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Abstract

In this paper, we draw an analogy between processing natural
languages and processing multivariate event streams from ve-
hicles in order to predict when and what error pattern is most
likely to occur in the future for a given car. Our approach
leverages the temporal dynamics and contextual relationships
of our event data from a fleet of cars. Event data is composed
of discrete values of error codes as well as continuous val-
ues such as time and mileage. Modelled by two causal Trans-
formers, we can anticipate vehicle failures and malfunctions
before they happen. Thus, we introduce CarFormer, a Trans-
former model trained via a new self-supervised learning strat-
egy, and EPredictor, an autoregressive Transformer decoder
model capable of predicting when and what error pattern will
most likely occur after some error code apparition. Despite
the challenges of high cardinality of event types, their un-
balanced frequency of appearance and limited labelled data,
our experimental results demonstrate the excellent predictive
ability of our novel model. Specifically, with sequences of
160 error codes on average, our model is able with only half
of the error codes to achieve 80% F1 score for predicting what
error pattern will occur and achieves an average absolute er-
ror of 58.4 & 13.2h when forecasting the time of occurrence,
thus enabling confident predictive maintenance and enhanc-
ing vehicle safety.

Code — https://github.com/Mathugo/AAAI2025-
CarFormer-EPredictor

1 Introduction

Today’s vehicles generate an astounding amount of data,
typically reported as events on an irregular basis, but contin-
uously over time. Some events occur simultaneously, while
others are scattered over time, with unequally distributed
time intervals between their occurrence. They usually report
numerical and/or categorical features. In our work, we focus
on processing and analyzing such multivariate and irregular
event streams produced by modern cars, for which related
research is still sparse. Our sequences of discrete events in
time are known as DTCs (diagnostic trouble codes). DTCs
are preferred over raw sensory data because they provide
less granular and discrete information. This makes them eas-
ier to analyze.

Copyright © 2025, Association for the Advancement of Artificial
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Figure 1: Error pattern (EP) prediction (when and what with
which probability) based on the past sequence .S of diagnos-
tic trouble codes (DTCs).

Our goal is to learn the correlation between DTCs using a
DTC-based language model to predict when and what with
which probability an error pattern (EP) is occurring after
having seen a number of DTCs (see Figure 1). Thus, we
consider DTCs to be the words in our language. In con-
trast, EPs are very different from DTCs. They are defined
by domain experts after observing DTC sequences. There-
fore, they are way more precise about the critical error that
the car is having. While some DTCs can also be noisy and
repetitive events about recurring errors (e.g. electrical issues,
software updates), EPs characterize a whole error sequence
consisting of precise vehicle failures (e.g. engine or battery
failures). Recent research has approached predictive mainte-
nance in the automotive field using sequences of DTCs via
RNNs (Hafeez, Alonso, and Ter-Sarkisov 2021) and, more
recently, Transformers (Hafeez, Alonso, and Riaz 2024) to
predict the next DTC. However, distinguishing minor errors
or noise-like DTCs from important events such as error pat-
terns (EPs) is essential since the latter poses higher risks and
necessitates greater safety and maintenance measures, such
as vehicle immobilization or addressing critical malfunc-
tions. Furthermore, as the data volume increases, accurately
predicting the next DTC becomes challenging, particularly
when the event type cardinality approaches ~ 10*. This phe-
nomenon is akin to language processing, where the accuracy
of the next token prediction using greedy decoding or other



methods exponentially decreases with sequence length and
vocabulary size due to error accumulation (Bachmann and
Nagarajan 2024). Historically, Hawkes Processes and their
neural variants have advanced the state of the art in event
modelling for next event and time prediction tasks (Hawkes
1971; Du et al. 2016; Shchur et al. 2021). Transformer-based
models like BERT (Devlin et al. 2019) and GPT-3 (Brown
et al. 2020) have gained overwhelming popularity due to
their attention-based architecture, flexibility, parallelization,
and state-of-the-art performance in sequence modelling.
Consequently, models adapted to discrete-time sequences
using Transformers have emerged naturally (Zhang et al.
2020a; Zuo et al. 2020; Shou et al. 2024), achieving state-
of-the-art performance in next event prediction benchmarks.

By leveraging the sequential nature of our data, we can
define sentences as the concatenation of each discrete event:

"< s> DTC1DTC2..DTCn < /s>"

as shown in Figure 1, and embed it into RP. We make sev-
eral modifications to the vanilla Transformer from (Vaswani
et al. 2017), incorporating continuous-time and mileage
positional embeddings as additional context. Using two
distinct training phases, we introduce CarFormer a pre-
trained model acting as an encoder and EPredictor a decoder
Transformer-based model that generates a probability distri-
bution over a set of error patterns for each event step ¢ to
determine what EPs will most likely happen and estimates a
time for when it will occur.

Contributions

To the best of our knowledge, introducing a causal Trans-
former model for error pattern and DTC prediction (event
type and time) has not been explored, despite some related
work on event-data and next-DTC prediction (Shou et al.
2024; Hafeez, Alonso, and Riaz 2024; Hafeez, Alonso, and
Ter-Sarkisov 2021). The main contributions of this paper
are:

e CarFormer: An encoder Transformer-based model de-
signed to ingest scattered continuous event streams from
vehicles, trained via a multi-task learning strategy. This
model will transform the DTC-sequences into hidden
representations that can be processed by the EPredictor.

EPredictor: An autoregressive decoder Transformer-
based model that specializes in predictive maintenance,
particularly error patterns by estimating when and what
error patterns will most likely occur.

2 Background and Related Work
Event Sequence Modelling with TPP

Event data is commonly modelled via Temporal Point Pro-
cesses (TPPs), which describe stochastic processes of dis-
crete events. Each event is composed of a time of occur-
rence ¢ € R and an event type u € U forming a pair
(t,u). U is a finite set of discrete event types. A sequence
is constructed with multiple pairs of events, such as S =
{(t1,u1), ..., (tr,ur)} where 0 < t; < ... < t.

TPPs are usually represented as a counting process
N(t) ¥t > 0 for the events of type u, which describes the
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number of occurrences of an event over time. The goal is
to predict the next event (u',t’) given the history H; :=
{(ti,u;) € RY x Ult; < t} of all events that occurred up
to time ¢. We define A\* to model the instantaneous rate of
an event in continuous time. Thus, the probability of occur-
rence for an event (u',t’) is conditioned on the history of
events H;:

N (t)dt == P((u',t') : t' € [t,t + dt)|Hy)
= E(dN(t)|H})

which we could translate as the expected number of events
during an infinitesimal time window [t, ¢ 4+ dt) knowing the
history H;. We assume that two events do not occur simul-
taneously, i.e., dN(t) € {0,1}.

The Hawkes Process (Hawkes 1971) has been arguably
the most studied modelling technique for TPPs. It assumes
some parametric form of the conditional intensity function
A*(t) and states that an event excites future events additively
and decays using a function f over time. For example:

N =p+ DY flE—t)

(us,ti)EH

(D

2

where ¢ > 0 is the base intensity. Neural TPPs, on the other
hand, aim at reducing the inductive bias of the Hawkes Pro-
cess, which states that past events excite future ones addi-
tively. They do this by approximating A\* using a neural net-
work (RNN, LSTM, Transformer) (Zhang et al. 2020a; Du
et al. 2016). Recent papers suggest using a generative and
contrastive approach for event sequence modeling, showing
promising results across predictive benchmarks. (Lin et al.
2022) uses next-event prediction as their main training ob-
jective, while (Shou et al. 2024) have three specific objec-
tives plus a contrastive loss.

Transformers for Event Streams

Encoding the history H; into historical hidden vectors us-
ing a Transformer enhanced the performance on event pre-
diction benchmarks as shown in (Zuo et al. 2020) with
the Transformer Hawkes Process (THP) or the self-attentive
Hawkes Process (Zhang et al. 2020a). They typically reused
the vanilla Transformer (Vaswani et al. 2017) and created
two embeddings:

Time Embedding Time embedding replaces the tradi-
tional positional encoding which grants the Transformer
model positional information of each token within the se-
quence. This time embedding is defined deterministically
with periodic functions exactly like in (Vaswani et al. 2017):

Pij:= {

where i is the index of the i-th event, wy is the frequency
(usually 107%).

Event-Type Embedding To get a dense representation of
our sequence, we embed each event into a d dimensional
space using an embedding matrix LY *¢ where V is the dis-
tinct number of events (vocabulary). As we would do for

sin(t; x wé/d) ifj mod2=0

. 3
cos(t; x w(()jfl)/d) ifj mod2=1 ©)



word embeddings, we create a sequence of one-hot encoded
vectors from the event types {u;}~ , as Y € REXV. Thus,
the event-type embedding E = YL € RZ*? and the input
embedding U is defined as U = E + P € RE*4

Attention The majority of research utilizing Transformer
models for sequence data employs the architecture intro-
duced by (Vaswani et al. 2017). We define three linear pro-
jection matrices Q = UWC K = UWX, and V
UWYV. They are called query, key, and value, respectively.
W, WK, WYV are trainable weights. Essentially Q rep-
resents what the model is looking based on the input U, K
is the label for the input’s information and V is the desired
representation of the input’s semantics. The attention score
can be computed as:

A = softmax(QK” /V/d) 4)
C=AV (%)

where d denotes the number of attention heads and A €
RE*L the attention scores of each event pair 7,j. A final
hidden representation H is obtained via a layer normaliza-
tion (LayerNorm), a pointwise feed-forward neural network
(FFN) and residual connections via:

U’ = LayerNorm(C + U)
H = LayerNorm(U’ + FFN(U))

6)

Self-Supervised Learning

By leveraging an efficient pre-training task (e.g. token
masking or next token prediction) and then fine-tuning a
smaller model with fewer parameters for specific tasks,
Transformer-based models achieve state-of-the-art perfor-
mance in natural language processing tasks (Devlin et al.
2019; Brown et al. 2020). For example, the GPT model is
pre-trained on the next token prediction task, where the la-
bels are generated by shifting the tokens to the right. Then, a
classification head is added on top of the Transformer model
to assign a probability to each token. Contrary to BERT (De-
vlin et al. 2019) a causal mask is applied so that tokens can
only attend to the previous one, thus preventing cheating.
In section 4 we will introduce a pre-trained model serving
as an encoder trained on specific event prediction tasks to
ensure adaptability to the event stream domain of vehicles.
We found that modelling event streams with autoregressive
Transformer-based models for fault predictions were not ad-
dressed well in the literature (Shchur et al. 2021) although
there is some related work for TPPs (Lin et al. 2022; Shou
et al. 2024).

3 Data

Overview Diagnostic data is generated by various Elec-
tronic Control Units (ECU) in a vehicle at irregular inter-
vals. Diagnostic data differs substantially from raw sensor
data, since diagnostic data or fault events are categorical and
relate to various problems within the vehicle. We construct a
Diagnosis Trouble Code (DTC) indicating the precise error
from 3 pieces of information arriving at the same timestamp
ts and mileage d: (1) the ID number of the ECU, (2) an error
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Notation
u

d

m

Description

Discrete event type, in our case a DTC.

Absolute mileage of the vehicle in km.

Mileage of the vehicle in km since the
first DTC (ug) occurred in a sequence .S
such as m; = d; — dy

Unix timestamp attached to each DTC.

Number of hours passed since the first
DTC occurred in a sequence. More
specifically, ¢; is defined as ¢; = ts; —
tSO.

Sequence of triplets (event
type, time, mileage) defined as
S {(us, t;,m;)} e, of length L
with index starting from O.

index of element in (event) sequence.

ts

i1€{0,...,L}

Table 1: List of symbols and their respective meanings

code (Base-DTC) and (3) a Fault-Byte. A single DTC token
is composed of these 3 elements:

DTC = ECU|Base-DTC|Fault-Byte

Thus, we can uniquely encode each DTC by a single token
to predict the next token directly.

This research uses an anonymized vehicular DTC se-
quence dataset of 1.7 x 10° sequences with on average 150
DTCs per sequence. Each sequence belongs to a unique ve-
hicle. In a sequence S, each DTC (commonly referred to
as event type u;) is attached with a time ¢; and a mileage
m, constructing a single event (u;, t;,m;). You can find an
overview of the DTC elements in Table 2.

Data # of values Description

DTC 8710 Diagnostic Trouble Code

ECU 61 Electronic Control Unit
Base-DTC 7726 Error Code
Fault-Byte 2 Binary Value

Table 2: Number of Distinct values of the DTC elements

To get a full sequence S = {(u;,t;,m;)}L, we obtain
the last known timestamp ts; and mileage d; and select
all DTCs that are no further than: (1) a given period in the
past (ts — ts; < 30 days) and (2) a given distance in the
past (d;, — d; < 300km). Table 1 explains the different data
notation.

Time and Mileage We draw the distribution of ¢; and m;
in Figure 2. We observe peaks at 0 on both distributions due
to truncation and missing values. In order to feed our model
with the time ¢ feature, we need a scaling method to level
out the left-tail distribution somewhat. Using log, (t+1) is a
natural choice. At the same time, we want to approximately
map ¢ into the range of [—1, 1]. Therefore, we apply the fol-
lowing non-linear function f; : RT™ — R to ¢:

t' = fi(t,b) = log,(t +1) — 1Vt € RT 7
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Figure 2: Distribution of ¢; and m; in our data set

with b chosen appropriately and feed ¢’ into a neural net-
work. In TPPs the time is usually represented as inter-event
time or its logarithm (Shchur et al. 2021; Du et al. 2016).

4 Pre-training
Embeddings

CarFormer uses 4 different embeddings to capture spatial
and temporal dependencies of irregular event apparition.
These embeddings differ from the positional embedding P
used in TPPs (2020), (2020b) and next-DTC prediction stud-
ies (2024), (2021). We embed both time ¢ and mileage m and
use a rotation matrix to induce absolute and relative event
positions for our Transformer such as:

+ Event-type embedding E € R*? is obtained like de-
scribed in section 2.

Absolute time embedding T € R%*¢ is constructed on-
the-fly at each forward pass by a linear transformation
t;; = tiw; + b; where w;, b, are learnable parameters
and ¢} is the scaled time at event step 4.

Mileage embedding M € R”* is obtained via a learn-
able lookup table WmmasXd where ma.x = 300km. Each
row w,, € R? corresponds to the learnable embed-
ding vector for the discrete mileage m. The continuous
mileage m; € RT is cast to an integer value m = [m;].

Rotary Position Embedding (RoPE) R¢, Due to the
permutation invariance of the Transformer model and the
scattered time ¢, we still need to integrate positional event
information. To do so Q, K are rotated using the orthog-
onal matrix Rd@ from (Su et al. 2024) in function of the
absolute event position 7 in the sequence S. This method
has two advantages: (1) it’s not learnable (less likely to
over-fitting), and (2) it integrates natively the relative po-
sition instead of altering A with a learnable bias like in
(Shaw, Uszkoreit, and Vaswani 2018).

‘We make the distinction between our event-type embedding
E and the other information per event (time and mileage)
which we call context embedding CE = T + M.

Continuous Time Mileage Aware Attention We modify
the vanilla Transformer from (Vaswani et al. 2017) by (1)
adding the context embedding to the projected event-type
embedding at every layer (Touvron et al. 2023), and then
(2) a Rotary Position Embedding (RoPE) (Su et al. 2024) is
applied to both query Q and key K:
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Figure 3: CarFormer architecture

Q =R (WUE + CE),
K = R (WXE + CE)

where © = {0; = 0,207V i e [1,2,...,d/2]},00 =
10*. More specifically, the inner product between query q,,
and key k,, takes the event-type embedding e,,, e, where
m —n is their relative position with context CE,,, and CE,;:

ank, = (RS ,,(Ween + CE,)) RS ,,(Wie, + CE,)
=efL W,RS ,, .. Wie, +en W,RS . CE,+
CELRY ., . Wie, + CELRS ,_,.CE,
= (1): query-to-key + (2): query-to-ce
(3): ce-to-key + (4): ce-to-ce

®)
where RE . = (RE,,)TRE . is a sparse orthogo-

nal matrix. The additional terms (25, (3), (4) provide richer
query and key representations when computing the attention
scores. Thus modifying Equation 4:

(RE(WCE + CE))(RG(WFE + CE))T>
V3d

Adding CE after the projection to query and key can be
seen as a refinement of Q, K by T, M, providing additional
context to the attention scores. We also add a scaling factor
of 3 to compensate for the additional terms in Equation 8.

A = softmax (

Multi-Task Learning

Next Event Prediction. We use a standard language mod-
eling objective which aims to minimize the cross-entropy
loss between our output distribution u; generated by our
model’s Next Event Head and the next event u; ;. (Shou
et al. 2024) used a BERT (Devlin et al. 2019) model trained
on a masked event modelling task which is commonly used



for bidirectional models. However, they simultaneously ap-
plied a causal mask resulting in a loss of the bidirectional
property. We argue that by doing so, we lose a lot of sample
efficiency, thus we will stick to a standard next token pre-
diction. 7; € RY is the predicted probability distribution by
the Next Event Head, which integrates an RMS normaliza-
tion (Zhang and Sennrich 2019) and one linear layer. The
cross-entropy loss between %, and u;; (= a one-hot vector
in {0,1}") is obtained by:

L Vv
L. :=— Z ZU¢+1,j log(t;,7)(1 — 6i,)

i=0 j=0

€))

where J; , is the Kronecker delta, which equals 1 when ¢ =
r,7 € R (set of randomly generated events) and O otherwise.

Next Event Time Prediction. In addition, we compute the
Huber loss (Jadon, Patil, and Jadon 2024) between the esti-

mated inter-event time A#’ ; for the event u; and the ground
truth At, = fi(ti41,10)— f+(t;, 10) to deal with outliers and
prevent exploding gradients with 3 = 1,¢; = At} — At’.

L

Li=> (1-6,) {

=0

0.5¢2
(les] —0.5)

if |€1| < B,
10
otherwise, (10)
t’ is obtained using a log, hence we are essentially comput-
ing a kind of Mean Squared Logarithmic Error (MSLE) but
with a 3, useful to stabilize training and help convergence.

Random Event Prediction. Finally, a binary classifier
that predicts whether an event was true or randomly gen-
erated is added. We motivate this choice by several papers
(Shou et al. 2024; Gao et al. 2020) stating that a model
should learn when an event does not happen to reinforce
the negative evidence of no observable events within each
inter-event. At each step ¢, a random event is injected with
probability p. If a random event is successfully injected, the
process continues until a failure occurs (i.e., the event is not
injected), this allows for multiple random events to be in-
jected in a row, allowing for more complexity. The L, loss
is defined as the binary cross-entropy loss between the prob-
ability distribution g generated by our Random Event Head
and the ground truth y; at event step ¢:

IR|
Loi==> yilog(§)+ (1 —y})log(l —3;) (1)
=0

Total Loss. The total loss is defined as follows:
1 1
L=—"F(L. L —L, 12
L—|R|( +« t)+ﬁ|R\ (12)

where «, 3 are trade-off between the different loss, L the
sequence length, R the set of random events injected in S.

5 EPredictor

Predicting only the next DTC in a sequence of DTC faults
has its inherent limitation and remains a difficult task.
(Hafeez, Alonso, and Riaz 2024) use DTCs those ECU,
Base-DTC and Fault-Byte data have a cardinality of 83, 419

19427

g"
S' ‘

Minimum context ¢ P(EPIS) P(E?S") T
m D
A —f e

Next EP Head Next EP Time Head
1

Add & RMS Norm

1

Masked Multi Head

[ Feed Forward J
Output Context
Embedding
Attention
Value AKey AQuery
Output H(S) | ~°PE o) @
CarFormer [ Feed Forward }
I

<

Add & RMS Norm <
1
Masked Multi Head
Attention
Query A KeyAValue
RoPE

Output Evept- RMS Norm
type Embeding A

Figure 4: EPredictor architecture

and 64, respectively, and only report a 81% top-5 accuracy
for next DTC prediction. This is because DTCs are not al-
ways correlated nor have causal links. Instead, we are also
using repair and warranty data to predict more important
events such as EPs (error patterns). Repair and warranty data
differ from DTCs since they are manually defined by domain
experts after observing all DTCs and characterize a whole
sequence S and not an individual event u;. Hence, we can
define and say that a certain error pattern y has happened at
index i = L in a sequence S. Note, that multiple EPs can oc-
cur at the same time. We can now define a supervised multi-
label classification learning problem of predicting EPs. With
EPredictor, we leverage the seq2seq nature of Transform-
ers, where CarFormer outputs a sequence H(.S) of tokens
encoded in a high-dimensional space d, positioning tokens
with similar characteristics nearby. Then, this hidden rep-
resentation H(S) is fed into EPredictor which acts as an
autoregressive multi-label classifier for EPs. We approach
EP prediction as a machine translation task. By utilizing the
contextualized hidden states H(.S) from CarFormer as key
and value (i.e., through cross-attention), this effectively tran-
sitions our model from a ”seq2seq” to a “’dtc2errorpattern”
framework.

Multi-Label Event Prediction

Multi-label classification has recently gained interest in
event prediction. (Zhang et al. 2020b) uses an LSTM for
fault detection. More recently, (Shou et al. 2023) considers
concurrent event predictions as a multi-label classification
and models such data with a Transformer architecture.

To define the multi-label event prediction task with N la-
bels (=EPs), we reuse each S = {(u;,t;,m;)}L, and at-



tach a binary vector y € [0,1]" to indicate the EPs oc-
curring at time ¢y. It’s important to note that y is invari-
ant per sequence S, meaning for all events within S the
ground truth y will be the same. By using a causal mask
on both CarFormer and EPredictor, we enable predictive
maintenance predictions since tokens can only attend to the
previous ones, as shown in Figure 4. In our case, and in
most real-world problems, EPs are highly imbalanced across
our dataset, which is a considerably more challenging prob-
lem for our event prediction task, especially when the least
occurring classes are the most important to detect (Zhang
et al. 2020b). In natural language processing, traditional up-
sampling methods involve perturbation of S by shuffling and
replacement of tokens. However, in event data, we cannot
afford to lose spatial and temporal information. Therefore,
we inject random events (u;,m;,t;) with the same prob-
ability of p = 0.05 as in Section 4 and reuse the asso-
ciated Algorithm. We up-sample the different EPs classes
up to a minimum 6; = 6000 and downsample the most
popular ones down to a maximum 6 = 12000. We drop
also classes below 100 apparitions across the dataset. We
define a minimum context ¢ = 30 which acts as a “min-
imum history” of DTCs to retain. The Next EP Head out-
put a vector of probabilities 3; = sigmoid(MLP_(H;)) for
each history {Hy,...,H;}, i € ¢,...,L where H; € R¢
is the generated hidden representation from EPredictor at
step ¢. For the regression task we forecast the time till the

EP(s) occurrence At'; = MLP,(H;) where the ground truth
is At, = fi(tr,30) — fi(¢;, 30). Formally, we define our bi-
nary cross-entropy loss over the NV possible EPs for one step
1 as follows:

N
, 1 . N
LF = N Zyj log(9i,5) + (1 —y;) log(1 — i) (13)
=0

The total loss across S with L events and context ¢ is:
L
1

LY

1=cC

L .=

7 (14)

We use the Huber loss (Jadon, Patil, and Jadon 2024) and
define ¢; = At} — At}, with § = 1 thus:

£t._ 1 -
'_Lclzz:{

c

0.5¢2 if ¢; < 0,
le;] — 0.5 otherwise,

(15)

Our final loss to minimize is then : £ = £ 4 vL!

6 Experiments

We implemented and trained CarFormer and EPredictor
models using PyTorch, the code is publicly available. Train-
ing details are included in the Appendix.

Ablation I: CarFormer Embeddings

Multiple CarFormer models with different choices of em-
beddings were evaluated on the next token prediction ac-
curacy (ACC) and on the regression task with mean abso-
lute percentage error (MAPE) and root mean square error
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(RMSE) to determine the best working CarFormer model.
The different choices were rot (RoPE), time (absolute time
embedding added to the input U), mileage (also added to
U), m2c, and c2m are additional dot-products ((He et al.
2021)). In our case, we are more interested in the next event
prediction task, thus we accept to lose some MAPE % over
the ACC (%).

Model ACC(%) MAPE(%) RMSE
rot-ce 22.64 3.2 0.04770
time 21.48 2.9 0.04762
time-mileage 21.38 3.0 0.04785
time-c2m-m2c 21.58 3.5 0.04794
time-m2c¢ 21.52 3.6 0.04823
GPT 19.89 - -

Table 3: Overall prediction performance of CarFormer with
different embeddings. Best results are in bold.

Using only time gave the best MAPE (2.9) but not the
best ACC (21.48), suggesting that other features might im-
prove the model predictions. For the mileage integration, our
intuition was that doing an early summation of the two em-
beddings (T, M) seemed to denature the input U (ACC of
time-mileage < ACC of time) but the mileage of the vehicle
could help differentiate between different DTCs. We tried
to modify the attention dot products which seemed to help
the ACC a bit (time-c2m-m2c, time-m2c) but increased the
MAPE drastically. So we fused it with CE directly in Q, K.
Then, by applying a RoPE to the transformed input, the ACC
increased while preserving the RMSE, leading to the best
performing model, namely: rot-ce.

EPredictor Experiments

We used the micro-F1 score (Zhang and Zhou 2014) to as-
sess the performance of the multi-label classification. To bet-
ter understand and enhance our model’s predictive mainte-
nance capabilities, we introduce the concept of Confident
Predictive Maintenance Window (CPMW) which represents
the interval within which our model can make reliable pre-
dictive maintenance predictions (similar to the prediction
window” described in (Pirasteh et al. 2019)). We quantify
this with the CPMW Area Under Curve (CPMWAUC). The
F1 score, MAE and MAPE have been calculated on aver-
age for all observations in Table 4, and additionally for each
history H; in Figure 4 to understand how each model per-
forms with different numbers of observations. To monitor
the predictive maintenance capability of each model, the
CPMWAUC; and CPMWAUC,,,,. were computed.

Ablation II: EPredictor Architecture & CPMW

We explored several architectural changes and their impact
on the CPMW: we applied a RoPE (rof), a cross attention
with query or key or value to the second multi-head attention
block (cross), added the context embedding CE (ce) to layer
1 and/or 2, applied a scaling factor of v/3d to Q, K as shown
in Equation 4 (scale), injected a relative matrix S,.; into the



Model Micro F1 (%) MAPE (%) MAE CPMWAUC;; + CPMWAUC,, |
rotcross-query-key-ce-1-2 82.69 32.45 0.0268 52.80 0.888
rotcross-query-key-ce-2 82.69 31.18 0.0254 56.61 0.882
rotcross-query-ce-2 82.69 31.18 0.0254 53.00 0.884
rotcross-key-value-ce-2 84.38 33.47 0.0263 65.06 0.904
rotcross-key-value-scaled-ce-2 84.38 31.44 0.0252 67.63 0.874
rotnocross-ce-1-2 80.74 37.61 0.0275 42.95 0.927
cross-speed 83.53 34.73 0.0260 49.28 0.877
cross-mixffn 83.41 33.37 0.0270 54.39 0.891
time-cross-query 83.34 35.89 0.0275 45.71 0.896

Table 4: EPredictor evaluation results with different model architecture on the test set (no up- nor down-sampling)

attention scores (speed), and applied a mixed feed-forward
network (mixffn) (Xie et al. 2021) to the mileage embed-
ding. The time model refers to T which is also added to E.
Finally, we trained a model with and without the Random
Event Head. Our experiments revealed several key insights:
By applying a cross attention, we can see improvement in
all metrics (rotnocross-ce-1-2), which is consistent with the
machine translation analogy “dtc2errorpattern”. The best
cross attention results were shown with H(S) used as key-
value. Adding the mileage via an MLP layer (cross-mixffn)
seemed to help the MAPE (-2.5%), the CPMWAUCy, (+9)
and also the CPMWAUC;,.(—0.005) compared to time-
cross-query model, suggesting that mileage is beneficial for
both task. This makes sense since EPs are also dependent on
the traveled distances between DTCs and the different sta-
tionary behavior of the vehicle. Furthermore, models incor-
porating a RoPE (rof) performed significantly better in both
regression and classification tasks like in the pre-training,
highlighting the performance of RoPE in machine transla-
tion tasks (Su et al. 2024). Adding CE to the last layer (ce-2)
gave the best results, as opposed to adding it to both layers
(ce-1-2). Surprisingly, doing feature engineering on T, M
with a speed matrix S didn’t help the metrics, which could
indicate some missing modalities (e.g. mileage) during train-
ing, thus CE is more adapted for real-world scenarios. We
monitored the need for our Random Event Head and no-
ticed +1.2% in the F1 Score and +10.1 in the CPMW ;.
When taking the best performing model (rotcross-key-value-
scaled-ce-2), the model entered the CPMW after 81 obser-
vations i.e. half of the sequence. Within this window, the
model obtained an error of ~ 65 + 14h when estimating the
time of EP occurrence (Figure 6), highlighting the model’s
predictive capability within the CPMW. Otherwise, the aver-
age absolute error across all observations was approximately
58.4 £ 13.2h. By experimenting with these modifications,
we aimed to identify the optimal architecture for predictive
maintenance. The findings reveal that cross attention, con-
text embedding in the second layer, and scaled attention sig-
nificantly improve performance within the CPMW.

7 Conclusion

This study bridges the gap between traditional event se-
quence modeling and fault event prediction in vehicles by
using two language models. We have demonstrated through
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Figure 5: F1 Score comparison with multiple Epredictor ar-
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Figure 6: Evolution of the MAE in function of the number
of observations for the best performing model.

specific relevant metrics that our approach can accurately
perform predictive maintenance by effectively predicting
when and what error patterns are likely to occur, even with
continuous, unbalanced, and high cardinality data. In real-
world settings, EPredictor is easy to use in a car. After each
DTC occurrence and until reaching a minimum number of
observations is reached, we would then infer the most likely
EP and its time of occurrence. If the model is confident
enough, the user will be alerted to an impending critical
fault and directed to a nearby dealer, hence enhancing ve-
hicle safety on the road and reducing maintenance costs.
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