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Abstract—The virtual validation of a robot’s social capability
using digital twins requires assessing the perceived quality of
human-machine interaction, reflected through various observ-
able human parameters that influence the comfort experienced
during the interaction. Due to this reason, the detailed digital
representation of humans in such simulations is as essential as it
is difficult to achieve. This paper introduces a template for digital
human representation in a digital twin intended for simulation
scenarios of social human-robot interaction. Parameters and
properties are grouped into categories for physical behavior,
physiological condition (including health), social-cognitive behav-
ior, visualization, and sensory capabilities describing a simplified
digital representation of a real-world person. The proposed model
parameters are chosen based on a literature review of published
work regarding digital twin solutions for applications in social
robotics with a focus on human digital representation.

Index Terms—Digital twins, Social robots, Human-robot inter-
action, Human-machine systems, System implementation

I. INTRODUCTION

During Human-Robot Interaction (HRI), a robot’s social
capability is essential for highly perceived comfort, which de-
pends on various social-situational parameters like movement,
noise, emotions, or stress [1]. However, the virtual validation
of social skills of a robot’s deployed behavior model via
simulation also requires the human side, whose digitization
is complex and challenging. Most scientific works on HRI
simulation using the modern Digital Twin (DT) approach
only focus on a subset of model parameters and properties
relevant to the posed problem statement. These could be a
more detailed view of human emotion, medical aspects, or
workplace ergonomics. Such can all have equally relevant
impacts on an interaction’s perceived comfort, which naturally
indicates a robot’s general social capability.

A. Motivation

Observed and quantified human parameters can aid in
inferring the HRI’s perceived comfort used to measure robotic

Fig. 1. Template of a digital human representation with property groups.
(Courtesy of CDM)

social skills. Therefore, this paper aims to identify and cate-
gorize common human property groups discovered in recent
work. The result is a template version of a digital human rep-
resentation for said simulation scenarios, acting as a common
foundation upon which new use cases can be built. Different
implementations serving specific problem statements would
implement aspects of the proposed template in more detail,
visualized in Figure 1. Namely, this paper intends to answer
the following questions:

What are commonly applicable sub-models in human rep-
resentation? This question regards relevant categories of dig-
itized human models in DT simulations.

What are relevant properties and parameters in human
digitization? Each category contains a set with human prop-
erties/parameters representing relevant aspects in DT-based
simulations of HRI.

Which properties are considered in modern research? The
presented template stems from a literature review for discov-
ering human model parameters and properties.



B. Outline

After this introductory Section I, the following Section II
gives an overview of the relevant research about the Human
Digital Twin (HDT) and DT-based simulation of social robots.
Section III presents the proposed digital human template.
Section IV gives an overview of discovered human model pa-
rameters from recent research work regarding DT-simulations
of HRI. Finally, the paper concludes with Section V and VI
with an outlook for future work.

II. RELATED WORK

A. The digital twin

During recent years, the DT has gained popularity in the
current trend of Industry 4.0 [2], [3] with its application possi-
bilities outside of digital manufacturing also ranging into other
fields like healthcare [4], [5] or robotics simulations [6]–[8].
While it has become a general method to represent real-world
assets and processes digitally in real-time [9], its definition is
partly ambiguous [10]. Aspects like synchronization between
the digital and physical side can be open for discussion: The
authors of [11] see the DT characteristic satisfied if and only
if the digital representation and its physical counterpart are
fully synchronized. Though, indeed, the exchange of data and
operational information between the real and digital side is a
core aspect of the DT concept [12], one can challenge the syn-
chronization constraint for use cases digitizing a physical asset
via a DT solution but still in a prototyping phase and therefore
either partly theoretical or operating on test parameters [13].
In such cases, only a simulation as close as possible to the
designed physical prototype would exist with the advantage
of test data generation before any investment into the physical
assembly, which can be time- and cost-intensive, especially for
robotics scenarios. Other definitions like the five-dimension
DT as presented in [12] mainly highlight the bidirectional
communication and data exchange between physical and digi-
tal assets supported by case-specific data management. Various
other definitions exist [10].

This paper regards the digital twin as a digital representation
to simulate and prototype a physical or conceptual system,
like a robot in a HRI scenario. The DT is not required to map
a physical system’s state in real time and synchronously. It
merely digitally represents its physical or theoretical counter-
part. Through bidirectional data exchange, the physical state
maps onto a defined data scheme like the one presented in this
paper specifically for human models. If data exchange occurs
in real-time during run-time, the DT is synchronized.

B. Human digitization via human digital twins

It is generally impossible to entirely omit the human worker
from the equation in a digital manufacturing setting [14]. Fur-
thermore, other applications like Collaborative Robot (Cobot)
simulations as in [15] require some form of human modeling to
be expressive. Therefore, a logical next step to the general DT
approach is the digitization of humans aimed at representing
persons like industrial workers or patients in a digital environ-
ment. A system with this goal is called a HDT [16]–[18]. Like

the general DT, its definition is ambiguous. Its appearance can
also vary in several ways depending on the field of application.
To name an example, the HDT shows potential in the Smart
Healthcare sector [4] creating a digital replica of given patient
data as presented in [5]. This approach uses medical data
to simulate the human system or parts of it, like individual
organs, and create a diagnosis through the application of
techniques from computer vision. In these scenarios, the HDT
would be close to a digital shadow [19], which is the digitally
stored status data also present in each DT. The HDT also plays
a role in applications outside the medical sector, like human-
cyber-physical systems. The model presented in [20] fuses
sensory data about a human’s physiological status parameters
like body temperature and physical status parameters like
human motion to create a controllable digital avatar. Regarding
human digitization, the preliminary model presented in [21]
aims to describe the necessary properties with a strong focus
on the relations between them, rendering it difficult as an
implementation basis, also lacking proper categorization of
said properties.

This paper defines the HDT as a DT containing a subset
of the following proposed parameter and property groups
representing a digitized and abstracted version of a person.

C. Simulation of social robots

Social robots can emulate social competence when inter-
acting with humans. They find applications, among others, in
healthcare [22]. Social competence is evaluable using diagnos-
tics tools for human-robot collaborative tasks as presented in
[23], measuring the quality of the interaction by considering
human stress responses. The simulation of social robots brings
the advantage of having a virtual prototype before assembling
a physical counterpart.

In [24], a socially aware robot drone for home care of depen-
dent people utilizes visualized human models in a simulated
environment. Using facial detection and emotion recognition
within the virtualization allows the social robot to generate
knowledge of a person’s emotional state and react accordingly.
Other systems implement social behavior through movement
intention prediction of human workers achieved through prob-
abilistic models [25], navigational solvers [26] or learning of
movement primitives [27]. The simulated social robot adjusts
its movement trajectory to prevent collisions, maintaining a
minimum safe distance to the persons in a workspace. In [15],
a simulation of collaborative assembly between humans and
robots places both in a shared virtual environment. The system
aims to support the worker by identifying human actions in a
sequential collaborative assembly task to react accordingly.

This paper discovers and categorizes common properties
and parameters of the human models used in recent work on
simulations of social robots.

III. A TEMPLATE FOR HUMAN DIGITIZATION

To account for the large number of application scenarios
revolving around HRI, a digital human template for human
digitization within a HDT is proposed consisting of relevant



model parameters frequently expressed in recent research. The
model is visualized in Figure 2 and explained in this section
per property group. The proposed categories originate from the
four capability classes of the Operator 4.0 model as defined in
[28], which are physical, cognitive, sensorial, and interaction
capabilities. The physical aspect splits into a human’s physical
behavior and a physiological condition, which includes health.
Furthermore, visualization properties replace interaction be-
cause the inclusion of explicit methods of interaction would
break simplicity. Additionally, interaction with an operator in
a virtual 3D environment requires visualization.

A. Definitions of property groups

As visualized in Figure 2, the template consists of a selec-
tion of property groups implementing an aspect of the model.
A specific use case can implement a selection of properties in a
structured manner. The indicated data types are suggestions de-
pending on the digitized property and provide further context.
For social-cognitive values like stress, a percentage indicator
represented through the float data type acts as a simplification.
More complex or inferred variables do not feature data types
in the template.

1) Physicals: This group contains the physical and me-
chanical properties relevant to physics-based simulations of
humans. Some of these aspects can overlap with the physiolog-
ical category, like regarding body weight from a medical and
human mass from a physical standpoint. The physical property
group contains the human pose, featured in several simulation
applications in Section IV. Basic tracking is simple as long
as no occlusions occur. The template also consists of the
digitized human’s physical shape represented by a 3D model.
Together with the human pose, this data is usable in kinematic
calculations like inertia, which requires a body’s center of
mass. Additionally, the template stores collision information
as a bounding volume relevant for indicating the minimum
safe distance to the actor in a HRI-workspace.

2) Physiologicals: This group contains the medical and
physiological information on the digitized human body. It
splits into two main parts: The body shape of the described
person containing properties like age, gender, height, weight,
etc., and strictly time-dependent data in the form of a phys-
iological state, which is trackable during the HRI scenario.
The body shape also depends on the physical body shape of
the previous group. By adjusting the corresponding param-
eters, various expressible body shapes help in the dynamic
generation of test data for a given behavior tested with
several demographics. The combined values are relevant in
ergonomics assessment, which aims to compute the physical
workload a person must endure.

3) Social-Cognitives: This group contains the social and
cognitive parameters relevant to human behavioral modeling,
intention prediction, and artificial empathy. It consists of
the modeled person’s mood containing stress indication, the
feeling of safety, mental fatigue regarding mental workload,
and task motivation (flow). The mood also depends on the
facial expression and emotional state, which can be modeled

in several ways, like through an axis-based approach [29]. The
same applies to the personality type. Furthermore, the template
features an intention state consisting of the current goal state
and the action and movement intent. Finally, the property
group contains data on the simulated person’s social situation.
These indicators depend on other actors in a given scenario,
like the social relation to (robotic) peers, robot awareness,
acceptance and trust, etc.

4) Visualizationals: This group mainly contains the human
3D model. In general, (photo-)realistic representation in a
DT is not necessarily required, even though this assumption
might be subject to change when real people interact with the
virtualization environment of a HDT also containing digitized
humans. Two other properties are noteworthy: The authors
of [30] describe a 3D level-of-detail, which expresses how
detailed the visualization of the digitized person needs to be,
allowing for dynamic adjustment for a given use case when
implemented. Finally, the visualization group also contains
information on the optical shape of the human, which is
synthetically inferrable from the visualized 3D model or
directly recorded from real-world persons. In computer vision
applications, algorithms often work on 2D images of persons
to infer knowledge. An example is the Region-based Convec-
tional Neural Network in [31], which generates human optical
shapes from a recorded image.

5) Sensorials: This group contains the data relevant to
human sensory capabilities. The proposed template expresses
a person’s hearing and vision as these are most important for
the targeted simulation applications of HRI. Regarding touch
sensing, direct contact with robots is generally unfavorable,
as it prevents the human actor from maintaining a social and
minimum safe distance to the robot, which is why it is not
present in the template. The modeled person’s gaze digitally
appears as a frustum based on eye movement, which results
in a texture containing the perceived image. Computer vision
applications for text or facial recognition can build on this
data. Similarly, the perceived audio stored in audio files with
a corresponding volume is usable for speech recognition or
voice tone sensing.

IV. FINDING MODEL PARAMETERS AND PROPERTIES

This paper considered several recent works on applications
of the HDT in social HRI simulations to find commonly
applicable parameter groups for an abstracted digital human
template. By taking a closer look at the human representation
aspect of the corresponding work, properties, and parameters
making up the digital human representation could be found and
categorized into sets, similar to the ”personal data” illustrated
in [32] or the human model in [33]. This section provides
a summary of the literature review used to discover human
parameter categories for the HDT representation.

A. Literature review

Regarded papers originate from a Google Scholar search
for works with a publication date from 2018 to 2024. Since
this paper’s focus lies specifically on simulations using the



Fig. 2. Template of a digital human representation with digitized properties and parameters. (Courtesy of CDM)

DT approach for virtual validation of social robots, the search
query contains the keyword groups ”human digital twin” or
only ”digital twin” respectively. A second keyword group was
added in the form of ”human-robot interaction” or ”human-
robot collaboration” to ensure a relation to HRI. Ranking and
filtering literature founded on relevance for DT applications
and human digitization models in HRI based on their abstracts,
regarding the first 20 listings. The review prioritized papers
about HDT applications regarding the first 30 listings respec-
tively. The result is 29 papers that contributed to the digital
human template.

Table I gives an overview of the filtered work with a short
summary of the included literature.

B. Categorizing human properties and parameters

Table II lists the discovered human model properties and
parameters taken from the digital human representations. Each
is present as a number indicating whether it falls into the
category of (1) physical behavior, (2) physiological condition,
(3) social-cognitive behavior, (4) visualization and finally (5)
sensory capabilities. Note that the template assigns properties
to the most fitting class. For instance: Even though a human
pose can contain information about social-cognitive behav-
ior, its raw representation originates from spatial-physical
parameters. The impact of one set of parameters on another
is not part of the template digitization, meaning they must
be implemented separately through physical or behavioral
models.

V. CONCLUSION

The paper proposed a template for digital human represen-
tation in DT-based simulations of social HRI. Categorized
model properties and parameters form a sub-model, each
represented through a property group. The variables contained
per group originate from a literature review of recent work

TABLE I.
LITERATURE OVERVIEW

Source Summary
[6] DT-based approach for designing flexible assembly systems
[7] DT-based simulation of an HRI assembly cell
[8] Presents a DT-framework for HRI collaborative work cells
[15] DT system for effective scene mapping to virtual space
[20] Techniques for HDT-driven cyber-physical systems
[21] Preliminary human model for HDT
[23] Proposes an assessment tool for HRI quality and well-being
[26] DT for human/robot movement trajectory simulation
[30] Proposes a generic HDT framework for human modelling
[31] Mixed Reality visualization of min. safe dist.
[32] Proposes a generic HDT framework for human modelling
[34] DT-based ergonomics assessment using digital humans
[35] DT of industrial workstation for synthetic data generation.
[36] ML-enhanced reactive path planning for collision avoidance
[37] Presents HDT-framework for safety and ergonomics models
[38] DT & ML-based multi-modal scene reconstruction of HRI
[39] Vision-based teleportation of robots based on human pose
[40] Minimum safe distance calculated from machine vision
[41] Proposes a generic DT/HDT architecture for HRI
[42] Proposes a HDT architecture for Operator 4.0 applications
[43] Ergonomics assessment using a digital human within a HDT
[44] Intention predication through knowledge-based DT
[45] Computer-vision-based safety decision making
[46] HDT-architecture for human intention prediction
[47] Collaborative task state based on human pose & motion
[48] Vision-based DT system for robot control
[49] HDT model to address human movement uncertainties
[50] Proposes a HDT architecture based on multi-modal data
[51] Remote control of robots through HDT-system

regarding DT-based approaches of social robot simulation.
Looking at the discovered properties listed in Table II shows
that most discovered variables appear more than once. An
example several works consider regularly would be human
pose estimation. The template given in section III includes
the majority of discovered aspects. Data is only omitted if it is



TABLE II.
DIGITAL HUMAN MODEL PARAMETERS AND PROPERTIES

Source Digital Human Property / Parameter
[6] pose1, motion1, min. safe dist.1, movement intention3,

robot awareness3, interaction intention3

[7] pose1, motion1, min. safe dist.1, 3D-model4

[8] collision1, physical workload2, 3D-model4, gaze5

[15] pose1, collision1, min. safe dist.1, interaction intention2,
3D-model4

[20] pose1, motion1, heart rate2, body temperature2,
physical workload2, mood3,

interaction intention3, 3D-model4,
[21] position1, motion1, personality3, mood3, emotion3,

motivation3, relationship3, biographical background3,
cognitive capability3, interaction intention3,
desire/goal3, speech recognition5, vision5,

hearing5, writing/reading5, smelling5

[23] electrodermal activity2, heart rate2,
pulsed blood volume2, body temperature2, stress3,

[26] min. safe dist.1, motion1, movement intention2,
[30] pose1, motion1, min. safe dist.1, physical workload2,

blood pressure2, heart rate2, age2,
gender2, BMI2, stress3, robot awareness3,

interaction intention3, mood3, mental fatigue3,
3D-model4, 3D-level-of-detail4, hearing5

[31] pose1, min. safe dist.1, convex hull1, optical shape4

[32] position1, motion1, body shape1,2, heart rate2,
social identity3, mood3, 3D-model4, optical shape4

[34] pose1, motion1, weight2, height2,
gender2, physical workload2, movement intention3

[35] pose1, motion1, 3D-model4

[36] motion1, bounding volume1, min. safe dist.1

[37] position1, motion1, min. safe dist.1, collision1,
age2, bio-metric data2, facial expression3, safety3,

movement intention3, personality3, voice tone3

[38] pose1, motion1, body shapes1,2, 3D-model4

[39] pose1, motion1, 3D-model4

[40] pose1, motion1, min. safe dist.1, optical shape4, 3D-model4

[41] motion1, physical workload2, movement intention3, stress3,
safety3, robot trust3, robot acceptance3

[42] pose1, motion1, heart rate2, blood pressure2,
speech recognition (hearing)5, eye movement (gaze)5

[43] pose1, motion1, min. safe dist.1, bounding box1, weight2,
height2, physical workload2, 3D-model4

[44] pose1, motion1, interaction intention3, 3D-model4, gaze5

[45] bounding box1, min. safe dist.1, optical shape4

[46] pose1, motion1, movement intention3,
interaction intention3, 3D-model4,

[47] pose1, motion1

[48] pose1, min. safe dist.1, optical shape4

[49] pose1, movement intention3

[50] pose1, motion1, plantar pressure1, locomotion state1,
3D-model4

[51] pose1, motion1

too specific for a general use case like pulsed blood volume or
electrodermal activity as members of the physiological state.
Since the template does not yet consider relations between
parameters, it maintains simplicity focusing exclusively on the
required properties making up a human representation.

VI. PROBLEMS AND FUTURE WORK

The previously described human digitization template does
not include the relations of how parameters impact each other.

This information needs to be featured in a future concrete
implementation in form of physical and behavioral models. A
proper use case would also require an underlying data model
to properly represent the included human properties. The given
default types are merely suggestions fitting to the parameter
type, however, some aspects, especially cognitive states like
robot awareness or trust, are likely to require a more fleshed-
out representation. Lastly, categorization can be difficult for
specific aspects. An example would be facial expressions,
which can be seen as a physiological state, a visualization
problem and digitized data on the represented person’s mood.
Categorization, however, helps in structuring the many aspects
of human modelling, which is this paper’s main contribution.
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