das Problem noch analytisch lösen, dies ist bei den meisten anderen Opti-
mierungsproblemen im Kontext von ML-Methoden nicht möglich. 
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𝑐𝑆𝑡𝑒𝑟𝑛𝑒 ⋅ ሺ𝑆𝑡𝑒𝑟𝑛𝑒 െ 3ሻ ൅ 𝑐𝑀𝑒𝑒𝑟𝑏𝑙𝑖𝑐𝑘 ⋅ 𝑀𝑒𝑒𝑟𝑏𝑙𝑖𝑐𝑘 ൅
𝑐𝑀𝑒𝑒𝑟𝑒𝑛𝑡𝑓

ඥ𝑀𝑒𝑒𝑟𝑒𝑛𝑡𝑓
൅ 𝑐଴ 

und Parametervektor 𝒑 ൌ ሺ𝑐𝑃𝑒𝑟𝑠, 𝑐𝑍𝑖𝑚𝑚𝑒𝑟, 𝑐𝑊𝑓𝑙, 𝑐𝐻𝑢𝑛𝑑, 𝑐𝑆𝑡𝑒𝑟𝑛𝑒, 𝑐𝑀𝑒𝑒𝑟𝑏𝑙𝑖𝑐𝑘, 𝑐𝑀𝑒𝑒𝑟𝑒𝑛𝑡𝑓, 𝑐଴ሻ ∈ ℝ଼ entschie-
den. Der Parametervektor wird durch Lösen eines Optimierungsproblems bestmöglich bestimmt. Der Ansatz 
mit der Quadratwurzel der Entfernung zum Meer folgt der Intuition, dass ein Haus nahe am Meer teurer sein 
sollte als ein weiter entferntes, und dass die Nähe zum Meer den Preis treibt. Eine Realisierung findet man im 
Notebook Ferienhauspreise_linReg.ipynb. Die aus der Optimierung gewonnenen optimalen Parameterwerte 
können zum einen genutzt werden, um bei weiteren Häusern vorherzusagen, wie teuer sie vermutlich sind, 
zum anderen können die Werte auch interpretiert werden: So ergibt sich etwa 𝑐𝑃𝑒𝑟𝑠 ൌ 10,20 € und  
𝑐𝑍𝑖𝑚𝑚𝑒𝑟 ൌ 108 €, d. h. vor allem bestimmt die Zahl der Zimmer den Preis. Der Blick aufs Wasser ist – bei 
sonst gleichen Hausparametern – gar nicht so teuer: 𝑐𝑀𝑒𝑒𝑟𝑏𝑙𝑖𝑐𝑘 ൌ 39 € .  

Die Qualität eines Regressionsmodells lässt sich z. B. mit dem mittleren quadratischen Fehler der Prognosen 
auf den Trainings- und Testdaten bewerten. Damit lässt sich Modellvariation systematisch betreiben. Eine 
Option wäre im obigen Modell zur Zielfunktion einen nichtlinearen Term 𝑐𝑊𝑓𝑙 ⋅ 𝑊𝑓𝑙 ⋅ 𝑐𝑆𝑡𝑒𝑟𝑛𝑒 ⋅ ሺ𝑆𝑡𝑒𝑟𝑛𝑒 െ 3ሻ 
hinzuzufügen. Die Idee dabei ist, dass hochwertige Wohnfläche besonders teuer ist. Modelldiskussion und 
Modellkritik ergeben sich aus einer solchen Fragestellung fast automatisch. 

Künstliche neuronale Netze 

Mit einem künstlichen neuronalen Netz (KNN) lassen sich unterschiedliche Aufgaben lösen – insbesondere 
Regressionsprobleme (𝒚௜ numerisch) und Klassifikationsprobleme (𝒚௜ kategorial), aber auch das Auffinden 
von Clustern in Datensätzen ist damit möglich (unüberwachtes Lernen).  

Die Antworten eines KNNs stammen im Gegensatz zur recht transparenten linearen Regression meist aus für 
uns „unergründlichen Tiefen“ seiner inneren Vernetzung (also einer komplexen Prognosefunktion 𝑔). Gemein-
sam ist beiden Verfahren, dass sie auf ein Optimierungsproblem hinauslaufen und gewisse Parameter einer 
von uns definierten Modellklasse (Funktionsklasse) optimal gewählt werden sollen. 

Das Neuron 

Die Idee von KNNs stammt aus der Biologie: Gewisse Strukturen des Nervensystems werden mit Mitteln der 
Mathematik und der Informatik modelliert. Nervenzellen (Neuronen) sammeln über mehrere Dendriten Signale 
und aggregieren diese. Zusammen bestimmen sie das Aktionspotential, das über das Axon und Synapsen an 
weitere Neuronen weitergegeben wird, sofern ein gewisser Schwellenwert erreicht wurde. Man spricht auch 
davon, dass das Neuron “feuert”.  

Abb. 4: Visualisierung eines künstlichen Neurons 

 

In KNNs wird ein Neuron mathematisch durch eine Funktion 𝑔: ℝ௞ → ℝ mit 𝑔ሺ𝒙ሻ ൌ 𝜎ሺ𝒘 ⋅ 𝒙 ൅ 𝑏ሻ modelliert. 
Hierbei sind 𝒘 ∈ ℝ௞ Parameter (Gewichte), die im Skalarprodukt 𝒘 ⋅ 𝒙 die Sensitivität des Neurons auf Ein-
träge des Inputvektors 𝒙 ∈ ℝ௞ gewichten. Der Parameter 𝑏 ∈ ℝ ist eine Gesamtverschiebung (Bias). Schema-
tisch wird dies oft wie in Abbildung 4 dargestellt. Das “Feuern” eines biologischen Neurons wird modelliert 
durch eine nichtlineare Funktion, die als Aktivierungsfunktion bezeichnet wird. Oft verwendete Aktivierungs-

funktionen sind die Sigmoid-Funktion 𝜎:ℝ → ℝ,𝜎ሺ𝑧ሻ ൌ
ଵ

ଵା௘ష೥
 (ein netter Gegenstand für eine schnelle Kurven-

diskussion) oder die ReLU-Funktion 𝜎:ℝ → ℝ,𝜎ሺ𝑧ሻ ൌ max ሺ0, 𝑧ሻ.  
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Das Training bzw. der “Lernprozess” eines künstlichen (mathematischen) Neurons beruht auf der Bestimmung 
der optimalen Gewichte 𝒘 und des Bias-Parameters 𝑏, sodass ein unbekannter Zusammenhang zwischen 
gegebenen Input- und Outputdaten bestmöglich beschrieben wird. Um dies mit Schüler*innen zu erarbeiten, 
bietet es sich an mit niedrigdimensionalen Daten einzusteigen: Es sind Inputdaten 𝒙௜ ∈ ℝଶ und zugehörige 
Outputdaten 𝑦௜ ∈ ℝ, 𝑖 ൌ 1, . . . ,𝑁 gegeben. Basierend auf diesen Trainingsdaten sollen die Einträge des Ge-
wichtsvektors 𝒘 ∈ ℝଶ und der Wert des Bias-Parameters 𝑏 ∈ ℝ so gewählt werden, dass die Summe der Feh-
lerquadrate zwischen den berechneten Outputs 𝑦ො௜ und den tatsächlichen Outputdaten 𝑦௜ minimal wird: 

min
𝒘,௕

෍ሺ𝜎ሺ𝒘 ⋅ 𝒙௜ ൅ 𝑏ሻ െ 𝑦௜ሻଶ
ே

௜ୀଵ

ൌ min
𝒘,௕

 ෍ሺ𝑦ො௜ െ 𝑦௜ሻଶ
ே

௜ୀଵ

 . 

Das Training eines einfachen künstlichen Neurons beruht damit wiederum auf dem Lösen eines Optimierungs-
problems und funktioniert nach dem gleichen Schema wie die numerische Bestimmung der optimalen Para-
meter eines linearen Regressionsmodells. Durch die nichtlineare Aktivierungsfunktion können nun auch nicht-
lineare Zusammenhänge modelliert werden. Das Training von KNNs ist demnach ein Spezialfall der nichtline-
aren Regression. Allerdings ist diese im Allgemeinen sehr rechenaufwendig. Die spezielle, im Folgenden be-
schriebene Struktur von KNNs erlaubt hingegen die Anwendung sehr effizienter Optimierungsalgorithmen. 
Damit können sehr große Netze mit Millionen Parametern trainiert werden. 

Abb. 5: Eine Ebene von Neuronen aus den Geruchsnerven eines Hundes (Quelle: https://garystockbridge617.getarchive.net/amp/me-
dia/camillo-golgis-image-of-a-dogs-olfactory-bulb-detail-2-957500) 

 

Vom einzelnen Neuron zum neuronalen Netz 

Ein einzelnes Neuron macht noch kein Netz. Reale Neuronen sind im Nervensystem und auch im Gehirn 
vielfältig verschachtelt, wie etwa Abbildung 5 aus den Geruchsnerven eines Hundes zeigt. Solche Verschach-
telungen werden durch Schichten von Neuronen idealisiert, was mathematisch auf eine Hintereinanderaus-
führung von Funktionen hinausläuft. An der Eingabeschicht legt man ein Signal (einen Inputdatenpunkt) 
𝒙 ∈ ℝ௡ an, der in der ersten „versteckten“ Schicht von 𝑘ଵ Neuronen in Vektoren aus ℝ௞భ transformiert wird. 
Diese Vektoren dienen als Eingabe für die nächste Schicht usw. bis an der Ausgabeschicht (𝐿-te Schicht) ein 
Vektor aus ℝ௞ಽ  als Ausgabe berechnet wird. Zur Vereinfachung der Notation erweitert man die Sigmoid-Funk-

tion 𝜎: ℝ → ℝ durch komponentenweises Anwenden auf 𝜎: ℝ௡ → ℝ௡. Damit lässt sich die Ausgabe 𝒂ሺ௟ሻ einer 
beliebigen Schicht 𝑙 ∈ ሼ1, . . . , 𝐿ሽ schreiben als:  

𝒂ሺ௟ሻ ൌ 𝑔ሺ௟ሻሺ𝒂ሺ௟ିଵሻሻ ൌ 𝜎ሺ𝑾ሺ௟ሻ ⋅ 𝒂ሺ௟ିଵሻ ൅ 𝒃ሺ௟ሻ ሻ ∈ ℝ௞೗  

mit einer Gewichtsmatrix 𝑾ሺ௟ሻ ∈ 𝑅௞೗ൈ௞೗షభ und einem Bias-Vektor 𝒃ሺ௟ሻ ∈ ℝ௞೗. Dabei entspricht 𝒂ሺ଴ሻ dem Input-
vektor. Die Gewichtsmatrix beinhaltet zeilenweise die Gewichtsvektoren der einzelnen Neuronen und der Bias-
Vektor beinhaltet die Bias-Parameter der einzelnen Neuronen einer Schicht. Das komplette Netz besteht aus 
der Hintereinanderausführung mehrerer solcher Funktionen 𝑔ሺ𝒙ሻ ൌ 𝑔ሺ௅ሻ ∘. . .∘ 𝑔ሺଵሻሺ𝒙ሻ. Dass dabei tiefe Ver-
schachtelungen möglich sind, gab dem “deep learning” seinen Namen. Ein KNN ist im Kern somit eine vielfach 
verkettete, nichtlineare Funktion. In Abbildung 6 werden an einem kleinen KNN relevante Rechnungen veran-
schaulicht. 

Auch bei KNNs aus vielen Neuronen und zahlreichen Schichten besteht das Training im Lösen eines Optimie-
rungsproblems. Formal soll für gegebene Trainingsdaten ሺ𝒙௜ ,𝒚௜ሻ,𝒙௜ ∈ ℝ௡,𝒚௜ ∈ ℝ௠ die Zielfunktion  

𝐹ሺ𝒑ሻ:ൌ ∑ ||𝒚௜ െ 𝑔ሺ𝒑,𝒙௜ሻ||ଶ
ே
௜ୀଵ  minimiert werden, wobei 𝒑 ൌ ሺ𝑾ሺଵሻ,𝒃ሺଵሻ, . . . ,𝑾ሺ௅ሻ,𝒃ሺ௅ሻሻ alle Gewichtsmatrizen 

und alle Bias-Vektoren umfasst. Je nach Anwendungsproblem sind andere Definitionen der Zielfunktion sinn-
voll. Die Summe der Fehlerquadrate erleichtert jedoch die Anwendung von Methoden der Analysis.  

Das Training eines KNNs ist abstrakt betrachtet die optimale Wahl der Parameter 𝒑 einer Funktion  
𝑔: ℝ௡ → ℝ௠, so dass die Funktion die dem Trainingsdatensatz zugrundeliegende, unbekannte Zuordnung  
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𝒙௜ → 𝒚௜ möglichst gut widerspiegelt. Nimmt man an, dass diese Zuordnung durch eine Funktion 𝐺 beschrieben 
wird (also 𝒚௜ ൌ 𝐺ሺ𝒙௜ሻ, evtl. mit zufälligem Fehler), beschreibt das Optimierungsproblem ein Approximations-
problem. 

Abb. 6: Darstellung eines künstlichen neuronalen Netzes mit einer versteckten Schicht aus zwei Neuronen 

 

Die Wahl der Anzahl an Schichten und der Neuronen pro Schicht sowie der Aktivierungsfunktion 𝜎 und damit 

die Struktur der Funktionen 𝑔ሺ௟ሻ beruht meist auf der Erfahrung der Person, die das KNN für einen bestimmten 
Zweck entwirft. Klar ist aber, dass für 𝜎 keine linearen Funktionen verwendet werden dürfen, weil die Verket-
tung linearer Funktionen wieder eine lineare Funktion ergibt, und damit keine nichtlinearen Zusammenhänge 
beschrieben werden könnten. Wird eine nichtlineare Aktivierungsfunktion verwendet, kann bewiesen werden, 
dass jede zugrundeliegende stetige Funktion 𝐺 auf einer kompakten Definitionsmenge gleichmäßig durch ein 
hinreichend großes Netz approximiert werden kann (allgemeiner Approximationssatz von Cybenko (1989) und 
Hornik et al. (1989), s. https://en.wikipedia.org/wiki/Universal_approximation_theorem für eine kompakte Er-
klärung). Durchaus gibt es viele andere Funktionsklassen, die eine solche gleichmäßige Approximation leisten 
(etwa Polynome), aber es zeigt sich, dass neuronale Netze dies mit verhältnismäßig wenig Schichten errei-
chen (weiterführende Literatur findet man z. B. in Kutyniok, 2024).  

Beispiel 1: Klassifikation mit künstlichen neuronalen Netzen  

Klassifizierungsprobleme treten in diversen Anwendungen auf: bei der Erkennung von Pflanzenarten, in 
Spamfiltern, bei der Klassifikation von Gesichtern auf Bildern oder im Bereich der medizinischen Diagnose. In 
diesem Beispiel wird mit synthetischen Daten und unterschiedlichen Architekturen eines KNNs zur Klassifika-
tion experimentiert und zentrale Bausteine von KNNs auf der Mesoebene betrachtet. Im Unterricht kann man 
dazu wiederum mit einem simplen Klassifizierungsproblem mit zweidimensionalen Inputdaten 𝒙௜ ∈ ℝଶ und le-
diglich zwei Klassen einsteigen (Abb. 7). Für Inputdaten 𝒙௜ der Klasse 1 wählen wir als zugehörigen Output 
𝒚௜ ൌ 0 und für Daten der Klasse 2 𝒚௜ ൌ 1. Andere Kodierungen der Klassenzuordnungen (Labels) sind durch-
aus denkbar.6 

Wie geht man nun an die Entwicklung eines KNNs zum Lösen des Klassifizierungsproblems heran? Die In-
putdaten sind zweidimensional, entsprechend sollte die Eingabeschicht aus zwei Neuronen bestehen. Die 
Outputdaten haben wir eindimensional gewählt, d. h. es wird ein Ausgabeneuron benötigt. Die Vorhersagen 
sollen in [0,1] liegen. Damit sollte in der letzten Schicht eine Aktivierungsfunktion eingesetzt werden, die in 
dieses Intervall abbildet – bspw. die Sigmoid-Funktion. Die Schichten dazwischen können relativ beliebig ge-
wählt werden. Wir starten mit zwei versteckten Schichten aus je 10 Neuronen und verwenden in jeder Schicht 

 

6 Oft werden Outputvektoren verwendet, deren Länge der Anzahl der gegebenen Klassen entspricht. Die Einträge eines 
vorhergesagten Outputvektors können dann als Wahrscheinlichkeiten interpretiert werden, mit denen ein Datenpunkt den 
jeweiligen Klassen angehört. 
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als Aktivierungsfunktion die Sigmoid-Funktion. Den Fehler (und damit die Zielfunktion des Optimierungsprob-
lems) definieren wir über die Summe der Fehlerquadrate7. Im Notebook Klassifikation_KNN.ipynb kann (auf 
der Mesoebene) erkundet werden, wie sich die Änderungen der Netzstruktur (Hinzunahme von Schichten oder 
Neuronen; Änderung der Aktivierungsfunktion) auf die Genauigkeit der Klassifikation auswirkt.  

Abb. 7: Zwei Trainingsdatensätze und Entscheidungsgrenzen des jeweiligen KNNs 

 

Wir trainieren für zwei verschiedene Trainingsdatensätzen je ein KNN (Abb. 7). Datensatz 1 ist simpel, da die 
Datenpunkte der beiden Klassen linear separierbar sind. Bei Datensatz 2 sieht das anders aus. Hier brauchen 
wir ein komplexeres, nichtlineares Modell.  

Mit der oben beschriebenen Struktur der KNNs ergeben sich die in Abbildung 7 dargestellten Entscheidungs-
grenzen. Diese Grenzen veranschaulichen, welche Klassenzuordnung das jeweilige Modell für Inputdaten aus 
verschiedenen Bereichen des Merkmalsraums (hier: ℝଶ) vorhersagt. Die Entscheidungsgrenze kann bei KNNs 
oft nicht explizit durch eine geschlossene mathematische Formel dargestellt werden. Um die Grenze zu be-
stimmen, wird der Merkmalsraum in ein feines Gitter unterteilt (also diskrete Punkte ausgewählt). Für jeden 
Gitterpunkt wird die Klassenzuordnung berechnet. So ergibt sich die näherungsweise Unterteilung in Bereiche 
und die Entscheidungsgrenze. Zur spielerischen Erkundung des Einflusses verschiedener Netzstrukturen ei-
nes KNNs für Klassifizierungs- und Regressionsprobleme kann der Tensorflow Playground 
(https://playground.tensorflow.org) oder eine deutschsprachige Variante davon auf https://kiwi.schule einge-
setzt werden. 

Beispiel 2: Neuronales Netzwerk als Kantendetektor 

Das folgende Beispiel soll zeigen, wie das Training eines KNNs zum Erkennen von Strukturen in Pixelbildern 
funktioniert. Das Netz soll erkennen, ob in einem Bild aus 2x2 Pixeln eher vertikale oder horizontale Strukturen 
vorliegen. Dies ist eine extrem vereinfachte Situation, die aber doch wesentliche Prinzipien der Bilderkennung 
mit KNNs zeigt.  

Um die Eingabe des Netzes in einen Vektor zu überführen, strukturieren wir die Pixel in einer linearen Anord-
nung. Dazu nummerieren wir diese von 1 bis 4 (Abb. 8) und kodieren ihre Helligkeitswerte als Zahlen zwischen 
0 (weiß) und 1 (schwarz). Die Eingabevektoren  𝒙௜ , 𝑖 ൌ 1, . . . ,𝑁 sind in diesem Fall also aus ℝସ. 

Abb. 8: Links Anordnung der Pixel, mittig ein Bild, das als ሺ1,0,1,0ሻ kodiert wird, rechts ein Bild, das ሺ0,0,1,0.5ሻ entspricht 

 

Als Ausgabevektoren 𝒚௜ wählen wir Vektoren im ℝଶ mit Einträgen zwischen 0 und 1. Ein hoher Wert des ersten 
Eintrags signalisiert das Vorliegen von vertikalen Strukturen. Analog zeigt der zweite Eintrag des Ausgabe-
vektors eher horizontale Strukturen an. Als Netzstruktur wählen wir (da gibt es erneut viel willkürliche Freiheit) 

 

7 Anstelle der Summe der Fehlerquadrate werden bei Klassifizierungsproblemen oft komplexere Fehlerfunktionen verwen-
det, bspw. die Kreuzentropie. 
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eine versteckte Schicht mit drei Neuronen: Zunächst wird der ℝସ also auf den ℝଷ und schließlich auf ℝଶ abge-
bildet. Als Fehlerfunktion betrachten wir die Summe der Fehlerquadrate zwischen den gewünschten Ausgaben 
und den vorhergesagten Ausgaben (vgl. Kantendetektor_KNN.ipynb). 

Um von diesem Beispiel zu echten Anwendungen zu kommen, etwa dem Erkennen einer Person auf einem 
Bild, muss man vor allem groß denken: Statt 2x2 Bildern als Eingabe werden Bilder in authentischer, deutlich 
höherer Auflösung verwendet. Damit sind die Eingabedaten hochdimensional. Statt einer versteckten Schicht 
gibt es viele Schichten und auch die Anzahl Neuronen pro Schicht wird oft sehr groß gewählt. Dies gilt auch 
für die Ausgabeschicht. Wenn es etwa um die Gesichtserkennung geht, hat man für jede Klasse, d. h. jeden 
zu erkennenden Menschen, ein Ausgabeneuron.  

Die Beschreibung macht klar, dass in authentischen Anwendungen Millionen, wenn nicht Milliarden von Para-
metern zu bestimmen sind. Die Anpassung der Gewichte mit einem simplen Minimierungsalgorithmus, wie 
dem beschriebenen Verfahren des steilsten Abstiegs, würde dann zu viel Rechenzeit beanspruchen. Dies liegt 
unter anderem daran, dass die direkte Berechnung des Gradienten sehr zeitaufwendig ist. Verschiedene Stra-
tegien helfen, dieses Problem zu lösen. Zum einen wird die Zielfunktion nicht auf einmal gebildet; stattdessen 
werden die Trainingsdaten schrittweise eingegeben und die Gewichte nach und nach angepasst. Ein Algorith-
mus, der das leistet, ist das Backpropagation (z. B. Deisenroth et al., 2020). Zum anderen können häufig viele 
Gewichte in solchen Netzen fest auf Null gesetzt werden. Dies hat sich bei der Bilderkennung als effektiv 
erwiesen, da benachbarte Pixel gemeinsam verarbeitet werden, während weit entfernte Pixel erst in späteren 
Schichten miteinander in Kontakt kommen. Dieses Vorgehen ist die Idee hinter sogenannten Faltungsnetzen 
(engl. Convolutional Neural Networks).  

Beispiel 3: Regression mit künstlichen neuronalen Netzen  

KNNs werden zum Lösen von (komplexen, nichtlinearen) Regressionsproblemen eingesetzt. Auch das Feri-
enhausbeispiel kann mit einem neuronalen Netz modelliert werden (siehe Ferienhauspreise_KNN.ipynb). Da 
KNNs durch Hinzunahme weiterer Schichten und zusätzlicher Neuronen pro Schicht systematisch vergrößert 
werden können, lässt sich eine hohe Flexibilität in der Anpassung erreichen, was oft zu besseren Vorhersagen 
auf den Trainingsdaten führt, als wenn der Modellierende eine feste Modellfunktion vorgibt. Nachteil ist aber, 
dass die Parameter schlechter zu interpretieren sind. Außerdem steigt mit der Zahl der Neuronen und damit 
der Parameter auch der Rechenaufwand und der Bedarf an Trainingsdaten, um die Parameter hinreichend 
gut festzulegen.  

Abb. 9: Trainingsdatensatz, Testdatensatz und Vorhersagen eines KNNs 

 

Im Unterricht können KNNs im Kontext der Regression am Beispiel eines Datensatzes mit eindimensionalen 
Inputdaten 𝑥௜ ∈ ℝ und Outputdaten 𝑦௜ ∈ ℝ erarbeitet und der Einfluss der Struktur eines KNNs erkundet wer-
den. Im Notebook Regression_KNN.ipynb wird dazu der Datensatz aus Abbildung 9 (links) bereitgestellt und 
ein KNN mit zwei versteckten Schichten mit je 10 Neuronen trainiert. Die Vorhersage berechnet sich gemäß  

𝑦ො௜ ൌ  𝑔ሺ𝒑, 𝑥௜ሻ ൌ 𝑾ሺଷሻሺ𝜎ሺ𝑾ሺଶሻሺ𝜎ሺ𝑾ሺଵሻ𝑥௜ ൅ 𝒃ሺଵሻሻሻ ൅ 𝒃ሺଶሻሻሻ ൅ 𝑏ሺଷሻ, 

wobei 𝒑 ൌ ሺ𝑾ሺଵሻ,𝒃ሺଵሻ,𝑾ሺଶሻ,𝒃ሺଶሻ,𝑾ሺଷሻ,𝑏ሺଷሻሻ und 𝑾ሺଵሻ ∈ ℝଵ଴௫ଵ, 𝒃ሺଵሻ ∈ ℝଵ଴, 𝑾ሺଶሻ ∈ ℝଵ଴௫ଵ଴, 𝒃ሺଶሻ ∈ ℝଵ଴,  

𝑾ሺଷሻ ∈ ℝଵ௫ଵ଴, 𝑏ሺଷሻ ∈ ℝ, sowie 𝜎 der ReLU-Funktion entspricht. Als Fehlerfunktion wurde die mittlere Summe 
der Fehlerquadrate gewählt. Bei Regressionsproblemen wird in der Ausgabeschicht oft keine Aktivierungs-
funktion eingesetzt. Grund ist, dass die Outputs je nach Anwendungsfall nicht auf den Wertebereich der Akti-
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vierungsfunktion beschränkt werden sollen. Das Training des KNNs besteht nun im Lösen des Optimierungs-

problems min
𝒑

ଵ

ே
∑ ሺ𝑦௜ െ 𝑔ሺ𝒑, 𝑥௜ሻሻଶ
ே
௜ୀଵ . Mit dem trainierten KNN aus nur wenigen Schichten und Neuronen kön-

nen die Testdaten bereits einigermaßen genau vorhergesagt werden (Abb. 9 rechts).  

Lernende können das Notebook als Ausgangspunkt nutzen, um verschiedene Aktivierungsfunktionen zu tes-
ten (Mikroebene), oder die Anzahl der versteckten Schichten und die Anzahl der Neuronen pro Schicht zu 
variieren und den Einfluss auf den Fehler bzgl. der Trainings- und Testdaten zu erkunden (Mesoebene).  

Zwischenfazit: Optimierung 

Die ML-Säule der Optimierung besteht darin, Parameter einer Modellfunktion durch Minimierung einer Fehler-
funktion (Zielfunktion) zu bestimmen. Diese Fehlerfunktion basiert in der Regel auf dem Abstand zwischen 
den gewünschten und den tatsächlichen Ausgaben. Neben der Minimierung einer Funktion spielt daher auch 
die Modellierung von Abständen eine zentrale Rolle. Dafür gibt es viele mathematische Ansätze, die auch von 
der Schulmathematik bereitgestellt werden (vgl. folgender Abschnitt).  

Optimierungsprobleme sind zentraler Bestandteil zahlreicher weiterer ML-Methoden wie beispielsweise der 
Support Vector Machine, mit der u. a. Klassifizierungsprobleme gelöst werden können. Bei dieser wird eine 
Gerade oder Ebene oder Hyperebene so gewählt, dass sie die Datenpunkte zweier Klassen bestmöglich von-
einander trennt. Auch diese Methode lässt sich auf schulmathematische Inhalte reduzieren und bietet neben 
der Optimierung eine schöne Anwendung von Inhalten der analytischen Geometrie (Schönbrodt et al., 2022). 

Säule 3: Ähnlichkeits- und Distanzmaße  

Das Messen von Ähnlichkeiten und Abständen zwischen Datenpunkten spielt eine wichtige Rolle im Bereich 
des MLs. Ansätze der Ähnlichkeits- und Abstandsmessung sind durchaus eng verknüpft. Der Blickwinkel ist 
jedoch ein leicht anderer: Ähnlichkeitsmaße geben typischerweise an, wie ähnlich sich zwei Datenpunkte sind 
(hoher Wert = große Ähnlichkeit), wohingegen Metriken zur Bestimmung von Abständen angeben, wie unähn-
lich zwei Datenpunkte sind (hoher Wert = großer Unterschied). Ähnlichkeitsmaße lassen sich oft aus Metriken 
gewinnen, indem bspw. die Inverse betrachtet wird.  

Oben haben wir bereits gesehen, dass die Modellierung von Abständen zwischen Datenpunkten bei der Be-
schreibung der Zielfunktion eines KNNs eine wichtige Rolle spielt. Auch bei der statistischen Bewertung eines 
ML-Modells anhand von Testdaten (vgl. Abschn. Statistische Gütemaße) sind Metriken wesentlich. Einige ML-
Verfahren beruhen darüber hinaus auf der direkten Messung von Ähnlichkeiten bzw. Abständen zwischen 
Datenpunkten – bspw. die k-nächste-Nachbarn-Methode, die zum Lösen von Klassifizierungsproblemen ein-
gesetzt werden kann. Um einen neuen Datenpunkt einer Klasse zuzuordnen, wird die “Nähe” des neuen Da-
tenpunktes zu allen Trainingsdatenpunkten quantifiziert. Der Datenpunkt wird dann per Mehrheitsentscheid 
der Klasse zugewiesen, von denen unter den 𝑘 „nächsten“ Datenpunkten die meisten vorliegen. Dazu muss 
also die Ähnlichkeit oder Distanz zwischen zwei Vektoren 𝒖 ൌ ሺ𝑢ଵ, . . . ,𝑢௡ሻ und 𝒗 ൌ ሺ𝑣ଵ, . . . , 𝑣௡ሻ mathematisch 
beschrieben und quantifiziert werden. Wesentliche auch für Schüler*innen verständliche Ansätze sind (Olden-
burg, 2021; eine elementare Realisierung in Python findet sich in Oldenburg, 2011): 

● Die euklidische Norm: Zwei Vektoren 𝒖 und 𝒗 sind umso ähnlicher, je kleiner die euklidische Norm 
ihrer Differenz ist: ||𝒖 െ 𝒗||ଶ.  

● Die Kosinus-Ähnlichkeit: Zwei Vektoren 𝒖 und 𝒗 sind umso ähnlicher, je größer der Kosinus des 

Winkels 𝛼, d. h. je kleiner der Winkel zwischen den beiden Vektoren ist: 𝑐𝑜𝑠ሺ𝛼ሻ  ൌ
𝒖⋅𝒗

||𝒖||⋅||𝒗||
 . 

● Skalarproduktähnlichkeit: Zwei Vektoren 𝒖 und 𝒗 sind umso ähnlicher, je größer ihr Skalarprodukt 
ist. Dies entspricht der Kosinus-Ähnlichkeit, wenn mit normierten Vektoren gearbeitet wird.  

Vor- und Nachteile dieser Ansätze liegen auf der Hand: Kommt es in einer konkreten Anwendung nur auf die 
Richtung oder auch auf die Länge der Vektoren an? Davon abgesehen ist die Wahl nicht immer kritisch, wie 
die folgende Übungsaufgabe zeigt: Wenn alle Vektoren auf Länge 1 normiert sind, und 𝒖 ähnlicher zu 𝒗 ist als 
zu 𝒘 mit einem dieser Ähnlichkeits- bzw. Distanzmaße, dann gilt das Gleiche mit den anderen Maßen. 
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Darüber hinaus gibt es viele weitere Ansätze (Levy et al., 2024). Erfahrungsgemäß finden Lernende die 
Summe der absoluten Abweichungen oft intuitiv einleuchtend, also den Ausdruck ∑ |𝑢௜ െ 𝑣௜|

௡
௜ୀଵ . Die Verwen-

dung dieser Metrik zur Definition einer Zielfunktion hat jedoch numerische Nachteile, da sie nicht differenzier-
bar ist.  

Auch beim Clustern (unüberwachtes Lernen) ist die Messung von Ähnlichkeiten bzw. Distanzen relevant. Hier 
wird versucht, ähnliche Datenpunkte zu Clustern zu gruppieren. Ein Beispiel für eine solche Methode ist der 
k-means-Algorithmus.  

Ansätze der Ähnlichkeitsmessung verbergen sich zudem hinter großen Sprachmodellen. Diese übersetzen 
Texte zunächst in eine Folge von Tokens. Das sind natürliche Zahlen, die bei vielen modernen Sprachmodel-
len in der Größenordnung von 105 liegen, und die für Wörter, Wortteile oder Satzzeichen stehen. Die Tokens 
werden dann in einen hochdimensionalen reellen Vektorraum abgebildet. Bei dieser Vorverarbeitung spielt 
Ähnlichkeit eine wichtige Rolle: inhaltlich ähnliche Tokens werden i.d.R. Vektoren zugeordnet, die ähnlich sind. 
Im Notebook wordEmbeddings.ipynb kann ausprobiert werden, wie solche Embedding-Vektoren bestimmt und 
wie mit ihnen gerechnet werden kann.  

Säule 4: Wahrscheinlichkeiten  

Eine weitere mathematische Säule sind Wahrscheinlichkeiten. Diese haben Auswirkungen auf die Entwicklung 
und Evaluierung von ML-Methoden. Bei der Entwicklung ist zu bedenken, dass die Trainingsdaten i.d.R eine 
Zufallsstichprobe darstellen. Bei der Evaluierung kann nicht geprüft werden, ob alle Gewichte “richtig” gewählt 
sind – es können nur Statistiken über richtige Vorhersagen angelegt werden.  

Wahrscheinlichkeiten spielen auch bei der Entwicklung von Sprachmodellen eine zentrale Rolle. Dies können 
Nutzer*innen von Smartphones nachvollziehen, wenn beim Tippen ein Fehler passiert und eine plausible Kor-
rektur vorgeschlagen wird. Angenommen, es wurde getippt „Ein schmackhafter Affel“. Das letzte Wort ist nicht 
im Wörterbuch enthalten. Das System sollte also einen Korrekturvorschlag machen. Zunächst wird wieder das 
Prinzip der größtmöglichen Ähnlichkeit bemüht: viele Fehler passieren vermutlich so, dass das gemeinte Wort 
ähnlich dem fehlerhaft getippten Wort sein dürfte. Im Wörterbuch finden sich beispielsweise „Apfel“ und „Affe“. 
Beide Wörter liegen nahe an dem eingetippten Wort in dem Sinne, dass nur ein falscher/überschüssiger Tas-
tendruck ausreicht, um zu erklären, wie aus dem gemeinten Wort „Affel“ wurde.  

Wie spielen nun Wahrscheinlichkeiten in Systeme der Wortkorrektur hinein? Ausgangspunkt ist ein umfang-
reicher Textkorpus der deutschen Sprache, gegebenenfalls ergänzt um Texte, die der Benutzer schon selbst 
verfasst hat. Für diesen Text lässt sich auszählen, wie oft auf das Wort “schmackhafter“ das Wort „Apfel“ bzw. 
wie oft das Wort „Affe“ folgt. Dividiert man die jeweiligen absoluten Häufigkeiten der Wortübergänge durch die 
Gesamtzahl des Auftretens des vorangegangenen Wortes (hier: Auftretenshäufigkeit des Wortes “schmack-
haft”), so liefert dies relative Häufigkeiten für die entsprechenden Wortübergänge. Aus diesen lassen sich die 
bedingten Wahrscheinlichkeiten (Wahrscheinlichkeit, dass Wort B folgt, unter der Bedingung das Wort A ge-
tippt wurde) schätzen und damit auswählen, welches Wort vermutlich gemeint war. Noch besser wird die 
Prognose, wenn nicht nur das direkt vorhergehende Wort, sondern 2, 3, 4, … vorhergehende Worte bei der 
Schätzung der bedingten Wahrscheinlichkeiten berücksichtigt werden. Dieses Modell wird im Bereich der na-
türlichen Sprachverarbeitung auch als N-Gramm-Modell bezeichnet. Dabei steht N für die Anzahl der betrach-
teten Wörter, die für die Schätzung der Übergangswahrscheinlichkeit herangezogen werden (Oldenburg, 
2008, für eine didaktische Elementarisierung). 

Das N-Gramm-Modell kann nicht nur zur Wortkorrektur, sondern auch zum Erzeugen von Wortvorschlägen 
beim Tippen einer Nachricht am Smartphone (vgl. Hofmann & Frank, 2022) oder gar zum “Generieren” eines 
ganzen Textes eingesetzt werden: Gibt man einen beliebigen Textanfang vor, kann das System die Wahr-
scheinlichkeiten möglicher Folgewörter berechnen und so das wahrscheinlichste nächste Wort ermitteln. 
Durch Wiederholung entsteht ein maschinell erzeugter Text. Kurze Teile davon sind in der Regel grammatika-
lisch einigermaßen okay, beispielsweise passen die Geschlechter von Artikeln und Nomen zusammen. Das 
ändert sich, wenn die Grammatik verlangt, dass im Satz Wörter in Beziehung stehen, die weiter entfernt sind 
als bei der Bestimmung der bedingten Wahrscheinlichkeiten berücksichtigt. Der Text ist deswegen in der Regel 
sinnlos. Die explizite Berechnung der relativen Häufigkeiten wird erschwert, je länger die Textstücke sind, da 
die Auftretenshäufigkeiten insgesamt gering sind. Es wäre also weder praktikabel noch sinnvoll, Folgen von 
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zehn Wörtern in den bedingten Wahrscheinlichkeiten zu berücksichtigen. Daher braucht es komplexere Me-
thoden, beispielsweise KNNs.  

Auch wenn die direkte Berechnung der bedingten Wahrscheinlichkeiten sehr aufwendig ist, liefert dies doch 
ein brauchbares Modell für ein grobes Verständnis von generativen Sprachmodellen wie ChatGPT: Basierend 
auf einem riesigen Datensatz an Texten lernt ein KNN, bei der Eingabe einer Folge von Wörtern das wahr-
scheinlichste nächste Wort vorherzusagen. Dazu wird der Eingabetext (“Prompt”) in Token kodiert. Die daraus 
berechneten Embeddingvektoren sind dann die Inputdaten des Netzes. Für jedes mögliche Folge-Token gibt 
es ein Ausgabeneuron. Das Token mit dem höchsten Outputwert gilt als das Wahrscheinlichste. Ist der Text 
um ein Token verlängert, dient er als neue Eingabe. So wird der Text Token um Token generiert. 

Dies ist ein grobes Modell auf der Mesoebene. Es ist trotz seiner Vereinfachungen nützlich, weil es einerseits 
Lernenden, die sich für die Funktion im Detail interessieren, einen Weg aufzeigt, auf die Mikroebene hinabzu-
steigen, und andererseits eine Einschätzung wichtiger Fragen auf der Makroebene ermöglicht – bspw. das 
Phänomen des “Halluzinierens” von ChatGPT oder etwa die Abhängigkeit von den Trainingsdaten.  

Säule 5: Statistische Gütemaße  

Die Testdaten dienen dazu, die Generalisierbarkeit des entwickelten ML-Modells auf neue, zuvor ungesehene 
Daten zu bewerten. Bisher wurde nur am Rande diskutiert, wie die Ergebnisse, die das entwickelte Modell auf 
den Testdaten liefert, quantifiziert und statistisch bewertet werden können. Welche statistischen Gütemaße 
geben hier aufschlussreiche Einblicke und wie sind diese zu interpretieren? Dies lässt sich auch ohne tiefer-
gehendes Verständnis der mathematischen Grundlagen der jeweiligen ML-Methode (bspw. eines KNNs) im 
Unterricht diskutieren – wir bewegen uns auf der Makroebene. Im Zentrum dieser Diskussion steht die Er-
kenntnis, dass die Ergebnisse von ML-Methoden nur statistisch bewertet werden können. Je nach Problem-
klasse (Regressions- oder Klassifizierungsproblem) werden unterschiedliche statistische Gütemaße einge-
setzt. 

Klassifizierungsergebnisse werden oft in einer Wahrheitsmatrix (Konfusionsmatrix) zusammengefasst. Diese 
liefert eine kompakte Übersicht über die vorhergesagten und die tatsächlichen Klassenzuordnungen. Ein Bei-
spiel mit fiktiven Ergebnissen eines Klassifizierungsmodells auf 300 Testdatenpunkten ist in Tabelle 1 darge-
stellt. Die fett gedruckten Werte auf der Diagonalen geben die Anzahl der korrekten Klassifikationen je Klasse 
an.  

Tab. 1: Wahrheitsmatrix für die Ergebnisse eines Klassifizierungsmodells auf 300 Testdaten 

  
Vorhergesagt als 

Klasse A 
Vorhergesagt als 

Klasse B 
Vorhergesagt als 

Klasse C 

Tatsächlich 
Klasse A 

7 5 7 

Tatsächlich 
Klasse B 

22 98 2 

Tatsächlich 
Klasse C 

13 4 142 

Typische statistische Gütemaße, die sich basierend auf der Wahrheitsmatrix leicht berechnen lassen, sind: 

● Genauigkeit: Anteil der korrekten Klassifikationen an der Gesamtzahl aller Testdaten. Im Beispiel aus 

Tabelle 1 also 
଻ାଽ଼ାଵସଶ

ଷ଴଴
ൌ  0,82. 

● Fehlerrate: Anteil der Fehlklassifikationen an der Gesamtzahl aller Daten (d. h. 1 - Genauigkeit).  

● Präzision (bzgl. einer Klasse): Anteil der korrekt als Klasse 𝑖 klassifizierten Datenpunkte an der Anzahl 
aller als Klasse 𝑖 klassifizierten Datenpunkte (Klasse A: 0,17; Klasse B: 0,92; Klasse C: 0,94).  

● Recall (auch Sensitivität): Anteil der korrekt als Klasse 𝑖 klassifizierten Datenpunkte an der Anzahl 
aller zu Klasse 𝑖 gehörenden Datenpunkte (Klasse A: 0,37; Klasse B: 0,80; Klasse C: 0,89). 

An der Wahrheitsmatrix aus Tabelle 1 wird schnell ersichtlich, warum es nicht ausreicht, ein Klassifizierungs-
modell nur anhand der Gesamtgenauigkeit zu validieren. Dies ordnen wir am Beispiel der automatisierten 
Einstufung von Bewerber*innen für ein Studienstipendium ein. Die Bewerber*innen gehören einer der Klassen 



Mathematik im Unterricht   Ausgabe Nr.15, 2024 

32 

“Ablehnen” (A), “Warteliste” (B) oder “Annehmen” (C) an.8 Die Genauigkeit ist mit 82 % einigermaßen hoch 
(was als akzeptabel angesehen wird, hängt natürlich stark von der Anwendung ab); die Präzision für die Klasse 
“Ablehnen” ist jedoch gering. Personen werden somit abgelehnt und damit nicht für ein Stipendium berück-
sichtigt, obwohl sie dafür durchaus in Frage kämen. Auch der Recall ist für diese Klasse niedrig, d. h., es 
werden diverse Bewerber*innen ausgewählt, obwohl sie für das Stipendium eher nicht geeignet sind.  

Ein Grund für derartige Ergebnisse könnte die Wahl des Trainingsdatensatzes sein. Wenn das Modell auf 
historischen Daten trainiert wurde, die Vorurteile enthalten oder aus Kontexten mit bestehenden oder früheren 
Ungleichverteilungen stammen, kann dies dazu führen, dass bestimmte Gruppen entweder über- oder unter-
repräsentiert sind und Vorurteile bzw. Ungleichverteilungen reproduziert oder verstärkt werden. Beispielsweise 
könnten Absolvent*innen bestimmter Schulen oder Geschlechter systematisch benachteiligt werden, wenn 
deren Bewerbungen häufiger als „abgelehnt“ eingestuft wurden und weiterhin werden. Auch über derartige 
gesellschaftliche / ethische Implikationen sollte im Unterricht diskutiert werden (vgl. Orwat, 2019 für verschie-
dene Fallbeispiele). Im Notebook Klassifikation_KNN.ipynb können die Auswirkungen unausgeglichener Klas-
sen auf die Klassifikationsergebnisse mithilfe der hier diskutierten statistischen Gütemaße untersucht werden.  

Das gewählte Beispiel ist nicht nur mit Blick auf die Interpretation der statistischen Gütemaße, sondern auch 
darüber hinaus diskussionswürdig: Nach welchen Kriterien wurden die Klassenlabels festgelegt? Wurde allein 
der Erfolg im Studium als Kriterium verwendet, um die Trainingsdaten und damit die Studierenden zu “labeln”? 
Ist die Auswahl der Trainingsdaten und die Kodierung der Klassenlabels womöglich bereits fragwürdig? Zwar 
wurde in diesem Abschnitt nicht mit realen Daten argumentiert, verwandte Szenarien haben im Kontext der 
Bewerberauswahl oder der Zulassung von Studierenden an Universitäten jedoch in realen Anwendungen 
durchaus schon zu kritischen Diskussionen geführt (vgl. Orwat, 2019). 

Die Bewertung von Klassifizierungsergebnissen bietet die Möglichkeit klassische schulmathematische Inhalte 
aus dem Bereich “Daten & Zufall” im Kontext von KI zu thematisieren und neu zu akzentuieren: Vierfeldertafeln 
und Fehler 1. und 2. Art. Die Präzision und der Recall stehen in direktem Zusammenhang mit diesen Fehler-
typen, die typischerweise für zwei Klassen (positiv und negativ) betrachtet werden. Bei Problemen mit mehr 
als zwei Klassen kann dies wie folgt ausgeweitet werden: eine ausgewählte Klasse 𝑖 wird als positiv und alle 
übrigen Klassen zusammengenommen als negativ betrachtet. Eine niedrige Präzision für Klasse 𝑖 bedeutet, 
dass viele Daten falsch der Klasse 𝑖 zugeordnet wurden (falsch Positive) und geht mit einem hohen Fehler 1. 
Art einher. Ein niedriger Recall bedeutet, dass viele Datenpunkte der Klasse 𝑖 einer anderen Klasse zugeord-
net wurden (falsch Negative) und geht mit einem hohen Fehler 2. Art einher.  

Für die Bewertung von Regressionsergebnissen werden bspw. die mittlere quadratische Abweichung und die 
mittlere absolute Abweichung verwendet. Auch hierzu ließen sich interessante Diskussionen führen; bspw. 
über die höhere Sensitivität der mittleren quadratischen Abweichung für Ausreißer oder die leichtere Interpre-
tierbarkeit der mittleren absoluten Abweichung, da diese die durchschnittliche Größe des Fehlers in der Einheit 
der Outputdaten angibt.  

Didaktische Einordnung 

Oben wurde auf elementarer mathematischer Ebene (Mikroebene) erläutert, wie künstliche neuronale Netze 
mathematisch modelliert werden können. Neben dieser Detailbetrachtung sind auch darüber liegende Be-
trachtungsebenen, die Meso- und Makroebene, möglich.  

Auf der Mesoebene geht es um das Zusammenspiel der elementaren Objekte der Mikroebene. Die Beschrei-
bung eines neuronalen Netzes als vielfach verkettete Funktion, die sich aus affin-linearen und nichtlinearen 
Funktionen zusammensetzt, oder die Beschreibung der Schritte des Word-Embeddings liegen auf dieser 
Ebene.  

Auf der Makroebene werden Details der mathematischen Beschreibung und programmtechnischen Umset-
zung der einzelnen Komponenten einer ML-Methode (bspw. Neuronen) und des Trainierens nicht betrachtet. 
Stattdessen befasst man sich ausführlicher mit dem System als Ganzes (bspw. ein KNN als Funktion, die 

 

8 Hier ließe sich auch der klassische Anwendungsfall der medizinischen Diagnose bemühen (Klasse A = Krankheit A, 
Klasse B = Krankheit B, Klasse C = gesund). 
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Inputdaten gewissen Outputdaten zuordnen), mit der Bewertung der Performanz basierend auf statistischen 
Gütemaßen und mit der Auswahl und dem Einfluss von Trainings- und Testdaten auf die Ergebnisse. Auch 
die Diskussion von Problemen des Systems und mögliche, resultierende Auswirkungen auf die Gesellschaft 
bzw. auf einzelne Personengruppen zählen wir zu dieser Ebene.  

In Tabelle 2 werden am Beispiel von KNNs die drei Betrachtungsebenen, relevante mathematische Inhalte, 
der jeweilige Bildungswert und der Beitrag zum Empowerment aufgeschlüsselt. Diese Einordnung ließe sich 
in ähnlicher Weise für weitere ML-Methoden realisieren. 

Tab. 2: Ebenen der Durchdringung von KI-Systemen am Beispiel von KNNs mit Einordnung des Bildungswertes  

Ebene Mathematik Bildungswert Empowerment 

Mikroebene Skalarprodukt, Matrix-Vek-
tor-Multiplikation, euklidi-
scher Abstand, Optimie-
rungsproblem und numeri-
sche Optimierungsverfahren 

 Innermathematisch 
 Anwendung und Vertie-

fung von Schulmathema-
tik an relevanten Frage-
stellungen 

 Demystifizierung von KI 

Teilkomponenten eines KNNs 
implementieren (d. h. Implemen-
tierung “from Scratch”) 

 

  

Mesoebene Künstliches Neuron als 
Funktion, die sich aus der 
Verkettung einer linearen mit 
einer nichtlinearen Funktion 
zusammensetzt 

Zusammenspiel von Schich-
ten in einem KNN als Verket-
tung von Funktionen 

 Innermathematisch 
 Anwendung und Vertie-

fung von Schulmathema-
tik an relevanten Frage-
stellungen 

 Komplexitätsbeherr-
schung durch Modularisie-
rung 

 Demystifizierung von KI 

KNN auf Basis der Nutzung von 
Softwarepaketen (bspw. Py-
Torch, Tensorflow) implementie-
ren 

Makroebene 

Einzelnes  
KI-System 
 
Gesellschaft 

KNN als Funktion, die einem 
Input einen Output zuordnet 

Einfluss von Trainings- und 
Testdaten; Validierung mit 
statistischen Gütemaßen 

 Bias, Diskriminierung, Mo-
dellkritik 

 Ethische / gesellschaftli-
che Fragestellungen dis-
kutieren 

Analysieren und Bewerten der 
Leistung eines trainierten KNN 

KI-Anwendungen und ihre Rolle 
in und für unsere Gesellschaft 
kritisch reflektieren 

Es stellt sich die didaktische Frage, auf welcher Ebene allgemeinbildender Unterricht zur KI ansetzen sollte. 
Die Makroebene zielt darauf ab, Schüler*innen zu befähigen, Outputs von KI-Systemen kritisch einzuordnen 
und deren gesellschaftliche Auswirkungen einzuschätzen. Damit ist offensichtlich, dass die Makroebene eine 
zentrale Rolle bei der Lebensvorbereitung in einem KI-getriebenen Alltag spielt und damit gemäß Heymann 
(1989) allgemeinbildenden Wert hat. Zu klären bleibt, ob diese Ebene unabhängig von den beiden darunter 
liegenden Ebenen in einer Art und Weise im Unterricht behandelt werden kann, die nachhaltige Bildung er-
möglicht und damit junge Menschen in die Lage versetzt, KI-Systeme reflektiert und zielführend zu nutzen, zu 
bewerten und selbst zu gestalten.  

Unsere Hypothese ist, dass Wissen und Kompetenzen der unteren Ebenen durchaus auf die Makroebene 
durchschlagen. Werden KNNs auf der Mikro- oder Mesoebene erarbeitet, so wird greifbar, dass bei der Ent-
wicklung von KI-Systemen mit ML-Methoden oftmals verschiedene Modellentscheidungen denkbar sind und 
von Menschen getroffen werden, bspw. die Wahl der Metrik zur Definition der Fehlerfunktion eines KNNs. Es 
wird deutlich, dass die Entwicklung von KI-Systemen ganz wesentlich auf Daten und elementarer Mathematik 
und mathematischer Modellierung beruht (gepaart mit sehr effizienten Implementierungen). Die Mikro- und 
Mesoebene spielen damit eine besondere Rolle bei der Demystifizierung von KI. 

Weitere Beispiele, wie Wissen aus der Mikro- und Mesoebene auf der Makroebene relevant wird: Angenom-
men, ein großes Sprachmodell gibt fälschlicherweise aus, dass eine Person im Jahr 1980 geboren sei. Der/Die 
Nutzer*in beschwert sich. Dann kann der Anbieter des Sprachmodells, anders als bei Datenbanken, nicht 
einfach eine Zahl ändern, weil die 1980 nicht an einer einzigen Stelle codiert ist. Wegen der Komplexität des 
Netzes sind die Gewichte nicht interpretierbar und das Zustandekommen einer spezifischen Ausgabe ist für 
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Menschen nicht nachvollziehbar. Diese Erkenntnis ist durch ein tieferes Verständnis der mathematischen 
Struktur eines KNNs auf der Mikro- oder Mesoebene möglich. Das Verständnis von KNNs (oder N-Gramms) 
auf der Mesoebene erlaubt es zudem zu verstehen, warum große Sprachmodelle Logikfehler machen, teil-
weise bei simplen Rechenaufgaben versagen oder “halluzinieren”: Diese Systeme liefern basierend auf gege-
benen Trainingstexten mithilfe von mathematischen Modellen eben nur Näherungen für wahrscheinliche To-
kens (und damit Wörter). Aufgrund ihrer nicht völligen Zuverlässigkeit sind große Sprachmodelle also in einem 
gewissen Sinne das Gegenstück zur Mathematik, die Sicherheit und maximale Transparenz der Begründung 
anstrebt. 

Diese Beispiele zeigen exemplarisch, dass technische Bildung auf Mikro- und Mesoebene zu einer kompeten-
ten Einschätzung eines komplexen KI-Systems befähigt und auf die Makroebene durchschlägt. 

Fazit  

Die Gestaltung von Mathematikunterricht zu den in diesem Beitrag behandelten Themen eröffnet Chancen, 
steht aber auch vor Herausforderungen. 

Einerseits kann das Thema die Bedeutung von (Schul-)Mathematik für die Entwicklung von KI-Anwendungen 
im Mathematikunterricht betonen. Die Forschung und Entwicklung im Bereich KI lässt sich eben nicht nur der 
Informatik zuordnen. Auch die Mathematik leistet einen wesentlichen Beitrag und es gibt durchaus zahlreiche 
offene Forschungsfragen im Kontext des maschinellen Lernens, an denen in der Mathematik derzeit aktiv 
geforscht wird (Kutyniok, 2024). Positiv ist auch, dass das Thema eine Reihe von mathematischen Teilgebie-
ten verbindet, etwa Analysis, Vektorrechnung und Wahrscheinlichkeitsrechnung. Der Unterricht kann damit 
deutlich machen, dass Mathematik bei realen Anwendungen vielfältig vernetzt Einsatz findet. Als verbindendes 
Element ist zudem die mathematische Modellierung hervorzuheben. Bei der Diskussion von ML-Methoden auf 
der Mikro- oder Mesoebene wurde an diversen Stellen ersichtlich, dass oft verschiedene Modellentscheidun-
gen möglich sind. Dies betrifft etwa die Kodierung der Klassenlabels bei Klassifizierungsproblemen, die Wahl 
des Ähnlichkeits- oder Distanzmaßes bei der k-nächste-Nachbarnmethode, die Festlegung der Zielfunktion 
bei der Optimierung von KNNs oder die Wahl der Gesamtstruktur eines KNNs (Anzahl Schichten etc). Dies 
kann zur Erkenntnis beitragen, dass zahlreiche Entscheidungen bei der Entwicklung von KI-Systemen eben 
doch von Menschen getroffen werden und diese Systeme sich nicht voll autonom einstellen und “selbst ent-
wickeln”. Damit besteht die Chance zur Demystifizierung von KI beizutragen. 

Eine Herausforderung ist die Behandlung von Funktionen in mehr als einer Variablen, die in den diskutierten 
Beispielen auftreten. Da diese im Mathematikunterricht aber ohnehin implizit vorkommen (zum Beispiel als 
Formel für das Pyramidenvolumen) und in Tabellenkalkulationen genutzt werden, erscheint eine unterrichtli-
che Behandlung konsequent (vgl. dazu auch Schweiger, 2023). 

Die technologiegestützte Umsetzung von Unterrichtseinheiten zu den mathematischen Hintergründen von KI-
Systemen auf der Mikro- oder Mesoebene erfordert ein gewisses Maß an informatischer Bildung, sobald mehr 
Eigenaktivität der Lernenden ermöglicht werden soll. Dies stellt aktuell noch eine Herausforderung für den 
Mathematikunterricht dar. Da Informatik als Schulfach jedoch mittlerweile in mehr und mehr Ländern verpflich-
tend eingeführt wird, sollte dieses Problem auf Seiten der Lernenden mit der Zeit kleiner werden. Zugleich 
bedarf es auch eines Umdenkens in der Aus- und Weiterbildung von Mathematiklehrkräften, die Gelegenheit 
bekommen müssen, selbst informatische Grundkenntnisse zu erwerben. 

Aus der Perspektive der Allgemeinbildung ist an diesem Thema reizvoll (mit Blick auf das Lernen in abge-
grenzten Schulfächern zugleich herausfordernd), dass neben Mathematik und Informatik auch weitere Bil-
dungsbereiche involviert sind: Dies betrifft die Biologie, die das Vorbild für die mathematische Modellierung 
von neuronalen Netzen geliefert hat und die durch Forschung in der Bioinformatik auch wesentlich von KI-
getriebenen Innovationen beeinflusst wird (bspw. AlphaFold). Es betrifft auch die Physik, denn zahlreiche KI-
Systeme werden basierend auf Sensordaten entwickelt (bspw. Fitness-Tracker, aber auch KI-Systeme in au-
tonom fahrenden Autos) – ein grundlegendes physikalisches Verständnis ist beim Umgang mit diesen Daten 
hilfreich. Offensichtlich ist auch die Relevanz gesellschaftswissenschaftlicher Fächer und der Ethik für KI-
Bildung. Hier ergeben sich u. a. Fragen nach der Verantwortung, Datenschutz, Privatsphäre und Diskriminie-
rung. Auch philosophische Fragen ergeben sich, bspw. ob der Erfolg von großen Sprachmodellen zeigt, dass 
man Lernen auf das Konsumieren von viel Text reduzieren kann. 
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Es lässt sich argumentieren, dass ein detailliertes technisches Verständnis über KI nicht notwendig sei, weil 
man auch nichts über Motoren wissen müsse, um Auto zu fahren. Aber selbst in dieser Metapher zeigt sich, 
dass die Mesoebene relevant ist: Aus Wissen über die Eigenschaften von Verbrennungs- und Elektromotoren 
kann man etwa ableiten, wie man energiesparend fährt, oder dass im Stadtverkehr ein Elektroauto Effizienz-
vorteile hat. Selbstverständlich muss man dieses Wissen nicht unbedingt selbst herleiten, sondern kann es 
von Expert*innen übernehmen. Es ist jedoch allemal effizienter, einige wenige Grundprinzipien zu erlernen 
und daraus Schlüsse zu ziehen, als viele Einzelfakten von Expert*innen zu übernehmen – denen man zudem 
vertrauen muss. Wir sind deswegen überzeugt, dass auch mathematische Grundlagen der KI in allgemeinbil-
dende Schulen gehören, wenn diese der Forderung von Hartmut von Hentig (2002) genügen sollen, dass die 
Menschen der technischen Zivilisation gewachsen bleiben sollen. 
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