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Abstract
We estimate the finite-time Lyapunov exponents for a stochastic partial differential
equation driven by a fractional Brownian motion (fbm) with Hurst index H ∈ (0, 1)
close to a bifurcation of pitchfork type. We characterize regions depending on the
distance from bifurcation, the Hurst parameter of the fbm and the noise strength where
finite-time Lyapunov exponents are positive and thus indicate a change of stability.
The results on finite-time Lyapunov exponents are novel also for SDEs perturbed by
fractional noise.

Keywords Fractional Brownian motion · Finite-time Lyapunov exponents ·
Amplitude equations · Bifurcations for SPDEs
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1 Introduction

The main goal of this work is to provide a tool for an analysis of a pitchfork-type
bifurcation for SPDEs perturbed by fractional noise given by:

{
du = [Au + νu + F(u)] dt + σdWH

t .

u(0) = u0.
(1.1)
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Here A is a linear operator with a one-dimensional kernel, the parameter ν ∈ R shifts
the spectrum of A, F is a stable cubic nonlinearity and σ > 0 denotes the intensity
of the infinite-dimensional noise, which is given by a Hilbert-space-valued frac-
tional Brownian motion (WH (t))t∈[0,T ] with Hurst index H ∈ (0, 1). The stochastic
Allen–Cahn and Swift–Hohenberg equations are covered by this framework. The
results obtained in this work provide a novel bifurcation analysis also for stochastic
differential equations (SDEs) driven by fractional Brownian motion (fBm). Fractional
Brownian motion is a famous example used in order to model memory effects or
long-range dependencies. A fBm is a centered stationary Gaussian processes parame-
terized by the so-called Hurst index/parameter H ∈ (0, 1). For H = 1/2, one recovers
the classical Brownian motion. However, for H ∈ (1/2, 1) and H ∈ (0, 1/2), fBm
exhibits a totally different behavior compared to the Brownian motion. Its increments
are no longer independent, but positively correlated for H > 1/2 and negatively
correlated for H < 1/2. Fractional Brownian motion has been used to model a wide
range of phenomena such as stock prices and financial markets (Stone 2018), activity
of neurons (Richard et al. 2018), dynamics of the nerve growth (Odde et al. 1996) or
fluid dynamics (Weiss 2013; Nourdin 2012, Section 2.6).

However, due to its non-Markovianity, dynamical aspects such as bifurcation theory
have not been investigated for systems perturbed by a fBm. Here we contribute to
this aspect and analyze a classical pitchfork-type bifurcation for equations driven
by a fbm using finite-time Lyapunov exponents. In contrast to the Brownian motion
(Bedrossian et al. 2022; Blumenthal et al. 2023; Gess and Tsatsoulis 2024; Blömker
and Neamţu 2023), to our best knowledge no methods have been developed so far
for the computation of (finite-time or asymptotic) Lyapunov exponents. The work
(Kuehn et al. 2022) investigates related aspects using early-warning signs to detect
changes of stability in a finite-dimensional slow-fast system perturbed by general non-
Markovian noise, in particular fractional Brownianmotionwith Hurst index H > 1/2.
The analysis of the finite-time Lyapunov exponents for the SDE

dx = (νx − x3) dt + σ dWt (1.2)

driven by aBrownianmotion around its unique randomequilibrium splits into different
cases.

For ν < 0, one relies on deterministic stability and shows that FTLE is negative
with probability one. This is in other settings well known and was also only briefly
sketched in Blömker and Neamţu (2023).

For ν > 0, one essentially relies on the structure of the invariant measure of (1.2),
where one needs that this has to be close to zero on a set of positive probability.
Together with an estimate of the paths of the Brownianmotion on a finite-time horizon,
the estimates for the FTLE on a set of positive probability become quite accessible
(Callaway et al. 2017).

All these arguments, on which the analysis in Blömker and Neamţu (2023) heavily
relies, break down in the context of a fractionalBrownianmotion.Obviously, the events
describing the location of the random equilibrium at the initial time and the finite-time
estimates of the paths of the fractional Brownianmotion are in general not independent
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anymore. In order to overcome this issue, we focus on deterministic initial data and
expect to obtain positive finite-time Lyapunov exponents for the SDE (1.2) with a
fractional Brownian motion. This technical step is justified in Lemma 4.1 which relies
on a support theorem for the solution of SDEs perturbed by fractional noise (Hairer and
Ohasi 2007). This implies that for any deterministic initial data, the solution of (1.2)
is located in a ball around zero with positive probability. This allows us to observe a
positive finite-time Lyapunov exponent with positive probability for (1.2) and provides
a novel insight in the dynamics of SDEs perturbed by fractional noise.

In order to analyze the SPDE case as in Blömker and Neamţu (2023), we rely on the
approximation with amplitude equations (AE) also studied in Blömker and Neamţu
(2022); Blömker et al. (2015). These results are valid for the full range of Hurst indices
H ∈ (0, 1) and are applicable if the noise is given by a trace-class fractional Brownian
motion. This assumption was crucial in order to control the approximation order,
which further reflects the time-scale on which we observe the finite-time Lyapunov
exponents. The approach for amplitude equations follows the result of Blömker and
Neamţu (2023); nevertheless, we need to adapt the scaling in space time and keep
track of the various H -dependent error terms in the approximation via AE and heavily
influence the final result on FTLE.
Main Results. Relying on the self-similarity of the fractional Brownian motion

WH (T ε−2)
law= WH (T )ε−2H and of the derivative Ẇ H (T ε−2)

law= ε2−2H Ẇ H (T ),

the approximation of the SPDE (2.1) via amplitude equations was derived in Blömker
and Neamţu (2022). Based on this result and using the theory of finite-time Lyapunov
exponents (see Sect. 3.1), we show the following behavior of FTLE from (1.1) near
a change of stability. The precise statement is based on the interplay between the
distance toward the bifurcation, intensity of the noise and Hurst parameter of the fbm:

I. Before the bifurcation, ν < 0. The solutions of (1.1) are stable for all σ with
probability one. Therefore, we show in Theorem 6.1 that all FTLEs are negative
with probability one.

II. After the bifurcation, moderate noise strength, 0 < σ ≈ νH+ 1
2 � 1. Here we

have According to Theorem 6.3 instability, namely there is a solution for which
the finite-time Lyapunov exponent λT > 0 is positive with positive probability,

for times of order 1/νH+ 1
2 . Due to the nature of the approximation result (Theo-

rem 5.3), our result is applicable for times T of order 1/νH+1/2 but for technical
reasons not up to 0. Thismeans there is a ν dependent interval, wherewe can prove
that the FTLE is positive and this interval contains values of the type C/νH+1/2

for some values of the constant C > 0.
The proof of this statement relies on the approximation with the amplitude equa-
tion db = (b − b3) dT + σ

ν
1
2+H

dβH (T ), as established in Theorem 5.3, where

(βH (T ))T≥0 is a fractional Brownian motion. A novel argument in the proof of
this statement is to start the amplitude equation in a suitably rescaled deterministic
initial data for which the solution of the amplitude equation is located in a ball
around zero with positive probability.
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III. After the bifurcation, small noise strength, 0 < σ � νH+ 1
2 � 1. Similar to

case II. we observe in Theorem 6.7 instability using the amplitude equation db =
(b − b3) dT .

IV. At the bifurcation, 0 ≤ νH+ 1
2 � σ � 1. Here we have stability as shown in

Theorem6.10,meaning thatλT < 0 for all solutionswith positive probability. The
proof of this statement relies on the approximation with the amplitude equation of
the type ∂T b = −b3dT + dβH (T ), where (βH (T ))T≥0 is a fractional Brownian
motion.

This analysis provides novel results for finite-time Lyapunov exponents with frac-
tional noise and also improves the results in Blömker and Neamţu (2023) for the
Brownian motion. More precisely in order to prove the statement II., we show that it is
not necessary to start the solutions of the SPDE in the rescaled attractor of the SDE but
in an arbitrary rescaled small deterministic initial condition. This information allows
us to apply a support theorem (Hairer and Ohasi 2007, Proposition 5.8) from which
we can further find positive finite-time Lyapunov exponents for SDEs with fractional
additive noise and stable cubic nonlinearities with positive probability.

We transfer these results to the finite-time Lyapunov exponents of the SPDE (2.1)
approximating itwith an amplitude equation as established inTheorem5.3.A technical
step is to quantify the dependence on H of the approximation error between the
linearization of the SPDE and the linearization of the amplitude equation around a
solution which satisfies the support theorem.

Remark 1.1 Due to the nature of the approximation result (Theorem 5.3), our result is
only applicable for positive times T but for technical reasons not up to 0. The main
reason is that the error estimate derives a uniform bound of the error to the SDE valid
for all times, but as we divide by the time in the Lyapunov exponent, the error estimate
is not sufficient for small times. Nevertheless, we conjecture that a careful analysis of
the time dependence of the error might close this gap. But this requires completely
different methods for the estimates than the one established in the theory of AEs.

Remark 1.2 Another technical novelty and crucial difference to Blömker and Neamţu
(2023) arises in the proof of case IV. Here we establish in Lemma 4.2 a lower bound
on the probability that the amplitude equation is small for lots of times. This argument
does not rely on stationary solutions and Birkhoff’s ergodic theorem as for the case of
a Brownian motion (Blömker and Neamţu 2023, Lemma 4.2), as this is not available
for solutions of SDEs driven by fractional noise. A crucial step in this argument is
given by the fact that the density of the amplitude equation perturbed by fractional
noise is not concentrated in zero (Besalú et al. 2016).

In conclusion, Lemmas 4.1 and 4.2, on which the main results rely on, have been
obtained by totally different methods than those used in Blömker and Neamţu (2023).
Moreover, we improve these results by analyzing the dynamics of arbitrary solu-
tions instead of stationary solutions as considered in Blömker and Neamţu (2023),
Blumenthal et al. (2023).

In all cases I.–IV. we compute an error term between the two linearizations for
H ∈ (0, 1) obtaining different bounds compared to Blömker and Neamţu (2023)
depending on the range of H .
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The paper is organized in the following way: Section2 states all necessary assump-
tions and establishes the setting we are working in. In Sect. 3, we give a short remark
about existence and uniqueness of solutions for our SPDE. The properties of FTLE for
the corresponding AE are studied in Sect. 4, while Sect. 5 provides the key approxima-
tion result for AE. The final Sect. 6 states the main results in full details and provides
their proofs.

2 Setting and Assumptions

We work in the following setting. We let H stand for a separable Hilbert space and
consider the SPDE driven by an Hilbert-space valued fractional Brownian motion
(WH (t))t∈[0,T ] with Hurst index H ∈ (0, 1)

{
du = [Au + νu + F(u)] dt + σdWH

t

u(0) = u0 ∈ H.
(2.1)

Wemake the following standard assumptions on the linear operator A and on the cubic
nonlinearity F .

Assumption 2.1 (Differential operator A) The linear operator A generates a compact
analytic semigroup (et A)t≥0 onH. Moreover, it is symmetric and non-positive and has
a one-dimensional kernel which we denote byN . We define the orthogonal projection
Pc onto N , set Ps = Id − Pc and obtain that H = N ⊕ S, where S stands for the
range of Ps . The semigroup is exponentially stable on PsH which means that there
exists μ > 0 such that

‖et A Ps‖L(H) ≤ e−tμ, for all t ≥ 0.

We further define the spaces Hα = D((1 − A)α) for α ≥ 0 endowed with the norm
‖ · ‖α = ‖(1 − A)α · ‖ and scalar product 〈u, v〉α = 〈(1 − A)αu, (1 − A)αv〉 and
set H−α = (Hα)∗ the dual of Hα . It is well-known that (et A)t≥0 is an analytic
semigroup onHα for every α ∈ R. Finally, we have thatN ⊂ Hα for all α > 0 since
(1 − A)αN = N .

Under our assumptions, we have for some constant C > 0 depending on α > 0
that ‖AαPsu‖ ≥ C‖Psu‖ for all u ∈ H, which we use frequently.

Assumption 2.2 (Nonlinearity) We assume that there exists a Banach space X such
that

Hα ⊂ X ⊂ H

for α ∈ (0, 1/2) with continuous and dense embeddings. Moreover, the mapping
F : X → X∗ ⊂ H−α is a stable cubic (i.e., trilinear) nonlinearity with

〈F(u) − F(v), u − v〉 ≤ −c‖u − v‖4X , for u, v ∈ X . (2.2)
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Let us remark that we can allow terms like C‖u − v‖2 on the r.h.s. of (2.2), but we
can always modify the linear term to remove these terms.

Assumption 2.3 (Noise) We assume that (WH (t))t∈[0,T ] is a trace-class fractional
Brownian motion on H. This assumption was made in Blömker and Neamţu (2022),
and in particular it implies that the stochastic convolution

Z(t) =
∫ t

0
eA(t−s) dWs

is well-defined and Z ∈ C([0, T ];Hα) for α < H .

Remark 2.4 For F , we can show the following sign condition. For any positive δ > 0,
there is a constant C > 0 depending on δ such that for all u, z ∈ X

〈F(u + z), u〉 ≤ −c‖u + z‖4X + C‖u + z‖3X‖z‖ ≤ −δ‖u‖4X + Cδ‖z‖4X . (2.3)

As F is trilinear, we readily have that F is Fréchet-differentiable with

DF(u)[h] = F(u, u, h) + F(u, h, u) + F(h, u, u).

Moreover, for u, h ∈ X we obtain due to (2.3)

〈DF(u)h, h〉 = lim
t→0

1

t
〈F(u + th) − F(u), h〉 ≤ − lim

t→0

1

t2
‖th‖4 = 0. (2.4)

Let us remark additionally, that we use an estimate like DFc(b) ≤ −cb2 in our
proof that arises from the one-dimensionality of N . In order to remove the condition
that N is one-dimensional, we will need that Fc is a genuine non-degenerate cubic
term with an analogous estimate. We refer to potentials similar to Gess and Tsatsoulis
(2024), where for example F(b) = −cb|b|2 was treated.

In Blömker and Neamţu (2022), we used the following definition of theO notation.

Definition 2.5 We say that a term Fε = O( fε) if and only if there exist positive
ε-independent constants C and ε0 such that |Fε| ≤ C fε for all ε ∈ (0, ε0].

For a random quantity, we write Fε = O( fε) if the above statement holds true on
a set with probability going to 1 if C → ∞.

Assumption 2.6 For the stochastic convolution, we have for every small κ > 0

Ps Z = O(T κ) and PcZ = PcW
H = O(T H ) (2.5)

uniformly in T on any interval [0, T0] in the space X .
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Remark 2.7 These bounds were obtained using the scaling properties of the frac-
tional Brownian motion and the factorization method in Blömker and Neamţu (2022,
Appendix B). We have for every small κ > 0

sup
t∈[0,T0ε−2]

‖PcW H (t)‖ law= ε−2H sup
T∈[0,T0]

‖PcW H (T )‖ = O(ε−2H−κ)

with probability almost 1, whereas, with high probability

sup
t∈[0,T0ε−2]

‖Ps Z(t)‖ = O(ε−κ).

3 Existence of Solutions

The existence of solutions of SPDE with additive fractional noise and stable cubic
nonlinearities was established in Maslowski and Schmalfuß (2004, Theorem 4.3).
In order to obtain some regularity properties of the solution, we briefly sketch an
alternative proof similar to the case of the Brownian motion (Blömker and Neamţu
2023) which relies on the Galerkinmethod and the standard transformationw = u−Z
that solves the random PDE

∂tw = Aw + νw + F(w + Z).

For this equation, one can apply classical pathwise existence results, see for example
Roger (1997), Tomáš (2013). This is based on (2.3) giving regularity in L4(0, T , X),
together with the compact embedding of X intoH1/2 and Aubin-Lions Lemma.

For initial conditions inH and Z being a continuous stochastic process with values
inHα ⊂ X , this shows global existence of solutions such that for all T > 0

u − Z ∈ L2(0, T ,H1/2) ∩ C0([0, T ],H) ∩ L4(0, T , X)

which also implies some regularity of ∂t (u − Z) as A(u − Z) ∈ L2(0, T ,H−1/2) and
F(u) ∈ L4/3(0, T , X∗).

The pathwise uniqueness of solutions follows immediately from (2.2). For the
difference d = u1 − u2 of two solutions u1 and u2 satisfying

∂t d = Ad + νd + F(u1) − F(u2)

we only need the differentiability of theH-norm to conclude

∂t‖d‖2 = 〈Ad + νd + F(u1) − F(u2), d〉 ≤ ν‖d‖2.

The differentiability of the norm follows, as we have

d = (u1 − Z) − (u2 − Z) ∈ L2(0, T ,H1/2) ∩ L∞(0, T ,H)
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by standard parabolic regularity together with d ∈ L4(0, T , X) and F(ui ) ∈
L4/3(0, T , X∗).

With the arguments sketched above, one can prove the following theorem, which
we state without proof.

Theorem 3.1 Let Assumptions 2.1, 2.2, 2.3 be satisfied. Then, for all initial conditions
u0 ∈ H there is a unique (up to global null sets) stochastic process u with continuous
paths inH, which is a weak solution of (2.1) and satisfies for all T > 0

u − Z ∈ L2(0, T ,H1/2) ∩ C0([0, T ],H) ∩ L4(0, T , X).

3.1 Finite-Time Lyapunov Exponents

The linearization Du0u(t, ω, u0) of (1.1) around a solution u(t, ω, u0) with determin-
istic initial condition u0 is defined as the solution v(t, ω, u0, v0) of the linear PDE
called also the first variation equation, which due to the additive structure of the noise
is given by: see Blumenthal et al. (2023), Blömker and Neamţu (2022)

{
dv = [Av + νv + DF(u)v] dt
v(0) = v0.

(3.1)

Remark 3.2 The Fréchet differentiability of the solution operator u0 �→ u(t, ω, u0)
follows regarding that u ∈ L2(0, T ;H1/2) due to Debussche (1998, Lemma 4.4).

For t > 0, we denote the random solution operator Uu0(t) : H → H such that
v(t) = Uu0(t)v0, where v is a solution of (3.1) given the initial condition v0 ∈ H.

Remark 3.3 Note that for any solution u ∈ L4(0, T , X) we have F(u) ∈
L4/3(0, T , X∗) ⊂ L4/3(0, T ,H−α). We can now use pathwise deterministic theory
for linear PDEs. For example, Galerkin methods show that for given v0 ∈ H there is
an (up to global null sets) unique stochastic process v with continuous paths inH and
v ∈ L2(0, T ;H1/2) for all T > 0 that solves (3.1).

We define the finite-time Lyapunov exponent as in Blumenthal et al. (2023),
Blömker and Neamţu (2022).

Definition 3.4 (Finite-time Lyapunov exponent). Let t > 0 be fixed. We call a finite-
time Lyapunov exponent for a solution u of the SPDE with (random) initial condition
u0

λt (u0) := λ(t, ω, u0) = 1

t
ln

(‖Uu0(t)‖L(H)

)
. (3.2)

From the definition, it is clear that finite-time Lyapunov exponents measure local
expansion rates of nearby solutions. Negative finite-time Lyapunov exponents indicate
attraction, whereas positive ones indicate that nearby solutions tend to separate on a
finite-time horizon.
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Remark 3.5 We can compute ‖Uu0‖L(H) as follows

‖Uu0(t)‖L(H) = sup{‖v(t)‖/‖v(0)‖ v solves (3.1) with v(0) �= 0}
= sup{‖v(t)‖ v solves (3.1) with ‖v(0)‖ = 1}.

Remark 3.6 Let us comment on the following.

(1) Both finite-time and asymptotic Lyapunov exponents have not been investigated
for S(P)DEs with fractional noise so far.

(2) For technical reasons which will be explained in Sect. 4, we restrict ourselves to
deterministic initial data u0. The independence of u0 from the fractional Brownian
motion helps us.

4 Finite-Time Lyapunov Exponents for Amplitude Equations with
Fractional Noise

In this setting, σ > 0 and ν ≥ 0 are fixed quantities that depend on a small parameter
ε and we assume the following upper bound:

ν = O(ε2) and σ = O(ε2H+1).

Using the cubic nonlinearity and the interplay between ν and σ , we later obtain

amplitude equations of two types. In case of σν− 1
2−H = O(1), we have

db = (b + Fc(b)) dT + σ

ν
1
2+H

dβH
νH (T ) (4.1)

whereas in the case νH+1/2 � σ

db = Fc(b) dT + dβH
σ H (T ), (4.2)

where (βH
γ (T ))T∈[0,T0] is an N -valued fractional Brownian motion rescaled in time

by a factor γ , meaning that βH
γ (T ) = γ 2HβH (T γ −2) for some fractional Brownian

motion βH .

Lemma 4.1 (Positive FTLE for (4.1)) Fix T0 > 0. If σν− 1
2−H = O(1), then there is

an η > 0 such that for |b0| < η sufficiently small, then

P

(
λT (b0) ≥ 1

4

)
> 0 for all T ∈ [0, T0].

Proof Let us think of b0 being random and introduce the sets

A1 := {ω ∈ � : b0(ω) ∈ (−η, η)},
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A2 :=
{

ω ∈ � : sup
t∈[0,T ]

βH
νH (t) ≤ η

2

}
.

Here b0 is the initial data of (4.1), η > 0 is small and βH
νH is just a rescaled fbm.

Note that due to the non-Markovianity of the noise the events A1 and A2 are in
general not independent as in the Brownian case. Therefore, in order to guarantee that
P(A1 ∩ A2) > 0 we consider only deterministic initial conditions b0 (independent
of the fractional Brownian motion) and restrict ourselves to ω ∈ �̃ := A2 where the
fractional Brownian motion remains small for a finite-time horizon. In this case, we
derive for ω ∈ �̃ that

|b(T )| ≤
(
1 + σ

ν
1
2+H

)
ηeT < δ for all T ∈ [0, T0].

This statement follows using the equation (4.1), the stable cubic nonlinearity and the
fact that ω ∈ �̃. Alternatively one can apply the support theorem (Hairer and Ohasi
2007, Proposition 5.8) which states that for every deterministic initial data and every
path of the fbm, the solution of (4.1) will reach a small neighborhood of the origin with
positive probability. This information, combined with the fact that the noise remains
bounded on the finite-time interval [0, T ]whichwe consider, provides the upper bound
on b. Analogously to the case of the Brownian motion, such a bound on the solutions
implies the positivity of the FTLEs on the set of positive probability �̃ since

λT (b0) = 1

T
ln

(
exp

(
T +

∫ T

0
DFc(b(s, ω)) ds

))
≥ 1

4
,

choosing δ := 1
2 . ��

For our result, we cannot rely on Birkhoffs ergodic theorem, insteadwe use a simple
argument similar to Blömker (2007, Theorem 3.4) to show that the set of times for
which the amplitude equation is small has a small probability. There it was used for
ν ≤ 0 in order to show pattern formation below the threshold of stability.

Lemma 4.2 (Negative FTLE for (4.2)) Suppose that νH+1/2 � σ , fix T0 > 0, and
consider a solution of (4.2). Then, for all θ > 0 there is a small positive time Tθ → 0
for θ → 0 such that uniformly for all T ∈ [Tθ , T0]

P

(
λT (b0) < −cθ2

)
→ 1 as θ → 0.

Corollary 4.3 Under the assumptions of Lemma 4.2 for a fixed T , we have
P (λT (b0) < 0) = 1.

For the proof just note that we can choose θ0 such that Tθ < T for all θ ∈ (0, θ0). But
now we have

P (λT (b0) < 0) ≥ P

(
λT (b0) < −cθ2

)
→ 1 for θ → 0.
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Remark 4.4 In the proof we will see that Tθ = 2
√
pθ which we will choose later by

(4.3). Let us remark that we expect pθ ≈ cθ , as we can approximate the probability
by 2p(s)θ where p(s) is the value of the density for b(s) in 0. Thus, we could work
out a qualitative bound if we have more knowledge about the density of b.

Proof In order to prove the statement we have to make sure that the solution b does not
stay too close to zero for too many times. The linearization of (4.2) around a solution
b entails in this case

dϕ = DFc(b) dt .

We have to show that there exists a constant c̃ > 0 such that

λT (b0(ω)) = 1

T
ln exp

( ∫ T

0
DFc(b(s, ω)) ds

)
< −c̃ < 0 for some ω and T .

Following Blömker (2007, Theorem 3.4), we define the set of times for which the
solution of the amplitude equation is small, i.e., for T0 > 0 and θ > 0

Tθ (T0) := |{s ∈ [0, T0] : |b(s)| ≤ θ}|

and notice that

Tθ (T0) =
∫ T0

0
1{|b(s)|≤θ} ds.

Since Tθ ∈ [0, T0] a.s. we can bound arbitrary moments of Tθ . We start by an
exponential moment bound. Let c > 0 and obtain due to Jensen’s inequality

EecTθ (T0) ≤ 1

T0

∫ T0

0
E exp(cT01{|b(s)|≤θ}) ds

= 1

T0

∫ T0

0
P(|b(s)| > θ) ds + 1

T0
ecT0

∫ T0

0
P(|b(s)| ≤ θ) ds

= 1 + ecT0 − 1

T0

∫ T0

0
P(|b(s)| ≤ θ) ds.

Now since P(|b(s)| = 0) = 0 (since the density of the amplitude equation is not
concentrated in zero, see for example Besalú et al. (2016, Theorem 1.2, (I))), it follows
by dominated convergence that

pθ :=
∫ T0

0
P(|b(s)| ≤ θ) ds → 0 as θ → 0. (4.3)
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Herewe also use that the law of b is independent of θ . Therefore, letting 0 < γθ � 1
and applying Markov’s inequality for the function x → ecx − 1, x ≥ 0 we get

P(Tθ (T0) ≥ γθ ) ≤ EecTθ (T0) − 1

ecγθ − 1
≤ ecT0 − 1

ecγθ − 1
· pθ

T0
→ pθ

γθ

for c → 0.

Setting γθ = √
pθ , we obtain that

P(Tθ (T0) ≥ √
pθ ) ≤ √

pθ .

In conclusion, using DFc(b) = −cb2 for T ∈ [2√pθ , T0]

λT (b0) = 1

T

∫ T

0
DFc(b(s, ω)) ds ≤ − c

T
(T − Tθ (T ))θ2 ≤ − c

2
θ2 < 0

on the set of large probability�θ := {Tθ (T0) <
√
p

θ
}, as we have P(�θ ) ≥ 1−√

pθ .
��

5 Approximation of SPDEs with Fractional Noise via Amplitude
Equations

Here we prove an approximation result for the SPDE (1.1) which is different from
the one derived in Blömker and Neamţu (2022). We recall that Tε = T ε−2, consider
ν ≥ 0 and fix ε ∈ (0, ε0] for some ε0 > 0 sufficiently small.

Assumption 5.1 We assume that we have the upper bounds ν = O(ε2) and σ =
O(ε2H+1).

Ansatz 5.2 The process b is anN -valued process, which solves the amplitude equation

db = [νε−2b + Fc(b)] dT + σε−2H−1 dβH (T ), (5.1)

where βH (T ) = ε2H PcW H (ε−2T ) is a rescaled fractional Brownian motion.

Theorem 5.3 Let u be a solution of the SPDE (1.1) with initial condition u0 = O(ε)

in H such that Psu0 = O(ε2H+1) in H. Further, let b be a solution of(5.1) with
b(0) − ε−1u0 = O(ε2 H ). Then,

u − εb(ε2·) = O(ε2H+1−κ + ε2−κ) on [0, Tε] inH for all small κ > 0. (5.2)

Remark 5.4 We notice that for H > 1/2 the order of the error term is O(ε2−), which
is given by certain nonlinear terms, whereas for H < 1/2 we get O(ε2H+1−) which
arises from bounding the stochastic convolution.
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Proof The proof is similar to Blömker andNeamţu (2022, Theorem 4.15) andBlömker
and Neamţu (2023, Theorem 5.3). Nevertheless, we provide the main arguments here
as well since it is crucial to get the scaling of all the error terms correctly.

First of all we show that if u0 = O(ε) inH, then u = O(ε) inH on [0, Tε] regarding
that σ Z = O(ε) on [0, Tε] (since Ps Z = O(T κ) and PcZ = O(T H ) on [0, T0]).

Using the standard transformation ũ := u − σ Z , we obtain the partial differential
equation with random coefficients

∂t ũ = Aũ + ν(ũ + σ Z) + F(ũ + σ Z).

Due to (2.3) using Young’s inequality, we obtain the estimate

1

2
∂t‖ũ‖2 ≤ ν〈ũ + σ Z , ũ〉 + 〈F(ũ + σ Z), ũ〉

≤ ν‖ũ‖2 + νσ 〈Z , ũ〉 + Cσ 4‖Z‖4X − δ‖ũ‖4X
≤ 1

2
(ν‖ũ‖2 − δ‖ũ‖4X ) + C(νσ 2‖Z‖2 + σ 4‖Z‖4X )

≤ C(ν2 + νσ 2‖Z‖2 + σ 4‖Z‖4X ) = O(ε4).

Here we used that σ Z = O(ε) on [0, Tε] since σ = O(ε2H+1), where Tε = O(ε−2)

and that ν = O(ε2). This completes the proof of the first step. Additionally, we can
also conclude that

1

2
∂t‖ũ‖2 = − δ

4
‖ũ‖4X + O(ε4),

which gives the L4(0, Tε, X) bound on ũ

∫ Tε

0
‖ũ(t)‖4X dt = 2

δ
‖ũ(0)‖2 + O(ε4) = O(ε2). (5.3)

In particular, we notice that since σ Z = O(ε) the estimates of ũ do not depend on H .
Furthermore, following the steps of the proof of Blömker and Neamţu (2023,

Theorem 5.3) and regarding that Psu0 = O(ε2H+1) and the properties of the
cubic term, we can derive that us := Psu = O(ε2 H+1) in H on [0, Tε] and∫ Tε

0 ‖ũs(t)‖4X dt = O(ε4 H+2), consequently
∫ T
0 ‖ũs(ε−2t)‖4X dt = O(ε4 H+4). For

the convenience of the reader, we prove these statements. To this aim, we first use the
splitting

u = Pcu + Psu := uc + us,

and define Zs := Ps Z . Again we use the standard transformation ũ = u−σ Z so that

ũs = us − σ Zs = Psũ.
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Thus, taking the stable projection Ps entails

∂t ũs = Aũs + ν(ũs + σ Zs) + PsF(uc + σ Zs + ũs).

Assumption 2.1 implies that the quadratic form of A on the unit sphere of PsH is
bounded from below by a positive constant. Therefore, we further obtain

1

2
∂t‖ũs‖2 ≤ −c‖ũs‖2 + ν‖ũs‖2 + ν〈ũs, σ Zs〉 + 〈F(uc + σ Zs + ũs), ũs〉.

Using (2.3) together with the fact that ε0 is sufficiently small and thus ν = O(ε2) is
small, we derive the energy estimate

1

2
∂t‖ũs‖2 ≤ − c

2
‖ũs‖2 + Cνσ 2‖Zs‖2 + C(‖uc‖4X + σ 4‖Zs‖4X ) − δ‖ũs‖4X ,

(5.4)

for two universal constants c,C > 0. Hence, via a Gronwall-type estimate, for all
t ≤ Tε

‖ũs(t)‖2 ≤ ‖ũs(0)‖2 + C
∫ t

0
e−c(t−τ)

(
νσ 2‖Zs‖2 + ‖uc‖4X + σ 4‖Zs‖4X

)
dτ.

We use that all norms are equivalent on N together with the bounds σ = O(ε2H+1),
ν = O(ε2), ‖Zs‖X = O(T κ) and Psu0 = O(ε2 H+1) to obtain

‖ũs‖2 = O(ε4H+2) on [0, Tε].

Thus,

‖us‖ ≤ ‖ũs‖ + σ‖Zs‖ = O(ε2H+1) + O(ε2H+1−κ) on [0, Tε]

which bounds the error on PsH.

Remark 5.5 We notice that if H > 1/2 the order of ‖us‖ is O(ε). This follows since
4 H + 2 > 4 and ‖uc‖ ≤ ‖ũc‖ + σ‖Zc‖ = O(ε) is the lower order term appearing in
the integral (5.4).Wewill see in Sect. 6 that the error term appearing in the computation
of the FTLEs will always be O(ε) if H > 1/2.

Moreover, from the previous inequality we can infer bounds on Psu in X . From
(5.4), we also obtain by integration

δ

∫ t

0
‖ũs‖4X dt ≤ ‖ũs(0)‖2 + C

∫ t

0
(νσ 2‖Zs‖2 + ‖uc‖4X + ‖Zs‖4X ) dt
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and thus for H < 1/2

∫ Tε

0
‖ũs(t)‖4X dt = O(ε4H+2) or

∫ T0

0
‖ũs(ε−2t)‖4X dt = O(ε4H+4).

Again if H > 1/2 the lowest order term is given by ‖uc‖4X which results in

∫ Tε

0
‖ũs(t)‖4X dt = O(ε4) and therefore

∫ T0

0
‖ũs(ε−2t)‖4X dt = O(ε6).

Remark 5.6 Here we notice that for a fixed time we get a better estimate for us which
does not depend on κ , which only comes from taking the supremum. We need then
Zs(t) = O(1) for a fixed time t which can be proven as in Blömker andNeamţu (2022,
Appendix B).

We now sketch the proof for the bound of the error term in N . First note that on
PsH we obtain

‖us‖ ≤ ‖ũs‖ + σ‖Zs‖ = O(ε2H+1) + O(ε2H+1−κ) on [0, Tε],

since us = O(ε2H+1). We now show that ε−1Pcu(ε−2·) − b = O(ε2 H ) on [0, T0]
for our fixed T0, where uc := Pcu satisfies the SDE

duc = (νuc + F(uc + us))dt + σdWH
c .

We define the error as

e := b − ε−1uc(ε
−2·)

and obtain regarding that WH (tε−2) = WH (t)ε−2H in law

∂t e = ν

ε2
e + PcF(b) − PcF(ε−1u(ε−2·)).

Taking the inner product with e we further get

1

2
∂t‖e‖2 = 1

2

ν

ε2
‖e‖2 + 〈Fc(b) − Fc(ε

−1u(ε−2·))e〉. (5.5)

We use with the short-hand notation u(ε)(·) := ε−1u(ε−2·) and expand the cubic to
derive

〈Fc(b) − Fc(u
(ε)), e〉

≤ 〈Fc(b) − Fc(u
(ε)
c ), e〉 + C‖e‖ · (‖u(ε)

c ‖2‖u(ε)
s ‖X + ‖u(ε)

c ‖‖u(ε)
s ‖2X + ‖u(ε)

s ‖3X )

≤ −δ‖e‖4X + C‖e‖ · (‖u(ε)
c ‖2‖u(ε)

s ‖X + ‖u(ε)
c ‖‖u(ε)

s ‖2X + ‖u(ε)
s ‖3X )
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≤ −1

2
δ‖e‖4X + C‖u(ε)

c ‖4 + C‖u(ε)
s ‖4X .

Thus, from (5.5) we get

1

2
∂T ‖e‖2 ≤ 1

2

ν

ε2
‖e‖2 − 1

2
δ‖e‖4X + C‖u(ε)

c ‖4 + C‖u(ε)
s ‖4X .

Using a Gronwall-type estimate, we obtain for H < 1/2 and for all T ∈ [0, T0] with
constants depending on T0

‖e(T )‖2 ≤ C‖e(0)‖2 + C
∫ T

0
(‖u(ε)

c ‖4 + C‖u(ε)
s ‖4X ) dT = O(ε4H ),

using the equivalence of the norms on N , the L4(0, T0, X)-bound for us of order
O(ε4H+4) and the fact that e(0) = O(ε2H ). Thismeans that εe(·) is of orderO(ε2H+1)

on [0, T0] as claimed in (5.2). The case H > 1/2 leads to an error term of orderO(ε)

using that
∫ T0
0 ‖ũs(ε−2t)‖4X dt = O(ε6). ��

Remark 5.7 One can easily show that b = O(1) using a standard comparison argument
for ODEs, see Blömker and Neamţu (2022, Lemma 4.10).

6 Lyapunov Exponents for SPDEs with Fractional Noise

6.1 Case � < 0: Stability

This is the trivial case where we always have stability meaning that the FTLEs are all
negative.

Theorem 6.1 Let Assumptions 2.1, 2.2, 2.3 hold true and let ν < 0. Furthermore, let
u be a solution of (2.1) in the sense of Theorem 3.1 with deterministic initial condition
u0 ∈ H. Then for all T > 0 we have with probability one

P(λT (u0) ≤ ν) = 1.

Proof Theproof is similar toBlumenthal et al. (2023, Proposition3.1 a)).Weconsider a
solution v of the linearized problem (3.1) around a solutionu of (2.1)with deterministic
H-valued initial condition u0. Recalling that v ∈ H1(0, T ,H−1/2)∩L2(0, T ,H1/2)∩
C(0, T ,H) we obtain using (2.4) the standard energy estimate

1

2
∂t‖v‖2 = 〈Av, v〉 + ν‖v‖2 + 〈DF(u)v, v〉 ≤ ν‖v‖2.

This implies that ‖v(t)‖ ≤ ‖v(0)‖etν for all t > 0. Due to Remark 3.5, we have for
any time T > 0

λT (u0) = 1

T
ln(‖Uu0(T )‖L(H)) ≤ ν
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which finishes the proof. ��
Remark 6.2 The statement remains valid if we consider random initial data u0(ω),
in particular the random fixed point of (2.1) whose existence was established in
Maslowski and Schmalfuß (2004).

6.2 Case 1 � � ≈ �1/2+H: Instability

In this setting we first recall that σ/ν1/2+H and ν1/2+H/σ are both O(1). Setting
ε2 = ν we obtain the amplitude equation

db = [b + Fc(b)] dT + σ

ν
1
2+H

dβνH (T ). (6.1)

Theorem 6.3 Let b0 be an initial data of (4.1) for which the corresponding solution
satisfies Lemma 4.1. Furthermore, let λT be the finite-time Lyapunov exponent of
the SPDE (2.1) with initial data u0 = εb0. For all terminal times T0 > 0 and all
probabilities p ∈ (0, 1), there is a set �p with probability larger than p and a
constant Cp > 0 such that for ω ∈ �̃ ∩ �p we have for all T ∈ [0, T0] that

λT ν−1(ν1/2b0) >

{
ν
4 − Cp

ν1+H

T , if H < 1/2
ν
4 − Cp

ν3/2

T , if H > 1/2.
(6.2)

The main ideas are the approximation of the SPDE (2.1) with the amplitude equa-
tion (4.1) for ε2 = ν, σ = O(ε2H+1), Lemma 4.1 and the control of the approximation
error. We start the SPDE in εb0 and have that εb0 = O(ε) since b = O(1). In this
situation Theorem 5.3 is applicable.

Now we control the approximation error between the linearized SPDE and the
linearized ODE. To this aim, we firstly introduce the slow scaling T = tε2 and define
U via

u(t) = εU (tε2).

Let v be the solution of the linearization of the SPDE around a solution u

∂tv = Av + νv + DF(u)v.

On the slow scale v(t) = εV (tε2) we have (using that DF is quadratic)

∂T V = ε−2AV + V + DF(U )V .

Let ϕ be the solution of the linearization of the amplitude equation around a solution
b which satisfies the support theorem

∂Tϕ = ϕ + DFc(b)ϕ.

123



   26 Page 18 of 31 Journal of Nonlinear Science            (2025) 35:26 

We only consider initial conditions V (0) = ϕ(0) ∈ N of order 1 independent of ε.
The first crucial step is the following approximation result.

Theorem 6.4 Let b0 be an initial condition for which the corresponding solution sat-
isfies Lemma 4.1. For any probability p ∈ (0, 1) there is a set �p with probability
larger than p such that the error between the linearization of the SPDE (1.1) with
initial data u0 = εb0 and of the amplitude equation (6.1) is bounded by C[ε + ε2H ].
Proof We show in several steps that the following error bound holds on the set of large
probability �p

‖V (T ) − ϕ(T )‖H ≤ ‖PsV (T ) + PcV (T ) − ϕ(T )‖ = O(ε + ε2H ), T ∈ [0, T0].
(6.3)

To this aim, we first prove

‖PsV (T )‖H = O(ε) and ‖PsV ‖L2(0,T0,H1/2) = O(ε2). (6.4)

We first consider V and use standard energy-type estimates to obtain

1

2
∂T ‖V ‖2 = ε−2〈AV , V 〉 + ‖V ‖2 + 〈DF(U )V , V 〉

≤ ‖V ‖2,

where we used the non-negativity of A and (2.4). As V (0) = O(1), this yields a
uniform O(1)-bound on V and thus PcV in H on [0, T0] (with constants depending
on T0).

We have (using the short-hand notation Vs := PsV and Vc := PcV )

1

2
∂T ‖Vs‖2 =ε−2〈AVs, Vs〉 + ‖Vs‖2 + 〈PsDF(U )V , Vs〉

≤ − cε−2‖Vs‖2H1/2 + ‖Vs‖2 + 〈PsDF(U )Vc, Vs〉, (6.5)

where we used the spectral properties of A (Assumption 2.1) and the sign condition
on DF from (2.4).

We now bound the nonlinear term as follows

〈PsDF(U )Vc, Vs〉 ≤ C‖U‖2X‖Vc‖X‖Vs‖Hα ≤ Cε2‖U‖4X‖Vc‖2X + 1

2
cε−2‖Vs‖2Hα ,

where we used ε-Young’s inequality in the last step. Further, as shown above V isO(1)
in H. Therefore, we obtain that Vc is bounded in X since all norms are equivalent on
N . Consequently, we only need a bound on

∫ T
0 ‖U (S)‖4X dS, which can be derived

from the first step of the approximation result, Theorem 5.3. Namely, using that

∫ Tε

0
‖u(t)‖4X dt = O(ε2)
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we obtain

∫ T0

0
‖U (S)‖4X dS = ε2

∫ Tε

0
‖U (tε2)‖4X dt = ε−2

∫ Tε

0
‖u(t)‖4X dt = O(1). (6.6)

Thus, we can conclude from (6.5) for two different universal constants c > 0 and
C > 0 using that ‖ · ‖Hα ≤ ‖ · ‖H1/2

1

2
∂T ‖Vs‖2 ≤ −cε−2‖Vs‖2H1/2 + ‖Vs‖2Hα + Cε2‖U‖4X‖Vc‖2X + 1

2
ε−2c‖Vs‖2Hα

≤ −1

2
cε−2‖Vs‖2H1/2 + Cε2‖U‖4X‖Vc‖2X . (6.7)

Consequently, recalling that Vs(0) = 0 via a Gronwall-type estimate we obtain for all
T ∈ [0, T0] the inequality (with constants depending on T0)

‖Vs(T )‖2 ≤ Cε2
∫ T0

0
‖U (S)‖4X dS sup

[0,T0]
‖Vc‖2X = O(ε2),

which means that ‖Vs‖H = O(ε), as claimed.
For the second statement in (6.4), we get from (6.7) that

cε−2‖Vs‖2H1/2 ≤ −1

2
∂T ‖Vs‖2 + Cε2‖U‖4X‖Vc‖2X ,

therefore by integration (recall Vs(0) = 0) we derive

∫ T0

0
‖Vs(S)‖2H1/2 dS ≤ −cε2

2
‖Vs(T )‖2 + Cε4

∫ T0

0
‖U (S)‖4X dS sup

[0,T0]
‖Vc‖2X .

As ‖Vc‖X = O(1), ‖Vs‖H = O(ε) and
∫ T0
0 ‖U (S)‖4X dS = O(1) we obtain

‖Vs‖L2(0,T0,H1/2) = O(ε2).

We now focus on the bound for ‖Vc − ϕ‖. The aim is to show that the error term is of
order O(ε2H ). We observe that Vc − ϕ satisfies the equation

∂T (Vc − ϕ) = Vc − ϕ + (DFc(U )V − DFc(b)ϕ),

so we have to estimate

1

2
∂T ‖Vc − ϕ‖2 = ‖Vc − ϕ‖2 + 〈DFc(U )V − DFc(b)ϕ, Vc − ϕ〉. (6.8)

Here, the crucial term contains the nonlinearity
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〈DFc(b)ϕ − PcDF(U )V , ϕ − Vc〉N = −〈PcDF(U )Vs, ϕ − PcV 〉N
+〈DFc(b)ϕ − PcDF(b)Vc, ϕ − PcV 〉N
+〈Pc[DF(b) − DF(U )]Vc, ϕ − PcV 〉N ,

where the bound on PsV is needed in the space X , but the integral bounds turn out to
be sufficient. We also rely on our O(1)-bounds on ϕ and Vc.

We begin with the first term above which entails

〈PcDF(U )Vs, ϕ − Vc〉N ≤ C‖U‖2X‖Vs‖X‖ϕ − Vc‖N
≤ C‖U‖2X‖Vs‖H1/2‖ϕ − Vc‖N
≤ C‖Vs‖2H1/2 + ‖U‖4X‖ϕ − Vc‖2N .

In the last step, we used again Young’s inequality.
The second term gives

〈DFc(b)(ϕ − Vc), ϕ − Vc〉N ≤ C‖b‖2N ‖ϕ − Vc‖2N .

For the last one, we use that PcDF and DFc are the same onN , which can be seen
by explicitly using the properties of the cubic F .

〈Pc[DF(b) − DF(U )]Vc, ϕ − Vc〉N
≤ C‖b −U‖2X‖Vc‖X‖ϕ − Vc‖N
≤ C‖b −Uc‖2N ‖Vc‖N ‖ϕ − Vc‖N + C‖Us‖2X‖Vc‖N ‖ϕ − Vc‖N
≤ C‖b −Uc‖4N ‖Vc‖2N + C‖Us‖4X‖Vc‖2N + C‖ϕ − Vc‖2N .

Regarding (6.8) and putting all the estimates together we infer that (with universal
constants all denoted by C > 0)

1

2
∂T ‖Vc − ϕ‖2 ≤ ‖Vc − ϕ‖2 + C‖Vs‖2H1/2 + ‖U‖4X‖ϕ − Vc‖2N + ‖b‖2N ‖ϕ − Vc‖2N

+ C‖b −Uc‖4N ‖Vc‖2N + C‖Us‖4X‖Vc‖2N + C‖ϕ − Vc‖2N
≤ C‖Vc − ϕ‖2N (1 + ‖U‖4X + ‖b‖2N ) + C‖Vs‖2H1/2 + C‖b

−Uc‖4N ‖Vc‖2N + C‖Us‖4X‖Vc‖2N
≤ C · I · ‖Vc − ϕ‖2N + C · J ,

where we set

I := 1 + ‖U‖4X + ‖b‖2N and J := ‖Vs‖2H1/2 + ‖b −Uc‖4N ‖Vc‖2N + ‖Us‖4X‖Vc‖2N .

Using Gronwall’s inequality, we get for T ∈ [0, T0]

‖Vc(T ) − ϕ(T )‖2 ≤
[
‖Vc(0) − ϕ(0)‖2 + C

∫ T

0
J (S) dS

]
exp

(
C

∫ T

0
I (S) dS

)
.
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We now investigate the order of J . First of all, since we start the SPDE in the rescaled
initial condition u0 = εb0 we obtain due to Theorem 5.3 for H < 1/2

‖b(T ) −Uc(T )‖H = ε−1‖εb − uc(ε
−2·)‖H = O(ε2H )

respectively for H > 1/2

‖b(T ) −Uc(T )‖H = ε−1‖εb − uc(ε
−2·)‖H = O(ε).

Againwe use the fact that all norms are equivalent onN . Further, usingTheorem5.3
we know that with us(t) = εUs(tε2)∫ T0

0
‖Us(T )‖4X dT = ε−2

∫ Tε

0
‖us(t)‖4X dt = O(ε4H ).

This term will determine the order of the error Vc − ϕ since ‖b(T ) − Uc(T )‖4 =
O(ε8H ), which is small only if H < 1/4.

Due to the above results,we have pathwise bounds for
∫ T
0 J (S) dS byC(ε2+Cε4 H )

on a set of probability going to 1 for C → ∞.
Moreover, we can enlarge this set to have for all T ∈ [0, T0]

exp
(
C

∫ T

0
I (S) dS

)
= exp

(
C

∫ T

0
(1 + ‖U (S)‖4X + ‖b(S)‖2N dS

)
≤ C .

Together with the previous bound this gives another condition for the set �p.
In summary, this entails the following error bound on �p

‖ϕ(T ) − Vc(T )‖2 ≤ C[ε2 + ε4H ] for T ∈ [0, T0].

Putting all these deliberations together proves the statement (6.3) on �p, i.e.,

‖V (T ) − ϕ(T )‖H ≤ ‖Vs(T )‖H + ‖Vc(T ) − ϕ(T )‖N ≤ C[ε + ε2H ], T ∈ [0, T0].

Here we have to add another condition to �p, as ‖Vs‖H ≤ Cε uniformly in T with
probability going to 1 if C → ∞. ��
Remark 6.5 The previous computation shows that Vs ∈ L2(0, T0;H1/2) has the same
order as in the case of a Brownian motion. For Brownian noise, exactly this term
determined the order of J , since all the other terms were of higher order, see Blömker
and Neamţu (2023). However, here the error between PcV and ϕ is now determined by
the L4(0, T0; X) bound on Us . The approximation with the AE gives a term of order
O(ε4H ) in the estimate ‖Vc(T ) − ϕ(T )‖, which becomes small only for H < 1/4.

Using this result, we can proceed with the proof of Theorem 6.3. We first recall the
definition of the FTLE for a solution of the SPDE starting in u0 = εb0

λT ν−1(εb0) = ν

T
ln(sup{‖v(T /ν)‖ ‖v(0)‖ = 1})
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= ν3/2

T
ln(sup{‖V (T )‖ ‖V (0)‖ = ε−1})

= ν

T
ln(sup{‖V (T )‖ ‖V (0)‖ = 1}).

Using (6.3) for the finite-time Lyapunov exponents of the SPDE,we have on �̃∩�p

recalling Lemma 4.1

‖V (T )‖ ≥ ‖ϕ(T )‖ − ‖V (T ) − ϕ(T )‖ ≥ ‖ϕ(T )‖ − C[ε + ε2H ]
≥ exp{(1 − 3δ2)T } − C[ε + ε2H ] > 0,

which is positive if ε0 is sufficiently small. Herewe can choose δ = 1
2 as in Lemma 4.1.

To proceed, we use a simple estimate for the logarithm. It is known that there exists
a positive constant c > 0 such that ln(1 − x) ≥ −cx for 0 ≤ x ≤ 1

2 . Therefore as
ε + ε2H � eT c we have that

ln(ecT − [ε + ε2H ]) = ln(ecT (1 − [ε + ε2H ]e−cT )) = cT + ln(1 − [ε + ε2H ]e−cT )

≥ cT − C[ε + ε2H ]e−cT ≥ cT − C[ε + ε2H ].

Thus, we can conclude that on �̃ ∩ �p we can bound

λT ν−1(εb) = ν

T
ln(sup{‖V (T )‖ ‖V (0)‖ = 1})

≥ ν

T
ln(sup{‖ϕ(T )‖ − ‖V (T ) − ϕ(T )‖ : ‖V (0)‖ = 1})

≥ ν

T
ln(sup{‖ϕ(T )‖ − ‖V (T ) − ϕ(T )‖ : ‖v(0)‖ = 1, V (0) = ϕ(0) ∈ N })

≥ ν

T
ln(sup{‖ϕ(T )‖ − [ε + ε2H ] : ‖V (0)‖ = 1, V (0) = ϕ(0) ∈ N })

≥ ν

T
ln

(
exp

{
(T +

∫ T

0
DFc(b(s, ω)) ds

}
− C[ε + ε2H ]

)

≥ ν

T
ln(exp{(1 − 3δ2)T } − C[ε + ε2H ]

≥ ν(1 − 3δ2) − C
ν[ε + ε2H ]

T
.

Choosing, for example, δ = 1/2 as in Lemma 4.1 proves that for ω ∈ �̃ ∩ �p and for
all T ∈ [0, T0] we have

λT ν−1(εb0) >

{
ν
4 − Cp

νε2H

T , H < 1/2
ν
4 − Cp

νε
T , H > 1/2.

��
Remark 6.6 We notice that the error term between the two linearizations is determined
by‖Vs‖H (which is the sameas for theBrownianmotion),whereasVc−ϕ is determined
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by the L4(0, T0; X) bound on Us which is of order O(ε2H ). If H < 1/2 this will
become small, whereas for H > 1/2 the contribution of Vs dominates.

6.3 Case 1 � �H+ 1
2 � � > 0: Instability

In this case, the amplitude equation is given by

db = [b + Fc(b)] dT . (6.9)

Here we consider the solution b = 0 of the amplitude equation and let u be the
solution of SPDE with u(0) = u0 = 0. Here we simplify the proof by neglecting
the small noise σ/νH+1/2 in the approximation. Therefore, we cannot use Theorem
5.3 to approximate the SPDE with (6.9). However, all the bounds provided for u in
Theorem 5.3 do not depend on the amplitude equation and are enough for our aims.

As before, let V be the solution of the linearized SPDE

∂T V = ε−2AV + V + DF(U )V

and thus

∂T Vc = Vc + PcDF(U )V = Vc + DFc(U )(Vc + Vs).

The linearization of the amplitude equation around 0 reduces to

∂Tϕ = ϕ + DFc(0)ϕ,

which gives

∂Tϕ = ϕ.

The main result in this case reads as follows. Recall that T0 is an arbitrary terminal
time and T ∈ [0, T0].
Theorem 6.7 Let λT be the finite-time Lyapunov exponent of the SPDE (2.1) with
initial data u0 = 0. For all probabilities p ∈ (0, 1), there is a set �p with probability
larger than p and a constant Cp > 0 such that for ω ∈ �p we have that

λT ν−1(0) > ν − Cp
ν3/2

T
, for all H ∈ (0, 1) and T ∈ [0, T0].

Proof Recall the rescaling v(T /ν) = ν1/2V (T ). Analogously to the previous case,
we have on a set �p that

λT ν−1(0) = ν

T
ln(sup{‖v(T /ν)‖ ‖v(0)‖ = 1})
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= ν3/2

T
ln(sup{‖V (T )‖ ‖V (0)‖ = ν−1/2})

= ν

T
ln(sup{‖V (T )‖ ‖V (0)‖ = 1})

≥ ν

T
ln(sup{‖ϕ(T )‖ − ‖V (T ) − ϕ(T )‖ : ‖V (0)‖ = 1})

≥ ν

T
ln(sup{‖ϕ(T )‖ − ‖V (T ) − ϕ(T )‖ : ‖v(0)‖ = 1, V (0) = ϕ(0) ∈ N })

≥ ν

T
ln(sup{‖ϕ(T )‖ − ε : ‖V (0)‖ = 1, V (0) = ϕ(0) ∈ N })

≥ ν

T
ln(exp T − ε)

≥ ν − C
νε

T
.

��
Therefore, we get

∂T (Vc − ϕ) = Vc − ϕ + DFc(U )(Vc + Vs),

which further leads to

1

2
∂T ‖Vc − ϕ‖2

= ‖Vc − ϕ‖2 + 〈DFc(U )(Vc + Vs), Vc − ϕ〉
= ‖Vc − ϕ‖2 + 〈DFc(U )Vc, Vc − ϕ〉 + 〈DFc(U )Vs, Vc − ϕ〉
≤ ‖Vc − ϕ‖2 + c‖U‖2X‖Vc‖N ‖Vc − ϕ‖N + c‖U‖2X‖Vs‖X‖Vc − ϕ‖N
≤ ‖Vc − ϕ‖2 + c‖U‖2X‖Vc‖N ‖Vc − ϕ‖N + c‖U‖2X‖Vs‖H1/2‖Vc − ϕ‖N
≤ c‖Vc − ϕ‖2 + c‖U‖4X‖Vc‖2N + c‖Vs‖2H1/2 + c‖U‖4X‖Vc − ϕ‖2N
≤ c(1 + ‖U‖4X )‖Vc − ϕ‖2N + c‖U‖4X‖Vc‖2N + c‖Vs‖2H1/2

≤ c‖Vc − ϕ‖2N I + cJ ,

where I := 1+‖U‖4X and J := ‖U‖4X‖Vc‖2N +‖Vs‖2H1/2 and c stands for a universal
constant which varies from line to line. Again, Gronwall’s inequality on [0, T0] entails

‖Vc(T ) − ϕ(T )‖2 ≤ c
(
‖Vc(0) − ϕ(0)‖2 + c

∫ T

0
J (S) dS

)
· exp

(
c
∫ T

0
I (S) dS

)
.

This gives ‖Vc(T )−ϕ(T )‖ ≤ Cν1/2 on a set of probability arbitrarily close to 1, when
the constantC goes to∞. In this case, we remark that the order of J does not depend on
H since it is determined by

∫ T
0 ‖U (S)‖4 dS = O(1) and ‖Vs‖L2(0,T0;H1/2) = O(ν1/2).

Obviously, the exponent
∫ T
0 I (S) dS can be bounded by a constant on a set of large

probability.
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In conclusion, we obtain on [0, T0] and on a set of probability arbitrarily close to 1

‖V (T ) − ϕ(T )‖H ≤ ‖Vs(T )‖H + ‖Vc(T ) − ϕ(T )‖H ≤ Cν1/2.

Remark 6.8 For this argument, we do not need the set �̃ constructed in Lemma 4.1,
since we consider the linearization of the amplitude equation around zero. The result
obtained here provides a bound of the error term of order O(ν1/2) independent of the
value of H ∈ (0, 1).

6.4 Case: � = 0, 1 � � > 0: Stability at the Bifurcation Point

At the bifurcation point, we consider ε = σ H . Here the amplitude equation is

db = PcF(b) dT + dβε(T ).

Therefore, we get

∂Tϕ = DFc(b)ϕ. (6.10)

The linearization of the SPDE (2.1) reads now as

∂tv = Av + DF(u)v,

which means that setting v(t) = εV (tε2) we obtain

∂T V = ε−2AV + DF(U )V . (6.11)

As in the previous cases we compute the error term between the two linearizations.

Theorem 6.9 Let b0 be an initial datum for which the corresponding solution satisfies
Lemma 4.2. For all p ∈ (0, 1) there is a constant Cp and a set �p with probability
larger than p such that the approximation order between the linearization of the
SPDE (6.11) and of the amplitude equation (6.10) with initial data u0 = εb0 is
bounded by Cpε if H > 1/2 respectively Cpε

2 H if H < 1/2 on the set �p.

Proof Since the linear term containing ν drops out, we compute new energy estimates.
To get an O(1) bound on V , we rely on the energy estimate

1

2
∂T ‖V ‖2 ≤ ε−2〈AV , V 〉 + 〈DF(U )V , V 〉,

which gives now due to (2.3)

1

2
∂T ‖V ‖2 ≤ ε−2〈AV , V 〉 ≤ 0,
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due to the non-negativity of A. As V (0) = O(1) this yields a uniformO(1) bound on
V in H on [0, T0]. Due to the O(1) bound on V in H, we can also bound Vc in N in
any norm.

For Vs , we obtain as before that ‖Vs(T )‖H = O(ε) and that ‖Vs‖L2(0,T0,H1/2) =
O(ε2). This follows by the usual energy estimate regarding Assumption 2.1 and (2.3)
combined with the ε-Young inequality. To be more precise, the estimate is based on

1

2
∂T ‖Vs‖2 = ε−2〈AVs, Vs〉 + 〈PsDF(U )V , Vs〉

≤ −Cε−2‖Vs‖2H1/2 + C‖U‖2X‖Vc‖X‖Vs‖Hα

≤ −Cε−2‖Vs‖2H1/2 + Cε2‖U‖4X‖Vc‖2X + 1

2
Cε−2‖Vs‖2Hα

≤ −1

2
Cε−2‖Vs‖H1/2 + Cε2‖U‖4X‖Vc‖2X .

For Vc and ϕ, we have

∂T Vc = DFc(U )V and ∂Tϕ = DFc(b)ϕ,

leading to

∂T (Vc − ϕ) = (DFc(U ) − DFc(b))V + DFc(b)(V − ϕ).

For the difference, we estimate as follows. Here c is a universal constant which varies
from line to line.

1

2
∂T ‖Vc − ϕ‖2
= 〈(DFc(U ) − DFc(b))V , Vc − ϕ〉 + 〈DFc(b)(V − ϕ), Vc − ϕ〉
= 〈(DFc(U ) − DFc(b))V , Vc − ϕ〉 + 〈DFc(b)(Vc − ϕ), Vc − ϕ〉

+〈DFc(b)Vs, Vc − ϕ〉
≤ c‖U − b‖2X (‖Vs‖X + ‖Vc‖N )‖Vc − ϕ‖ + c‖b‖2N ‖Vc − ϕ‖2N

+c‖b‖2N ‖Vs‖Hα‖Vc − ϕ‖
≤ c‖Uc − b‖2N (‖Vs‖Hα + ‖Vc‖N )‖Vc − ϕ‖N + c‖Us‖2X (‖Vs‖Hα

+c‖Vc‖N )‖Vc − ϕ‖N
+‖b‖2N ‖Vc − ϕ‖2N + c‖b‖4N ‖Vs‖2Hα + c‖Vc − ϕ‖2N

≤ c‖Uc − b‖4N ‖Vc − ϕ‖2N + c‖Vs‖2H1/2 + c‖Uc − b‖4N ‖Vc‖2N + c‖Vc − ϕ‖2N
+c‖Us‖4X‖Vc − ϕ‖2N + c‖Us‖4X‖Vc‖2N + c‖b‖2N ‖Vc − ϕ‖2N
+c‖b‖4N ‖Vs‖2H1/2 .

Thus,

∂T ‖Vc − ϕ‖2 ≤ cI‖Vc − ϕ‖2N + cJ ,
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where

I := 1 + ‖Uc − b‖4N + ‖Us‖4X + ‖b‖2N
and

J := ‖Vs‖2H1/2 + ‖Uc − b‖4N ‖Vc‖2N + ‖Us‖4X‖Vc‖2N + ‖b‖4N ‖Vs‖2H1/2 .

Using Gronwall’s inequality as before we obtain

‖Vc(T ) − ϕ(T )‖2 ≤
(
‖Vc(0) − ϕ(0)‖2 + c

∫ T

0
J (S) dS

)
· exp

(
c
∫ T

0
I (S) dS

)
.

Now we use again the O(1) bounds on Vc and b and the O(ε4H )-bounds for
‖Us‖L4(0,T0,X) andO(ε2) for ‖Vs‖L2(0,T0,H1/2) together with Theorem 5.3 that yields

‖b(T ) −Uc(T )‖H = ε−1‖εb − uc(ε
−2·)‖H = O(ε2H ).

In contrast to case 6.2,we only need pathwise bounds on J of orderO(ε2), respectively,
O(ε4H ) (depending on the range of H ) and on b of order O(1), which hold on a set
of probability arbitrarily close to 1. There is no need for b being small.

Moreover, a bound by a constant of the exponent
∫ T
0 I (S) dS holds as before on

some set of probability arbitrarily close to 1.
Thus, we finally conclude that ‖V (T )−ϕ(T )‖N ≤ C[ε+ε2 H ] for all T ∈ [0, T0]

on a set of probability arbitrarily close to 1. Actually its probability goes to 1 if
C → ∞. ��

Regarding Lemma 4.2, we obtain the following bound on the FTLEs. First of all
we recall that for the set �θ = {Tθ (T0) <

√
pθ } we showed that P(�θ ) ≥ 1 − √

pθ

where pθ → 0 as θ → 0. Here T0 is an arbitrary terminal time and Tθ (T0) is the set
of times for which the amplitude equation is smaller than θ . Keeping this in mind and
recalling that DFc(b) = −cb2, we derive the following statement.

Theorem 6.10 Let b0 be an initial data of (4.2) for which the corresponding solution
satisfies Lemma 4.2. Furthermore, let λT̃ be the finite-time Lyapunov exponent of the
SPDE (2.1) with initial condition u0 = εb0. For all probabilities p ∈ (0, 1) there exist
a set �̃p with probability larger than p and constants Cp, cp > 0 and times Tp with
Tp → 0 as p → 1, cp → 0 and Cp → ∞ for t → 0 such that for ω ∈ �̃p we have
for T̃ ∈ [Tp, T0] that

λT̃ ε−1(εb0) ≤ −cpε + [ε2 + ε2H+1]e
cp T̃

T̃
.

Note that the proof relies on Lemma 4.2. Having more knowledge about the density
of the solution b of the amplitude we conjecture it should be possible to get an ε-
dependent Tp.
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Proof Our goal is to find a bound for

λT̃ ε−1(εb0) = ε

T̃
ln(sup{‖V (T̃ )‖ ‖V (0)‖ = 1})

≤ ε

T̃
ln sup({‖ϕ(T̃ )‖ + ‖V (T̃ ) − ϕ(T̃ )‖ : ‖V (0)‖ = 1})

≤ ε

T̃
ln

(
exp

{∫ T̃

0
DFc(b(s, ω)) ds

}
+ Cp[ε + ε2H ]

)
.

The upper bound is clear as long as the solution of the amplitude equation (4.2) does not
spend too much time in zero. To exclude this possibility, we established in Lemma 4.2
a lower bound on the probability of the set �θ with P(�θ ) → 1 if θ → 0, where

∫ T

0
DFc(b(s, ω)) ds ≤ −cθT ,

for a constant cθ = cθ2 → 0 if θ → 0.
This further entails that

λT̃ (b0) = 1

T̃
ln exp

( ∫ T̃

0
DFc(b(s, ω)) ds

)
< −cθ < 0

on the set �θ .
Regarding this, we easily derive on the set of large probability �p ∩ �θ that

ln(e−cθ T̃ + Cp[ε + ε2H ]) = ln(e−cθ T̃ (1 + Cp[ε + ε2H ]ecθ T̃ ))

= −cθ T̃ + ln(1 + Cp[ε + ε2H ]ecθ T̃ )

≤ −cθ T̃ + Cp[ε + ε2H ]ecθ T̃ .

This further leads to

λT̃ ε−1(εb0) ≤ −cθ ε + Cp[ε2 + ε2H+1]e
cθ T̃

T̃
,

which proves the statement. ��
Remark 6.11 For the Brownian motion, we proved a similar assertion in Blömker
and Neamţu (2023) for the stationary solution of the amplitude equation 4.2 using
Birkhoff’s ergodic theorem.We improve now this result in Lemma 4.2 for an arbitrary
solution deriving showing that the probability that the amplitude equation stays close
to zero for a lot of times is small. For a higher-dimensional kernel and / ormultiplicative
noise, this property is expected to hold, see Blömker (2007) for a similar discussion
for amplitude equations with Brownian motion.
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6.5 Case: 1 � � � �H+1/2 > 0: Stability

This situation can be dealt with similar to Case 6.4 using the amplitude equation

db̃ =
[νH+1/2

σ
b̃ + PcF(b̃)

]
dT + dβε(T ), (6.12)

and its linearization

∂T ϕ̃ = νH+1/2

σ
ϕ̃ + DFc(b̃)ϕ̃.

Since the difference between (6.12) and (4.2) is of order O( νH+1/2

σ
), the following

statement can be obtained analogously toCase 6.5.However, there is amajor difference
for the error term compared to the previous cases. More precisely, here the order of J
will be determined by

‖b̃(T ) −Uc(T )‖N ≤ C
νH+1/2

σ
+ ‖b(T ) −Uc(T )‖N ≤ C

νH+1/2

σ
+ Cε2H ,

which is in the lowest order νH+1/2

σ
, since σ � νH+1/2.

Theorem 6.12 Let b0 be an initial data of (4.2) for which the corresponding solution
satisfies Lemma 4.2. Furthermore let λT̃ be the finite-time Lyapunov exponent of the
SPDE (2.1) with initial data u0 = εb0. For all probabilities p ∈ (0, 1) there exists a
set �̃p with probability larger than p, a time Tp > 0 with Tp → 0 for p → 1 and
positive constants cp and Cp such that Cp → ∞ and cp → 0 such that for ω ∈ �̃p

and for all T̃ ∈ [Tp, T0] we have

λT̃σ−H (σ Hb0) ≤ σ H
(

− cp + νH+1/2

σ

)
+ σ H

(
νH+1/2

σ

)2

· e
cpT− νH+1/2

σ

T̃
.

Proof Weonly give a sketch of the proof, since this is similar toCase 6.5. Regarding the
computations in Case 6.4 we infer on a set of probability almost 1 and for T ∈ [0, T0]
that

‖V (T ) − ϕ̃(T )‖ ≤ C
(
ε +

(
ε2H + νH+1/2

σ

)2)
.

This follows as before using for T ∈ [0, T0] that

‖V (T ) − ϕ̃(T )‖H ≤ ‖Vs(T )‖H + ‖Vc(T ) − ϕ(T )‖N .

To estimate the last term, we need a bound on J . As already indicated this is now

determined by ‖b̃(T ) −Uc(T )‖2 =
(
ε2 H + νH+1/2

σ

)2
since this expression becomes
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small as σ � νH+1/2. Note that in Case 6.5 the order of J was in lowest order
determined by ‖Vs‖2L2(0,T ;H1/2)

= O(ε2) and Us ∈ L4(0, T0; X) = O(ε4 H ) and the
other terms were higher order. In conclusion, we now get for T ∈ [0, T0] that

‖V (T ) − ϕ̃(T )‖H ≤ C
(
ε +

(
ε2H + νH+1/2

σ

)2)
.

Therefore, the lower bound for the FTLEs for ω ∈ �̃p (as in Case 6.5) results in for
T̃ ∈ [Tp, T0]

λT̃ ε−1(εb0) = ε

T̃
ln(sup{‖V (T̃ )‖ ‖V (0)‖ = 1})

≤ ε

T̃
ln sup({‖ϕ(T̃ )‖ + ‖V (T̃ ) − ϕ(T̃ )‖ : ‖V (0)‖ = 1})

≤ ε

T̃
ln

(
exp

{νH+1/2

σ
T̃ +

∫ T̃

0
DFc(b(s, ω)) ds

}
+ C

(νH+1/2

σ

)2)
.

Using Lemma 4.2, this entails for ω ∈ �̃p that

λT̃ ε−1(εb0) ≤ ε
(

− cp + νH+1/2

σ

)
+ ε

(νH+1/2

σ

)2 ecp− νH+1/2
σ

T̃
< 0.

This proves the statement regarding that ε = σ H in this case. ��
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