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Abstract
Dynamical low-rank approximation (DLRA) for the numerical simulation of Vlasov–
Poisson equations is based on separation of space and velocity variables, as proposed
in several recent works. The standard approach for the time integration in the DLRA
model uses a splitting of the tangent space projector for the low-rank manifold accord-
ing to the separated variables. It can also be modified to allow for rank-adaptivity. A
less studied aspect is the incorporation of boundary conditions in the DLRAmodel. In
this work, a variational formulation of the projector splitting is proposed which allows
to handle inflow boundary conditions on spatial domains with piecewise linear bound-
ary. Numerical experiments demonstrate the principle feasibility of this approach.
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1 Introduction

In thisworkwe consider the dynamical low-rank approximation of theVlasov–Poisson
equation in d ≤ 3 spatial dimensions:

∂t f + v · ∇x f − E(t, x) · ∇v f = 0 in � = �x × �v, t ∈ (0, T ), (1)

with a bounded domain �x ⊂ R
d , and �v = R

d . This equation models the time
evolution of an electron density f = f (t, x, v) of a collisionless plasma as a function
of space and velocity in the presence of an electrical field E. We assume the initial
condition

f (0, x, v) = f0(x, v)

and inflow boundary conditions of the form

f (t, ·, ·) = g(t, ·, ·), on �− = {(x, v) ∈ ∂�x × �v | v · nx < 0}. (2)

Here nx denote the outward normal vectors of the spatial domain �x . The electrical
field E can either be fixed or dependent on the density f via a Poisson equation:

E(t, x) = −∇x�(t, x), −�� = ρ, ρ(t, x) = ρb −
∫

�v

f (t, x, v) dv, (3)

supplemented with appropriate boundary conditions. Here ρb is a background charge.
Simulations of such systems are computationally demanding since the time evolu-

tion of an 2d-dimensional, i.e. up to six-dimensional, function has to be calculated.
Applying standard discretization schemes thus leads to an evolution equation in
O(n2d) degrees of freedom, where n is the number of grid points in one dimen-
sion and a corresponding high computational effort. To tackle the problem, methods
such as particle methods [24], adaptive multiscale methods [5], and sparse grids [17]
have been used.

In the seminal paper [7] dynamical low-rank approximation (DLRA) has been pro-
posed for solving (1). DLRA is a general concept of approximating the evolution
of time-dependent multivariate functions using a low-rank model, typically based on
separation of variables. It originates in classic areas of mathematical physics, such as
molecular dynamics [21], and has been proposed in the works [18, 19] as a general
numerical tool for the time-integration of ODEs on fixed-rank matrix or tensor mani-
folds. An overview from the perspective of numerical analysis and further references
can be found in [23]. The approach can also be made rigorous for low-rank functions
in L2-spaces thanks to their tensor product Hilbert space structure; see, e.g., [2].

For the simulation of (1) using DLRA, a rather natural separation of space and
velocity variables is applied. After discretizing the problem in a corresponding ten-
sor product discretization space, one then seeks an approximate solution curve for
equation (1) of the form
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fr (t, x, v) =
r∑

i=1

r∑
j=1

Xi (t, x)Si j (t)Vj (t, v), (4)

that is, fr (t, ·, ·) is a rank-r function for every time point t . For the numerical time-
integration of the low-rank factors in this representation, [7] adopted the so-called
projector-splitting approach from [22], which is one of the work-horse algorithms for
DLRA, to the case of the transport Eq. (1).

In the present work, we wish to study in more detail how to incorporate the inflow
boundary condition (2) into such a scheme. In [7] this question was somewhat circum-
vented by considering periodic boundary conditions, which, however, is not always
applicable in real world problems. Enforcing boundary conditions directly on low-
rank representations like (4) appears to be rather impractical, or at least poses some
difficulties. For the nonlinear Boltzmann equation such an approach has been consid-
ered in [16]. Here, we will instead start out from a weak formulation of the transport
problem (1) including a weak formulation of the boundary condition according to [11,
Sec. 76.3]. We then use the projector splitting approach for the time-stepping in this
weak formulation, where the problem is iteratively reduced to subspaces belonging to
variations of space or velocity variables only.We note that in [15] boundary conditions
for a two-dimensional product domain (corresponding to d = 1 in our notation) were
included in this way through discretization by a discontinuous Galerkin method.

It is important to note already here that in order to still benefit from the seperation
of variables, our approach assumes the boundary function g to be a finite sum of tensor
products, or at least be approximable by such, see Eq. (7) below. Moreover, we require
the spatial domain to have a piecewise linear boundary so that the outer normal vectors
are piecewise constant, see Eq. (6).

As will be derived in Sect. 2, the resulting effective equations for the low-rank
factors in our weak formulation of the projector splitting scheme take the form of
Friedrichs’ systems, that is, systems of hyperbolic equations in weak formulation,
that respect the boundary conditions without violating the tensor product structure.
These systems can hence be solved by established PDE solvers. We remark that our
derivation of these equations remains more or less formal, and the existence of weak
solutions (in the continuous setting) will not be studied. Let us also mention the work
[20] which is related to our work insofar as it shows that for hyperbolic problems a
continuous formulation of the projector splitting integrator prior to discretization has
favorable numerical stability properties.

We then proceed by deriving corresponding discrete equations that allow to solve
the system numerically. Specifically, in our implementation we will use stabilized
finite elements [11] for discretization. We then apply the method to solve the weak
Landau damping on a periodic domain (in order to verify the discretization) aswell as a
linear equation involving a piecewise linear boundary. Here, in addition to the standard
projector-splitting approach we will also consider a weak formulation of the uncon-
ventional low-rank integrator proposed in [3]. It consists in modifications regarding
the update strategy for the low-rank factors and allows to make the whole scheme
rank-adaptive [4], which is important in practice, based on subspace augmentation.
Similar strategies are considered in [13] and [15].

123



19 Page 4 of 26 BIT Numerical Mathematics (2024) 64 :19

Several recent works have been focussing on the conservation properties in dynami-
cal low-rank integrators [6, 8–10, 12, 14], such as mass, momentum and energy, based
on modified Galerkin conditions. This important aspect is not yet addressed in the
present paper and will remain for future work.

The paper is organized as follows. In Sect. 2we detail our idea of aweak formulation
of the projector-splitting integrator for the Vlasov–Poisson equation which is capable
of handling the inflow boundary conditions. From this, in Sect. 3 we obtain discrete
equations by restricting to finite-dimensional spaces according to the Galerkin prin-
ciple, resulting in Algorithm 1. The rank-adaptive unconventional integrator is also
considered (Algorithm 2). In Sect. 4 results of numerical experiments are presented
to illustrate the principle feasibility of our algorithms.

2 Weak formulation of the projector splitting integrator

Our goal is to develop a projector splitting scheme for DLRA of the transport prob-
lem (1) that is capable of handling the inflow boundary conditions (2). To achieve
this, we start out from a weak formulation of (1) including a weak formulation of the
boundary condition according to [11, Sec. 76.3]. Assume for now that the electrical
field is fixed. Let W be an appropriate closed subspace of L2(�) (e.g. W ⊆ H1(�)

is sufficient) and denote by PW the L2-orthogonal projector onto W . Then the goal in
the weak formulation is to find f ∈ C1([0, T ],W ) with f (0) = PW f0 and such that
at every t ∈ (0, T ) it holds

∫
�

∂t f (t)w dxdv + a(t, f (t), w) = �(w) for all w ∈ W , (5)

where

a(t, u, w) =
∫

�

v · ∇xu w − E(t, x) · ∇vu w dxdv −
∫

�−
v · nx u w ds,

�(w) = −
∫

�−
v · nx gw ds.

Here we have taken into account that �v = R
d is unbounded and hence the normal

vectors for � read n = (nx , 0). While our derivations are based on the above formu-
lation with fixed electric field E, the case where E depends on f will be discussed
in Sect. 2.5. The variational formulation (5) has the advantage that the boundary con-
ditions are integrated in the bilinear form and right hand side. It therefore can be
easily combined with the so-called time-dependent variational principle, also called
Dirac–Frenkel principle, underlying DLRA.

In order to benefit from the separation of variables in DLRA, it will be necessary to
impose some restrictions on the boundary and the function g in the inflowcondition (2).
Specifically, we assume that the spatial domain has a piecewise linear boundary, so
that one has a decomposition
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�x := ∂�x =
⋃
ν

�(ν)
x , (6)

where each part �(ν)
x has a constant outer normal vector n(ν)

x . In addition, we require
that g itself admits a separation into space and velocity variables by a finite sum of
tensor products,

g(t, x, v) =
∑
μ

g(μ)
x (t, x) · g(μ)

v (t, v), (7)

or can at least be approximated in this form.
In the following sections we derive the projector splitting approach of DLRA in the

weak formulation and derive effective equations for the low-rank factors in (4) in the
form of Friedrichs’ systems (systems of hyperbolic equations in weak formulation)
that are amenable to established PDE solvers. In this way the boundary conditions
will be incorporated without sacrificing the tensor product structure.

2.1 DLRA and projector splitting

We first present the basic idea of the projector splitting approach for the dynamical
low-rank solution of the weak formulation (5). As required for DLRA, we consider a
possibly infinite-dimensional tensor product subspace

W = Wx ⊗ Wv ⊆ L2(�x ) ⊗ L2(�v) = L2(�)

where we assume that Wx ⊆ L2(�x ) and Wv ⊆ L2(�v) are suitable subspaces to
ensure that (5) is well-defined on W . For example, Wx and Wv could be subspaces of
H1, which would correspond to a mixed regularity with respect to space and velocity.

The corresponding manifold Mr of low-rank functions in W is

Mr =
{
ϕ(x, v) =

r∑
i=1

r∑
j=1

Xi (x)Si j Vj (v)

∣∣∣ Xi ∈ Wx , Vj ∈ Wv, Si j ∈ R

}
, (8)

with the additional conditions that the X1, . . . , Xr and V1, . . . , Vr are orthonormal
systems in Wx and Wv , respectively, and the matrix S = [Si j ] has rank r . Following
the Dirac-Frenkel variational principle, a dynamical low-rank approximation for the
weak formulation (5) asks for a function fr ∈ C1([0, T ],W ) such that fr (t) ∈ Mr

and
∫

�

∂t fr (t)w dxdv + a(t, fr (t), w) = �(w) for all w ∈ T fr (t)Mr , (9)

for all t ∈ (0, T ), where T fr (t)Mr is the tangent space ofMr at fr (t) specified below.
For the initial value one may take fr (0) = f̃0, where f̃0 is a rank-r approximation of
f0.
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The DLRA formulation (9) can be interpreted as a projection of the time derivative
of the solution onto the tangent space, which implicitly restricts it to the manifold. The
projector splitting integrator from [22] is now based on the rather peculiar fact that the
tangent spaces of Mr can be decomposed into two smaller subspaces corresponding
to variations in the X and V component only. Specifically, let

fr (t, x, v) =
r∑

i=1

r∑
j=1

Xi (t, x)Si j (t)Vj (t, v)

be inMr at time t , then it holds that

T fr (t)Mr = TV (t) + TX(t),

where

TV (t) =
{ r∑

i=1

Ki (x)Vi (t, v)

∣∣∣ Ki ∈ Wx

}
, TX(t) =

{ r∑
i=1

Xi (t, x)Li (v)

∣∣∣ Li ∈ Wv

}
.

Note that these two subspaces are not complementary as they intersect in the space

TX(t),V (t) = TX(t) ∩ TV (t) =
{ r∑

i=1

r∑
j=1

Xi (t, x)S̃i j V j (t, v)

∣∣∣ S̃i j ∈ R

}
.

Correspondingly, the L2-orthogonal projection onto the full tangent space T fr (t)Mr

can be decomposed as

Pfr (t) = PV (t) − PX(t),V (t) + PX(t), (10)

where PV (t), PX(t),V (t), and PX(t) denote the L2-orthogonal projections onto the sub-
spaces TX(t), TX(t),V (t), and TV (t), respectively.

The projector-splitting integrator performs the time integration of the system
according to the decomposition (10) of the tangent space projector. Sticking to the
weak formulation (9), one time step from some point t0 with

fr (t0) =
r∑

i=1

r∑
j=1

X0
i (x)S0i j V

0
j (v) ∈ Mr (11)

to a point t1 = t0 + �t then consists of the following three steps:

1. Solve the system (9) restricted to the subspace TV 0 on the time interval [t0, t1]
with initial condition fr (t0). At time t1 one obtains

f̂ (x, v) =
r∑
j=1

K j (x)V 0
j (v) ∈ TV 0 .
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Find an orthonormal system X1
1, . . . , X

1
r for K1, . . . , Kr such that

K j =
r∑

i=1

X1
i Ŝi j .

2. Solve the system (9) restricted to the subspace TX1,V 0 on the time interval [t0, t1]
with initial condition f̂ , and taking into account the minus sign in the projector.
At time t1 one obtains

f̃ (x, v) =
r∑

i=1

r∑
j=1

X1
i (x)S̃i j V

0
j (v) ∈ TX1,V 0 .

This step is often interpreted as a backward in time integration step, which is
possible if there is no explicit time dependence in the coefficients or boundary
conditions. However, in our case the inflow g is in general time dependent which
then does not admit for such an interpretation in general.

3. Solve the system (9) restricted to the subspace TX1 on the time interval [t0, t1]
with initial condition f̃ . At time t1 one obtains

f̄ (x, v) =
r∑

i=1

X1
i (x)Li (v) ∈ TX1 .

Find an orthonormal system V 1
1 , . . . , V 1

r for L1, . . . , Lr such that

Li =
r∑
j=1

S1i j V
1
j .

As the final solution at time point t1 one then takes

fr (t1, x, v) ≈ f̄ (x, v) =
r∑

i=1

r∑
j=1

X1
i (x)S1i j V

1
j (v).

A modification of this scheme is the so called unconventional integrator proposed
in [3]. There, the K -step and L-step are performed independently using the same
initial data from fr (t0) (i.e. the K -step is identical with the one above, but the L-
step is performed on TX0 with initial value fr (t0)). As a result, one obtains two new
orthonormal sets of component functions X1

1, . . . , X
1
r and V 1

1 , . . . , V 1
r for the spatial

and velocity domains. The S-step is then performed afterwards in a “forward” way
(i.e. without flipping signs) using these new bases. Compared to the standard scheme,
this decoupling the S-step from the K - and L-steps also offers a somewhatmore natural
way of making the scheme rank-adaptive, which is important in practice since a good
guess of r might not be known. Specifically, in [4] it is proposed to first augment the
new bases to X̂ = {X0

1, . . . , X
0
r , K

1
1 , . . . , K

1
r } and V̂ = {V 0

1 , . . . , V 0
r , L1

1, . . . , L
1
r }
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(i.e. including the old bases), orthonormalize these augmented bases, and perform the
S-step in the space

TX̂ ,V̂ = span X̂ ⊗ span V̂ .

Note that this space contains functions of rank 2r (in general) and still contains fr (t0)
which one takes as initial condition for the S-step. The solution at time point t1 can
then be truncated back to rank r or any other rank (less or equal to 2r ) depending on
a chosen truncation threshold using singular value decomposition.

Regardless of whether the projector splitting or the modified unconventional inte-
grator is chosen, the efficient realization of the above steps is based on their formulation
in terms of the component functions K , S and L only, which in turn requires a certain
separability of space and velocity variables in the system (9). We therefore next inves-
tigate the single steps in detail, focusing only on the projector splitting integrator and
omitting the required modifications for the (rank-adaptive) unconventional integrator
(it will be discussed in the discrete setting in Sect. 3.3). A particular focus is how to
ensure the required separability for the boundary value terms, which will lead to the
Assumptions (7) and (6) that g is separable and the boundary is piecewise linear. As
we will see, this gives effective equations in the form of Friedrichs’ systems for the
factors K and L , and a matrix ODE for S. Their discrete counter-parts as well as the
algorithmic schemes for both the projector splitting integrator and the unconventional
integrator will be presented in Sect. 3.

2.2 Weak formulation of the K-step

The time dependent solution of the first step, i.e. (9) restricted to TV 0 , is a function

f̂ (t, x, v) =
r∑
j=1

K j (t, x) · V 0
j (v)

on the time interval [t0, t1] with initial condition f̂ (t0, x, v) = fr (t0, x, v) from (11).
Here the V 0

j are fixed and the functions K1, . . . , Kr need to be determined. Their
dynamics are governed by a system of first order partial differential equations which
we derive in the following.

The test functions w ∈ TV 0 have the form

w(x, v) =
r∑
j=1

ψ
(x)
j (x) · V 0

j (v), ψ
(x)
j ∈ Wx ,

for all j = 1, . . . , r . Testing with w in (9) specifically means

(
∂t f̂ (t) + v · ∇x f̂ (t) − E(t, x) · ∇v f̂ (t), w

)
L2(�,R)

−(
nx · v f̂ (t), w

)
L2(�−,R)

= −(
nx · v g, w

)
L2(�−,R)

. (12)
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We will write this equation in vector form and therefore define

K = [
K j

]
j=1,...,r , ψ (x) = [

ψ
(x)
j

]
j=1,...,r ,

which can be regarded as vector-valued functions in (Wx )
r .

We investigate the terms in (12) separately. The term regarding the inner product
in L2(�,R) has three parts. The first involves the time derivative:

(
∂t f̂ (t), w

)
L2(�,R)

=
r∑

i=1

r∑
j=1

∫
�x

∂t Ki (t, x) · ψ
(x)
j (x) dx ·

∫
�v

V 0
i (v) · V 0

j (v) dv

=
r∑
j=1

∫
�x

∂t K j (t, x) · ψ
(x)
j (x) dx

= (
∂t K (t),ψ (x))

L2(�x ,Rr )
,

where we have used the pairwise orthonormality of V1, . . . , Vr . The second part reads

∫
�

v · ∇x f̂ (t, x, v) · w(x, v) d(x, v)

=
d∑

k=1

r∑
i=1

r∑
j=1

∫
�x

∂xk Ki (t, x) · ψ
(x)
j (x) dx ·

∫
�v

vk · V 0
i (v) · V 0

j (v) dv

=
d∑

k=1

(
Ak

x · ∂xk K (t),ψ (x))
L2(�x ,Rr )

with the symmetric r × r matrix

Ak
x =

[ ∫
�v

vk · V 0
j (v) · V 0

i (v) dv
]
i, j=1,...,r

.

Finally, the part involving the electrical field can be written as

∫
�

E(t, x) · ∇v f̂ (t, x, v) · w(x, v) d(x, v)

=
r∑

i=1

r∑
j=1

∫
�x

d∑
k=1

[
Ek(t, x) ·

∫
�v

∂vk V
0
i (v) · V 0

j (v) dv
]
Ki (t, x) · ψ

(x)
j (x) dx

= (
Kx (t, ·) · K (t),ψ (x))

L2(�x ,Rr )

where

Kx (t, x) =
[ d∑
k=1

Ek(t, x)

∫
�v

∂vk V
0
j (v) · V 0

i (v) dv
]
i, j=1,...,r

. (13)
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For the terms in (12) involving the inflow boundary�− wemake use of our assump-
tion that the spatial boundary ∂�x can be decomposed as in (6) with a constant normal
vector n(ν)

x on each part �(ν)
x of the boundary. We decompose �− accordingly into

�− =
⋃
ν

�(ν)
x × �(ν)

v , �(ν)
v = {v ∈ �v | n(ν)

x · v < 0}.

Then the boundary term from the bilinear form can be written as

∫
�−

nx ·v f̂ (t, x, v)) · w(x, v) ds

=
r∑

i=1

r∑
j=1

∑
ν

∫
�

(ν)
x

[ ∫
�

(ν)
v

n(ν)
x · v V 0

i (v) V 0
j (v) dv

]
Ki (t, x) · ψ

(x)
j (x) ds

= (
Bx (·) K (t),ψ (x))

L2(�x ,Rr )

where

Bx (x) =
[∑

ν

χ
�

(ν)
x

(x)

∫
�

(ν)
v

n(ν)
x · v V 0

j (v) V 0
i (v) dv

]
i, j=1,...,r

with characteristic function χ .
For the boundary term on the right hand side we recall the decomposition (7) of the

function g into a sum of tensor products. Proceeding as above we obtain
∫

�−
nx ·v g(t, x, v) · w(x, v) ds

=
r∑
j=1

∑
ν,μ

∫
�

(ν)
x

[ ∫
�

(ν)
v

n(ν)
x · v g(μ)

v (t, v) V 0
j (v) dv

]
g(μ)
x (t, x) · ψ

(x)
j (x) ds

= (
Gx (t, ·),ψ (x))

L2(�x ,Rr )

with

Gx (t, x) =
[∑

μ,ν

χ
�

(ν)
x

(x) g(μ)
x (t, x)

∫
�

(ν)
v

n(ν)
x · v g(μ)

v (v) V 0
j (v) dv

]
j=1,...,r

.

In summary (12) is equivalent to the following system of first order partial differ-
ential equations for K (t) in weak formulation with boundary penalty,

(
∂t K (t) +

d∑
k=1

Ak
x · ∂kK (t) − Kx (t, ·) K (t),ψ (x))

L2(�x ,Rr )

− (
Bx (·) K ,ψ (x))

L2(�x ,Rr )
= −(

Gx (t, ·),ψ (x))
L2(�x ,Rr )

for all ψ (x) ∈ (Wx )
r ,

(14)
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which needs to be solved for K (t1) with the initial values

K (t0) =
[ r∑
i=1

X0
i (x)S0i j

]
j=1,...,r

from the previous approximation (11).

2.3 Formulation of the S-step

The solution of the second step of the splitting integrator is a time-dependent function

f̃ (t, x, v) =
r∑

i=1

r∑
j=1

X1
i (x)Si j (t)V

0
j (v)

in the subspace space TX1,V 0 , where the evolution for S on the interval [t0, t1] is
governed by (9) restricted to test functions w ∈ TX1,V 0 , but taking into account
the minus sign of PX1,V 0 in the corresponding projector splitting (10). The initial

condition reads f̃ (t0, x, v) = f̂ (t1, x, v) = ∑r
i, j=1 X

1
i (x)Ŝi j V 0

j (v). The test function
in w ∈ TX1,V 0 will be written as

w(x, v) =
r∑

m=1

r∑
n=1

X1
m(x)mnV

0
n (v),  = [mn] ∈ R

r×r .

For such test functions, we again consider the different contributions as in (12) (with
f̃ instead of f̂ ). For the time derivative we get

(
∂t f̃ (t), w

)
L2(�,R)

=
∑
i jmn

Ṡi jmn

∫
�x

X1
i (x)X1

m(x) dx ·
∫

�v

V 0
j (v)V 0

n (v) dv

= (
Ṡ, 

)
F ,

where (·, ·)F is the Frobenius inner product on R
r×r . The first two contributions of

the bilinear form read

∫
�

v·∇x f̃ (t, x, v) · w(x, v) d(x, v)

=
d∑

k=1

∑
i jmn

∫
�x

∂xk X
1
i (x) · X1

m(x) dx
︸ ︷︷ ︸

:=[D(k,1)]mi

·
∫
Rd

vk · V 0
j (v) · V 0

n (v) dv
︸ ︷︷ ︸

:=[C(k,1)]nj

Si jmn

=
( d∑
k=1

D(k,1)S(C (k,1))T , 
)
F
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and

∫
�

E(t, x) · ∇v f (t, x, v) · w(x, v) d(x, v)

=
d∑

k=1

∑
i jmn

∫
�x

Ek(t, x)X1
i (x) · X1

m(x) dx

︸ ︷︷ ︸
:=[D(k,2)(t)]mi

·
∫
Rd

∂vk · V 0
j (v) · V 0

n (v) dv
︸ ︷︷ ︸

:=[C(k,2)]nj

Si jmn

=
( d∑
k=1

D(k,2)S(C (k,2))T , 
)
F
.

The terms stemming from the boundary condition take the form

∫
�−

nx · v f (t, x, v) · w(x, v) ds

=
∑
ν

∑
i jmn

∫
�

(ν)
x

X1
i (x) · X1

m(x) ds

︸ ︷︷ ︸
:=[B(ν,x)]mi

·
∫

�
(ν)
v

n(ν)
x · v V 0

j (v) V 0
n (v) dv

︸ ︷︷ ︸
:=[B(ν,v)]nj

Si jmn

=
∑
ν

(
B(ν,x)S(B(ν,v))T , 

)
F ,

and

∫
�−
nx · v g(t, x, v) · w(x, v) ds

=
∑
νμ

∑
mn

∫
�

(ν)
x

g(μ)
x (t, x) · X1

m(x) ds

︸ ︷︷ ︸
:=[g(ν,μ,x)(t)]m

·
∫

�
(ν)
v

n(ν)
x · v g(μ)

v (v) V 0
n (v) dv

︸ ︷︷ ︸
:=[g(ν,μ,v)(t)]n

mn

= (
GS, 

)
F ,

with

GS =
∑
νμ

g(ν,μ,x) · (
g(ν,μ,v)

)T
.

Putting everything together and testing with all  = [mn] ∈ R
r×r yields the

ODE

Ṡ −
d∑

k=1

[
D(k,1)S(C (k,1))T − D(k,2)S(C (k,2))T

]
+

∑
ν

B(ν,x)S(B(ν,v))T = GS

(15)
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(in strong form) for obtaining S(t1) = S̃ from the initial condition S(t0) = Ŝ. Note
again that compared to the original problem (9) all signs (except the one of Ṡ) have been
flipped due to the negative sign of the corresponding projector in the splitting (10).

2.4 Weak formulation of the L-step

The equations for the L-step are derived in a similar way as the K -step in Sect. 2.2.
Here we seek

f̄ (t, x, v) =
r∑

i=1

X1
i (x) · Li (t, v)

in the subspace TX1 with fixed X1
1, . . . , X

1
r from the initial value f̄ (t0, x, v) =

f̃ (t1, x, v). The test functions in TX1 are of the form

w(x, v) =
r∑

i=1

X1
i (x) · ψ

(v)
i (v), ψ

(v)
i ∈ Wv.

Let again

L = [
Li

]
i=1,...,r , ψ (v) = [

ψ
(v)
i

]
i=1,...,r .

be vector valued functions in (Wv)
r .

When restricting the weak formulation as in (12) (with f̄ instead of f̂ ) to test
functions in TX1 , the first three resulting contributions take a similar form as in the
K -step,

(
∂t L(t) −

d∑
k=1

Ak
v(t) · ∂kL(t) + Kv(·) · L(t),ψ (v)

)
L2(�v,Rr )

but this time with

Ak
v(t) =

[ ∫
�x

Ek(t, x) X1
j (x) · X1

i (x) dx
]
i, j=1,...,r

,

Kv(v) =
[ d∑
k=1

vk

∫
�x

∂xk X
1
j (x) · X1

i (x) dx
]
i, j=1,...,r

(16)

(note that in the K -step Ak
x featured the velocity and Kx the electric field).
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The boundary term in the bilinear form gives

∫
�−

nx · v f (t, x, v)) · w(x, v) ds

=
r∑

i=1

r∑
j=1

∑
ν

∫
�

(ν)
v

n(ν)
x · v

[ ∫
�

(ν)
x

X1
i (x) X1

j (x) ds
]
Li (t, v) · ψ

(v)
j (v) dv

= (
Bv(·) L,ψ (v)

)
L2(�v,Rr )

,

where

Bv(v) =
[ ∑

ν

χ
�

(ν)
v

(v)n(ν)
x · v

∫
�

(ν)
x

X1
j (x) X1

i (x) ds
]
i, j=1,...,r

.

Hence, the boundary condition on the spatial domain �x leads to the additional mul-
tiplicative term on the whole domain �v . Boundary terms for the velocity variable are
not present, since since we assume �v = R

d to be unbounded.
For the right hand side, we have

∫
�−
nx · v g(t, x, v) · w(x, v) ds

=
r∑

i=1

∑
μν

∫
�v

χ
�

(ν)
v

(v)n(ν)
x · v

[ ∫
�

(ν)
x

g(μ)
x (t, x) X1

i (x) ds
]
g(μ)
v (t, v) · ψ

(v)
i (v) dv

= (
Gv(t, ·),ψ (v)

)
L2(�v,Rr )

with

Gv(t, v) =
[ ∑

μν

g(μ)
v (t, v)χ

�
(ν)
v

(v)n(ν)
x · v

∫
�

(ν)
x

g(μ)
x (t, x) X1

i (x) ds
]
i=1,...,r

.

The resulting equation for the L-step reads: Find L(t) ∈ (Wv)
r for t ∈ [t0, t1] such

that

(
∂t L(t) −

d∑
k=1

Ak
v(t) · ∂kL(t) + Kv(·) L(t) − Bv(·)L,ψ (v)

)
L2(�v,Rr )

= −(
Gv(t, ·),ψ (v)

)
L2(�v,Rr )

for all ψ (v) ∈ (Wv)
r . (17)

The initial condition is

L(t0) =
[ r∑
i=1

S̃0i j V
0
j (v)

]
j=1,...,r

,

where the V 0
j are from fr (t0) in the previous time step (11), and S̃ has been determined

in the S-step.
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2.5 Electrical field

So far we have assumed that the electrical field does not depend on the density f .
However, in the setting of a Lie splitting the other case can be included quite easily
as well. At the beginning of the time step from t0 to t1, as discussed in Sects. 2.2–2.4,
the electrical field can be computed via the Poisson equation (3) and then simply held
constant during that step. This will only introduce an error of first order in time, as
does the projector splitting itself.

3 Discrete equations

InSects. 2.2–2.4 the governing equations for the projector splitting integrator havebeen
formulated in a continuous setting. They consist of the two Friedrichs’ systems (14)
and (17) for K and L, and the finite-dimensional system of ODEs (15) for S. In this
section we will introduce a finite element discretization for the approximate numerical
solution of the hyperbolic systems and derive the governing discrete equations that
need to be solved in the practical computation.

A natural choice for the discretization is to use the discontinuous Galerkin method.
However, the resulting equations for K , L, and S (Sect. 2) include derivatives of the
bases functions Xi and Vj , see for example Eqs. (16) and (13). Hence, for a first
approach we will use continuous finite element method, which of course has to be
stabilized. It remains to future work to investigate the use of DG methods.

3.1 Discretization

Instead of an unbounded domainwewill nowuse afinite domain�v = [−vmax, vmax]d
for the velocity variable with vmax big enough, and impose periodic boundary condi-
tions.

Let meshes Tx/v on the domains �x/v be given and define H1-conforming dis-
cretization spaces

Wh
x = span{ϕ(x)

α | α = 1, . . . , nx }, Wh
v = span{ϕ(v)

β | β = 1, . . . , nv} .

We are now looking for an approximate solution of the Vlasov–Poisson equation (1)
in the manifold

Mh
r =

{
ϕh(x, v) =

r∑
i=1

r∑
j=1

Xh
i (x)Si j V

h
j (v)

∣∣∣ Xh
i ∈ Wh

x , V h
j ∈ Wh

v , Si j ∈ R

}
,

of rank-r finite element functions, where as before the systems Xh
1 , . . . , X

h
r and

V h
1 , . . . , V h

r are assumed to be orthonormal, and S = [Si j ] has rank r . To represent
elements inMh

r , we introduce coefficient matrices

X = [Xαi ] ∈ R
nx×r , V = [Vβ j ] ∈ R

nv×r
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such that

Xh
i (x) =

nx∑
α=1

Xαiϕ
(x)
α (x), V h

j (t, v) =
nv∑

β=1

Vβ jϕ
(v)
β (v). (18)

The goal is then to find the solution in the form

f hr (t, x, v) =
nx∑

α=1

nv∑
β=1

fαβ(t)ϕ(x)
α (x)ϕ

(v)
β (v)

with coefficients

f(t) = [fαβ(t)] = X(t) · S(t) · V(t)T ∈ R
nx×nv

at prescribed time points t . Note that in order to have the Xh
1 , . . . , X

h
k orthonormal in

L2 as was always assumed above, the matrix X needs to be orthogonal with respect to
the inner product of the mass matrix of the basis functions ϕ

(x)
α (the matrixMx below).

A similar remark applies to V.
Following the Galerkin principle, the steps of the projector splitting integrator can

be formulated in terms of the matrices X, S, and V by solving the Eqs. (14), (15),
and (17) with the finite element spaces Wh

x/v instead of Wx/v . This means that we use

the finite dimensional spaces (Wh
x/v)

r both as ansatz and test spaces. Specifically, for

the Friedrichs’ systems (14) and (17) our aim is to find factors Kh
j and Lh

i of the form

Kh
j (t, x) =

nx∑
α=1

Kα j (t)ϕ
(x)
α (x), Lh

i (t, v) =
nv∑

β=1

Lβi (t)ϕ
(v)
i (v) (19)

for i, j = 1, . . . , r . We gather the coefficients in the matrices

K(t) = [
Kα j (t)

]
α, j ∈ R

nx×r , L(t) = [
Lβi (t)

]
β,i ∈ R

nv×r .

The governing discrete equations are obtained by inserting the expressions (18) for
Xi and Vj as well as (19) for Ki and L j into (14), (15), and (17). In order to formulate
them conveniently we will use the following additional discretization matrices:

Mx = [〈ϕ(x)
α , ϕ

(x)
α′ 〉L2(�x )

]
α,α′ , Mx,Ek = [〈ϕ(x)

α , Ek ϕ
(x)
α′ 〉L2(�x )

]
α,α′ ,

Tx,k = [〈ϕ(x)
α , ∂xkϕ

(x)
α′ 〉L2(�x )

]
α,α′ , M

x,�(ν)
x

= [〈ϕ(x)
α , ϕ

(x)
α′ 〉L2(�ν)

]
α,α′ ,

Mv = [〈ϕ(v)
β , ϕ

(v)

β ′ 〉L2(�v)

]
β,β ′ , Mv,k = [〈ϕ(v)

β , vkϕ
(v)

β ′ 〉L2(�v)

]
β,β ′ ,

Tv,k = [〈ϕ(v)
β , ∂vkϕ

(v)

β ′ 〉L2(�v)

]
β,β ′ , Mv,�(ν) = [〈ϕ(v)

β , n(ν) · v ϕ
(v)

β ′ 〉
L2(�

(ν)
v )

]
β,β ′ ,

Gx (t) = [〈ϕ(x)
α , Gx, j (t, ·)〉L2(�x ,Rr )

]
α, j , Gv(t) = [〈ϕ(v)

β , Gv,i (t, ·)〉L2(�v,Rr )

]
β,i .
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In addition, we will take into account that finite element solutions of hyperbolic
partial differential equations have to be stabilized. For that purpose we use the contin-
uous interior penalty (CIP) stabilization [11]. For a mesh T , its bilinear form is given
by

sCIPT (vh, wh) =
∑
F∈Fh

0

h2F ([[∇vh]], [[∇wh]])L2(F)

whereFh
0 is the set of all interior interfaces of T and [[·]] is the jump term with respect

to the interface F . The corresponding discretization matrices are denoted by

Cx = [
sCIPTx

(ϕ
(x)
j , ϕ

(x)
i )

]
i, j , Cv = [

sCIPTv
(ϕ

(v)
j , ϕ

(v)
i )

]
i, j .

Eventually, the discrete versions of Eqs. (14), (15), and (17) read as follows:

Mx K̇ = −
d∑

k=1

(
Tx,k · K · 〈Mv,k〉TV − Mx,Ek · K · 〈Tv,k〉TV

) − δ Cx · K

+
∑
ν

M
x,�(ν)

x
· K · 〈M

v,�
(ν)
v

〉TV − Gx (t), (20a)

Ṡ =
d∑

k=1

(〈Tx,k〉X · S · 〈Mv,k〉TV − 〈Mx,Ek 〉X · S · 〈Tv,k〉TV
)

−
∑
ν

〈M
x,�(ν)

x
〉X · S · 〈M

v,�
(ν)
v

〉TV + GS, (20b)

Mv L̇ = −
d∑

k=1

(
Mv,k · L · 〈Tx,k〉TX − Tv,k · L · 〈Mx,Ek 〉TX

) − δ Cv · L

+
∑
ν

M
v,�

(ν)
v

· L · 〈M
x,�(ν)

x
〉TX − Gv(t) . (20c)

Here we use the abbreviations

〈M〉X = XT · M · X, 〈M〉V = VT · M · V

for discretization matrices M. The parameter δ ≥ 0 controls the stabilization.

3.2 Discrete projector splitting integrator

Based on the above equations, the complete realization of the projector splitting
scheme, including the appropriate initial conditions and the orthogonalization steps,
is outlined in Algorithm 1.

It also includes in lines 1 and 2 the computation of the electric field as described in
Sect. 2.5. For that purpose the density ρ has to be calculated given by f hr (t0, ·, ·) ∈ Mh

r
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by integrating out the v variable. The result is a finite element function ρh ∈ Wh
x which

is used on the right hand side of the Poisson equation (3). We used ansatz functions of
order two to solve the resulting linear equation directly for the potential �h . The elec-
trical field Eh can be computed as the negative gradient of �h and is a discontinuous
finite element function on the same mesh. Now, updating the discretization matrices
Mx,Ek involving the electrical field, the projector splitting steps from t0 and t1 can be
performed.

Algorithm 1 First order dynamical low rank integrator with projector splitting

Data: X0, S0, V0

� update electrical field
1: Solve Poisson equation (3) for density resulting from X0, S0,V0

2: Compute E and update Mx,Ek� K step
3: K0 = X0S0

4: Solve (20a) with V = V0 on interval [t0, t1] with initial condition K0 to obtain K1

5: Compute orthonormal basis X1 with respect to Mx such that X1 · Ŝ = K1

� S step
6: Solve (20b) with X = X1, V = V0 on interval [t0, t1] with initial condition Ŝ to obtain S̃

� L step
7: L0 = V0 S̃T

8: Solve (20c) on interval [t0, t1] with initial condition L0 to obtain L1

9: Compute orthonormal basis V1 with respect to Mv such that V1 · (S1)T = L1

10: return X1, S1, V1

3.3 Rank adaptive algorithm

The rank-adaptive algorithm is based on the unconventional low-rank integrator pro-
posed in [3] and its rank-adaptive extension in [4]. It is displayed in Algorithm 2.
Starting with a rank-r0 function, it first performs independent K -steps and L-steps
from the initial data X0 and V0. The computed factors K1 and L1 are used to enlarge
the previous bases for X0 and V0 to dimension 2r0 each. This is achieved by com-
puting orthonormal bases X̂ and V̂ of the augmented matrices [X0, K1] ∈ R

nx×2r0 and
[V0, L1] ∈ R

nv×2r0 . Then a new coefficient matrix of the form

[fαβ ] = X̂SV̂T

is sought by performing a ‘forward’ S-step

Ṡ = −
d∑

k=1

(〈Tx,k〉X̂ · S · 〈Mv,k〉TV̂ − 〈Mx,Ek 〉X̂ · S · 〈Tv,k〉TV̂
)

+
∑
ν

〈M
x,�(ν)

x
〉X̂ · S · 〈M

v,�
(ν)
v

〉T
V̂

− GS, (21)
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which differs from (20b) in the signs of the right-hand side. For the initial condition
S(t0) = Ŝ, X0S0V0 has to be expressed with respect to the larger bases X̂ and V̂, i.e. as
X̂ŜV̂. The new solution then has rank 2r0 (in general) and can be truncated to a lower
rank r1 according to a tolerance, which yield the actual new factors X1 ∈ R

nx×r1 ,
S1 ∈ R

r1×r1 , and V1 ∈ R
nv×r1 .

Algorithm 2 First order rank adaptive unconventional integrator (RAUC)

Data: X0, S0, V0, with S0 ∈ R
r0×r0 , tolerance ε

� update electrical field
1: Solve Poisson equation (3) for density resulting from X0, S0,V0

2: Compute E and update Mx,Ek� Compute augmented X basis
3: K0 = X0S0

4: Solve (20a) on interval [t0, t1] with initial condition K0 to obtain K1

5: Compute orthonormal basis X̂ with respect to Mx such that X̂ · [Rx , R̃x ] = [X0, K1]
� Compute augmented V basis

6: L0 = V0(S0)T

7: Solve (20c) on interval [t0, t1] with initial condition L0 to obtain L1

8: Compute orthonormal basis V̂ with respect to Mv such that V̂ · [Rv, R̃v] = [V0, L1]
� S step

9: Compute initial condition Ŝ = Rx · S0 · RT
v

10: Solve modified equation (21) on interval [t0, t1] with initial condition Ŝ to obtain S̃
� truncation

11: Compute SVD Qx ·  · QT
v = S̃ with  = diag(σi ) and monotonically decreasing σi

12: For tolerance ε compute r1 ≤ 2r0 as the minimal number such that

2r0∑
i=r1+1

σ 2
i < ε2.

13: Set X1 = X̂ · Qx (:, 1 : r1), V1 = V̂ · Qv(:, 1 : r1), S1 = diag(σi )i=1,...,r1
14: return X1, S1, V1

4 Numerical experiments

We present numerical results of two experiments for testing the methods described
in Sect. 3. Since to our knowledge there does not exist an analytic solution of the
Vlasov–Poisson equation on bounded domains to which our numerical results could
be compared, we chose to consider the following two setups. The first experiment will
be the classical Landau damping where analytic results on the decay of the electric
energy are known. However, the domain is assumed to be periodic so that no bound-
ary conditions are needed. This scenario has been treated in several previous works.
Our second experiment will then include boundary conditions on a polygonal spatial
domain to actually test our proposed approach for handling these.

In our tests linear finite elements are used and the matrix ODEs (lines 4, 6, and 8
in Algorithm 1, and line 11 in Algorithm 2) are solved using an explicit Runge-Kutta
method of third order. The implementation is based on the finite element library MFEM
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[1] and uses its Python wrapper PyMFEM.1 The computations are carried out using
standard numerical routines from numpy and scipy. All experiments have been
performed on a desktop computer (i9 7900, 128 GB RAM), the code is available
online.2

4.1 Landau damping

As a first numerical test we consider the classical Landau damping in two spatial and
velocity dimensions. We use periodic domains�x = [0, 4π ]2 and�v = [−6, 6]2 and
a background density of ρb = 1. As initial condition we choose

f (0, x, v) = 1

2π
e−|v|2/2 (

1 + α cos(kx1) + α cos(kx2)
)
, α = 10−2, k = 1

2
.

The same setup was investigated in [7]. For this case linear analysis shows that the
electric field decays with a rate of γ ≈ 0.153. For the discretization we use regular
grids with nx = 642 and nv = 2562 degrees of freedom (level 0).

Using Algorithm 1 the simulation was carried out fixed ranks r = 5, 10, 15 and a
time step of �t = 0.005. The results are shown in Fig. 1. As can be seen in the top
left plot, for rank r = 5 the computed electric energy 1

2

∫
�x

|E(t, x)|2 dx exhibits
the analytical decay rate approximately up to t = 35. For rank r = 10 the electrical
energy starts to deviate at the end of the time interval, while the solution with rank
r = 15 shows the correct rate within the full simulation time.

Furthermore, it is known that the particle number, the total energy and the entropy,
that is, the quantities

∫
�

f (t, x, v) dx dv,
1

2

∫
�

|v|2 f (t, x, v) dx dv + 1

2

∫
�(x)

|E(t, x)|2 dx,

∫
�

| f (t, x, v)|2 dx dv,

(22)

are invariants of the exact solution. In Fig. 1 we see that the mass and the total energy
are almost conserved, whereas the entropy is only preserved up to a small error.

For the rank adaptive case (Algorithm 2) the system was simulated for the same
discretization (level 0) and different tolerances ε. The corresponding results in Fig. 2
show that the electric energy deteriorates at around t = 25 for both tolerances ε =
10−5, 10−6. Although the rank increases up to 40 (the maximal rank allowed) for the
case of ε = 10−6 the accuracy in the electric energy does not improve. To improve
accuracy the simulation is carried out on a uniformly refined spatial and velocity mesh
(level 1). The results for a time step of �t = 0.00125 and a tolerance of ε = 10−6 are
shown in Fig. 2. The electric energy shows the correct decay in electric energy up to
approximately t = 40.

Investigating the computed bases X and V in more detail shows that in the rank
adaptive case spurious oscillations are present. In Fig. 3 two exemplary basis functions

1 https://github.com/mfem/PyMFEM.
2 https://github.com/azeiser/dlra-bc.
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Fig. 1 Simulation results of the 2+2-dimensional Landau damping using fixed ranks (Alg. 1); electric energy
including the analytical decay rate (upper left) and relative error of the invariants (22). For the total energy
and entropy the lines for all three ranks almost overlap

Fig. 2 Simulation results of the 2+2-dimensional Landau damping using the rank adaptive algorithm (Algo-
rithm 2) for different tolerances ε and discretizations; electric energy including the analytical decay rate
(left) and ranks (right)

Xi (x) of level 0 at time t = 50 are displayed. In the fixed rank case (r = 15) the basis
function is much smoother than in the rank adaptive simulation (ε = 10−5).

In summary spurious modes may enter in the course of the simulation for the
rank adaptive simulation. However, the accuracy can be improved by refining the
discretization. In contrast, the algorithm using a fixed rank seems to have a regularizing
effect. It remains to future work to investigate this effect more closely.
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Fig. 3 Spatial basis functions Xi (x) at time t = 50 for fixed rank (r = 15, left) and rank adaptive (level 0,
ε = 10−5, right) simulation

4.2 Inflow boundary condition with constant electrical field

In the second example we focus on the boundary condition and compare the numerical
to an analytical solution. In this setting, we are solving the transport equation (1) in
2 + 2 dimensions with a constant electrical field E = [0, 4]T on a triangular spatial
domain

�x = {(x1, x2) | − 0.5 < x1 < 0.5, −x1/2 + 1/4 < x2 < x1/2 − 1/4}

with initial condition f (0, x, v) = 0 and �v = R
2. The inflow

f (t, x, v) = f̄ (t, x, v) on �−. (23)

on the boundary of �x will be determined by a function f̄ , which is a solution of the
same equation as for f , but on the whole domain R

2 and with initial condition

f̄ (0, x, v) = f̄0(x, v).

Here, f̄0 has compact spatial support just outside the triangular domain �x and a
compactly supported velocity distribution centred around v = [2, 0]T . More precisely,
we set

f̄0(x, v) = φ
( x1 − 0.5 − σx

σx

)
· φ

( x2 − 0.1

σx

)
· φ

(v1 − 2

σv

)
· φ

( v2

σv

)
, (24)

where σx = 0.2, σv = 0.5, and

φ(z) =
{
z2 · (2|z| − 3) + 1 |z| ≤ 1

0 |z| > 1

is a C1 function supported in [−1, 1] and centered around 0. In consequence f̄0 is a
product function supported in a four-dimensional cube with side lengths controlled by
σx and σv .
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By the method of characteristics we obtain

f̄ (t, x, v) = f̄0(x − v · t − E · t2/2, v + E · t). (25)

Restricting f̄ on �x × R
2 solves the original problem and can be used to assess the

quality of its numerical solution f hr .
In order to use f̄ as the inflow function in our dynamical low-rank approach, we

have to work with an approximation in separable form instead. For that purpose, we
use the fact that, by (25) and our choice (24), f̄ can be written as

f̄ (t, x, v) = g1(t, x1, v1) · g2(t, x2, v2).

The factors g1 and g2 are then evaluated for a given time on a regular fine grid (xi , vi )
and singular value decompositions are computed. The product of the truncated SVDs
is then used for computing the inflow (23) aswell as the error of the numerical solution.
In our experiments we used the truncation ranks of 25.

The transport equation is solved numerically on the time domain [0, 0.5]. On the
coarsest scale (level 0) we use a conforming triangulation of �x with 339 vertices.
The velocity domain is chosen as �v = [−4, 4]2 with periodic boundary conditions
and a regular triangulation with 4096 vertices. For the numerical solution the rank
adaptive algorithm (Algorithm 2) is used with a time step of �t = 0.005, a truncation
threshold of ε = 10−3, and a stabilization parameter δ = 10−2. Higher levels � = 1, 2
are obtained by uniformly refining the meshes in �x as well as �v . For these levels
the parameters �t and ε are scaled by 2−2�.

Figure 4 shows the evolution of the computed spatial density

ρh(t, x) =
∫

�v

f hr (t, x, v) dv (26)

for level � = 1 at different time steps together with its error computed using the
analytical solution f̄ . At the beginning of the simulation, the density flows into the
domain, is transported and finally leaves the domain. The error remains reasonably
small during the whole process.

A more detailed investigation of the L2 error is depicted in the upper part of Fig. 5.
It is obtained by comparing the numerical solutions f hr to the analytical solution f̄
on a once uniformly refined grid. As one can see, in the beginning the error increases
for all levels but decays again for t ≥ 0.35. At about that time a significant fraction
of the density has left the domain already (see Fig. 4). The maximal error decays as
the level increases.

The lower part of the figure shows the ranks which were used by the rank adaptive
algorithm. As more particles enter the domain and the distribution spreads out, the
ranks increase. For higher levels of discretization a smaller truncation parameter is
used in order to balance the low-rank approximation error with the discretization error,
leading to higher ranks.
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Fig. 4 Spatial density ρh(t, x) (left), see (26), and error scaled by a factor of 10 (right) of the numerical
solution of (1) with constant electrical field for level � = 1 at times t = 0.075, 0.25, 0.375

5 Conclusion and outlook

In this paper we have studied how to incorporate inflow boundary conditions in the
dynamical low-rank approximation (DLRA) for the Vlasov–Poisson equation based
on its weak formulation. The single steps in the projector splitting integrator, or the
rank-adaptive unconventional integrator, can be interpreted as restrictions of the weak
formulation to certain subspaces of the tangent space. The efficient solution of these
sub-steps requires the separability of the boundary integrals, which is ensured for
piecewise linear boundaries together with a separable inflow function. The resulting
equations can be solved using FEM solvers based on Galerkin discretization. We
confirmed the feasibility of our approach in numerical experiments.

As a next step, the conservation of physical invariants such as mass and momentum
in the numerical schemes could be addressed, perhaps by extending methods from [6,
8, 10, 12, 14]. Enforcing nonnegativity of the density function in the DLRA approach
is another open issue.

A potential advantage of the weak formulation for the sub-problems in the projector
splitting integrator is that in principle it should allow for a great flexibility regarding
the discretization spaces. In particular, they do not need to be fixed in advance and
mesh-adaptive methods could be used for solving the sub-steps, provided suitable
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Fig. 5 Numerical solution of (1) for different levels of discretization. The upper graph shows the L2 error
computed with respect to the analytical solution f̄ , see (25), on a uniformly refined grid. The lower graph
shows the ranks used by the rank adaptive integrator

interpolation and prolongation operations are available, as well as adaptive solvers
for Friedrichs’ systems. We leave this as possible future work. Other elaborate adap-
tive integrators have been proposed in [15], which also could be combined with our
approach.
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