
Mathematische Grundlagen als Schlüssel zu einem
allgemeinbildenden Verständnis von KI: theoretische
Perspektiven und praktische Unterrichtsideen

Sarah Schönbrodt, Reinhard Oldenburg

Angaben zur Veröffentlichung / Publication details:

Schönbrodt, Sarah, and Reinhard Oldenburg. 2024. “Mathematische Grundlagen als
Schlüssel zu einem allgemeinbildenden Verständnis von KI: theoretische Perspektiven und
praktische Unterrichtsideen.” Mathematik im Unterricht 15: 17–36.
https://doi.org/10.25598/miu/2024-15-2.

Nutzungsbedingungen / Terms of use:

Dieses Dokument wird unter folgenden Bedingungen zur Verfügung gestellt: / This document is made available under these conditions:
CC-BY 3.0: Creative Commons - Namensnennung
Weitere Informationen finden Sie unter: / For more information see:
https://creativecommons.org/licenses/by/3.0/de/deed.de

CC BY 3.0

https://doi.org/10.25598/miu/2024-15-2
https://creativecommons.org/licenses/by/3.0/de/deed.de

Mathematik im Unterricht Ausgabe Nr.15, 2024

17

Mathematische Grundlagen als Schlüssel zu einem allgemeinbildenden Verständnis
von KI: Theoretische Perspektiven und praktische Unterrichtsideen

Sarah Schönbrodt, Reinhard Oldenburg

Abstract. Im aktuellen politischen Diskurs nimmt Künstliche Intelligenz (KI) eine herausragende Stellung ein. Die Erwar-
tung, dass durch KI-Systeme die Lebens- und Arbeitsverhältnisse grundlegend transformiert werden, weist der Schule die
Aufgabe zu, Lernende zu einem reflektierten, informierten Umgang mit ebendiesen Technologien und zugrundeliegenden
Methoden zu befähigen. Alle verbreiteten KI-Anwendungen basieren wesentlich auf mathematischen Grundlagen und es
stellt sich die Frage, inwieweit eine Beschäftigung mit diesen Grundlagen möglich und sinnvoll ist. Dies wird im Beitrag
sowohl theoretisch als auch auf Basis von konkreten Ideen für den Unterricht diskutiert.

Einleitung

Es scheint breiter politischer und gesellschaftlicher Konsens zu sein, dass KI-Technologien unsere Gesell-
schaft in nahezu allen Lebensbereichen transformieren und Kompetenzen im Umgang mit diesen sowohl im
Alltag als auch in zahlreichen Berufsfeldern immer wichtiger werden (vgl. etwa www.bundesregierung.de/breg-
de/themen/digitalisierung/kuenstliche-intelligenz). Die Europäische Kommission hebt in ihrem Bericht
“DigComp 2.2” hervor, dass hierfür durchaus auch ein grundlegendes technisches Verständnis von KI-
Technologien erforderlich ist (European Commission, 2022, S. 77). Zudem betont die UNESCO (2024) im “AI
Competency Framework for Students”, dass es heutzutage zur Aufgabe von (allgemeinbildenden) Schulen
gehört, Lernende in die Lage zu versetzen, KI-Entwicklungen zu bewerten sowie deren Potenziale und Gefah-
ren auf Basis von Wissen und eigener Kompetenz zu beurteilen. Sie sollen darauf vorbereitet werden, als
verantwortungsvolle Nutzer*innen und Mitgestalter*innen von KI zu agieren (UNESCO, 2024, S. 3). Einen
Beitrag dazu können vor allem die Schulfächer Mathematik und Informatik leisten, wobei in der bisherigen
Diskussion vor allem das Fach Informatik als relevant erachtet wird: So ist das Thema KI u. a. in Bayern
(Staatsinstitut für Schulqualität und Bildungsforschung, 2022), Nordrhein-Westfalen (Ministerium für Schule
und Weiterbildung des Landes Nordrhein-Westfalen, 2021, S. 18) sowie in Österreich im Schulfach Informatik
verankert. In Österreich wird KI zudem im Lehrplan der Digitalen Grundbildung benannt (Bundesministerium
für Bildung, Wissenschaft und Forschung, 2024).

Der Relevanz des Informatikunterrichts für KI-Bildung soll hier zwar nicht widersprochen werden, dennoch soll
in diesem Beitrag herausgearbeitet werden, welche Rolle die Mathematik für Verfahren des maschinellen Ler-
nens spielt und welche grundlegenden Eigenschaften dieser Verfahren durch mathematische Überlegungen
verstanden werden können. Die pädagogische Intention dabei ist die des “Empowerment” (Ernest, 2002), also
die Förderung von Handlungskompetenz in bestimmten Tätigkeitsbereichen mit dem Ziel, Jugendliche zum
aktiven Gestalten zu befähigen.1 Dies führt dazu, dass unsere Perspektive eine stark mathematisch-technolo-
gische Dimension hat. Dies soll keine Reduktion des Bildungsanspruchs auf eine technokratische Perspektive
implizieren. Vielmehr sind wir der Meinung, dass auch der gesellschaftliche Diskurs über die Auswirkungen
des maschinellen Lernens von einer Demystifizierung der Technik profitiert und insbesondere den in diversen
Gesellschaften vorhandenen Ängsten vor KI (Sindermann et al., 2022) durch Aufklärung entgegenwirken
kann. Gleichzeitig kann ein solcher Unterricht die fundamentale Rolle der Mathematik2 für moderne, relevante

1 Ernest (2002) klassifiziert drei Arten des Empowerments: “mathematical empowerment” (Mathematik und ihre Sprache
nutzen und anwenden können), "social empowerment" (die Nutzung mathematischer Kompetenzen zur Verbesserung der
sozialen Situation) und "epistemological empowerment" (Korrektheit und Gültigkeit von Wissen einschätzen können). Alle
drei Arten können durch die Beschäftigung mit den von uns behandelten Themen gefördert werden.
2 Diese Rolle wird nunmehr auch von den mathematischen Fachgesellschaften in ihrer Stellungnahme “Warum ist Mathe-
matik für Künstliche Intelligenz unentbehrlich?” betont, www.mathematik.de/dmv-blog/5090-warum-ist-mathematik-
f%C3%BCr-k%C3%BCnstliche-intelligenz-unentbehrlich. Zugegriffen: 14.08.2024.

Mathematik im Unterricht Ausgabe Nr.15, 2024

18

Technologien aus dem Bereich KI ersichtlich machen. Dass es möglich ist, die komplexen mathematischen
Hintergründe von KI-Systemen auf Schulniveau zugänglich zu machen, wird in verschiedenen Veröffentlichun-
gen an exemplarischen maschinellen Lernmethoden herausgearbeitet (vgl. z. B. Biehler & Fleischer, 2021;
Hazzan & Mike, 2021; Schönbrodt et al., 2022; Kindler et al., 2023; Schönbrodt et al., 2023).

Der Begriff Künstliche Intelligenz wird in der Literatur sehr breit gefasst – eine einheitliche Definition sucht man
vergeblich. Im Wesentlichen bezeichnen wir KI hier als Oberbegriff für alle Technologien, die Computersys-
teme in die Lage versetzen, eine Aufgabe bzw. ein Problem zu lösen, dessen Lösung gemeinhin mit Fähig-
keiten von „intelligenten“ Menschen assoziiert wird und deren Beherrschung durch Maschinen überraschend
ist. Früher wurden auch klassische Schachcomputer oder Computeralgebrasysteme der KI zugerechnet – in
einer modernen Sichtweise ist das nicht mehr so, da diese Probleme rein algorithmisch gelöst werden können
und die Algorithmen explizit programmiert werden.

Etwas greifbarer wird es, wenn man unter die Haube von modernen KI-Systemen schaut und die zugrunde
liegenden (mathematischen) Methoden aus dem Bereich des maschinellen Lernens (ML), zu denen u. a.
künstliche neuronale Netze gehören, in den Blick nimmt. Genau darauf legen wir in diesem Beitrag den Fokus.
Das ML beruht ganz wesentlich auf Mathematik und Daten. Es umfasst eine Vielzahl an Verfahren, darunter
solche aus dem Bereich des überwachten Lernens (supervised learning), bei dem auf einen Fundus richtiger
Beispiele zurückgegriffen wird, und aus dem unüberwachten Lernen (unsupervised learning), bei dem Daten
bspw. durch Clustering organisiert werden. Der Schwerpunkt dieses Beitrags liegt auf Methoden des über-
wachten Lernens.

Wenn Lernenden ein komplexes Thema wie die Funktionsweise von ML-Methoden nahegebracht werden soll,
stellt sich die Frage des richtigen Erklärungsmaßstabs. Eine Analogie soll das erläutern: Wer das Leben mit
biologischen Begriffen verstehen will, kann bei der Zellchemie anfangen, das Zusammenwirken der Organe in
einem Organismus studieren, oder die evolutionären Mechanismen in ganzen Populationen. Das Phänomen
des Lebens kann also auf unterschiedlichen Maßstäben verstanden werden und alle haben offensichtlich ihre
Berechtigung. Übertragen auf das Gebiet der KI stellt sich die Frage, wie wichtig ein Verständnis von KI-
Systemen und den zugrundeliegenden ML-Methoden auf unterschiedlichen Maßstäben ist. Rahwan et al.
(2019) argumentieren, dass eine solche mehrstufige Herangehensweise auch einen geeigneten Ansatz für
das Verständnis von Maschinen liefert. In diesem Beitrag werden zentrale mathematische Säulen von ML-
Methoden (Daten, Optimierung, Messung von Ähnlichkeit und Distanzen, Wahrscheinlichkeit und statistische
Gütemaße, s. Abb. 1) erläutert und drei verschiedenen Erklärungsmaßstäben bzw. Ebenen zugeordnet: der
Mikroebene einzelner elementarer mathematischer Objekte und Operationen, der Mesoebene, in der es um
das Zusammenspiel der elementaren mathematischen Komponenten geht und der Makroebene, auf der das
gesamte System und dessen Einbettung in die Gesellschaft betrachtet wird. Die drei Ebenen werden im Ab-
schnitt “Didaktische Einordnung” detaillierter aufgeschlüsselt und es wird diskutiert, welchen spezifischen Bil-
dungsbeitrag unterrichtliche Zugänge auf den drei Ebenen leisten können.

Abb. 1: Mathematische Säulen zahlreicher maschineller Lernmethoden

Die fünf (sicherlich nicht abschließenden) mathematischen Säulen (siehe Abb. 1) werden im Folgenden in
unterschiedlicher Tiefe beschrieben. Als mathematische Säulen wurden Konzepte bzw. Themengebiete aus-
gewählt, die bei der Entwicklung von KI-Systemen basierend auf verschiedenen ML-Methoden eine zentrale
Rolle spielen. Besonders detailliert gehen wir auf die Säule “Optimierung” ein. Diese hat in der didaktischen
Literatur rund um die Vermittlung von ML-Methoden bisher weniger Beachtung gefunden, erscheint uns jedoch
als sehr relevant und durchaus zugänglich. Die mathematische Modellierung bildet in Abbildung 1 das Funda-
ment. Sie spielt eine tragende, säulenübergreifende Rolle. Letztlich kann der Entwicklungsprozess von KI-

Mathematik im Unterricht Ausgabe Nr.15, 2024

19

Systemen, die auf ML-Methoden basieren, als (datenbasierte) mathematische Modellierung verstanden wer-
den.

Um die mathematischen Grundlagen von ML-Methoden im Unterricht nicht nur theoretisch zu thematisieren,
sondern computergestützt auch umzusetzen, finden sich unter https://github.com/Schoenbrodt/KI-Bildung-im-
MU diverse Umsetzungsbeispiele in Form von Jupyter Notebooks3 basierend auf der Programmiersprache
Python. Dies ermöglicht es Lernenden, ihr Verständnis durch computergestützte Anwendung und Variation
der im Folgenden vorgestellten mathematischen Methoden zu überprüfen und den vorhandenen Code als
Basis für eigene Anwendungen zu nutzen (und somit den Zielen des Empowerments gerecht zu werden). Eine
solche aktive Auseinandersetzung scheint gerade bei einem so tiefgründigen und mathematisch facettenrei-
chen Thema wichtig.

Säule 1: Daten

In der Literatur wird das maschinelle Lernen häufig als Entwicklung von Computerprogrammen oder Algorith-
men beschrieben, die „aus Erfahrung” (Mitchell, 1995, S. 2) bzw. „aus Daten” lernen. Diese Beschreibung ist
aus unserer Sicht nicht ideal (da mystisch und mathematisch unpräzise), macht aber zumindest deutlich, dass
die Basis vieler ML-Methoden (zahlreiche!) Daten sind. Der Umgang mit Daten und die Analyse und Vorver-
arbeitung der Daten mit mathematischen (insbesondere statistischen) Methoden spielt im Kontext des MLs in
vielerlei Hinsicht eine wichtige Rolle. Dazu ließe sich einerseits ein ganzer Beitrag füllen, andererseits gibt es
aus der Forschung zu Data Science Education und Data Literacy bereits zahlreiche Publikationen und Vor-
schläge für die unterrichtspraktische Umsetzung (vgl. z. B. Gould et al., 2016; Gould, 2021; Engel, 2017; Dvir
et al., 2022). Wir umreißen daher lediglich verschiedene Teilfragen und gehen auf ausgewählte mathemati-
sche Aspekte detaillierter ein, die eng mit den weiteren mathematischen Säulen verzahnt sind und interessante
Anregungen für die unterrichtliche Diskussion der mathematischen Aspekte von ML-Methoden liefern.

Ausgangspunkt für die Entwicklung von KI-Systemen sind in der Regel reale Problemstellungen, zum Beispiel:

● Wie können Bilder von Gesichtern korrekt den jeweiligen Personen zugeordnet werden?

● Wie können Fitness-Tracker menschliche Aktivitäten möglichst genau erkennen?

● Wie kann das Risiko, an einer Herzkrankheit zu erkranken, möglichst präzise vorhergesagt werden?

Zur Beantwortung solcher Fragen mit ML-Methoden werden vergangene Daten verwendet. Beim überwachten
Lernen bestehen diese aus Inputdaten (auch Eingabedaten oder Werte von Prädiktorvariablen)4 𝒙௜ ∈ ℝ௡ und
zugehörigen Outputdaten (auch Ausgabedaten oder Werte der Zielvariablen) 𝒚௜ ∈ ℝ௠ für 𝑖 ൌ 1, . . . ,𝑁. Am Bei-
spiel der menschlichen Aktivitätserkennung können die Inputdaten bspw. aus der Zeit, der Herzfrequenz und
der Beschleunigung (d. h. 𝒙௜ ∈ ℝଷሻ bestehen. Die zugehörigen Outputdaten können die Klassen 1 (= Laufen),
2 (= Gehen), 3 (= Treppensteigen) und 4 (= Sitzen) sein, d. h. 𝑚 ൌ 1,𝑦௜ ∈ ሼ1,2,3,4ሽ.

Basierend auf den bekannten Daten wird ein mathematisches Modell (meist eine Funktion 𝑓:ℝ௡ → ℝ௠) entwi-
ckelt, das Zusammenhänge zwischen den bekannten Input- und Outputdaten möglichst präzise beschreiben
soll. Ziel ist es, das entwickelte mathematische Modell zu nutzen, um auch für neue, bisher ungesehenen
Inputdaten 𝒙 eine möglichst gute Vorhersage für den zugehörigen Output 𝐲 berechnen zu können. Um vali-
dieren zu können, wie gut die Vorhersagen des Modells sind, werden die bekannten Daten in Trainings- und
Testdaten unterteilt. Die Trainingsdaten werden zur Entwicklung des mathematischen Modells verwendet – in
der KI-Sprechweise zum “Lernen bzw. Trainieren des Modells”. Die Testdaten dienen zur Validierung. Dazu
werden mithilfe des mathematischen Modells die Outputs für alle Inputdaten des Testdatensatzes vorherge-
sagt. Die Vorhersagen können dann mit den tatsächlichen Outputs verglichen werden. Dazu kommen statisti-
sche Gütemaße zum Einsatz (vgl. Abschn. Statistische Gütemaße).

Um reale Fragestellungen mit datenbasierten ML-Methoden zu lösen, sind schon vor der eigentlichen Ent-
wicklung der Methode diverse Fragen im Hinblick auf die Verwendung und Verarbeitung der Daten relevant.

3 Im folgenden Text wird an verschiedenen Stellen auf die Jupyter Notebooks hingewiesen, indem ihr Dateiname angege-
ben wird (mit der Endung .ipynb). Alle Notebooks sind unter dem oben angegebenen Link verfügbar.
4 In diesem Beitrag bezeichnet 𝒙௜ ∈ ℝ௡ (fett gedruckt) den 𝑖-ten Datenvektor. Der 𝑗-te Eintrag des Vektors wird mit 𝑥௝ ∈ ℝ
bezeichnet.

Mathematik im Unterricht Ausgabe Nr.15, 2024

20

Unter anderem: Welche Informationen bzw. Daten benötige ich? Wie kann ich diese beschaffen? Muss ich die
entsprechenden Daten zunächst selbst erheben oder aufnehmen oder gibt es bereits frei verfügbare Datens-
ätze? Wie stelle ich die Daten in geeigneter Weise dar? Welche (mathematischen) Repräsentationen sind
dafür geeignet? Welche Erkenntnisse über die Verteilung und Qualität der Daten liefert eine erste Erkundung,
u. a. durch Visualisierung der Daten? Sind die Daten fehlerbehaftet? Gibt es Ausreißer? Wie gehe ich mit
fehlenden Daten um? Sind meine Daten divers und repräsentativ genug, um das gegebene Problem möglichst
robust zu lösen? Beinhalten die vergangenen Daten womöglich statistische Verzerrungen (Bias)? Kann es
passieren, dass statistische Verzerrungen in den vergangenen Daten durch Anwendung prädiktiver Modelle
in die Zukunft fortgeschrieben werden? Kann es damit womöglich zu Diskriminierungen kommen? Welche
ethischen und gesetzlichen Regelungen, bspw. zu Datenschutz, Privatsphäre oder geschützten Merkmalen
von Personen (u. a. das Geschlecht), müssen im Hinblick auf die Verwendung der Daten beachtet werden?

Die Diskussion von Daten als Ausgangspunkt für die Entwicklung von KI-Systemen ist im Unterricht auf unter-
schiedlichen Ebenen möglich. Auf der Mikroebene können bspw. detaillierte Analysen der statistischen Eigen-
schaften des Datensatzes durchgeführt oder statistischen Methoden zur Ausreißeridentifikation diskutiert und
angewendet werden. Auch die Kodierung von Daten liegt auf dieser Ebene. Auf der Mesoebene können Daten
aggregiert und etwa mit Streu- oder Lagemaßen charakterisiert werden. Auf der Makroebene können der Ein-
fluss verschiedener Trainingsdatensätze auf die Ergebnisse eines ML-Modells erkundet und ethisch-gesell-
schaftliche sowie gesetzliche Fragen im Umgang mit Daten diskutiert werden.

Säule 2: Optimierung

Intelligenz wird oft verstanden als Anpassungsleistung – so etwa William Stern (1911), der Intelligenz als Fä-
higkeit zur Anpassung an unbekannte Situationen definierte. In gewissem – wenn auch anderem – Sinne gilt
das auch für Systeme, die als künstliche Intelligenz bezeichnet werden. Diese Anpassung kann als Optimie-
rung verstanden werden – die Diskrepanz zwischen einem berechneten und einem gewünschten Ergebnis
(bekannte Outputdaten) wird verringert. Diese Sichtweise wird hier als Leitlinie verwendet, um ausgehend von
einfachen, schulüblichen Extremwertaufgaben bis zu künstlichen neuronalen Netzen voranzuschreiten.

Minimierung von Funktionswerten

Die in der Schule dominierende Methode zur Bestimmung von Extremstellen von Funktionen ℝ → ℝ ist das
Ableitungskalkül. Numerische Verfahren kommen aber – in den einfachsten Versionen – mit viel weniger The-
orie aus. Ein Minimum einer Funktion 𝑓:ℝ → ℝ zu finden, ist dann ein iterativer Suchprozess: Ausgehend von
einem Startwert 𝑥଴ wird der Funktionswert 𝑓ሺ𝑥଴ሻ mit dem Wert 𝑓ሺ𝑥଴ ൅ 𝛿ሻ an der Stelle 𝑥଴ ൅ 𝛿 verglichen. Falls
𝑓ሺ𝑥଴ ൅ 𝛿ሻ ൏ 𝑓ሺ𝑥଴ሻ wird im nachfolgenden Schritt die Umgebung der Stelle 𝑥ଵ:ൌ 𝑥଴ ൅ 𝛿 betrachtet. Andernfalls
wird untersucht, ob die Funktionswerte nach links kleiner werden. Gilt also 𝑓ሺ𝑥଴ െ 𝛿ሻ ൏ 𝑓ሺ𝑥଴ሻ wird die Stelle
zu 𝑥 ଵ:ൌ 𝑥଴ െ 𝛿 geändert. Dies wird so lange fortgeführt, bis ein gewähltes Abbruchkriterium erfüllt ist. Mögliche
Abbruchkriterien sind, dass eine maximale Anzahl an Iterationsschritten erreicht wurde oder die Änderung der
Funktionswerte unter einen gewissen Schwellenwert 𝜖 fällt. Die konkrete Umsetzung in Python erfordert nur
wenige Programmzeilen (vgl. numerische_Optimierungsverfahren.ipynb).

Dieser simple Algorithmus, der für Maximierungsprobleme auch als Bergsteigeralgorithmus bezeichnet wird,
ist sehr ineffizient – es gibt viel schnellere Verfahren – aber er zeigt doch vier grundlegende Prinzipien, die er
mit den meisten effizienteren Algorithmen gemein hat:

● Die Suche beginnt bei einem Startwert und es wird mit einer gewissen, ggf. dynamischen Schrittweite
iterativ vorangeschritten.

● Das Verfahren endet, wenn ein vorgegebenes Abbruchkriterium erreicht wurde.

● Das Ergebnis kann sowohl vom Startwert als auch von der Schrittweite (im Bereich des MLs oft als
Lernrate bezeichnet) abhängen. Da in der Regel nur ein lokales Minimum gefunden wird, haben der
Startwert und die Schrittweite entscheidenden Einfluss auf das gefundene Minimum, insbesondere
wenn mehrere lokale Minima existieren (Abb. 2).

● Die Ergebnisse sind in der Regel nicht exakt, sondern lediglich numerische Approximationen.

Mathematik im Unterricht Ausgabe Nr.15, 2024

21

Numerische Algorithmen zur Minimierung sind ein klassisches Thema der mathematischen Forschung und die
Zahl der Methoden ist unüberschaubar groß. Es gibt deutlich bessere Algorithmen, aber als mentales Modell
von deren typischer Arbeitsweise reicht das beschriebene Verfahren völlig aus.

Abb. 2: Simples numerisches Optimierungsverfahren mit Startwert 𝑥଴ ൌ 0,4, Schrittweite 𝛿 ൌ 0,1 und Zielfunktion 𝑓
mit 𝑓ሺ𝑥ሻ ൌ 𝑐𝑜𝑠ሺ𝑥ሻ ൅ 3 ⋅ 𝑠𝑖𝑛ሺ0,6𝑥 െ 2ሻ ൅ 3 ⋅ 𝑐𝑜𝑠ሺ2𝑥 െ 2ሻ

Im Falle von Funktionen einer reellen Variablen können in der Diskussion mit Schüler*innen die Ergebnisse
eines solchen Algorithmus den Berechnungen im Ableitungskalkül gegenübergestellt werden (sofern die Funk-
tion differenzierbar ist, was der Algorithmus nicht voraussetzt).

Mehrdimensionale Funktionen: Beim ML spielen in der Regel Funktionen eine Rolle, die von mehr als einer
Variable abhängen. Mit Schüler*innen kann sukzessive vom ein-, zum zwei-, zum N-dimensionalen Fall vo-
rangeschritten werden – gestützt durch Visualisierungen in den ersten beiden Fällen. Die Bedeutung eines
Minimums einer Funktion in zwei reellen Variablen lässt sich am Funktionsgraph im Dreidimensionalen deut-
lich machen (Abb. 3). Auch die rechnerische Vorstellung, dass eine lokale Minimalstelle 𝒙∗ ∈ ℝଶ eine Stelle
ist, an der der Funktionswert 𝑓ሺ𝒙∗ሻ so klein ist, dass es – zumindest in einer Umgebung – keinen kleineren
gibt, lässt sich damit aufbauen.

Abb. 3: Visualisierung des Gradientenabstiegsverfahrens an einer Zielfunktion in zwei Variablen

Eine simple Erweiterung unseres Minimierungsalgorithmus für Funktionen 𝑓 auf ℝଶ ist die Folgende: Man
minimiert 𝑓ሺ𝑥ଵ, 𝑥ଶሻ zunächst mit dem eindimensionalen Algorithmus bzgl. 𝑥ଵ (𝑥ଶ ist fest), dann wechselt man
zu 𝑥ଶ (bei festem 𝑥ଵ). Einfache Beispiele zeigen, dass es damit oft noch nicht getan ist: Man muss beide
Optimierungsschritte vielfach wiederholen, bis sich das Ergebnis stabilisiert. Das Verfahren ist rechenaufwen-
dig, aber es ist plausibel, dass Computer das für wenige Variablen leisten können. Wird dieses Verfahren
jedoch zum Lösen von Minimierungsproblemen mit Millionen von Variablen eingesetzt (wie es bei künstlichen
neuronalen Netzen oft der Fall ist), ist das Vorgehen nicht effizient genug. Es braucht also raffiniertere Verfah-
ren, um möglichst schnell zu möglichst exakten Ergebnissen zu kommen. Wir diskutieren hier einen zweiten
elementaren Algorithmus, um den Schüler*innen die Erfahrung zu ermöglichen, dass es sich lohnt, weiter an
besseren Algorithmen zu forschen.

Mathematik im Unterricht Ausgabe Nr.15, 2024

22

Ein effizienterer Algorithmus, der auch in der Praxis Einsatz findet, ist das Verfahren des steilsten Abstiegs
(Gradientenverfahren, vgl. z. B. Deisenroth et al., 2020, Kap. 7). Anstatt immer nur in eine Koordinatenrichtung
zu gehen, wird der Gradient bestimmt. Dieser gibt die Richtung des steilsten Anstiegs und entgegengesetzt
die Richtung des steilsten Abstiegs an. Wenn man in diese Richtung geht, kommt man schneller zu einem
lokalen Minimum als entlang der Koordinatenrichtung (Abb. 3). Für eine differenzierbare Funktion 𝑓:ℝଶ → ℝ
lautet die Iterationsvorschrift des Verfahrens 𝒙௞ାଵ ≔ 𝒙௞ െ 𝛿 ⋅ 𝛻𝑓ሺ𝒙௞ሻ, wobei 𝛻𝑓ሺ𝒙௞ሻ der Gradient von 𝑓 an der
Stelle 𝒙௞ des 𝑘-ten Iterationsschritts und 𝛿 die Schrittweite ist. An diesem Verfahren können die Lernenden
erkennen, dass die Differentialrechnung, die in der Schule stark mit Optimierungsproblemen in einer Variablen
verbunden wird, eine große Bedeutung behält, auch wenn Computer zur approximativen Lösung benutzt wer-
den. Wie erwähnt gibt es effizientere Verfahren, die aber das Gleiche leisten. Viele davon können in Python
mit dem Paket scipy genutzt werden.

Es bietet sich an, Lernende computergestützt mit unterschiedlichen Zielfunktionen, Startwerten und Schritt-
weiten experimentieren und die oben genannten vier Prinzipien numerischer Optimierungsverfahren erkunden
zu lassen. Dazu kann das Notebook numerische_Optimierungsverfahren.ipynb eingesetzt werden. Auch der
Übergang zu Funktionen auf ℝ௡ kann computergestützt realisiert werden.

Allgemein betrachtet bestimmen die beschriebenen Algorithmen eine Lösung des allgemeinen Optimierungs-
problems min

𝒙
𝑓ሺ𝒙ሻ mit stetiger Zielfunktion 𝑓:ℝ௡ → ℝ, indem sie ausgehend von einem Startwert 𝒙଴ ∈ ℝ௡ ap-

proximativ ein lokales Minimum mit zugehöriger Minimalstelle 𝒙∗ ∈ ℝ௡ suchen – sofern eine solche existiert.
Für eine lokale Minimalstelle muss 𝑓ሺ𝒙ሻ ൒ 𝑓ሺ𝒙∗ሻ für alle 𝒙 ∈ 𝑈ሺ𝒙∗ሻ gelten, wobei 𝑈ሺ𝒙∗ሻ eine Umgebung von 𝒙∗
bezeichnet. Zahlreiche ML-Methoden lösen Spezialfälle des allgemeinen Optimierungsproblems (künstliche
neuronale Netze, lineare Regressionsanalyse, Support Vector Machine).

Lineare Regression

Es gibt unzählige Anwendungen von Optimierungsverfahren, hier werden nur solche aus dem Bereich des
MLs behandelt. Als eines der einfachsten ML-Verfahren gilt die lineare Regressionsanalyse, deren Kern das
Lösen eines Optimierungsproblems ist.

Wir betrachten zunächst ein Beispiel mit zweidimensionalen Datenpunkten ሺ𝑥௜ ,𝑦௜ሻ ∈ ℝଶ, 𝑖 ൌ 1, . . . ,𝑁 (die Trai-
ningsdaten), aus denen ein Modell entwickelt („gelernt“) werden soll, welches für weitere 𝑥-Werte einen pas-
senden 𝑦-Wert vorhersagen kann. Wir unterstellen hier, dass es einen linearen Zusammenhang 𝑦 ൌ 𝑚𝑥 ൅ 𝑏
gibt, und versuchen für die Parameter 𝑚 und 𝑏 die besten Werte zu schätzen. Dazu muss definiert werden,
was mit “den besten” Werten gemeint ist. Dafür gibt es mehrere Strategien, die auch mit Schüler*innen erar-
beitet werden können (Schönbrodt & Frank, 2024). Die verbreitetste ist die Minimierung der Summe der Feh-
lerquadrate (Methode der kleinsten Quadrate): Für 𝑥௜ prognostiziert das Modell den Wert 𝑦ො௜ ൌ 𝑚𝑥௜ ൅ 𝑏. Für die
Trainingsdaten ist der Wert der Zielvariablen 𝑦௜ bekannt, sodass der Fehler 𝑦௜ െ 𝑦ො௜ berechnet werden kann.
Ziel ist es dann, die Quadratsumme der Fehler zu minimieren, also das Minimum der Zielfunktion 𝐹 mit

𝐹ሺ𝑚, 𝑏ሻ ≔ ∑ ൫𝑦௜ െ ሺ𝑚𝑥௜ ൅ 𝑏ሻ൯
ଶே

௜ୀଵ zu bestimmen. Eine computergestützte Umsetzung, die als Ausgangspunkt

für die unterrichtliche Erarbeitung dienen kann, findet sich im Notebook lineare_Regression.ipynb.

Da das ML-Verfahren „Lineare Regressionsanalyse” nicht nur für die Trainingsdaten, sondern insbesondere
für neue Daten gute Vorhersagen liefern soll, wird das Modell auf Testdaten validiert. Die Vorhersagegenau-
igkeit auf den Testdaten dient als Abschätzung der Vorhersagegüte für gänzlich unbekannte Daten (vgl. Ab-
schn. Statistische Gütemaße).

Allgemeiner lassen sich Regressionsprobleme folgendermaßen beschreiben: Gegeben sind 𝑁 Paare von In-
put- und Outputdaten ሺ𝒙௜ ,𝒚௜ሻ mit 𝒙௜ ∈ ℝ௡,𝒚௜ ∈ ℝ௞ für 𝑖 ൌ 1, . . . ,𝑁 (die Trainingsdaten) und eine Modellfunktion
𝑔:ℝ௣ ൈ ℝ௡ → ℝ. In 𝑔ሺ𝒑,𝒙ሻ ist 𝒑 ∈ ℝ௣ ein Vektor von Parametern, im obigen linearen Fall also 𝒑 ൌ ሺ𝑚, 𝑏ሻ und
𝑔ሺሺ𝑚, 𝑏ሻ, 𝑥ሻ:ൌ 𝑚𝑥 ൅ 𝑏. Der Wert dieser Funktion ist die Vorhersage des Modells für die Ausgabe zur Eingabe
𝑥. Der Parametervektor 𝒑 soll so gewählt werden, dass das Modell die Daten möglichst gut widerspiegelt.
Dazu wird eine Zielfunktion, z. B. 𝐹:ℝ௣ → ℝ,𝐹ሺ𝒑ሻ:ൌ ∑ ||𝒚௜ െ 𝑔ሺ𝒑,𝒙௜ሻ||ଶ

ே
௜ୀଵ formuliert. Das “Lernen” der optima-

len Parameter beruht somit auf dem Lösen eines Minimierungsproblems und kann mit den oben beschriebe-
nen Optimierungsverfahren gelöst werden (auch wenn es spezialisierte Verfahren gibt, die effizienter sind).
Diese allgemeine Beschreibung eines Regressionsproblems macht deutlich, dass es neben dem linearen Fall
auch die Möglichkeit gibt, die Prognosefunktion 𝑔 beliebig, also z. B. nichtlinear zu wählen. Die Nichtlinearität

Mathematik im Unterricht Ausgabe Nr.15, 2024

23

kann die Prädiktorvariablen oder die Parameter 𝒑 betreffen, im zweiten Fall spricht man von nichtlinearer
Regression.

Es lohnt sich zu reflektieren, wie viel klassische Mathematik in dieser modernen Anwendung steckt: Die Mo-
dellierung des Zusammenhangs zwischen Input- und Outputdaten mit Funktionen 𝑔, die Minimierung mit Mit-
teln der Analysis und nicht zuletzt das statistische Quantifizieren der Ergebnisse auf den Testdaten. Für diesen
letzten Schritt kann die euklidische Norm oder eine beliebige andere Metrik verwendet werden – womit ein
weiterer klassischer Gegenstand der Mathematik relevant ist (vgl. Abschn. Ähnlichkeits- und Distanzmaße).

Zwischenfazit: Zentrale Schritte bei der Entwicklung von ML-Methoden

Die lineare Regression macht einige zentrale Elemente zahlreicher ML-Methoden ersichtlich, so auch von den
im Folgenden beschriebenen künstlichen neuronalen Netzen (vgl. dazu auch Biehler et al., 2024):

1. Trainings- und Testdaten: Ausgangspunkt sind bekannte Input- und zugehörige Outputdaten. Diese
werden in der Regel geeignet vorverarbeitet und dann in Trainings- und Testdaten unterteilt.

2. Festlegung auf ein mathematisches Modell: Es wird ein mathematisches Modell festgelegt, viel-
fach eine gewisse Funktionsklasse, aus der die Funktion gewählt werden soll, die die gegebenen
Trainingsdaten „bestmöglich“ beschreibt. Mit anderen Worten sollen gewisse Parameter der Funktion
/ des Modells bestmöglich geschätzt werden.

3. Formulierung eines Optimierungsproblems: Es ist zu klären, was mit „bestmöglich“ gemeint ist.
Dazu wird eine Metrik gewählt und darüber eine Fehlerfunktion definiert, die die Abweichung zwi-
schen den tatsächlichen Outputdaten 𝒚௜ und den Prognosen 𝒚ෝ௜ beschreibt.

4. Lösen des Optimierungsproblems: Ziel ist es, die Parameter des Modells so zu wählen, dass der
Fehler bzgl. der Trainingsdaten möglichst klein wird. Dazu kommen meist5 numerische Verfahren
zum Einsatz. Dieser Schritt wird auch als Trainingsphase bezeichnet.

5. Testen und Validieren des Modells: Bevor das Modell in die Anwendung geht, wird es auf Daten
validiert, die nicht in der Phase der Modellentwicklung eingesetzt wurden. Dazu kommen die Testda-
ten zum Einsatz. Dieser Schritt wird auch als Testphase bezeichnet.

Insbesondere in Schritt 2 und 3 wird die Rolle des oder der Modellierer*in ersichtlich: gewisse Entscheidungen
werden eben auch beim ML noch vom Menschen getroffen, z. B. die Wahl der Funktionsklasse und der Feh-
lerfunktion, aber auch Parameter (sog. Hyperparameter) im Optimierungsalgorithmus (bspw. der Startwert).

Die Regressionsanalyse ist ein Beispiel für ein Verfahren des MLs, das sehr transparent ist: Es ist leicht ver-
ständlich, wie das „Training“ wirkt, wie auf der Basis der gelernten Parameter Vorhersagen berechnet werden
und was die Parameter darin bedeuten (s. folgendes Beispiel). Dies liegt an der simplen Modellfunktion. Wird
diese komplexer, wie das bei künstlichen neuronalen Netzen der Fall ist, geht die Interpretierbarkeit der ein-
zelnen Parameter oft verloren.

Beispiel: Regression zur Vorhersage von Ferienhauspreisen

Als Anwendungsbeispiel für Regressionsprobleme betrachten wir folgende Frage: Wie lässt sich aus verschie-
denen Angaben über ein Ferienhaus dessen Mietpreis vorhersagen? Als Trainingsdatensatz wurden aus ei-
nem Online-Portal folgende Daten von 83 Ferienhäusern auf Bornholm herausgesucht: Zahl der erlaubten
Personen, Zahl der Zimmer, Wohnfläche in qm, Erlaubnis von Hunden (kodiert als nein = 0 bzw. ja = 1), Zahl
der Sterne bzgl. der Qualität der Ausstattung (3, 4 oder 5), Meerblick (0-1-kodiert), die Entfernung zum Meer
und der Mietpreis für eine Woche im Spätsommer. Bei fast allen Variablen spricht ein hoher Wert für einen
hohen Preis – außer bei der Entfernung zum Meer. Die Prädiktorvariablen für jedes Haus sind
𝒙 ൌ ሺ𝑃𝑒𝑟𝑠,𝑍𝑖𝑚𝑚𝑒𝑟,𝑊𝑓𝑙,𝐻𝑢𝑛𝑑, 𝑆𝑡𝑒𝑟𝑛𝑒,𝑀𝑒𝑒𝑟𝑏𝑙𝑖𝑐𝑘,𝑀𝑒𝑒𝑟𝑒𝑛𝑡𝑓ሻ, die Zielvariable ist der Mietpreis. Welche Prog-
nosefunktion man für die Vorhersage nimmt, ist eine Frage, bei der man viel diskutieren und ebenso viel aus-
probieren kann. Wir haben uns für die Funktion 𝑔 mit

𝑔ሺ𝒑,𝒙ሻ ൌ 𝑐𝑃𝑒𝑟𝑠 ⋅ 𝑃𝑒𝑟𝑠 ൅ 𝑐𝑍𝑖𝑚𝑚𝑒𝑟 ⋅ 𝑍𝑖𝑚𝑚𝑒𝑟 ൅ 𝑐𝑊𝑓𝑙 ⋅ 𝑊𝑓𝑙 ൅ 𝑐𝐻𝑢𝑛𝑑 ⋅ 𝐻𝑢𝑛𝑑 ൅⋯

5 Im Falle der linearen Regression ließe sich das Problem noch analytisch lösen, dies ist bei den meisten anderen Opti-
mierungsproblemen im Kontext von ML-Methoden nicht möglich.

Mathematik im Unterricht Ausgabe Nr.15, 2024

24

𝑐𝑆𝑡𝑒𝑟𝑛𝑒 ⋅ ሺ𝑆𝑡𝑒𝑟𝑛𝑒 െ 3ሻ ൅ 𝑐𝑀𝑒𝑒𝑟𝑏𝑙𝑖𝑐𝑘 ⋅ 𝑀𝑒𝑒𝑟𝑏𝑙𝑖𝑐𝑘 ൅
𝑐𝑀𝑒𝑒𝑟𝑒𝑛𝑡𝑓

ඥ𝑀𝑒𝑒𝑟𝑒𝑛𝑡𝑓
൅ 𝑐଴

und Parametervektor 𝒑 ൌ ሺ𝑐𝑃𝑒𝑟𝑠, 𝑐𝑍𝑖𝑚𝑚𝑒𝑟, 𝑐𝑊𝑓𝑙, 𝑐𝐻𝑢𝑛𝑑, 𝑐𝑆𝑡𝑒𝑟𝑛𝑒, 𝑐𝑀𝑒𝑒𝑟𝑏𝑙𝑖𝑐𝑘, 𝑐𝑀𝑒𝑒𝑟𝑒𝑛𝑡𝑓, 𝑐଴ሻ ∈ ℝ଼ entschie-
den. Der Parametervektor wird durch Lösen eines Optimierungsproblems bestmöglich bestimmt. Der Ansatz
mit der Quadratwurzel der Entfernung zum Meer folgt der Intuition, dass ein Haus nahe am Meer teurer sein
sollte als ein weiter entferntes, und dass die Nähe zum Meer den Preis treibt. Eine Realisierung findet man im
Notebook Ferienhauspreise_linReg.ipynb. Die aus der Optimierung gewonnenen optimalen Parameterwerte
können zum einen genutzt werden, um bei weiteren Häusern vorherzusagen, wie teuer sie vermutlich sind,
zum anderen können die Werte auch interpretiert werden: So ergibt sich etwa 𝑐𝑃𝑒𝑟𝑠 ൌ 10,20 € und
𝑐𝑍𝑖𝑚𝑚𝑒𝑟 ൌ 108 €, d. h. vor allem bestimmt die Zahl der Zimmer den Preis. Der Blick aufs Wasser ist – bei
sonst gleichen Hausparametern – gar nicht so teuer: 𝑐𝑀𝑒𝑒𝑟𝑏𝑙𝑖𝑐𝑘 ൌ 39 € .

Die Qualität eines Regressionsmodells lässt sich z. B. mit dem mittleren quadratischen Fehler der Prognosen
auf den Trainings- und Testdaten bewerten. Damit lässt sich Modellvariation systematisch betreiben. Eine
Option wäre im obigen Modell zur Zielfunktion einen nichtlinearen Term 𝑐𝑊𝑓𝑙 ⋅ 𝑊𝑓𝑙 ⋅ 𝑐𝑆𝑡𝑒𝑟𝑛𝑒 ⋅ ሺ𝑆𝑡𝑒𝑟𝑛𝑒 െ 3ሻ
hinzuzufügen. Die Idee dabei ist, dass hochwertige Wohnfläche besonders teuer ist. Modelldiskussion und
Modellkritik ergeben sich aus einer solchen Fragestellung fast automatisch.

Künstliche neuronale Netze

Mit einem künstlichen neuronalen Netz (KNN) lassen sich unterschiedliche Aufgaben lösen – insbesondere
Regressionsprobleme (𝒚௜ numerisch) und Klassifikationsprobleme (𝒚௜ kategorial), aber auch das Auffinden
von Clustern in Datensätzen ist damit möglich (unüberwachtes Lernen).

Die Antworten eines KNNs stammen im Gegensatz zur recht transparenten linearen Regression meist aus für
uns „unergründlichen Tiefen“ seiner inneren Vernetzung (also einer komplexen Prognosefunktion 𝑔). Gemein-
sam ist beiden Verfahren, dass sie auf ein Optimierungsproblem hinauslaufen und gewisse Parameter einer
von uns definierten Modellklasse (Funktionsklasse) optimal gewählt werden sollen.

Das Neuron

Die Idee von KNNs stammt aus der Biologie: Gewisse Strukturen des Nervensystems werden mit Mitteln der
Mathematik und der Informatik modelliert. Nervenzellen (Neuronen) sammeln über mehrere Dendriten Signale
und aggregieren diese. Zusammen bestimmen sie das Aktionspotential, das über das Axon und Synapsen an
weitere Neuronen weitergegeben wird, sofern ein gewisser Schwellenwert erreicht wurde. Man spricht auch
davon, dass das Neuron “feuert”.

Abb. 4: Visualisierung eines künstlichen Neurons

In KNNs wird ein Neuron mathematisch durch eine Funktion 𝑔: ℝ௞ → ℝ mit 𝑔ሺ𝒙ሻ ൌ 𝜎ሺ𝒘 ⋅ 𝒙 ൅ 𝑏ሻ modelliert.
Hierbei sind 𝒘 ∈ ℝ௞ Parameter (Gewichte), die im Skalarprodukt 𝒘 ⋅ 𝒙 die Sensitivität des Neurons auf Ein-
träge des Inputvektors 𝒙 ∈ ℝ௞ gewichten. Der Parameter 𝑏 ∈ ℝ ist eine Gesamtverschiebung (Bias). Schema-
tisch wird dies oft wie in Abbildung 4 dargestellt. Das “Feuern” eines biologischen Neurons wird modelliert
durch eine nichtlineare Funktion, die als Aktivierungsfunktion bezeichnet wird. Oft verwendete Aktivierungs-

funktionen sind die Sigmoid-Funktion 𝜎:ℝ → ℝ,𝜎ሺ𝑧ሻ ൌ
ଵ

ଵା௘ష೥
 (ein netter Gegenstand für eine schnelle Kurven-

diskussion) oder die ReLU-Funktion 𝜎:ℝ → ℝ,𝜎ሺ𝑧ሻ ൌ max ሺ0, 𝑧ሻ.

Mathematik im Unterricht Ausgabe Nr.15, 2024

25

Das Training bzw. der “Lernprozess” eines künstlichen (mathematischen) Neurons beruht auf der Bestimmung
der optimalen Gewichte 𝒘 und des Bias-Parameters 𝑏, sodass ein unbekannter Zusammenhang zwischen
gegebenen Input- und Outputdaten bestmöglich beschrieben wird. Um dies mit Schüler*innen zu erarbeiten,
bietet es sich an mit niedrigdimensionalen Daten einzusteigen: Es sind Inputdaten 𝒙௜ ∈ ℝଶ und zugehörige
Outputdaten 𝑦௜ ∈ ℝ, 𝑖 ൌ 1, . . . ,𝑁 gegeben. Basierend auf diesen Trainingsdaten sollen die Einträge des Ge-
wichtsvektors 𝒘 ∈ ℝଶ und der Wert des Bias-Parameters 𝑏 ∈ ℝ so gewählt werden, dass die Summe der Feh-
lerquadrate zwischen den berechneten Outputs 𝑦ො௜ und den tatsächlichen Outputdaten 𝑦௜ minimal wird:

min
𝒘,௕

෍ሺ𝜎ሺ𝒘 ⋅ 𝒙௜ ൅ 𝑏ሻ െ 𝑦௜ሻଶ
ே

௜ୀଵ

ൌ min
𝒘,௕

 ෍ሺ𝑦ො௜ െ 𝑦௜ሻଶ
ே

௜ୀଵ

 .

Das Training eines einfachen künstlichen Neurons beruht damit wiederum auf dem Lösen eines Optimierungs-
problems und funktioniert nach dem gleichen Schema wie die numerische Bestimmung der optimalen Para-
meter eines linearen Regressionsmodells. Durch die nichtlineare Aktivierungsfunktion können nun auch nicht-
lineare Zusammenhänge modelliert werden. Das Training von KNNs ist demnach ein Spezialfall der nichtline-
aren Regression. Allerdings ist diese im Allgemeinen sehr rechenaufwendig. Die spezielle, im Folgenden be-
schriebene Struktur von KNNs erlaubt hingegen die Anwendung sehr effizienter Optimierungsalgorithmen.
Damit können sehr große Netze mit Millionen Parametern trainiert werden.

Abb. 5: Eine Ebene von Neuronen aus den Geruchsnerven eines Hundes (Quelle: https://garystockbridge617.getarchive.net/amp/me-
dia/camillo-golgis-image-of-a-dogs-olfactory-bulb-detail-2-957500)

Vom einzelnen Neuron zum neuronalen Netz

Ein einzelnes Neuron macht noch kein Netz. Reale Neuronen sind im Nervensystem und auch im Gehirn
vielfältig verschachtelt, wie etwa Abbildung 5 aus den Geruchsnerven eines Hundes zeigt. Solche Verschach-
telungen werden durch Schichten von Neuronen idealisiert, was mathematisch auf eine Hintereinanderaus-
führung von Funktionen hinausläuft. An der Eingabeschicht legt man ein Signal (einen Inputdatenpunkt)
𝒙 ∈ ℝ௡ an, der in der ersten „versteckten“ Schicht von 𝑘ଵ Neuronen in Vektoren aus ℝ௞భ transformiert wird.
Diese Vektoren dienen als Eingabe für die nächste Schicht usw. bis an der Ausgabeschicht (𝐿-te Schicht) ein
Vektor aus ℝ௞ಽ als Ausgabe berechnet wird. Zur Vereinfachung der Notation erweitert man die Sigmoid-Funk-

tion 𝜎: ℝ → ℝ durch komponentenweises Anwenden auf 𝜎: ℝ௡ → ℝ௡. Damit lässt sich die Ausgabe 𝒂ሺ௟ሻ einer
beliebigen Schicht 𝑙 ∈ ሼ1, . . . , 𝐿ሽ schreiben als:

𝒂ሺ௟ሻ ൌ 𝑔ሺ௟ሻሺ𝒂ሺ௟ିଵሻሻ ൌ 𝜎ሺ𝑾ሺ௟ሻ ⋅ 𝒂ሺ௟ିଵሻ ൅ 𝒃ሺ௟ሻ ሻ ∈ ℝ௞೗

mit einer Gewichtsmatrix 𝑾ሺ௟ሻ ∈ 𝑅௞೗ൈ௞೗షభ und einem Bias-Vektor 𝒃ሺ௟ሻ ∈ ℝ௞೗. Dabei entspricht 𝒂ሺ଴ሻ dem Input-
vektor. Die Gewichtsmatrix beinhaltet zeilenweise die Gewichtsvektoren der einzelnen Neuronen und der Bias-
Vektor beinhaltet die Bias-Parameter der einzelnen Neuronen einer Schicht. Das komplette Netz besteht aus
der Hintereinanderausführung mehrerer solcher Funktionen 𝑔ሺ𝒙ሻ ൌ 𝑔ሺ௅ሻ ∘. . .∘ 𝑔ሺଵሻሺ𝒙ሻ. Dass dabei tiefe Ver-
schachtelungen möglich sind, gab dem “deep learning” seinen Namen. Ein KNN ist im Kern somit eine vielfach
verkettete, nichtlineare Funktion. In Abbildung 6 werden an einem kleinen KNN relevante Rechnungen veran-
schaulicht.

Auch bei KNNs aus vielen Neuronen und zahlreichen Schichten besteht das Training im Lösen eines Optimie-
rungsproblems. Formal soll für gegebene Trainingsdaten ሺ𝒙௜ ,𝒚௜ሻ,𝒙௜ ∈ ℝ௡,𝒚௜ ∈ ℝ௠ die Zielfunktion

𝐹ሺ𝒑ሻ:ൌ ∑ ||𝒚௜ െ 𝑔ሺ𝒑,𝒙௜ሻ||ଶ
ே
௜ୀଵ minimiert werden, wobei 𝒑 ൌ ሺ𝑾ሺଵሻ,𝒃ሺଵሻ, . . . ,𝑾ሺ௅ሻ,𝒃ሺ௅ሻሻ alle Gewichtsmatrizen

und alle Bias-Vektoren umfasst. Je nach Anwendungsproblem sind andere Definitionen der Zielfunktion sinn-
voll. Die Summe der Fehlerquadrate erleichtert jedoch die Anwendung von Methoden der Analysis.

Das Training eines KNNs ist abstrakt betrachtet die optimale Wahl der Parameter 𝒑 einer Funktion
𝑔: ℝ௡ → ℝ௠, so dass die Funktion die dem Trainingsdatensatz zugrundeliegende, unbekannte Zuordnung

Mathematik im Unterricht Ausgabe Nr.15, 2024

26

𝒙௜ → 𝒚௜ möglichst gut widerspiegelt. Nimmt man an, dass diese Zuordnung durch eine Funktion 𝐺 beschrieben
wird (also 𝒚௜ ൌ 𝐺ሺ𝒙௜ሻ, evtl. mit zufälligem Fehler), beschreibt das Optimierungsproblem ein Approximations-
problem.

Abb. 6: Darstellung eines künstlichen neuronalen Netzes mit einer versteckten Schicht aus zwei Neuronen

Die Wahl der Anzahl an Schichten und der Neuronen pro Schicht sowie der Aktivierungsfunktion 𝜎 und damit

die Struktur der Funktionen 𝑔ሺ௟ሻ beruht meist auf der Erfahrung der Person, die das KNN für einen bestimmten
Zweck entwirft. Klar ist aber, dass für 𝜎 keine linearen Funktionen verwendet werden dürfen, weil die Verket-
tung linearer Funktionen wieder eine lineare Funktion ergibt, und damit keine nichtlinearen Zusammenhänge
beschrieben werden könnten. Wird eine nichtlineare Aktivierungsfunktion verwendet, kann bewiesen werden,
dass jede zugrundeliegende stetige Funktion 𝐺 auf einer kompakten Definitionsmenge gleichmäßig durch ein
hinreichend großes Netz approximiert werden kann (allgemeiner Approximationssatz von Cybenko (1989) und
Hornik et al. (1989), s. https://en.wikipedia.org/wiki/Universal_approximation_theorem für eine kompakte Er-
klärung). Durchaus gibt es viele andere Funktionsklassen, die eine solche gleichmäßige Approximation leisten
(etwa Polynome), aber es zeigt sich, dass neuronale Netze dies mit verhältnismäßig wenig Schichten errei-
chen (weiterführende Literatur findet man z. B. in Kutyniok, 2024).

Beispiel 1: Klassifikation mit künstlichen neuronalen Netzen

Klassifizierungsprobleme treten in diversen Anwendungen auf: bei der Erkennung von Pflanzenarten, in
Spamfiltern, bei der Klassifikation von Gesichtern auf Bildern oder im Bereich der medizinischen Diagnose. In
diesem Beispiel wird mit synthetischen Daten und unterschiedlichen Architekturen eines KNNs zur Klassifika-
tion experimentiert und zentrale Bausteine von KNNs auf der Mesoebene betrachtet. Im Unterricht kann man
dazu wiederum mit einem simplen Klassifizierungsproblem mit zweidimensionalen Inputdaten 𝒙௜ ∈ ℝଶ und le-
diglich zwei Klassen einsteigen (Abb. 7). Für Inputdaten 𝒙௜ der Klasse 1 wählen wir als zugehörigen Output
𝒚௜ ൌ 0 und für Daten der Klasse 2 𝒚௜ ൌ 1. Andere Kodierungen der Klassenzuordnungen (Labels) sind durch-
aus denkbar.6

Wie geht man nun an die Entwicklung eines KNNs zum Lösen des Klassifizierungsproblems heran? Die In-
putdaten sind zweidimensional, entsprechend sollte die Eingabeschicht aus zwei Neuronen bestehen. Die
Outputdaten haben wir eindimensional gewählt, d. h. es wird ein Ausgabeneuron benötigt. Die Vorhersagen
sollen in [0,1] liegen. Damit sollte in der letzten Schicht eine Aktivierungsfunktion eingesetzt werden, die in
dieses Intervall abbildet – bspw. die Sigmoid-Funktion. Die Schichten dazwischen können relativ beliebig ge-
wählt werden. Wir starten mit zwei versteckten Schichten aus je 10 Neuronen und verwenden in jeder Schicht

6 Oft werden Outputvektoren verwendet, deren Länge der Anzahl der gegebenen Klassen entspricht. Die Einträge eines
vorhergesagten Outputvektors können dann als Wahrscheinlichkeiten interpretiert werden, mit denen ein Datenpunkt den
jeweiligen Klassen angehört.

Mathematik im Unterricht Ausgabe Nr.15, 2024

27

als Aktivierungsfunktion die Sigmoid-Funktion. Den Fehler (und damit die Zielfunktion des Optimierungsprob-
lems) definieren wir über die Summe der Fehlerquadrate7. Im Notebook Klassifikation_KNN.ipynb kann (auf
der Mesoebene) erkundet werden, wie sich die Änderungen der Netzstruktur (Hinzunahme von Schichten oder
Neuronen; Änderung der Aktivierungsfunktion) auf die Genauigkeit der Klassifikation auswirkt.

Abb. 7: Zwei Trainingsdatensätze und Entscheidungsgrenzen des jeweiligen KNNs

Wir trainieren für zwei verschiedene Trainingsdatensätzen je ein KNN (Abb. 7). Datensatz 1 ist simpel, da die
Datenpunkte der beiden Klassen linear separierbar sind. Bei Datensatz 2 sieht das anders aus. Hier brauchen
wir ein komplexeres, nichtlineares Modell.

Mit der oben beschriebenen Struktur der KNNs ergeben sich die in Abbildung 7 dargestellten Entscheidungs-
grenzen. Diese Grenzen veranschaulichen, welche Klassenzuordnung das jeweilige Modell für Inputdaten aus
verschiedenen Bereichen des Merkmalsraums (hier: ℝଶ) vorhersagt. Die Entscheidungsgrenze kann bei KNNs
oft nicht explizit durch eine geschlossene mathematische Formel dargestellt werden. Um die Grenze zu be-
stimmen, wird der Merkmalsraum in ein feines Gitter unterteilt (also diskrete Punkte ausgewählt). Für jeden
Gitterpunkt wird die Klassenzuordnung berechnet. So ergibt sich die näherungsweise Unterteilung in Bereiche
und die Entscheidungsgrenze. Zur spielerischen Erkundung des Einflusses verschiedener Netzstrukturen ei-
nes KNNs für Klassifizierungs- und Regressionsprobleme kann der Tensorflow Playground
(https://playground.tensorflow.org) oder eine deutschsprachige Variante davon auf https://kiwi.schule einge-
setzt werden.

Beispiel 2: Neuronales Netzwerk als Kantendetektor

Das folgende Beispiel soll zeigen, wie das Training eines KNNs zum Erkennen von Strukturen in Pixelbildern
funktioniert. Das Netz soll erkennen, ob in einem Bild aus 2x2 Pixeln eher vertikale oder horizontale Strukturen
vorliegen. Dies ist eine extrem vereinfachte Situation, die aber doch wesentliche Prinzipien der Bilderkennung
mit KNNs zeigt.

Um die Eingabe des Netzes in einen Vektor zu überführen, strukturieren wir die Pixel in einer linearen Anord-
nung. Dazu nummerieren wir diese von 1 bis 4 (Abb. 8) und kodieren ihre Helligkeitswerte als Zahlen zwischen
0 (weiß) und 1 (schwarz). Die Eingabevektoren 𝒙௜ , 𝑖 ൌ 1, . . . ,𝑁 sind in diesem Fall also aus ℝସ.

Abb. 8: Links Anordnung der Pixel, mittig ein Bild, das als ሺ1,0,1,0ሻ kodiert wird, rechts ein Bild, das ሺ0,0,1,0.5ሻ entspricht

Als Ausgabevektoren 𝒚௜ wählen wir Vektoren im ℝଶ mit Einträgen zwischen 0 und 1. Ein hoher Wert des ersten
Eintrags signalisiert das Vorliegen von vertikalen Strukturen. Analog zeigt der zweite Eintrag des Ausgabe-
vektors eher horizontale Strukturen an. Als Netzstruktur wählen wir (da gibt es erneut viel willkürliche Freiheit)

7 Anstelle der Summe der Fehlerquadrate werden bei Klassifizierungsproblemen oft komplexere Fehlerfunktionen verwen-
det, bspw. die Kreuzentropie.

Mathematik im Unterricht Ausgabe Nr.15, 2024

28

eine versteckte Schicht mit drei Neuronen: Zunächst wird der ℝସ also auf den ℝଷ und schließlich auf ℝଶ abge-
bildet. Als Fehlerfunktion betrachten wir die Summe der Fehlerquadrate zwischen den gewünschten Ausgaben
und den vorhergesagten Ausgaben (vgl. Kantendetektor_KNN.ipynb).

Um von diesem Beispiel zu echten Anwendungen zu kommen, etwa dem Erkennen einer Person auf einem
Bild, muss man vor allem groß denken: Statt 2x2 Bildern als Eingabe werden Bilder in authentischer, deutlich
höherer Auflösung verwendet. Damit sind die Eingabedaten hochdimensional. Statt einer versteckten Schicht
gibt es viele Schichten und auch die Anzahl Neuronen pro Schicht wird oft sehr groß gewählt. Dies gilt auch
für die Ausgabeschicht. Wenn es etwa um die Gesichtserkennung geht, hat man für jede Klasse, d. h. jeden
zu erkennenden Menschen, ein Ausgabeneuron.

Die Beschreibung macht klar, dass in authentischen Anwendungen Millionen, wenn nicht Milliarden von Para-
metern zu bestimmen sind. Die Anpassung der Gewichte mit einem simplen Minimierungsalgorithmus, wie
dem beschriebenen Verfahren des steilsten Abstiegs, würde dann zu viel Rechenzeit beanspruchen. Dies liegt
unter anderem daran, dass die direkte Berechnung des Gradienten sehr zeitaufwendig ist. Verschiedene Stra-
tegien helfen, dieses Problem zu lösen. Zum einen wird die Zielfunktion nicht auf einmal gebildet; stattdessen
werden die Trainingsdaten schrittweise eingegeben und die Gewichte nach und nach angepasst. Ein Algorith-
mus, der das leistet, ist das Backpropagation (z. B. Deisenroth et al., 2020). Zum anderen können häufig viele
Gewichte in solchen Netzen fest auf Null gesetzt werden. Dies hat sich bei der Bilderkennung als effektiv
erwiesen, da benachbarte Pixel gemeinsam verarbeitet werden, während weit entfernte Pixel erst in späteren
Schichten miteinander in Kontakt kommen. Dieses Vorgehen ist die Idee hinter sogenannten Faltungsnetzen
(engl. Convolutional Neural Networks).

Beispiel 3: Regression mit künstlichen neuronalen Netzen

KNNs werden zum Lösen von (komplexen, nichtlinearen) Regressionsproblemen eingesetzt. Auch das Feri-
enhausbeispiel kann mit einem neuronalen Netz modelliert werden (siehe Ferienhauspreise_KNN.ipynb). Da
KNNs durch Hinzunahme weiterer Schichten und zusätzlicher Neuronen pro Schicht systematisch vergrößert
werden können, lässt sich eine hohe Flexibilität in der Anpassung erreichen, was oft zu besseren Vorhersagen
auf den Trainingsdaten führt, als wenn der Modellierende eine feste Modellfunktion vorgibt. Nachteil ist aber,
dass die Parameter schlechter zu interpretieren sind. Außerdem steigt mit der Zahl der Neuronen und damit
der Parameter auch der Rechenaufwand und der Bedarf an Trainingsdaten, um die Parameter hinreichend
gut festzulegen.

Abb. 9: Trainingsdatensatz, Testdatensatz und Vorhersagen eines KNNs

Im Unterricht können KNNs im Kontext der Regression am Beispiel eines Datensatzes mit eindimensionalen
Inputdaten 𝑥௜ ∈ ℝ und Outputdaten 𝑦௜ ∈ ℝ erarbeitet und der Einfluss der Struktur eines KNNs erkundet wer-
den. Im Notebook Regression_KNN.ipynb wird dazu der Datensatz aus Abbildung 9 (links) bereitgestellt und
ein KNN mit zwei versteckten Schichten mit je 10 Neuronen trainiert. Die Vorhersage berechnet sich gemäß

𝑦ො௜ ൌ 𝑔ሺ𝒑, 𝑥௜ሻ ൌ 𝑾ሺଷሻሺ𝜎ሺ𝑾ሺଶሻሺ𝜎ሺ𝑾ሺଵሻ𝑥௜ ൅ 𝒃ሺଵሻሻሻ ൅ 𝒃ሺଶሻሻሻ ൅ 𝑏ሺଷሻ,

wobei 𝒑 ൌ ሺ𝑾ሺଵሻ,𝒃ሺଵሻ,𝑾ሺଶሻ,𝒃ሺଶሻ,𝑾ሺଷሻ,𝑏ሺଷሻሻ und 𝑾ሺଵሻ ∈ ℝଵ଴௫ଵ, 𝒃ሺଵሻ ∈ ℝଵ଴, 𝑾ሺଶሻ ∈ ℝଵ଴௫ଵ଴, 𝒃ሺଶሻ ∈ ℝଵ଴,

𝑾ሺଷሻ ∈ ℝଵ௫ଵ଴, 𝑏ሺଷሻ ∈ ℝ, sowie 𝜎 der ReLU-Funktion entspricht. Als Fehlerfunktion wurde die mittlere Summe
der Fehlerquadrate gewählt. Bei Regressionsproblemen wird in der Ausgabeschicht oft keine Aktivierungs-
funktion eingesetzt. Grund ist, dass die Outputs je nach Anwendungsfall nicht auf den Wertebereich der Akti-

Mathematik im Unterricht Ausgabe Nr.15, 2024

29

vierungsfunktion beschränkt werden sollen. Das Training des KNNs besteht nun im Lösen des Optimierungs-

problems min
𝒑

ଵ

ே
∑ ሺ𝑦௜ െ 𝑔ሺ𝒑, 𝑥௜ሻሻଶ
ே
௜ୀଵ . Mit dem trainierten KNN aus nur wenigen Schichten und Neuronen kön-

nen die Testdaten bereits einigermaßen genau vorhergesagt werden (Abb. 9 rechts).

Lernende können das Notebook als Ausgangspunkt nutzen, um verschiedene Aktivierungsfunktionen zu tes-
ten (Mikroebene), oder die Anzahl der versteckten Schichten und die Anzahl der Neuronen pro Schicht zu
variieren und den Einfluss auf den Fehler bzgl. der Trainings- und Testdaten zu erkunden (Mesoebene).

Zwischenfazit: Optimierung

Die ML-Säule der Optimierung besteht darin, Parameter einer Modellfunktion durch Minimierung einer Fehler-
funktion (Zielfunktion) zu bestimmen. Diese Fehlerfunktion basiert in der Regel auf dem Abstand zwischen
den gewünschten und den tatsächlichen Ausgaben. Neben der Minimierung einer Funktion spielt daher auch
die Modellierung von Abständen eine zentrale Rolle. Dafür gibt es viele mathematische Ansätze, die auch von
der Schulmathematik bereitgestellt werden (vgl. folgender Abschnitt).

Optimierungsprobleme sind zentraler Bestandteil zahlreicher weiterer ML-Methoden wie beispielsweise der
Support Vector Machine, mit der u. a. Klassifizierungsprobleme gelöst werden können. Bei dieser wird eine
Gerade oder Ebene oder Hyperebene so gewählt, dass sie die Datenpunkte zweier Klassen bestmöglich von-
einander trennt. Auch diese Methode lässt sich auf schulmathematische Inhalte reduzieren und bietet neben
der Optimierung eine schöne Anwendung von Inhalten der analytischen Geometrie (Schönbrodt et al., 2022).

Säule 3: Ähnlichkeits- und Distanzmaße

Das Messen von Ähnlichkeiten und Abständen zwischen Datenpunkten spielt eine wichtige Rolle im Bereich
des MLs. Ansätze der Ähnlichkeits- und Abstandsmessung sind durchaus eng verknüpft. Der Blickwinkel ist
jedoch ein leicht anderer: Ähnlichkeitsmaße geben typischerweise an, wie ähnlich sich zwei Datenpunkte sind
(hoher Wert = große Ähnlichkeit), wohingegen Metriken zur Bestimmung von Abständen angeben, wie unähn-
lich zwei Datenpunkte sind (hoher Wert = großer Unterschied). Ähnlichkeitsmaße lassen sich oft aus Metriken
gewinnen, indem bspw. die Inverse betrachtet wird.

Oben haben wir bereits gesehen, dass die Modellierung von Abständen zwischen Datenpunkten bei der Be-
schreibung der Zielfunktion eines KNNs eine wichtige Rolle spielt. Auch bei der statistischen Bewertung eines
ML-Modells anhand von Testdaten (vgl. Abschn. Statistische Gütemaße) sind Metriken wesentlich. Einige ML-
Verfahren beruhen darüber hinaus auf der direkten Messung von Ähnlichkeiten bzw. Abständen zwischen
Datenpunkten – bspw. die k-nächste-Nachbarn-Methode, die zum Lösen von Klassifizierungsproblemen ein-
gesetzt werden kann. Um einen neuen Datenpunkt einer Klasse zuzuordnen, wird die “Nähe” des neuen Da-
tenpunktes zu allen Trainingsdatenpunkten quantifiziert. Der Datenpunkt wird dann per Mehrheitsentscheid
der Klasse zugewiesen, von denen unter den 𝑘 „nächsten“ Datenpunkten die meisten vorliegen. Dazu muss
also die Ähnlichkeit oder Distanz zwischen zwei Vektoren 𝒖 ൌ ሺ𝑢ଵ, . . . ,𝑢௡ሻ und 𝒗 ൌ ሺ𝑣ଵ, . . . , 𝑣௡ሻ mathematisch
beschrieben und quantifiziert werden. Wesentliche auch für Schüler*innen verständliche Ansätze sind (Olden-
burg, 2021; eine elementare Realisierung in Python findet sich in Oldenburg, 2011):

● Die euklidische Norm: Zwei Vektoren 𝒖 und 𝒗 sind umso ähnlicher, je kleiner die euklidische Norm
ihrer Differenz ist: ||𝒖 െ 𝒗||ଶ.

● Die Kosinus-Ähnlichkeit: Zwei Vektoren 𝒖 und 𝒗 sind umso ähnlicher, je größer der Kosinus des

Winkels 𝛼, d. h. je kleiner der Winkel zwischen den beiden Vektoren ist: 𝑐𝑜𝑠ሺ𝛼ሻ ൌ
𝒖⋅𝒗

||𝒖||⋅||𝒗||
 .

● Skalarproduktähnlichkeit: Zwei Vektoren 𝒖 und 𝒗 sind umso ähnlicher, je größer ihr Skalarprodukt
ist. Dies entspricht der Kosinus-Ähnlichkeit, wenn mit normierten Vektoren gearbeitet wird.

Vor- und Nachteile dieser Ansätze liegen auf der Hand: Kommt es in einer konkreten Anwendung nur auf die
Richtung oder auch auf die Länge der Vektoren an? Davon abgesehen ist die Wahl nicht immer kritisch, wie
die folgende Übungsaufgabe zeigt: Wenn alle Vektoren auf Länge 1 normiert sind, und 𝒖 ähnlicher zu 𝒗 ist als
zu 𝒘 mit einem dieser Ähnlichkeits- bzw. Distanzmaße, dann gilt das Gleiche mit den anderen Maßen.

Mathematik im Unterricht Ausgabe Nr.15, 2024

30

Darüber hinaus gibt es viele weitere Ansätze (Levy et al., 2024). Erfahrungsgemäß finden Lernende die
Summe der absoluten Abweichungen oft intuitiv einleuchtend, also den Ausdruck ∑ |𝑢௜ െ 𝑣௜|

௡
௜ୀଵ . Die Verwen-

dung dieser Metrik zur Definition einer Zielfunktion hat jedoch numerische Nachteile, da sie nicht differenzier-
bar ist.

Auch beim Clustern (unüberwachtes Lernen) ist die Messung von Ähnlichkeiten bzw. Distanzen relevant. Hier
wird versucht, ähnliche Datenpunkte zu Clustern zu gruppieren. Ein Beispiel für eine solche Methode ist der
k-means-Algorithmus.

Ansätze der Ähnlichkeitsmessung verbergen sich zudem hinter großen Sprachmodellen. Diese übersetzen
Texte zunächst in eine Folge von Tokens. Das sind natürliche Zahlen, die bei vielen modernen Sprachmodel-
len in der Größenordnung von 105 liegen, und die für Wörter, Wortteile oder Satzzeichen stehen. Die Tokens
werden dann in einen hochdimensionalen reellen Vektorraum abgebildet. Bei dieser Vorverarbeitung spielt
Ähnlichkeit eine wichtige Rolle: inhaltlich ähnliche Tokens werden i.d.R. Vektoren zugeordnet, die ähnlich sind.
Im Notebook wordEmbeddings.ipynb kann ausprobiert werden, wie solche Embedding-Vektoren bestimmt und
wie mit ihnen gerechnet werden kann.

Säule 4: Wahrscheinlichkeiten

Eine weitere mathematische Säule sind Wahrscheinlichkeiten. Diese haben Auswirkungen auf die Entwicklung
und Evaluierung von ML-Methoden. Bei der Entwicklung ist zu bedenken, dass die Trainingsdaten i.d.R eine
Zufallsstichprobe darstellen. Bei der Evaluierung kann nicht geprüft werden, ob alle Gewichte “richtig” gewählt
sind – es können nur Statistiken über richtige Vorhersagen angelegt werden.

Wahrscheinlichkeiten spielen auch bei der Entwicklung von Sprachmodellen eine zentrale Rolle. Dies können
Nutzer*innen von Smartphones nachvollziehen, wenn beim Tippen ein Fehler passiert und eine plausible Kor-
rektur vorgeschlagen wird. Angenommen, es wurde getippt „Ein schmackhafter Affel“. Das letzte Wort ist nicht
im Wörterbuch enthalten. Das System sollte also einen Korrekturvorschlag machen. Zunächst wird wieder das
Prinzip der größtmöglichen Ähnlichkeit bemüht: viele Fehler passieren vermutlich so, dass das gemeinte Wort
ähnlich dem fehlerhaft getippten Wort sein dürfte. Im Wörterbuch finden sich beispielsweise „Apfel“ und „Affe“.
Beide Wörter liegen nahe an dem eingetippten Wort in dem Sinne, dass nur ein falscher/überschüssiger Tas-
tendruck ausreicht, um zu erklären, wie aus dem gemeinten Wort „Affel“ wurde.

Wie spielen nun Wahrscheinlichkeiten in Systeme der Wortkorrektur hinein? Ausgangspunkt ist ein umfang-
reicher Textkorpus der deutschen Sprache, gegebenenfalls ergänzt um Texte, die der Benutzer schon selbst
verfasst hat. Für diesen Text lässt sich auszählen, wie oft auf das Wort “schmackhafter“ das Wort „Apfel“ bzw.
wie oft das Wort „Affe“ folgt. Dividiert man die jeweiligen absoluten Häufigkeiten der Wortübergänge durch die
Gesamtzahl des Auftretens des vorangegangenen Wortes (hier: Auftretenshäufigkeit des Wortes “schmack-
haft”), so liefert dies relative Häufigkeiten für die entsprechenden Wortübergänge. Aus diesen lassen sich die
bedingten Wahrscheinlichkeiten (Wahrscheinlichkeit, dass Wort B folgt, unter der Bedingung das Wort A ge-
tippt wurde) schätzen und damit auswählen, welches Wort vermutlich gemeint war. Noch besser wird die
Prognose, wenn nicht nur das direkt vorhergehende Wort, sondern 2, 3, 4, … vorhergehende Worte bei der
Schätzung der bedingten Wahrscheinlichkeiten berücksichtigt werden. Dieses Modell wird im Bereich der na-
türlichen Sprachverarbeitung auch als N-Gramm-Modell bezeichnet. Dabei steht N für die Anzahl der betrach-
teten Wörter, die für die Schätzung der Übergangswahrscheinlichkeit herangezogen werden (Oldenburg,
2008, für eine didaktische Elementarisierung).

Das N-Gramm-Modell kann nicht nur zur Wortkorrektur, sondern auch zum Erzeugen von Wortvorschlägen
beim Tippen einer Nachricht am Smartphone (vgl. Hofmann & Frank, 2022) oder gar zum “Generieren” eines
ganzen Textes eingesetzt werden: Gibt man einen beliebigen Textanfang vor, kann das System die Wahr-
scheinlichkeiten möglicher Folgewörter berechnen und so das wahrscheinlichste nächste Wort ermitteln.
Durch Wiederholung entsteht ein maschinell erzeugter Text. Kurze Teile davon sind in der Regel grammatika-
lisch einigermaßen okay, beispielsweise passen die Geschlechter von Artikeln und Nomen zusammen. Das
ändert sich, wenn die Grammatik verlangt, dass im Satz Wörter in Beziehung stehen, die weiter entfernt sind
als bei der Bestimmung der bedingten Wahrscheinlichkeiten berücksichtigt. Der Text ist deswegen in der Regel
sinnlos. Die explizite Berechnung der relativen Häufigkeiten wird erschwert, je länger die Textstücke sind, da
die Auftretenshäufigkeiten insgesamt gering sind. Es wäre also weder praktikabel noch sinnvoll, Folgen von

Mathematik im Unterricht Ausgabe Nr.15, 2024

31

zehn Wörtern in den bedingten Wahrscheinlichkeiten zu berücksichtigen. Daher braucht es komplexere Me-
thoden, beispielsweise KNNs.

Auch wenn die direkte Berechnung der bedingten Wahrscheinlichkeiten sehr aufwendig ist, liefert dies doch
ein brauchbares Modell für ein grobes Verständnis von generativen Sprachmodellen wie ChatGPT: Basierend
auf einem riesigen Datensatz an Texten lernt ein KNN, bei der Eingabe einer Folge von Wörtern das wahr-
scheinlichste nächste Wort vorherzusagen. Dazu wird der Eingabetext (“Prompt”) in Token kodiert. Die daraus
berechneten Embeddingvektoren sind dann die Inputdaten des Netzes. Für jedes mögliche Folge-Token gibt
es ein Ausgabeneuron. Das Token mit dem höchsten Outputwert gilt als das Wahrscheinlichste. Ist der Text
um ein Token verlängert, dient er als neue Eingabe. So wird der Text Token um Token generiert.

Dies ist ein grobes Modell auf der Mesoebene. Es ist trotz seiner Vereinfachungen nützlich, weil es einerseits
Lernenden, die sich für die Funktion im Detail interessieren, einen Weg aufzeigt, auf die Mikroebene hinabzu-
steigen, und andererseits eine Einschätzung wichtiger Fragen auf der Makroebene ermöglicht – bspw. das
Phänomen des “Halluzinierens” von ChatGPT oder etwa die Abhängigkeit von den Trainingsdaten.

Säule 5: Statistische Gütemaße

Die Testdaten dienen dazu, die Generalisierbarkeit des entwickelten ML-Modells auf neue, zuvor ungesehene
Daten zu bewerten. Bisher wurde nur am Rande diskutiert, wie die Ergebnisse, die das entwickelte Modell auf
den Testdaten liefert, quantifiziert und statistisch bewertet werden können. Welche statistischen Gütemaße
geben hier aufschlussreiche Einblicke und wie sind diese zu interpretieren? Dies lässt sich auch ohne tiefer-
gehendes Verständnis der mathematischen Grundlagen der jeweiligen ML-Methode (bspw. eines KNNs) im
Unterricht diskutieren – wir bewegen uns auf der Makroebene. Im Zentrum dieser Diskussion steht die Er-
kenntnis, dass die Ergebnisse von ML-Methoden nur statistisch bewertet werden können. Je nach Problem-
klasse (Regressions- oder Klassifizierungsproblem) werden unterschiedliche statistische Gütemaße einge-
setzt.

Klassifizierungsergebnisse werden oft in einer Wahrheitsmatrix (Konfusionsmatrix) zusammengefasst. Diese
liefert eine kompakte Übersicht über die vorhergesagten und die tatsächlichen Klassenzuordnungen. Ein Bei-
spiel mit fiktiven Ergebnissen eines Klassifizierungsmodells auf 300 Testdatenpunkten ist in Tabelle 1 darge-
stellt. Die fett gedruckten Werte auf der Diagonalen geben die Anzahl der korrekten Klassifikationen je Klasse
an.

Tab. 1: Wahrheitsmatrix für die Ergebnisse eines Klassifizierungsmodells auf 300 Testdaten

Vorhergesagt als

Klasse A
Vorhergesagt als

Klasse B
Vorhergesagt als

Klasse C

Tatsächlich
Klasse A

7 5 7

Tatsächlich
Klasse B

22 98 2

Tatsächlich
Klasse C

13 4 142

Typische statistische Gütemaße, die sich basierend auf der Wahrheitsmatrix leicht berechnen lassen, sind:

● Genauigkeit: Anteil der korrekten Klassifikationen an der Gesamtzahl aller Testdaten. Im Beispiel aus

Tabelle 1 also
଻ାଽ଼ାଵସଶ

ଷ଴଴
ൌ 0,82.

● Fehlerrate: Anteil der Fehlklassifikationen an der Gesamtzahl aller Daten (d. h. 1 - Genauigkeit).

● Präzision (bzgl. einer Klasse): Anteil der korrekt als Klasse 𝑖 klassifizierten Datenpunkte an der Anzahl
aller als Klasse 𝑖 klassifizierten Datenpunkte (Klasse A: 0,17; Klasse B: 0,92; Klasse C: 0,94).

● Recall (auch Sensitivität): Anteil der korrekt als Klasse 𝑖 klassifizierten Datenpunkte an der Anzahl
aller zu Klasse 𝑖 gehörenden Datenpunkte (Klasse A: 0,37; Klasse B: 0,80; Klasse C: 0,89).

An der Wahrheitsmatrix aus Tabelle 1 wird schnell ersichtlich, warum es nicht ausreicht, ein Klassifizierungs-
modell nur anhand der Gesamtgenauigkeit zu validieren. Dies ordnen wir am Beispiel der automatisierten
Einstufung von Bewerber*innen für ein Studienstipendium ein. Die Bewerber*innen gehören einer der Klassen

Mathematik im Unterricht Ausgabe Nr.15, 2024

32

“Ablehnen” (A), “Warteliste” (B) oder “Annehmen” (C) an.8 Die Genauigkeit ist mit 82 % einigermaßen hoch
(was als akzeptabel angesehen wird, hängt natürlich stark von der Anwendung ab); die Präzision für die Klasse
“Ablehnen” ist jedoch gering. Personen werden somit abgelehnt und damit nicht für ein Stipendium berück-
sichtigt, obwohl sie dafür durchaus in Frage kämen. Auch der Recall ist für diese Klasse niedrig, d. h., es
werden diverse Bewerber*innen ausgewählt, obwohl sie für das Stipendium eher nicht geeignet sind.

Ein Grund für derartige Ergebnisse könnte die Wahl des Trainingsdatensatzes sein. Wenn das Modell auf
historischen Daten trainiert wurde, die Vorurteile enthalten oder aus Kontexten mit bestehenden oder früheren
Ungleichverteilungen stammen, kann dies dazu führen, dass bestimmte Gruppen entweder über- oder unter-
repräsentiert sind und Vorurteile bzw. Ungleichverteilungen reproduziert oder verstärkt werden. Beispielsweise
könnten Absolvent*innen bestimmter Schulen oder Geschlechter systematisch benachteiligt werden, wenn
deren Bewerbungen häufiger als „abgelehnt“ eingestuft wurden und weiterhin werden. Auch über derartige
gesellschaftliche / ethische Implikationen sollte im Unterricht diskutiert werden (vgl. Orwat, 2019 für verschie-
dene Fallbeispiele). Im Notebook Klassifikation_KNN.ipynb können die Auswirkungen unausgeglichener Klas-
sen auf die Klassifikationsergebnisse mithilfe der hier diskutierten statistischen Gütemaße untersucht werden.

Das gewählte Beispiel ist nicht nur mit Blick auf die Interpretation der statistischen Gütemaße, sondern auch
darüber hinaus diskussionswürdig: Nach welchen Kriterien wurden die Klassenlabels festgelegt? Wurde allein
der Erfolg im Studium als Kriterium verwendet, um die Trainingsdaten und damit die Studierenden zu “labeln”?
Ist die Auswahl der Trainingsdaten und die Kodierung der Klassenlabels womöglich bereits fragwürdig? Zwar
wurde in diesem Abschnitt nicht mit realen Daten argumentiert, verwandte Szenarien haben im Kontext der
Bewerberauswahl oder der Zulassung von Studierenden an Universitäten jedoch in realen Anwendungen
durchaus schon zu kritischen Diskussionen geführt (vgl. Orwat, 2019).

Die Bewertung von Klassifizierungsergebnissen bietet die Möglichkeit klassische schulmathematische Inhalte
aus dem Bereich “Daten & Zufall” im Kontext von KI zu thematisieren und neu zu akzentuieren: Vierfeldertafeln
und Fehler 1. und 2. Art. Die Präzision und der Recall stehen in direktem Zusammenhang mit diesen Fehler-
typen, die typischerweise für zwei Klassen (positiv und negativ) betrachtet werden. Bei Problemen mit mehr
als zwei Klassen kann dies wie folgt ausgeweitet werden: eine ausgewählte Klasse 𝑖 wird als positiv und alle
übrigen Klassen zusammengenommen als negativ betrachtet. Eine niedrige Präzision für Klasse 𝑖 bedeutet,
dass viele Daten falsch der Klasse 𝑖 zugeordnet wurden (falsch Positive) und geht mit einem hohen Fehler 1.
Art einher. Ein niedriger Recall bedeutet, dass viele Datenpunkte der Klasse 𝑖 einer anderen Klasse zugeord-
net wurden (falsch Negative) und geht mit einem hohen Fehler 2. Art einher.

Für die Bewertung von Regressionsergebnissen werden bspw. die mittlere quadratische Abweichung und die
mittlere absolute Abweichung verwendet. Auch hierzu ließen sich interessante Diskussionen führen; bspw.
über die höhere Sensitivität der mittleren quadratischen Abweichung für Ausreißer oder die leichtere Interpre-
tierbarkeit der mittleren absoluten Abweichung, da diese die durchschnittliche Größe des Fehlers in der Einheit
der Outputdaten angibt.

Didaktische Einordnung

Oben wurde auf elementarer mathematischer Ebene (Mikroebene) erläutert, wie künstliche neuronale Netze
mathematisch modelliert werden können. Neben dieser Detailbetrachtung sind auch darüber liegende Be-
trachtungsebenen, die Meso- und Makroebene, möglich.

Auf der Mesoebene geht es um das Zusammenspiel der elementaren Objekte der Mikroebene. Die Beschrei-
bung eines neuronalen Netzes als vielfach verkettete Funktion, die sich aus affin-linearen und nichtlinearen
Funktionen zusammensetzt, oder die Beschreibung der Schritte des Word-Embeddings liegen auf dieser
Ebene.

Auf der Makroebene werden Details der mathematischen Beschreibung und programmtechnischen Umset-
zung der einzelnen Komponenten einer ML-Methode (bspw. Neuronen) und des Trainierens nicht betrachtet.
Stattdessen befasst man sich ausführlicher mit dem System als Ganzes (bspw. ein KNN als Funktion, die

8 Hier ließe sich auch der klassische Anwendungsfall der medizinischen Diagnose bemühen (Klasse A = Krankheit A,
Klasse B = Krankheit B, Klasse C = gesund).

Mathematik im Unterricht Ausgabe Nr.15, 2024

33

Inputdaten gewissen Outputdaten zuordnen), mit der Bewertung der Performanz basierend auf statistischen
Gütemaßen und mit der Auswahl und dem Einfluss von Trainings- und Testdaten auf die Ergebnisse. Auch
die Diskussion von Problemen des Systems und mögliche, resultierende Auswirkungen auf die Gesellschaft
bzw. auf einzelne Personengruppen zählen wir zu dieser Ebene.

In Tabelle 2 werden am Beispiel von KNNs die drei Betrachtungsebenen, relevante mathematische Inhalte,
der jeweilige Bildungswert und der Beitrag zum Empowerment aufgeschlüsselt. Diese Einordnung ließe sich
in ähnlicher Weise für weitere ML-Methoden realisieren.

Tab. 2: Ebenen der Durchdringung von KI-Systemen am Beispiel von KNNs mit Einordnung des Bildungswertes

Ebene Mathematik Bildungswert Empowerment

Mikroebene Skalarprodukt, Matrix-Vek-
tor-Multiplikation, euklidi-
scher Abstand, Optimie-
rungsproblem und numeri-
sche Optimierungsverfahren

 Innermathematisch
 Anwendung und Vertie-

fung von Schulmathema-
tik an relevanten Frage-
stellungen

 Demystifizierung von KI

Teilkomponenten eines KNNs
implementieren (d. h. Implemen-
tierung “from Scratch”)

Mesoebene Künstliches Neuron als
Funktion, die sich aus der
Verkettung einer linearen mit
einer nichtlinearen Funktion
zusammensetzt

Zusammenspiel von Schich-
ten in einem KNN als Verket-
tung von Funktionen

 Innermathematisch
 Anwendung und Vertie-

fung von Schulmathema-
tik an relevanten Frage-
stellungen

 Komplexitätsbeherr-
schung durch Modularisie-
rung

 Demystifizierung von KI

KNN auf Basis der Nutzung von
Softwarepaketen (bspw. Py-
Torch, Tensorflow) implementie-
ren

Makroebene

Einzelnes
KI-System

Gesellschaft

KNN als Funktion, die einem
Input einen Output zuordnet

Einfluss von Trainings- und
Testdaten; Validierung mit
statistischen Gütemaßen

 Bias, Diskriminierung, Mo-
dellkritik

 Ethische / gesellschaftli-
che Fragestellungen dis-
kutieren

Analysieren und Bewerten der
Leistung eines trainierten KNN

KI-Anwendungen und ihre Rolle
in und für unsere Gesellschaft
kritisch reflektieren

Es stellt sich die didaktische Frage, auf welcher Ebene allgemeinbildender Unterricht zur KI ansetzen sollte.
Die Makroebene zielt darauf ab, Schüler*innen zu befähigen, Outputs von KI-Systemen kritisch einzuordnen
und deren gesellschaftliche Auswirkungen einzuschätzen. Damit ist offensichtlich, dass die Makroebene eine
zentrale Rolle bei der Lebensvorbereitung in einem KI-getriebenen Alltag spielt und damit gemäß Heymann
(1989) allgemeinbildenden Wert hat. Zu klären bleibt, ob diese Ebene unabhängig von den beiden darunter
liegenden Ebenen in einer Art und Weise im Unterricht behandelt werden kann, die nachhaltige Bildung er-
möglicht und damit junge Menschen in die Lage versetzt, KI-Systeme reflektiert und zielführend zu nutzen, zu
bewerten und selbst zu gestalten.

Unsere Hypothese ist, dass Wissen und Kompetenzen der unteren Ebenen durchaus auf die Makroebene
durchschlagen. Werden KNNs auf der Mikro- oder Mesoebene erarbeitet, so wird greifbar, dass bei der Ent-
wicklung von KI-Systemen mit ML-Methoden oftmals verschiedene Modellentscheidungen denkbar sind und
von Menschen getroffen werden, bspw. die Wahl der Metrik zur Definition der Fehlerfunktion eines KNNs. Es
wird deutlich, dass die Entwicklung von KI-Systemen ganz wesentlich auf Daten und elementarer Mathematik
und mathematischer Modellierung beruht (gepaart mit sehr effizienten Implementierungen). Die Mikro- und
Mesoebene spielen damit eine besondere Rolle bei der Demystifizierung von KI.

Weitere Beispiele, wie Wissen aus der Mikro- und Mesoebene auf der Makroebene relevant wird: Angenom-
men, ein großes Sprachmodell gibt fälschlicherweise aus, dass eine Person im Jahr 1980 geboren sei. Der/Die
Nutzer*in beschwert sich. Dann kann der Anbieter des Sprachmodells, anders als bei Datenbanken, nicht
einfach eine Zahl ändern, weil die 1980 nicht an einer einzigen Stelle codiert ist. Wegen der Komplexität des
Netzes sind die Gewichte nicht interpretierbar und das Zustandekommen einer spezifischen Ausgabe ist für

Mathematik im Unterricht Ausgabe Nr.15, 2024

34

Menschen nicht nachvollziehbar. Diese Erkenntnis ist durch ein tieferes Verständnis der mathematischen
Struktur eines KNNs auf der Mikro- oder Mesoebene möglich. Das Verständnis von KNNs (oder N-Gramms)
auf der Mesoebene erlaubt es zudem zu verstehen, warum große Sprachmodelle Logikfehler machen, teil-
weise bei simplen Rechenaufgaben versagen oder “halluzinieren”: Diese Systeme liefern basierend auf gege-
benen Trainingstexten mithilfe von mathematischen Modellen eben nur Näherungen für wahrscheinliche To-
kens (und damit Wörter). Aufgrund ihrer nicht völligen Zuverlässigkeit sind große Sprachmodelle also in einem
gewissen Sinne das Gegenstück zur Mathematik, die Sicherheit und maximale Transparenz der Begründung
anstrebt.

Diese Beispiele zeigen exemplarisch, dass technische Bildung auf Mikro- und Mesoebene zu einer kompeten-
ten Einschätzung eines komplexen KI-Systems befähigt und auf die Makroebene durchschlägt.

Fazit

Die Gestaltung von Mathematikunterricht zu den in diesem Beitrag behandelten Themen eröffnet Chancen,
steht aber auch vor Herausforderungen.

Einerseits kann das Thema die Bedeutung von (Schul-)Mathematik für die Entwicklung von KI-Anwendungen
im Mathematikunterricht betonen. Die Forschung und Entwicklung im Bereich KI lässt sich eben nicht nur der
Informatik zuordnen. Auch die Mathematik leistet einen wesentlichen Beitrag und es gibt durchaus zahlreiche
offene Forschungsfragen im Kontext des maschinellen Lernens, an denen in der Mathematik derzeit aktiv
geforscht wird (Kutyniok, 2024). Positiv ist auch, dass das Thema eine Reihe von mathematischen Teilgebie-
ten verbindet, etwa Analysis, Vektorrechnung und Wahrscheinlichkeitsrechnung. Der Unterricht kann damit
deutlich machen, dass Mathematik bei realen Anwendungen vielfältig vernetzt Einsatz findet. Als verbindendes
Element ist zudem die mathematische Modellierung hervorzuheben. Bei der Diskussion von ML-Methoden auf
der Mikro- oder Mesoebene wurde an diversen Stellen ersichtlich, dass oft verschiedene Modellentscheidun-
gen möglich sind. Dies betrifft etwa die Kodierung der Klassenlabels bei Klassifizierungsproblemen, die Wahl
des Ähnlichkeits- oder Distanzmaßes bei der k-nächste-Nachbarnmethode, die Festlegung der Zielfunktion
bei der Optimierung von KNNs oder die Wahl der Gesamtstruktur eines KNNs (Anzahl Schichten etc). Dies
kann zur Erkenntnis beitragen, dass zahlreiche Entscheidungen bei der Entwicklung von KI-Systemen eben
doch von Menschen getroffen werden und diese Systeme sich nicht voll autonom einstellen und “selbst ent-
wickeln”. Damit besteht die Chance zur Demystifizierung von KI beizutragen.

Eine Herausforderung ist die Behandlung von Funktionen in mehr als einer Variablen, die in den diskutierten
Beispielen auftreten. Da diese im Mathematikunterricht aber ohnehin implizit vorkommen (zum Beispiel als
Formel für das Pyramidenvolumen) und in Tabellenkalkulationen genutzt werden, erscheint eine unterrichtli-
che Behandlung konsequent (vgl. dazu auch Schweiger, 2023).

Die technologiegestützte Umsetzung von Unterrichtseinheiten zu den mathematischen Hintergründen von KI-
Systemen auf der Mikro- oder Mesoebene erfordert ein gewisses Maß an informatischer Bildung, sobald mehr
Eigenaktivität der Lernenden ermöglicht werden soll. Dies stellt aktuell noch eine Herausforderung für den
Mathematikunterricht dar. Da Informatik als Schulfach jedoch mittlerweile in mehr und mehr Ländern verpflich-
tend eingeführt wird, sollte dieses Problem auf Seiten der Lernenden mit der Zeit kleiner werden. Zugleich
bedarf es auch eines Umdenkens in der Aus- und Weiterbildung von Mathematiklehrkräften, die Gelegenheit
bekommen müssen, selbst informatische Grundkenntnisse zu erwerben.

Aus der Perspektive der Allgemeinbildung ist an diesem Thema reizvoll (mit Blick auf das Lernen in abge-
grenzten Schulfächern zugleich herausfordernd), dass neben Mathematik und Informatik auch weitere Bil-
dungsbereiche involviert sind: Dies betrifft die Biologie, die das Vorbild für die mathematische Modellierung
von neuronalen Netzen geliefert hat und die durch Forschung in der Bioinformatik auch wesentlich von KI-
getriebenen Innovationen beeinflusst wird (bspw. AlphaFold). Es betrifft auch die Physik, denn zahlreiche KI-
Systeme werden basierend auf Sensordaten entwickelt (bspw. Fitness-Tracker, aber auch KI-Systeme in au-
tonom fahrenden Autos) – ein grundlegendes physikalisches Verständnis ist beim Umgang mit diesen Daten
hilfreich. Offensichtlich ist auch die Relevanz gesellschaftswissenschaftlicher Fächer und der Ethik für KI-
Bildung. Hier ergeben sich u. a. Fragen nach der Verantwortung, Datenschutz, Privatsphäre und Diskriminie-
rung. Auch philosophische Fragen ergeben sich, bspw. ob der Erfolg von großen Sprachmodellen zeigt, dass
man Lernen auf das Konsumieren von viel Text reduzieren kann.

Mathematik im Unterricht Ausgabe Nr.15, 2024

35

Es lässt sich argumentieren, dass ein detailliertes technisches Verständnis über KI nicht notwendig sei, weil
man auch nichts über Motoren wissen müsse, um Auto zu fahren. Aber selbst in dieser Metapher zeigt sich,
dass die Mesoebene relevant ist: Aus Wissen über die Eigenschaften von Verbrennungs- und Elektromotoren
kann man etwa ableiten, wie man energiesparend fährt, oder dass im Stadtverkehr ein Elektroauto Effizienz-
vorteile hat. Selbstverständlich muss man dieses Wissen nicht unbedingt selbst herleiten, sondern kann es
von Expert*innen übernehmen. Es ist jedoch allemal effizienter, einige wenige Grundprinzipien zu erlernen
und daraus Schlüsse zu ziehen, als viele Einzelfakten von Expert*innen zu übernehmen – denen man zudem
vertrauen muss. Wir sind deswegen überzeugt, dass auch mathematische Grundlagen der KI in allgemeinbil-
dende Schulen gehören, wenn diese der Forderung von Hartmut von Hentig (2002) genügen sollen, dass die
Menschen der technischen Zivilisation gewachsen bleiben sollen.

Literatur

Biehler, R., Schönbrodt, S., & Frank, M. (2024). KI als Thema für den Mathematikunterricht. Mathematik lehren, 244, 2–7.

Biehler, R., & Fleischer, Y. (2021). Introduction students to machine learning with decision trees using CODAP and Jupyter
Notebooks. Teaching Statistics, 43, 133–142. https://doi.org/10.1111/test.12279

Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Mathematics of Control, Signals, and Sys-
tems, 2(4). 303–314. https://doi.org/10.1007/BF02551274

Deisenroth, M. P., Faisal, A. A., & Ong, C. S. (2020). Mathematics for machine learning. Cambridge University Press.
https://mml-book.github.io/book/mml-book.pdf

Dvir, M., Podworny, S., Ben-Zvi, D., & Frischemeier, D. (2022). The multidimensional pedagogical potential of data mode-
ling. In S. Podworny, D. Frischemeier, M. Dvir, D. Ben-Zvi (Hrsg.), Reasoning with data models and modeling in the
big data era (S. 7–13). Minerva School 2022. https://doi.org/10.17619/UNIPB/1-1815

Engel, J. (2017). Statistical literacy for active citizenship: A call for data science education. Statistics Education Research
Journal, 16(1), 44–49. https://doi.org/10.52041/serj.v16i1.213

Ernest, P. (2002). Empowerment in Mathematics Education. Philosophy of Mathematics Education Journal, 15.

European Commission, Joint Research Centre, Vuorikari, R., Kluzer, S., Punie, Y. (2022). DigComp 2.2, The Digital Com-
petence framework for citizens – With new examples of knowledge, skills and attitudes. Publications Office of the
European Union. https://data.europa.eu/doi/10.2760/115376

Gould, R. (2021). Towards data-scientific thinking. Teaching Statistics, 43, S. S11–S22. https://doi.org/10.1111/test.12267

Gould, R., Machado, S., Ong, C., Johnson, T., Molyneux, J., Nolen, S., Tangmunarunkit, H., Trusela, L., & Zanontian, L.
(2016). Teaching data science to secondary students – the mobilize introduction to data science curriculum. In: J. Engel
(Hrsg.), Promoting understanding of statistics about society. Proceedings of the IASE Roundtable Conference.
http://dx.doi.org/10.52041/SRAP.16402

Hazzan, O., & Mike, K. (2022). Teaching core principles of machine learning with a simple machine learning algorithm: the
case of the KNN algorithm in a high school introduction to data science course. ACM Inroads, 13(1), 18–25.
https://doi.org/10.1145/3514217

Hentig, H. v. (2002). Der technischen Zivilisation gewachsen bleiben. Nachdenken über die Neuen Medien. Beltz.

Heymann, H. W. (1989). Allgemeinbildender Mathematikunterricht – was könnte das sein? Mathematik lehren, 33, 4-9.

Hofmann, S., & Frank, M. (2022). Teaching data science in school: Digital learning material on predictive text systems. In
J. Hodgen, E. Geraniou, G. Bolondi, & F. Ferretti (Hrsg.), Proceedings of CERME12. https://hal.science/hal-03751829

Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward networks are universal approximators. Neural
Networks, 2(5), 359–366. https://doi.org/10.1016/0893-6080(89)90020-8

Kindler, S., Schönbrodt, S., & Frank, M. (2023). From school mathematics to artificial neural networks: Developing a math-
ematical model to predict life expectancy. In P. Drijvers, H. Palmér, C. Csapodi, K. Gosztonyi, & E. Kónya (Hrsg.),
Proceedings of CERME13 (S. 956–963). https://hal.archives-ouvertes.fr/hal-04410971

Kutyniok, G. (2024, 5. Juli). The mathematics of reliable artificial intelligence. SIAM News. www.siam.org/publica-
tions/siam-news/articles/the-mathematics-of-reliable-artificial-intelligence/

Bundesministerium für Bildung, Wissenschaft und Forschung (2024, 18. Juli). Gesamte Rechtsvorschrift für Lehrpläne –
allgemeinbildende höhere Schulen. www.ris.bka.gv.at/GeltendeFassung.wxe?Abfrage=Bundesnormen&Gesetzes-
nummer=10008568

Staatsinstitut für Schulqualität und Bildungsforschung München (2022). Lehrplan Informatik 13 Bayern. www.lehrplan-
plus.bayern.de/fachlehrplan/lernbereich/313771

Levy, A. Shalom, B. R., & Chalamish, M. (2024). A Guide to Similarity Measures. ArXiv https://doi.org/10.48550/ar-
Xiv.2408.07706

Mathematik im Unterricht Ausgabe Nr.15, 2024

36

Ministerium für Schule und Weiterbildung des Landes Nordrhein-Westfalen (2021). Kernlehrplan für die Sekundarstufe I –
Klasse 5 und 6 in Nordrhein-Westfalen: Informatik. www.schulentwicklung.nrw.de/lehrplaene/lehr-
plan/256/si_kl5u6_if_klp_2021_07_01.pdf

Oldenburg, R. (2008). Phrasendreschmaschine und Text-Evolution: Unterrichtsideen für Zeichenketten mit PYTHON. Log
In, 154/155, 91–98.

Oldenburg, R. (2009). Was kosten Ferienhäuser? MNU, 62, 340–341.

Oldenburg, R. (2011). Mathematische Algorithmen im Unterricht. Teubner. https://doi.org/10.1007/978-3-8348-8336-0

Oldenburg, R. (2021). Big data – small school: oder: Likert-Skalen, Kaufempfehlungen, soziale Netzwerke, das Skalarpro-
dukt und all das. In H. Humenberger & B. Schuppar (Hrsg.): Neue Materialien für einen realitätsbezogenen Mathema-
tikunterricht 7, S. 137-142, Springer Spektrum. https://doi.org/10.1007/978-3-662-62975-8_12

Orwat, C. (2019). Risks of Discrimination through the Use of Algorithms. A study compiled with a grant from the Federal
Anti-Discrimination Agency. www.antidiskriminierungsstelle.de/SharedDocs/down-
loads/EN/publikationen/Studie_en_Diskriminierungsrisiken_durch_Verwendung_von_Algorithmen.pdf?__blob=public
ationFile&v=2, Zugegriffen: 19.08.2024

Rahwan, I., Cebrian, M., Obradovich, N. et al. (2019). Machine behaviour. Nature, 568, 477–486.
https://doi.org/10.1038/s41586-019-1138-y

Schönbrodt, S., Camminady, T., & Frank, M. (2022). Mathematische Grundlagen der Künstlichen Intelligenz im Schulun-
terricht – Chancen für eine Bereicherung des Unterrichts in linearer Algebra. Mathematische Semesterberichte. 69,
73–101. https://doi.org/10.1007/s00591-021-00310-x

Schönbrodt, S., Hoeffer, K., & Frank, M. (2023). AI education as a starting point for interdisciplinary STEM projects. In P.
Drijvers, H. Palmér, C. Csapodi, K. Gosztonyi, & E. Kónya (Hrsg.), Proceedings of CERME13 (S. 4703–4710).
https://hal.science/hal-04420534

Schönbrodt, S., & Frank, M. (2024). Wie viel Mathe steckt in mathematischer Modellierung? – Eine Antwort am Beispiel
der Optimierung. Der Mathematikunterricht, 70(1), 35–44.

Schweiger, F. (2023). Funktionen in mehreren Variablen – ein Plädoyer. Mathematik im Unterricht, 14, 112–115.
https://doi.org/10.25598/miu/2023-14-9

Sindermann, C., Yang, H., Elhai, J. D. et al. (2022). Acceptance and Fear of Artificial Intelligence: associations with per-
sonality in a German and a Chinese sample. Discov Psychol, 2(8). https://doi.org/10.1007/s44202-022-00020-y

Stern, W. (1911). Die Differentielle Psychologie in ihren methodischen Grundlagen. Barth.

UNESCO (2024). AI competency framework for students. https://doi.org/10.54675/JKJB9835

Adressen der Autorin und des Autors:
Ass.-Prof. Dr. Sarah Schönbrodt
Fachbereich Mathematik, AG Didaktik der Mathematik
Paris Lodron Universität Salzburg
Hellbrunnerstr. 34
5020 Salzburg
sarah.schoenbrodt@plus.ac.at

Prof. Dr. Reinhard Oldenburg
Lehrstuhl für Didaktik der Mathematik
Universität Augsburg
Universitätsstr. 14
86159 Augsburg
reinhard.oldenburg@math.uni-augsburg.de

	Mathematische Grundlagen als Schlüssel zu einem allgemeinbildenden Verständnis von KI: theoretische Perspektiven und praktische Unterrichtsideen
	Sarah Schönbrodt, Reinhard Oldenburg
	Nutzungsbedingungen / Terms of use:
	CC BY 3.0

