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Abstract—In order to enhance the robustness and flexibility
of production systems and improve their responsiveness to
unforeseen events, it is essential to devise appropriate strategies.
This paper aims to develop and evaluate a predictive-reactive
scheduling method to increase the robustness of production
planning and control. As disruptions can often be anticipated, but
not always prevented, a scheduling method that combines pre-
dictive planning and reactive control reduces the impact of such
occurrences on the production system. In order to achieve this, a
real-world use case is introduced, and the relevant disruptions are
identified. To address the predictive aspect of the methodology,
an allocation problem and subsequently a sequencing problem
are first solved using heuristics and mathematical optimization
in order to schedule the jobs. Reactive scheduling strategies are
then developed and implemented into a discrete event simulation
model for the purpose of evaluating the improvement of the
results. The results demonstrate a significant enhancement in
production planning, as evidenced by more balanced processing
times and a sufficient buffer for rescheduling. Therefore, this
method enables the generation of a robust and cost-minimized
production plan. By implementing the rescheduling strategy for
production control, the impact of disruptions are minimized, as
evidenced by the obtained key figures which serve as a robustness
indicator.

Index Terms—Robustness, Production Disruption, Simulation,
Automated Production Planning and Control, Advanced Manu-
facturing

I. INTRODUCTION

Volatile market conditions, unpredictable fluctuations in de-
mand, raw material and energy prices are just a few examples
of possible challenges companies must navigate in today’s
rapidly changing and globalizing world. Furthermore, the
modern production landscape faces a multitude of production
disruptions which must be overcome in order to succeed [1].
Disruptions can occur in any context and have a variety
of effects. Therefore, it is important for every area of a
company to be aware of them, plan for them in advance,
and react to them quickly when they occur. It is essential to
consider that disruptions can occur both internally, such as the
breakdown of a production machine, and externally, such as
supply bottlenecks due to political or economic crises in other

countries [2]. These disruptions can have a significant impact
on the company and production, affecting the achievement of
its goals [3].
The challenges faced by production companies are numerous,
complex, and interdependent. To succeed, companies must
not only be highly flexible but also able to make their
production systems robust and adaptive [4]. In this context, it is
increasingly important to develop new strategies that enhance
the robustness of production processes and systems. This is
because they form the foundation for coping with uncertainties
and achieving sustainable competitiveness. The objective of
this paper is to develop a method that enhances the robustness
of production systems in the areas of production planning
and control. This will contribute to the sustainable success
of a company. The predictive-reactive scheduling method
comprises two parts.
Firstly, disruptions should be anticipated and included in the
planning at an early stage. Therefore, the aim of predictive
planning is to generate a robust and feasible production
schedule. The term ’predictive’ refers to the fact that planning
is based on predictions and forecasts. This can be achieved
by analyzing historical data, using models, algorithms, or
expert knowledge. Predictive scheduling is a planning method
that optimizes schedules and resources by taking possible
future events, conditions, and uncertainties into account. This
approach is especially valuable in dynamic and stochastic en-
vironments where factors such as machine breakdowns, quality
issues, or raw material delays can impact the production [5].
Secondly, disruptions should be reacted to as their occurrence
cannot be prevented in many cases. The objective is to
minimize the effects of disruptions and their impact on the
performance of the production system [6]. Reactive scheduling
or rescheduling refers to the process of adjusting and updating
a planned schedule by changing the sequence or planned
times due to an imminent or already occurred deviation from
the planned values. This is typically caused by unexpected
events, such as disruptions [7]. Therefore, the plan is executed
in a simulation model and adapted in response to changing



environmental conditions. The knowledge acquired is then
promptly applied to the real-world production system. Reactive
scheduling is particularly relevant in the area of production
control. For this reason, constant monitoring of production
processes and data updates are necessary [8].

II. USE CASE

This paper presents a use case that was developed in
collaboration with a multinational manufacturing company
located in Bavaria. The production process is large-scale
and involves prefabrication, final assembly using six parallel
assembly lines, and subsequent packaging processes, storage,
or direct dispatch.
The assembly lines are identical in their basic structure and
consist of the same number of processing stations. Each order
passes through each processing station of a line with a constant
cycle time each for a continuous material flow. Because it
is spatially and temporally bound, the production is called
continuous flow production [9]. In the basic structure a parallel
flow shop scheduling problem (PFSP) has to be solved, but
the assembly activities vary depending on the assembly line.
Therefore, not all orders can be produced on every line,
as some features can only be assembled on specific lines.
Consequently, any order that includes such features must be
scheduled on the corresponding line.
The number of employees required varies from order to order,
as each order passes through each processing station but is
not processed at every station. At the start of each shift, the
products with the most features are processed first, while the
less complex variants are assembled towards the end of the
shift. As a result, the number of employees required is highest
at the beginning of a shift and decreases as the shift progresses.
The work is carried out in two shifts, over a five-day week.
Production planning generates a fixed plan for the next ten
days. If this plan is interrupted by a disruption, the production
planner will manually decide how best to deal with the
situation and resolve it.
This process requires a great deal of experience and decision-
making, but subjective evaluations should be excluded. Dif-
ferent planners may arrive at different results due to the
complexity of the decision-making process [4]. Therefore, a
holistic approach for the predictive production planning and
the reactive production control in the event of a disruption is
developed. This concept will serve as the basis for the func-
tion of a simulation model that can independently recognize,
categorize, and predict faults and deal with their effects, so
that a planner can use it as a supporting tool for his decisions
or to compare different plans and solutions [10].

III. STATE OF THE ART

Various approaches to the predictive-reactive scheduling
method exist in the literature. However, these approaches
differ based on the application situation, production type,
or implementation structure. This overview briefly presents
selected approaches with similar framework conditions or
methods fitting to the use case of this paper, which form the

basis for the self-developed procedure.
The solution of an identical parallel machines flow shop
problem is addressed by Duenas and Petrovic [11], Mahajan
[12], Tighazoui et al. [13] and Yin et al. [14]. This approach
can be applied to the present case of identical parallel
assembly lines. However, the complexity of this use case is
significantly increased due to the constraint that each order
contains information on which lines it may be produced.
Consequently, a simple transfer of the previous approaches is
not possible.
In addition, there are various approaches to the optimization
goal. The most common optimization goal is to minimize
makespan. Other sub-goals are often pursued and combined.
Duenas and Petrovic [11], Li et al. [15], Mahajan [12], Tang
et al. [16], and Wu et al. [17] all pursue the minimization of
makespan, and thus it is also used as one of the optimization
goals for the present use case.
Even the considered disruptions differ in the various papers.
As an overview, Vieira et al. [6] identified the most common
types of disruptions that occur in production. These include
machine failure, urgent job arrival, job cancellation, due
date change, delay in the arrival or shortage of materials,
change in job priority, rework or quality problems, over- or
underestimation of process time or employee absence.
Numerous approaches exist in the literature for solving
complex planning problems through the use of predictive-
reactive scheduling. None of the approaches in the literature
can be directly adopted to solve the problem of this work
in a way that is suitable for the use case at hand. These
approaches mostly focus on either the economic objectives
i.e., the minimization of makespan or concentrate on
developing an indicator for robustness. The innovation of
this approach lies in its combination of these two elements
implemented into a single objective function which aims
to create a schedule that is simultaneously cost-minimized
and robust. The method is developed for a PFSP with an
additional constraint to special line restrictions.

IV. PREDICTIVE SCHEDULING

Due to the restriction that each order may only be produced
on specific lines, the total orders are distributed as evenly as
possible across the various assembly lines using a heuristic.
The greedy heuristic is employed for this purpose to solve the
allocation problem. Once the orders have been scheduled in
a manner that minimizes the discrepancy in processing times
across the lines, it becomes evident that the total processing
times (TPT) of the various assembly lines may still differ.
If the number of orders that are allowed to be produced on
one assembly line during the specified planning period is
less that of the other lines, the resulting TPT will be lower,
regardless of the approach employed to address the allocation
issue. However, the differences in the TPT can be utilized as
a time window for reactive scheduling at a later stage and are
therefore advantageous as they contribute to robustness in the
event of a disruption.



The subsequent stage in predictive scheduling is to resolve
a sequencing problem. Once the orders have been allocated
to the individual lines, they should be scheduled in a cost-
minimizing and simultaneously robust sequence. Given the
multiplicity of company objectives, such as on-time delivery
or set-up costs, some of which are in conflict with each other,
this sequencing problem is not straightforward to solve.
Therefore, mathematical optimization is employed to define a
basic model that can be utilized to schedule orders in a robust
and cost-minimized way. To this end, relevant cost factors
are initially defined, which, in the context of the present use
case, encompass demand costs di, setup costs si, worker costs
wi, and material costs mi. For each cost factor, a weighting
factor wf is introduced to later adapt the optimization to
different use cases reflecting individual preferences. The total
costs of a production plan cppi are therefore calculated as
the sum of the aforementioned cost factors, as presented in
(1). Optimization is carried out as a minimization of the total
costs of the resulting production plan from the sequence of
scheduled orders.

cppi = wf d ∗ di + wf s ∗ si + wfw ∗ wi + wfm ∗mi (1)

The demand costs di are calculated as the absolute value
of the difference between an already scheduled order j and
its possible successor j + 1, totaled over all orders J , as
presented in (2). Here, the difference between the order and
the possible subsequent order is calculated. In accordance
with the requirement to minimize the cppi, the order for
which the difference and the resulting demand costs di are
the lowest is then selected from the orders not yet scheduled.
Therefore, in each iteration, the order with the smallest cost
difference in relation to its already scheduled predecessor is
scheduled.

di =

J−1∑
j=1

|dj − dj+1| (2)

Following the scheduling of each order, the sum of all differ-
ences is then calculated. This total extends from order j = 1
to order J − 1, ensuring that the difference is calculated for
all orders included in the schedule. As it is also possible for
negative terms to arise due to the specified data and the type of
calculation, the absolute value is calculated in each case. By
calculating the absolute values, negative terms are considered
in the same way as positive terms. This enables the calculation
of the demand costs across all orders, which subsequently
serve as one cost factor in the objective function.
The remaining cost factors are calculated in accordance with
the aforementioned principle by the equations (3) for the setup
costs, (4) for the worker costs and (5) for the material costs.

si =

J−1∑
j=1

|sj − sj+1| (3)

wi =

J−1∑
j=1

|wj − wj+1| (4)

mi =

J−1∑
j=1

|mj −mj+1| (5)

The manner in which the cost factors are calculated depends
on the specific use case. In the use case of this paper, the
deviations from the scheduled delivery date are incorporated
into the demand costs. For the setup costs the given product
type is used and to calculate the worker costs, the required
number of workers of each individual order is used.
To ensure that the cost factors are included in the objective
function equally, they must be normalized to the value range
of [0, 1]. To express individual preferences of the cost factors,
the weighting factors wf are used.
The advantage of this definition of the cost model is its
simplicity and flexibility. Depending on the specific circum-
stances, all factors influencing the resulting costs of the
schedule can be defined on a problem-specific basis and then
assigned to the respective cost factor. Therefore, the model can
be extended and adapted to diverse scenarios very easy. This
model enables the generation of a cost-minimized and robust
production plan for the predictive scheduling.

V. REACTIVE SCHEDULING

In order to complete the predictive-reactive scheduling
method, a concept for the step of reactive scheduling or
rescheduling in the area of production control is developed
in this section. The objective is to minimize the effects of
disruptions by having a solution ready in the event of a dis-
ruption. The aim is not necessarily to eliminate the disruption
as quickly as possible, as this is often beyond control. Instead,
the focus is on finding alternative courses of action that enable
the production system to maintain its functionality despite the
disruption.
Reactive scheduling occurs as a sequence of action steps,
which can be modeled as a flowchart using the event-driven
process chain (EPC) notation. A flowchart is a graphical
representation of nodes and edges that abstractly represents the
theoretical sequence of a process, including entry options, sub-
processes, and work steps. The advantages of a flowchart are
clarity, logical representation, and simple expandability [18].
As different disruptions are crucial in every production and
in every use case, the initial step is to identify the relevant
disruptions. This can be accomplished through the use of
historical data and by conducting interviews with experienced
employees. In this particular use case, the three most signif-
icant factors are machine breakdown, employee absence, and
material shortage.
Once the relevant disruptions have been identified, an action
strategy is defined for each type of disruption. These strategies
are executed as soon as the disruption occurs. The action
strategies serve as the foundation for the simulation model,
which represents the production as a digital twin. During
the simulation process, the specific type of disruption is
automatically identified, and the corresponding action strategy
is executed as a consequence.



The output of the simulation model is the updated production
plan in response to the disruption that has occurred. Due to
the simulation model’s reference to reality, the rescheduled
plan can be implemented directly or used as decision support
for the production planner. The aim is to use simulation to
anticipate disruptions on the one hand and to enable a rapid
response in the event of a disruption on the other.
To illustrate the concept in concrete terms, Fig. 1 depicts
the sequence of a process chain in the event of a machine
breakdown. Once the disruption has occurred, it is first
identified and classified. If the disruption is identified as a
machine breakdown, the subsequent steps in the process chain
are processed automatically. As this is a continuous flow
production process, the entire production line comes to a
standstill. The parts that have already passed through the faulty
machine are still fully produced, but no further parts can pass
through the faulty machine. Consequently, the line will come
to a standstill after a certain time.
As there may be orders scheduled on this line that have
an urgent delivery date and therefore need to be produced
promptly, the first step is to check whether the next order in
the production plan for this line can be scheduled on another
line. However, certain additional constraints must be taken into
account. Primarily, the information in the order data must be
checked to see on which lines the order can be produced.
This information has already been used in the solution to the
assignment problem to initially assign the orders to the lines.
If the order cannot be produced on any other line due to its
specification, it is skipped and the next order in the production
plan is iteratively checked for rescheduling.
In the event that an order is identified for which a transfer

to an alternative line is permissible, the system will check
whether the TPT of the target line is less than that of the
current line. In the phase of predictive planning, it was
determined that the production lines have disparate TPTs.
This control step is intended to ensure that no rescheduling
occurs that would additionally extend a production plan that
has already been extended. Consequently, rescheduling to a
line whose production plan has a shorter TPT also addresses
the issue of imbalanced processing times among the respective
lines, as a result of predictive scheduling. In the event that the
TPT of the target line is longer than that of the previous line,
the order in question is not rescheduled. Instead, it is skipped,
and the next order is checked.
If scheduling is still possible due to the TPT, scheduling is
carried out according to a selected rule, for example, the
earliest due date rule, in the production plan of the target line.
This ensures that the delivery date of this order can be met as
far as possible despite the rescheduling and that it is not added
as the last element in the new plan due to its late scheduling.
This is the primary reactive step for this type of disruption.
The system then determines whether the disruption has been
rectified and, if so, whether the line can resume production.
If the fault has not been rectified, the system returns to the
start of the process chain and the next order in the original
schedule is checked for rescheduling. If the disruption has

Fig. 1. Flowchart depiction of the logical steps for reactive scheduling in the
occurrence of a disruption by using the event-driven process chain notation.
The process chains for employee absence and material shortages are not
described in detail for reasons of clarity.

been rectified, production can continue as normal. The reactive
scheduling process has been successfully completed, resulting
in a reduction of the disruption’s effects and an enhancement
of the production system’s robustness.
The process chains for employee absence and material short-
age were developed according to the same principle, but are
not shown for reasons of clarity. Should further disruptions
arise in the respective use case, these can be modeled anal-



ogously. This elaboration and presentation serves either as a
guide to action for the responsible decision-maker or as a basis
for implementation in a simulation model.

VI. EVALUATION

In order to demonstrate the effectiveness of the method
developed here and its potential to enhance the robustness of
production systems, it is essential to implement it. Due to its
mathematical nature, the predictive scheduling can be easily
implemented in a programming language such as Python. In
predictive scheduling, the original data set of the use case
is used, and Python programming is employed to first solve
the assignment problem and then the sequence problem in
accordance with the developed theoretical concept.
The previous scheduling of orders is done according to the
first specification in the data set, on which line this order can
be produced, without checking whether another line would be
suitable for this order and could possibly lead to better results.
Table 1 shows the results of predictive scheduling. After solv-
ing the assignment problem according to the greedy heuristic,
the results for the TPT, expressed in hours (h), of the individual
lines are already significantly more balanced than when they
are assigned according to the first line priority from the
original data set.
The final two columns illustrate the results of the sequence
problem. The values presented are the result of the objective
function and are therefore expressed in cost units (cu), as these
represent the costs associated with the respective production
plan of each assembly line. A scheduling according to the
priority indication and then using the earliest due date rule
produces significantly higher objective function values than a
sequence that employs iterative scheduling with mathematical
optimization.
The results demonstrate a significant enhancement in pro-

duction planning. The more balanced TPTs ensure a more
even utilization of all assembly lines, while simultaneously
providing a sufficient buffer for rescheduling. This method of
predictive scheduling enables the generation of a robust and
cost-minimized production plan. Robustness in general, refers

TABLE I.
RESULTS OF PREDICTIVE SCHEDULING. THE INITIAL COLUMN COMPRISES 
THE SIX ASSEMBLY LINES. THE SECOND COLUMN PRESENTS THE RESULTS 

FOR TOTAL PROCESSING TIME (TPT) ACCORDING TO THE PRIORITY 
INDICATION IN HOURS, WHEREAS THE THIRD COLUMN PRESENTS THE 
TPT WITH THE GREEDY HEURISTIC. THE FOURTH COLUMN PRESENTS 

THE RESULTS FOR THE COST OF THE FINAL PRODUCTION PLAN (CPP) IN 
COST UNITS ACCORDING TO PRIORITY INDICATION, WHEREAS THE FIFTH 

COLUMN PRESENTS THE CPP ACCORDING TO THE COST FUNCTION.

a. l. TPT - prio.
ind. [h]

TPT -
greedy [h]

CPP - prio.
ind. [cu]

CPP - cost
func. [cu]

one 204 131 54.1 21.7
two 151 161 63.6 25.4

three 170 162 55.2 19.4
four 377 203 52.0 13.6
five 132 204 48.0 14.5
six 31 204 69.3 29.7

to the ability of a system and its processes to maintain its
functionality despite the occurrence of disruptions. As there
is no concrete value to measure robustness, similar to the
approaches from the literature, the difference between the
planned and actual values is calculated [19]. The classical
efficiency criteria are employed to measure the performance
of the developed method, including the makespan, the number
of delayed orders according to their delivery date, and the
maximum delay.
The final assembly of the use case was recreated in a simula-

tion model in the Plant Simulation software. In order to apply
reactive scheduling, the production plan was first executed
without disruptions to obtain the planned values. However,
as this does not correspond to reality, machine disruptions
were incorporated and the results of the defined efficiency
criteria were measured again. As expected and illustrated in
Fig. 2, these are significantly worse, as production is delayed
by the disruptions. The simulation was then run again using
the reactive scheduling strategy for machine breakdowns.
The structure of the three diagrams in Fig. 2 is identical.
The left bar symbolizes the measurement result of the plan
model, without any disturbances. The middle bar represents
the measurement result of the disruption model with a total
machine downtime of almost 20 hours, which can occur
across the different lines and the entire simulation period. The
third bar represents the measurement result of the solution
model using the reactive scheduling strategy. As illustrated
in Figure 2, although the original plan values cannot be
attained, a notable improvement in the results can be achieved
in comparison to the model without a reactive scheduling
strategy.
By implementing the rescheduling strategy for production
control, the effects of the disruptions that occur are minimized
and, as a result, the deviations in the measured values are
lower than in the simulation run without a reactive scheduling
strategy. This reduction in the deviation in the measured
values is used as a robustness indicator in order to be able
to make a statement regarding the increase in the robustness
of the production system. Therefore, the evaluation indicates
the potential of the developed method and its contribution
to enhance the robustness of a production system against
disruptions.

VII. CONCLUSION AND FUTURE WORK

The predictive scheduling with the combination of heuristics
and mathematical optimization for production planning and the
reactive scheduling with simulation for production control lead
to a promising method to increase the robustness of production
systems.
Future work will focus on expanding the simulation model.
The more disruption types the simulation model recognizes
and corresponding action strategies it comprises, the better
the applicability and the greater the closeness to reality. A
further research topic could be to ascertain the methodology
of the simulation model to identify and categorize different
disruption types.



Fig. 2. Evaluation of the obtained key figures including the number of delayed orders, the maximum delay of an order, and the makespan. The key figures
were measured after running the simulation model in an ideal world, then after implementing the machine breakdowns, and finally after running the simulation
model with the rescheduling strategy, which improved the results despite the disruptions.

In this paper, the question of how a method of predictive-
reactive scheduling can increase the robustness of a produc-
tion system is answered. The theoretical concept shows the
transparency, flexibility, and expandability of the method. The
implementation proves the potential of the developed concept
by using the data of the real-world use case.
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