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Abstract
In this article, using the symplectic methods developed by Moreno and Frauenfelder
(aimed at analyzing periodic orbits, their stability and their bifurcations), we will
carry out numerical studies concerning periodic orbits in the Jupiter–Europa and
Saturn–Enceladus systems. We will put emphasis on planar-to-spatial bifurcations,
from deformation of the families in Hill’s lunar problem studied by Aydin. We will
also provide an algorithm for the numerical computation of Conley–Zehnder indices,
which are instrumental in practice for determining which families of orbits connect to
which. As an application, we use our tools to analyze a well-known family of Halo
orbits that approaches Enceladus at an altitude of 29 km, which bears interest for
future space missions that visit the water plumes.
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1 Introduction

Symplectic geometry is the branch of mathematics that studies the geometric
properties of phase spaces, those spaces that describe the possible states of a classical
physical system. It provides a proper framework to address problems in classical
mechanics, e.g., the gravitational problem of N bodies in three-dimensional space
(see e.g. [1–4] for reference textbooks). In the last 30 years, a host of theoretical tools
have been developed in the field, with Floer theory as a notable example, whose
emphasis is on the theoretical study of periodic orbits (see e.g. [5] and references
therein).

In a more applied direction, periodic orbits are of interest for space mission
design, as they model trajectories for spacecraft or satellites. Studying families of
orbits aimed at placing a spacecraft around a target moon is relevant for space
exploration, where optimizing over all possible trajectories is needed, in order to find
ballistic orbits, avoid collisions, and maximize safety. In this context, the influence
on a satellite of a planet with an orbiting moon can be approximated by a three-body
problem of restricted type (i.e., the mass of the satellite is considered negligible by
comparison). This is a classical problem which has been central to the development
of symplectic geometry, and therefore it is not unreasonable to expect the modern
available tools to provide insights. The need of organizing all information pertaining
to orbits leads to the realm of data analysis, for which computationally cheap
methods are important. The direction we will pursue is then encapsulated in the
following questions:

Guiding questions

� (Classification) Can we tell when two orbits are qualitatively different?

� (Catalogue) Can we resource-efficiently refine databases of known orbits?

� (Symplectic geometry) Can we use methods from symplectic geometry to guide/organize the numerical
work?

Here, we say that two orbits are qualitatively different if they cannot be joined by a
regular family of orbits, i.e., a family which does not undergo bifurcation. The first
two questions were addressed by the Moreno and Frauenfelder in [6], where the
mathematical groundwork was developed, and obstructions to the existence of
regular families were encoded in the topology of suitable quotients of the symplectic
group. This method, whose main tool is the GIT sequence, gives a refinement of the
well-known Broucke stability diagram [7]. This method was further developed for
the case of Hamiltonian systems of arbitrary degrees of freedom by Moreno and
Ruscelli in [8]. Frauenfelder, Koh and Moreno used it in combination with numerical
work, addressing the third question [9]. In this article, we continue this line of
research. As before, we have the following tools at our disposal.
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Toolkit

(1) Floer numerical invariants integers which stay invariant before and after a bifurcation, and so can
help predict the existence of orbits, as well as being easy to implement. There is one invariant for
arbitrary periodic orbits, and another for symmetric periodic orbits [9].

(2) The B-signs [6] a ± sign associated to each elliptic or hyperbolic Floquet multiplier of an orbita, which
helps predict bifurcations. This is generalization of the classical Moser–Krein signature [10–12], which
originally applies only to elliptic Floquet multipliers, to also include the case of hyperbolic multipliers,
whenever the corresponding orbit is symmetric.

(3) Global topological methods: the GIT-sequence [6], a sequence of spaces whose global topology
encodes (and sometimes forces) bifurcations, and refines Broucke’s stability diagram [7] by adding the B-
signs.

(4) Conley–Zehnder index [13, 14] a winding number associated to each non-degenerate orbit, extracted
from the topology of the symplectic group, which does not change unless a bifurcation occurs. It can be
used to determine which families connect to which.

aRecall that the Floquet multipliers of a closed orbit are by definition the non-trivial eigenvalues of the
monodromy matrix

Both Jupiter–Europa and the Saturn–Enceladus systems are of tremendous current
interest, within the context of future space missions. Works in the literature show that
the continuation of out-of-plane bifurcations from basic families of planar periodic
orbits, such as the direct (prograde) and retrograde ones, provides different regions of
stability of three-dimensional motion around the smaller primary, see the work [15]
on the Jupiter–Europa problem and [16] on systems of various mass ratios of interest.
The first work describes also the Halo family, and the latter also investigated spatial
connections between different planar direct orbits that branch out from period-
doubling bifurcation, and observed that they are similar to those found in [17] for
Hill’s lunar problem. Therefore, it is important to catalog as many planar and spatial
periodic orbits as possible around the smaller primary, Europa and Enceladus, by
starting from Hill’s lunar problem as a practical approach.

In this paper, we apply the symplectic toolkit in numerical studies of families of
periodic orbits in the Saturn–Enceladus and the Jupiter–Europa system, by
deformation of families in Hill’s lunar problem and their relations at bifurcations
points studied by Aydin [18]. Our results illustrate the general principle that one may
learn about a given system, by starting from known nearby systems, and then
deforming. One of the highlights of our paper are bifurcation graphs relating various
families of spatial orbits between triple cover of different direct and fifth cover of
retrograde orbits (Figs. 16 and 19). We notice that one special connection between
the direct and retrograde orbit in the Jupiter–Europa problem was already discussed
in [15], and in [19] for higher order resonances; all the other branches we analyze,
especially their CZ-indices with their interaction at bifurcation points, are novel.

Since its inception, index theory has been used in various forms in the study of
bifurcations. Some examples of applications to celestial mechanics include [18, 20–
22]. The typical strategy is to construct a family of orbits connecting the problem of
interest to a situation which is analytically known. In this paper we propose a novel
computational approach. We develop an algorithm that computes the index using
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only locally available orbit information, bypassing the need to construct an entire
family of orbits connecting to a previously known situation. In particular, this
approach allows us to compute the CZ-index even when no family of orbits
connecting to a previously known orbit is available. As a consequence, we can find
bifurcations and hence new orbits by finding index jumps computationally. Based on
the size of the index jump and the symmetries, we can also estimate the number of
bifurcating orbits using the Floer theoretic invariants like the ones described
Sect. 2.4. An additional practical advantage of this approach is that bifurcations can
be detected without getting close to a degeneracy. Technically, the algorithm is
achieved by a constructive approach to the symplectic path extension problem using
the Iwasawa decomposition and the singular value decomposition to improve
numerical stability. Details are given in Sect. 3.

We apply our method to various orbits in the Saturn-Enceladus system. In
particular, in Appendix A, we apply these methods in order to analyze a family of
Halo orbits in the Saturn–Enceladus system. This family approaches the plumes at an
altitude of 29 km, and therefore may be used for future missions. As an illustration of
the procedure sketched in the previous paragraph, we have applied our algorithm to
detect a bifurcation of the sevenfold cover of the Halo orbit by computing index
jumps. The resulting periodic orbit coming out of the sevenfold cover is shown in
Fig. 23 of Appendix A and approaches Enceladus at an altitude of 14 km. Our novel
tools were instrumental for our results.

2 Preliminaries

In this section, we review the toolkit. But first, we set up some language and notation.
We refer the reader to [9] for details on the global topological methods.

2.1 Basic Notions

Mechanics/symplectic geometry Given a 2n-dimensional phase-space M with its
symplectic form x, a Hamiltonian function H : M ! R, with Hamiltonian flow
/H
t : M ! M which preserves x (i.e., ð/H

t Þ�x ¼ x), and a periodic orbit x, the

monodromy matrix of x is Mx ¼ D/H
T , where T is the period of x. Then Mx is a

symplectic 2n� 2n-matrix; we denote by Sp(2n) the space of such matrices (the
symplectic group). Given a periodic orbit x, its k-fold cover xk is defined via xkðtÞ ¼
xðk � tÞ (i.e. xk is x traversed k times).

Note that if H is time-independent then 1 appears twice as a trivial eigenvalue of
Mx. We can ignore these if we consider the reduced monodromy matrix
Mred

x 2 Spð2n� 2Þ, obtained by fixing the energy and dropping the direction of
the flow.

● A Floquet multiplier of x is an eigenvalue of Mx, which is not one of the trivial

eigenvalues (i.e., an eigenvalue of Mred
x ).

● An orbit is non-degenerate if 1 does not appear among its Floquet multipliers.
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● An orbit is stable if all its Floquet multipliers are semi-simple and lie on the unit
circle.

We will only consider the cases n ¼ 2 (planar problems) and n ¼ 3 (spatial
problems).

If Mx is symplectic, and l 2 C is an eigenvalue of Mx, then so are l; 1=l; 1=l.
Then we have the following cases:

● (P, parabolic) l ¼ �1, in which case it has even multiplicity;

● (E, elliptic) jlj ¼ 1, in which case it comes as an elliptic pair l; l ¼ 1=l;

● (Hþ, positive hyperbolic) l 2 R, l[ 0, l 6¼ 1, in which case both l; 1=l are
positive;

● (H�, negative hyperbolic) l 2 R, l\0, l 6¼ �1, in which case both l; 1=l are
negative;

● (N , complex/nonreal quadruple) l 62 S1 [ R, in which case it comes in a
quadruple l; l; 1=l; 1=l.

Symmetries An anti-symplectic involution is a map q : M ! M satisfying q2 ¼ id
and q�x ¼ �x. Its fixed-point locus is fixðqÞ ¼ fx : qðxÞ ¼ xg. An anti-symplectic
involution q is a symmetry of the system if H � q ¼ H : A periodic orbit x is
symmetric if qðxð�tÞÞ ¼ xðtÞ for all t. The symmetric points of the symmetric orbit x
are the two intersection points of x with fixðqÞ. The (reduced or unreduced)
monodromy matrix of a symmetric orbit at a symmetric point is a Wonenburger
matrix:

Mx ¼ MA;B;C ¼
A B

C AT

� �
2 Spð2nÞ; ð2:1Þ

where

B ¼ BT ; C ¼ CT ; AB ¼ BAT ; ATC ¼ CA; A2 � BC ¼ id;

equations which ensure that Mx is symplectic. The eigenvalues of Mx are determined
by those of the first block A [6]:

● If k is an eigenvalue of Mx then its stability index aðkÞ ¼ 1
2 ðkþ 1=kÞ is an

eigenvalue of A.

● If a is an eigenvalue of A then kðaÞ ¼ aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 1
p

is an eigenvalue of Mx.

2.2 B-Signs

Assume n ¼ 2; 3. Let x be a symmetric orbit with monodromy MA;B;C at a symmetric
point. Assume a is a real, simple and nontrivial eigenvalue of A (i.e., kðaÞ is elliptic
or hyperbolic)). Let v be an eigenvector of AT with eigenvalue a, i.e., ATv ¼ a � v.
The B-sign of kðaÞ is
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�ðkðaÞÞ ¼ sign ðvTBvÞ ¼ �;
where B is as in Eq. (2.1). One easily sees that this is independent of v, and the basis
chosen to write down the monodromy matrix. Note that if n ¼ 2, we have two B-
signs �1; �2, one for each symmetric point; and if n ¼ 3, we have two pairs of B-signs
ð�11; �12Þ; ð�21; �22Þ, one for each symmetric point and each eigenvalue.

Frauenfelder and Moreno have recently shown that a planar symmetric orbit is
negative hyperbolic iff the B-signs of its two symmetric points differ [23]. One can
define the C-signs similarly, obtained by replacing the B-block, with the C-block of
M, and AT , by A.

2.3 Conley–Zehnder Index

The CZ-index is part of the index theory of the symplectic group. It assigns a
winding number to non-degenerate orbits. In practical terms, it helps understand
which families of orbits connect to which (CZ-index stays constant if no bifurcation
occurs, and jumps under bifurcation as shown in Fig. 1). It may be defined as
follows.

Planar case Let n ¼ 2, x planar orbit with (reduced) monodromy Mred
x , and xk its

k-fold cover which we assume to be non-degenerate for all k	 1.

● Elliptic case Mred
x is conjugated to a rotation,

Mred
x 


cosu � sinu

sinu cosu

� �
; ð2:2Þ

with Floquet multipliers e�iu. Here, u is the rotation angle. Then

lCZðxkÞ ¼ 1þ 2 � bk � u=2pc

In particular, it is odd, and jumps by ± 2 if the eigenvalue 1 is crossed in a family.

Recall from (2.1) that for symmetric periodic orbits we have Mred
x ¼ a b

c a

� �
.

Fig. 1 lCZ jumps by �1 when crossing 1, according to direction of bifurcation, as shown. If it stays
elliptic, the jump is by �2. This is determined by the B-sign
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Moreover, in view of (2.2) if b\0 then the rotation is determined by u and if b[ 0
then the rotation is determined by �u; this determines the CZ-index jump, see Fig. 1.

● Hyperbolic case Mred
x is diagonal up to conjugation,

Mred
x 


k 0

0 1=k

� �
;

with Floquet multipliers k; 1=k. Then

lCZðxkÞ ¼ k � n;

where D/H
t rotates the eigenspaces by angle pnt

T , with n even/odd if x positive/
negative hyperbolic. Notice that for symmetric periodic orbits the signatures of b and
c are equal.

Note that in both cases above, in order to compute the CZ-index via the above
formulae, we need to know the linearized flow along the whole of the orbit. That is,
what matters is the path connecting the identity to the monodromy matrix, obtained
by linearizing at any point of the orbit, and performing a full turn around the orbit. In
the elliptic case, the rotation angle u is then computed as a real number, and not
modulo 2p, as it counts the number of rotations of the linearized flow along the
whole periodic orbit.

Spatial case Let n ¼ 3. Assume that the reflection along the xy-plane gives rise to
a symplectic symmetry of H (e.g., the 3BP). If x � R3 is a planar orbit, then we have
a symplectic splitting into planar and spatial blocks

Mred
x 


Mred
p 0

0 Ms

� �
2 Spð4Þ; Mred

p ;Ms 2 Spð2Þ:

Then

lCZðxÞ ¼ lpCZðxÞ þ lsCZðxÞ;
where each summand corresponds to Mred

p and Ms respectively. We have that

� Planar to planar bifurcations correspond to jumps in lpCZ .

� Planar to spatial bifurcations correspond to jumps of lsCZ .

A general definition of the CZ-index will be given in Sect. 3, which provides a
direct way to numerically compute the CZ-indices. The computations of CZ-indices
of families can also be carried out by not directly on the definition, but rather on
determining them analytically for special families if these are known (e.g., in the
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Kepler problem), and then determining the jumps at bifurcations arising after
deformation, for which the B-signs are necessary, as explained above. This was the
approach used by Aydin in [18, 22].

2.4 Floer Numerical Invariants

Recall that bifurcations occurs when studying families c 7!xc of periodic orbits, as a
mechanism by which at some parameter time c ¼ c0 the orbit xc0 becomes
degenerate, and several new families may bifurcate out of it; see Fig. 2. The Floer
numbers are meant to give a simple test to keep track of all new families. We will first
need the following technical definition: a periodic orbit x ¼ yk , where y is its
underlying simple orbit, is bad if k is even and

lCZðxÞ 6¼ lCZðyÞ mod 2:

Otherwise, it is good. In fact, a planar orbit is bad iff it is an even cover of a negative
hyperbolic orbit (i.e. of the form xk with k even, and x negative hyperbolic). And a
spatial orbit is bad iff it is an even cover of either an elliptic-negative hyperbolic or a
positive–negative hyperbolic orbit. Note that a good planar orbit can be bad if viewed
in the spatial problem.1

Given a bifurcation at a (degenerate) periodic orbit x, the SFT-Euler characteristic
(or the Floer number) of x is

vðxÞ ¼P
ið�1Þl

i;bef
CZ ¼P

jð�1Þl
j;aft
CZ

The sum on the left hand side is over good orbits before bifurcation, and right

hand side is over good orbits after bifurcation, and li;bef =aftCZ denotes the
corresponding CZ-indices. As these numbers only involve the parity of the CZ-
index, one has simple formulas which bypass the computation of this index, as they
only involve the Floquet multipliers:

● Planar case vðxÞ ¼ #
�
good Hþ

��#
�
E; H�

�
:

● Spatial case

vðxÞ ¼ #
�
H�� ; EH� ; E2 ; good Hþþ ;N

��#
�
H�þ; good EHþ

�
:

Here, E denotes elliptic, H� denotes positive/negative hyperbolic, and N denotes

nonreal quadruples k; 1=k; k; 1=k. The above simply tells us which type of orbit

1 While the terminology of good/bad orbits is perhaps an unfortunate use of language, it is widely used in
the symplectic literature. For the purposes of this article, the theoretical reason why “good” orbits are better
than the “bad” ones is that they are the ones that need to be counted in order to obtain invariance. But
“bad” orbits might be conceivably good for the purposes of space mission design. Typical examples of bad
periodic orbits are double covers of negative hyperbolic orbits appearing in period doubling bifurcations.
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comes with a plus or a minus sign (the formula should be interpreted as either before
or after).

Invariance The fact that the sums agree before and after—invariance—follows
from deep results from Floer theory in symplectic geometry.2 We will accept this as a
fact, and use it as follows:

The Floer number can be used as a test: if the sums do not agree, we know the algorithm missed an orbit.

The invariant above works for arbitrary periodic orbits. There is a similar Floer
invariant for symmetric orbits [9].

2.5 Global Topological Methods

These methods encode: bifurcations; stability; eigenvalue configurations; obstruc-
tions to existence of regular families; and B-signs, in a visual and resource-efficient
way. The main tool is the GIT sequence [6], a refinement of the Broucke stability
diagram via implementing the B-signs. This is a sequence of three branched spaces
(or layers), together with two maps between them, which collapse certain branches
together. Each branch is labeled by the B-signs. A symmetric orbit gives a point in
the top layer, and an arbitrary orbit, in the middle layer. The base layer is Rn (the
space of coefficients of the characteristic polynomial of the first block of MA;B;C).
Then a family of orbits gives a path in these spaces, so that their topology encodes
valuable information. The details are as follows.

GIT sequence: 2D Let n ¼ 2, k eigenvalue of Mred 2 Spð2Þ, with stability index
aðkÞ ¼ 1

2 ðkþ 1=kÞ. Then k ¼ �1 iff aðkÞ ¼ �1; k positive hyperbolic iff aðkÞ[ 1;
k negative hyperbolic iff aðkÞ\� 1; and k elliptic (stable) iff �1\aðkÞ\1. The
Broucke stability diagram is then simply the real line, split into three components;
see Fig. 3. If two orbits lie in different components of the diagram, then one should
expect bifurcations in any family joining them, as the topology of the diagram
implies that any path between them has to cross the �1 eigenvalues.

Fig. 2 A sketch of a bifurcation
at a degenerate orbit, with the
before/after orbits determined by
the deformation parameter (the
energy), each branch with its
own CZ-index. The Floer
number is a signed count of
orbits which stays invariant

2 For generic families of Hamiltonians on 4-dimensional phase spaces this can alternatively be proved by
the using the normal forms of Meyer [24]. See for instance the Appendix in [9].
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One can think that the stability index “collapses” the two elliptic branches in the
middle layer of Fig. 3 together. These two branches are distinguished by the B-signs,
coinciding with the Krein signs [10, 11]. There is an extra top layer for symmetric
orbits, where now each hyperbolic branch separates into two, and there is a
collapsing map from the top to middle layer. Note that to go from one branch to the
other, the topology of the layer implies that the eigenvalue 1 needs to be crossed.
This means that one should expect bifurcations in any (symmetric) family joining
them, even if they project to the same component of the Broucke diagram. To sum
up:

� B-signs “separate” hyperbolic branches, for symmetric orbits

� If two points lie in different components of the Broucke diagram, one should expect bifurcation in any
path joining them

� If two points lie in the same component of the Broucke diagram, but if B-signs differ, one should also
expect bifurcation in any path joining them

GIT sequence: 3D Let n ¼ 3. Given Mred ¼ MA;B;C 2 Spð4Þ, its stability point is
p ¼ ð tr ðAÞ; detðAÞÞ 2 R2. The plane splits into regions corresponding to the
eigenvalue configuration of Mred , as in Fig. 4. The GIT sequence [6] adds two layers
to this diagram, as shown in Fig. 5. The top layer has two extra branches than the
middle one, for each hyperbolic eigenvalue.

Fig. 3 The 2D GIT sequence. One obtains more refined information for symmetric orbits
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Bifurcations in the Broucke diagram An orbit family c 7!xc gives a path c 7!pc 2
R2 of stability points. The family bifurcates if pc crosses C1. More generally, let Ce

u

be the line with slope cosð2puÞ 2 ½�1; 1� tangent to Cd ¼ fy ¼ x2=4g, correspond-
ing to matrices with eigenvalue e2piu; and Ch

k the tangent line with slope
aðkÞ 2 Rn½�1; 1�, corresponding to matrices with eigenvalue k.

Fig. 5 The branches (represented as lines) are two-dimensional, and come together at the 1-dimensional
“branching locus” (represented as points), where we cross from one region to another of the Broucke
diagram

Fig. 4 The 3D Broucke stability diagram. Here, C�1 corresponds to eigenvalue �1, Cd to double
eigenvalue, E2 to doubly elliptic (stable region), and so on [6]
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A k-fold bifurcation happens when crossing Ce
l=k for some l

That is, higher order bifurcations are encoded by a pencil of lines tangent to a
parabola, as in Fig. 6.

Example: symmetric period doubling bifurcation We finish this section with an
example where our invariants give new information. Consider a symmetric orbit x
going from elliptic to negative hyperbolic. A priori there could be two bifurcations,
one for each symmetric point (B or C in Fig. 7). However, invariance of vðx2Þ
implies only one can happen (note x2 is bad). And where the bifurcation happens is
determined by the B-sign, occurring at the symmetric point in which the B-sign does
not jump; or alternatively, where the C-sign jumps.

2.6 Circular Restricted Three-Body Problem

The Circular Restricted Three-Body Problem (CRTBP) shown in Fig. 8 describes the
motion of an infinitesimal mass with two primaries under mutual gravitational
attraction. A dimensionless rotating coordinate system (XR � YR � ZR) is defined at
the barycenter of the two primaries with respect to the inertial frame (X I � Y I � ZI ),
rotating about ZI with true anomaly m.

Fig. 7 Symmetric period doubling bifurcation. The fake symmetric points, while close to intersection
points, do not intersect the fixed-point loci

Fig. 6 Bifurcations are encoded by a pencil of lines
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The X-axis of the rotating coordinate system is aligned with the vector from the
larger primary body (m1) to the second primary body (m2). The Z-axis is
perpendicular to the primaries’ orbital plane, and the Y-axis completes the right-
handed coordinate system. The position vector r points from the barycenter to the
spacecraft in the rotating frame. The non-dimensional mass of the second primary is
defined as

l ¼ m2

m1 þ m2
¼ m2;

and then the larger body’s mass is

1� l ¼ m1

m1 þ m2
¼ m1:

Define the unit of time so that the mean motion of the primary orbit is 1. Then the
equations of motion for the infinitesimal mass is written as

€x ¼ 2 _yþ x� ð1� lÞ xþ l

r31
� l

x� 1þ l

r32

€y ¼ �2 _xþ y� ð1� lÞ y
r31
� l

y

r32

€z ¼ �ð1� lÞ z
r31
� l

z

r32

where r21 ¼ ðxþ lÞ2 þ y2 þ z2, r22 ¼ ðx� 1þ lÞ2 þ y2 þ z2. No closed form general
solution is possible for the model. See e.g. [25].

The Hamiltonian describing the CRTBP is given by

H : ðR3 n fP1;P2gÞ � R3 ! R;

Hðq; pÞ ¼ 1

2
kpk2 � l

kq� P2k �
1� l
kq� P1k þ p1q2 � p2q1;

where q ¼ ðq1; q2; q3Þ is the position of a satellite, p ¼ ðp1; p2; p3Þ is its momentum,

Fig. 8 A schematic CRTBP
configuration showing x1 ¼ m1,
x2 ¼ m2, and two of the libration
points in a non-dimensional
rotating coordinate system
XR � YR, ZR(ZI ) are in the out-
of-plane direction
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the mass of the secondary body m2 is fixed at P2 ¼ ð1� l; 0; 0Þ, and the mass of the
primary body m1 is fixed at P1 ¼ ð�l; 0; 0Þ. The Jacobi constant C is then defined by
the convention C :¼ �2H . The Hamiltonian H is invariant under the anti-symplectic
involutions

q : ðq1; q2; q3; p1; p2; p3Þ7!ðq1;�q2;�q3;�p1; p2; p3Þ;eq : ðq1; q2; q3; p1; p2; p3Þ7!ðq1;�q2; q3;�p1; p2;�p3Þ;
with corresponding fixed-point loci given by

L ¼ Fix ðqÞ ¼ fq2 ¼ q3 ¼ p1 ¼ 0g;eL ¼ Fix ðeqÞ ¼ fq2 ¼ p1 ¼ p3 ¼ 0g:
These correspond respectively to p-rotation around the x-axis, and reflection along
the xz-plane. Their composition r ¼ q � ~q is a symplectic symmetry corresponding to
reflection along the xy-plane.

For instance, the Jupiter–Europa system then corresponds to a CRTBP with mass
ratio l ¼ 2:5266448850435e�05, and the Saturn–Enceladus system, to
l ¼ 1:9002485658670e�07. This information as well as other orbital data can be
found in [26] as well as on the webpage https://ssd.jpl.nasa.gov/sats/

We shall use this information below.

2.7 Hill’s Lunar Problem

Hill [27] introduced a limit case of the restricted three-body problem as an
approach to solve the motion of the Moon in the Sun–Earth problem. As a first
approximation, the problem describes the relative motion of two bodies, perturbed
by a third, more massive body. The body of interest (Moon) is assumed very close
to the smaller primary (Earth) and, by a symplectic rescaling of coordinates, the
remaining more massive primary (Sun) is pushed infinitely far away in a way that
it acts as a velocity independent gravitational perturbation of the rotating Kepler
problem formed by the Earth and the Moon. This problem can therefore be viewed
as an approximation to the Saturn–Enceladus and Jupiter–Europa system, when one
lets the mass of Europa go to zero. The Hamiltonian describing the system (see
6.3.3 of [28] or 5.8.1 of [29]) is

E : ðR3nf0gÞ � R3 ! R;

Eðq; pÞ ¼ 1

2
kpk2 � 1

kqk þ p1q2 � p2q1 � q21 þ
1

2
q22 þ

1

2
q23:

The linear symmetries of this problem have been completely characterized [30].
While the planar restricted three-body problem is invariant under reflection at the x-
axis, the planar Hill lunar problem is additionally invariant under reflection at the y-
axis. For the spatial lunar problem, there are more symmetries: q; eq (which extend
the reflection at the x-axis), and two additional symmetries j; ej (p-rotation along the
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y-axis, and reflection along the yz-plane; both extend the reflection along the y-axis).
Their composition is also r ¼ j � ej.
3 Algorithm for Computing Cz-Indices

In this section we propose an algorithm to numerically compute the CZ-index, based
on the definition of the CZ-index due to Salamon and Zehnder [31]. An
implementation is part of the supplementary material and can be found at https://
github.com/ovkoert/cz-index

We start with the goals and some intuition before getting down to the definition
and computations; the CZ-index of Hamiltonian orbit is a kind of a winding number
of the linearized flow along that orbit.

To remove the vagueness in this definition we need some linear algebra and
topology. Consider a path of symplectic matrices w : ½0; T � ! Spð2nÞ, for T [ 0,
where Sp(2n) denotes the symplectic group, i.e.

Spð2nÞ ¼ A 2 M2n�2nðRÞ j AtX2nA ¼ X2nf g; with X2n ¼
0 1n

�1n 0

� �
:

These are the matrices preserving the symplectic form xðv;wÞ ¼ vtX2nw. Assume
that the path w starts at the identity and is non-degenerate, meaning that the endpoint
wðTÞ has no eigenvalues equal to 1. We want to define the CZ-index lCZ as the
weighted number of times the path w goes through the eigenvalue 1. While this can
be done and makes the relation with bifurcations clearer, we choose an equivalent
approach which is computationally simpler to implement. First define the Maslov
cycle as the set of symplectic matrices with eigenvalue 1, so

V ¼ fA 2 Spð2nÞ j detðA� 12nÞ ¼ 0g:

Remark 3.1 The Maslov cycle plays the role of the space of reduced monodromies
that are degenerate, and the CZ-index counts the number of degenerate monodromies
that lies between the starting point of a periodic orbit and its end point.

The Maslov cycle V divides Sp(2n) into two components, namely

Cþ ¼ fA 2 Spð2nÞ j detðA� 12nÞ[ 0g and C� ¼ fA 2 Spð2nÞ j detðA� 12nÞ\0g:

We choose the base points

Bþ ¼ diagð�1;�1; . . .;�1;�1Þ 2 Cþ; and B� ¼ diagð2; 1=2;�1;�1; . . .;�1;�1Þ 2 C�:

We know from the polar decomposition that any symplectic matrix A can be written
as A ¼ US, where U is unitary and S is a symmetric, positive definite matrix. The
unitary part can be extracted using the retract q : Spð2nÞ ! UðnÞ � Spð2nÞ,

qðAÞ ¼ ðAAT Þ�1=2A: ð3:3Þ
We can write
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qðAÞ ¼ X �Y
Y X

� �
; ð3:4Þ

so X þ iY is a standard U(n) matrix. Note that for n ¼ 1 we can identify U(1) with

the circle S1 via

Rh ¼
cos h � sin h

sin h cos h

� �
7!eih:

Observe that qðB�Þ ¼ id and qðBþÞ ¼ �id. Extend w to a path ~w : ½0; 2T � ! Spð2nÞ
such that

● ~wj½T ;2T � does not intersect the Maslov cycle; and

● ~wð2TÞ 2 fBþ;B�g.

In other words, simply connect wðTÞ to Bþ if wðTÞ 2 Cþ with a path in Cþ.
Similarly if wðTÞ 2 C�. Hence we get a path in the circle S1 ¼ Uð1Þ by considering
the map

c : t 7! det
C
ðq � ~wðtÞÞ;

where detC denotes the complex determinant: given a 2n� 2n-matrix in block form
(3.4), we define detC qðAÞ ¼ detðX þ iY Þ. For example detC Rh ¼ eih. The resulting
path c is not always a loop as it can end in 1 or �1, but it will be if we double its
speed. That gives us the CZ-index by taking the degree of this loop, so

lCZðwÞ ¼ degðdet
C
ðq � ~wðtÞÞ2Þ: ð3:5Þ

Here, recall that, intuitively, the degree of a map c : ½0; T � ! S1 taking values in the
circle is the number of times it winds around the circle. So the CZ-index as defined
above basically counts the number of half-turns of the map c around the circle.

3.1 Trivializations

We now need to connect the above linear algebra to Hamiltonian dynamics. Suppose
that H is a time-independent Hamiltonian defined on a phase space, say M ¼ R2n,
and consider a periodic orbit c of the Hamiltonian vector field XH . We need to choose
“yard sticks” with respect to which we measure the rotation of the linearized flow of
XH as sketched in Fig. 9. This is a symplectic trivialization or frame along the orbit c,
which simply consists of a symplectic basis of the tangent space at each point of the
orbit.

For the purpose of computing the CZ-index, we need a trivialization of a specific
type we describe now. If we order coordinates as ðq1; . . .; qn; p1; . . .; pnÞ (this gives a
sign for the matrix representation of x), then we take for each point in the orbit c, the
vectors
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Z ¼ 1

krHk2rH ; XH ¼ X2nrH :

These vectors are normalized to ensure that

xðZ;XHÞ ¼ dHðZÞ ¼ krHk2=krHk2 ¼ 1, so they form a symplectic frame of L ¼
hZ;Xhi: For the path of reduced monodromies we need to choose a symplectic basis
of the symplectic complement

Lx ¼ fY : xðX ; Y Þ ¼ 0 for X 2 Lg:
In full generality, we assume that c is the boundary of a disk in M (a spanning disk).
Then there is, by general theory, a symplectic trivialization, which is unique up to
deformation. In particular, we can choose a symplectic basis U1;V1; . . .;Un�1;Vn�1
of Lx.

In our particular situation, things are simpler as we can define a global
trivialization, for which quaternionic matrices are useful and give a clean description.
Let I, J and K denote the quaternionic matrices. For coordinates ðq1; q2; p1; p2Þ, this
means that

I ¼

0 0 �1 0

0 0 0 �1
1 0 0 0

0 1 0 0

0
BBB@

1
CCCA; J ¼

0 �1 0 0

1 0 0 0

0 0 0 1

0 0 �1 0

0
BBB@

1
CCCA; K ¼

0 0 0 �1
0 0 1 0

0 �1 0 0

1 0 0 0

0
BBB@

1
CCCA:

ð3:6Þ
Note that the first quaternion I corresponds to minus the symplectic matrix, and that
rH ; IrH ; JrH ;KrH form orthogonal directions. The last three are all tangent to
the energy hypersurface. The first two span L, and we can see that

U1 ¼ 1

�krHk2 JrH ; V1 ¼ KrH

form a symplectic trivialization of the complement Lx (keeping the coordinate order
in mind). This symplectic trivialization can be deformed into one that extends over
the collision locus if we were to consider a regularization scheme such as Levi-Civita
regularization and this property guarantees the correct behavior. In particular, this
trivialization works for the planar CRTBP and for convex Hamiltonians as well. For

Fig. 9 Winding of the linearized
flow along an orbit with respect
to a frame
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the spatial CR3BP, we add vectors U2 and V2 pointing in the q3 and p3 direction,
then project the U1;U2;V1;V2 vectors to make them tangent to the energy hyper-
surface and then apply the symplectic Gram–Schmidt process to obtain a symplectic
trivialization. This way we know that the constructed trivialization coincides with the
trivialization used for the planar problem if we restrict. Let us now make this pro-
cedure completely explicit. First we define the 6-dimensional variants of the J and K
matrices,

J3 ¼

0 �1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 �1 0 0

0 0 0 0 0 0

0
BBBBBBBB@

1
CCCCCCCCA
; K3 ¼

0 0 0 0 �1 0

0 0 0 1 0 0

0 0 0 0 0 0

0 �1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

0
BBBBBBBB@

1
CCCCCCCCA
: ð3:7Þ

We now carry out the above procedure and find

Z ¼ 1

krHk2rH ;

U1 ¼ 1

�ðJ3rHÞTX6K3rH
J3rH ;

The formulas for U2 and V2 are more unpleasant, so we give the computational
procedure. To see that these are the right signs, keep the coordinate ordering in mind.

U2  ð0; 0; 0; 0; 0; 1Þ
U2  U2 � ðrHTU2ÞZ
U2  U2 þ ðZTX6U2ÞXH

U2  U2 þ ðUT
1 X6U2ÞV1

U2  U2 � ðVT
1 X6U2ÞU1

The implementation performs these steps even more explicitly without any simpli-
fication. Now that we have symplectic bases of both Lx and Lxx at a point x, we define
the symplectic frames

�FðxÞ ¼ Z U1 . . . Un�1 XH V1 . . . Vn�1ð Þ 2 Spð2nÞ and
FðxÞ ¼ U1 . . . Un�1 V1 . . . Vn�1ð Þ 2 Mat2n�ð2n�2Þ:

The second frame is simply obtained by projecting out the Z and XH directions, and
will be used to get the reduced monodromy. If x(t) is an orbit with linearized flow M
(x(t)), then we form the full monodromy path as
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WðtÞ ¼ XT
2n
�FðxðtÞÞTX2nMðxðtÞÞ �Fðxð0ÞÞ:

The path of reduced monodromies is then obtained by projecting out the Z and XH -
directions,

WredðtÞ ¼ XT
2n�2FðxðtÞÞTX2nMðxðtÞÞFðxð0ÞÞ: ð3:8Þ

We will define the transverse CZ-index of the orbit c as the CZ-index of the path
t 7!WredðtÞ, i.e. lCZðc; �Þ :¼ lCZðWredÞ: This is then the CZ-index of the orbit c,
which depends only on the homotopy class of trivialization. This means that the
index is invariant under continuous deformations of trivializations.

3.2 Pseudocode

We split the computation in steps. In the first step we compute the transverse path
using a symplectic trivialization. Correctness of this simple algorithm follows
directly from (3.8).

After obtaining the transverse path, we compute the CZ-index; we use an
additional function for the construction of a path extension. Implementation of
Algorithm 1 is straightforward with a good integrator. In our implementation, we
have used the Taylor integrator Heyoka [32], for its accuracy. We will discuss the
more technical path extension function in the next section, and focus on Algorithm 2,
which computes the CZ-index of a path of symplectic matrices. The basic strategy is
to follow the construction from the beginning of Sect. 3, but rather than directly
applying (3.3), we compute the retraction to U(n) by the singular value decompo-
sition. To see how this works, we take the singular decomposition URV of w, and
verify �

wwT��1=2w ¼ �
URVVTRUT

��1=2
URV ¼ UV :

The reason for using the singular value decomposition is its greater numerical sta-
bility. To get a path in U(1), we use the special block structure of the R(t) matrices. If
w is a 2n� 2n-matrix, then R ¼ qðwÞ lies in Oð2nÞ \ UðnÞ and has the following
block form

R ¼ R11 �R21

R21 R11

� �
:

Combing the blocks, we get the complex n� n matrix R11 þ iR21 whose determinant
c lies in U(1), which is the unit circle in the complex plane. A discretization of the
path w gives rise to a discretization of the points on the unit circle, so we can simply
sum up the angle changes to get the full angle change. In view of Formula (3.5), we
double this angle change and divide by 2p to get the winding number. Simplifying
we get the following algorithm.
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Algorithm 1 Algorithm to obtain transverse path

Algorithm 2 CZ-index of path of symplectic matrices

Here t 7!pathðwðTÞ;B�; tÞ is a path connecting wðTÞ to B�, while avoiding the
Maslov cycle. This extension path is described in the next section. Mathematically,
the constructed path is continuous, lies in the symplectic group and the extension part
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of the path doesn’t intersect the Maslov cycle. However, the discretizations of both
the numerical approximation and the extension have to be fine enough for the
numerical result to be correct. Our implementation takes care of this, by providing
criteria to check this. The simplest and most important criteria are described by the
following functions:

The first function checks whether the path is really symplectic by measuring a
matrix norm of the defect, which should be small. The second function checks
whether the Maslov cycle is crossed; this should not occur in the extension, but can
happen if the stepsize is too large. The third function computes a matrix norm of the
change of the symplectic path; the changes should be sufficiently small relative to the
value of the Maslov function A 7! detðA� idÞ. The last function is used to compute
the size of the angle changes, each given by the term imðlogðcðtiþ1Þ=cðtiÞÞÞ, of the
contracted path; the stepsizes should be chosen so small that the angle changes are
less than p, otherwise it is not possible to determine in which direction the linearized
flow is turning: the angle jumps are returned in the second returned item; the first
returned item is the CZ-index. The implementation reports a summary of these norms
and jumps, and gives a warning when the jumps are too large. Cases where we found
that a finer discretization was necessary, include orbits that come very close to
collision, and orbits that are almost degenerate. Although our implementation uses
fixed stepsize for simplicity, efficiency can be greatly improved by using adaptive
stepsizes.

3.3 Extending the Transverse Path to the Base Point

The extension is based on the following theorem and observations.

Theorem A The characteristic polynomial of a symplectic matrix A 2 Spð2nÞ is
palindromic, i.e.there are a0; . . .; an such that
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DðkÞ ¼ k2nD
1

k

� �
¼ kn

Xn
k¼0

akðkk þ k�kÞ:

Furthermore, if k is an eigenvalue of A, then so are k�1, �k and �k
�1
.

This means that the eigenvalues of a non-degenerate symplectic matrix come in
the following types:

● ðEÞ A pair of complex conjugate eigenvalues on the unit circle, i.e. an elliptic pair;

● (Hþ) A pair of positive real eigenvalues a, 1/a, i.e. a positive hyperbolic pair;

● (H�) A pair of negative real eigenvalues a, 1/a, i.e. a negative hyperbolic pair;

● (C) A tuple of four complex eigenvalues k; 1=k; �k; 1=�k that are not real and do not
lie on the unit circle, i.e a complex quadruple;

For the planar CR3BP, a path corresponding to the reduced monodromy will consist
of Sp(2)-matrices. In case the path is non-degenerate, then the endpoint will be one of
the following types:

● (E) or (H�): we connect to Bþ and the index is odd;

● (Hþ): we connect to B� and the index is even.

In the spatial CR3BP, a path corresponding to the reduced monodromy will be in Sp
(4). The following cases occur for the endpoint:

(A) (E2), (EH�), (H��), (Hþþ), (C): we connect to Bþ and the index is even;
(B) (EHþ), (H�þ): we connect to B� and the index is odd.

Let us explain how to obtain the extension ~w in the spatial case:

(1) Eliminate all elliptic pairs;
(2) Eliminate all negative hyperbolic pairs;
(3) If the endpoint S is of (Hþþ) type, then take an eigenvalue decomposition

S ¼ BDB�1, where D is diagonal. The eigenvalues are generically in the form
k; l; 1=k; 1=l, where k 6¼ l. We can rescale the columns of B such that they
become orthogonal with respect to x. Indeed, if Sv ¼ kv and Sw ¼ lw, with
v, w the columns of B, then

klvtX4w ¼ vtStX4Sw ¼ vtX4w;

so xðv;wÞ ¼ 0, since kl 6¼ 1. With this in mind:

● First deform the eigenvalues to the form 2, 2, 1/2, 1/2 by interpolating D to
D0;

● Then rotate BD0B�1 to BRsD0B�1 via a continuous path of rotations Rs, so
that the end point is of (C) type.
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(4) If the type is now (C), then connect to Bþ by interpolating the eigenvalues.
This finishes case (A).

(5) If we are in case (B), then after the previous steps we have reduced the matrix
to a diagonalizable symplectic matrix whose eigenvalues are a positive
hyperbolic pair and eigenvalue �1 with multiplicity 2. By the previous
observation, we may write

S ¼ BDB�1;

where B is a symplectic matrix and D is diagonal. With the Iwasawa
decomposition, we can write B ¼ KAN , where K 2 UðnÞ is unitary, and A, N
have the form

A ¼ D0 0

0 D0�1

� �

with D0 2 M2�2ðRÞ diagonal and positive, and

N ¼ N M

0 N�t

� �
;

with N upper triangular with diagonal elements equal to 1, NMt ¼ MNt. The
matrices K, A and N can then be interpolated to the identity. The paper of Benzi
and Razouk [33], contains an efficient and simple to implement algorithm,
which we have used.

4 Numerical Work

4.1 Result I: Planar Direct/Prograde Orbits

Hénon [34] describes a family g of planar direct periodic orbits which are invariant
with respect to both reflections at the x and y-axis. This family undergoes a non-

Fig. 10 Bifurcation graphs for the planar direct/prograde orbits with CZ-index
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generic pitchfork bifurcation, going from elliptic to positive hyperbolic, and where
two new families of elliptic orbits, called g0, appear; see the plots in Fig. 11. These
new families are still invariant under reflection at the x-axis, but not under reflection
at the y-axis. Reflection at the y-axis maps one branch of the g0-family to the other
branch. Figure 10 shows the bifurcation graph which is constructed as follows: each
vertex denotes a degenerate orbit at which bifurcation happens and each edge
represents a family of orbits with varying energy, labeled by the corresponding CZ-
index. From this data, it is easy to determine the associated Floer number. For

instance in Fig. 10 on the left, the Floer number is ð�1Þ3 ¼ �1 before bifurcation,

and ð�1Þ2 þ 2ð�1Þ3 ¼ �1 after bifurcation; they coincide, as they should (Fig. 11).
By deformation, we may go from Hill’s lunar problem to the Jupiter–Europa

system; see Fig. 10. The pitchfork bifurcation deforms to a generic situation, where
one of the g0 branches glues to the before-bifurcation part of the g branch, the result
of which we call the g-LPO1 branch, and where the other g0 branch glues to the after-
bifurcation part of the g branch, which we call the DPO-LPO2 branch (undergoing
birth–death bifurcation). The DPO-orbits are planar positive hyperbolic and the
LPO2-orbits are planar elliptic. As the symmetry with respect to the y-axis is lost, the
new orbits will be approximately symmetric with respect to the y-axis, but not
exactly symmetric; similarly, the y-symmetric relation between the g0 branches

Fig. 11 First row: the g branch whose orbits are in blue and doubly-symmetric w.r.t. the x- and y-axis. From
the dashed orbit there bifurcate the two g0 branches whose orbits are plotted in the second row and simply-
symmetric w.r.t. the x-axis; one g0 branch is on the right (the green orbits) and one g0 branch is on the left (the
purple orbits). From light to dark indicates the increase of the energy in each plot (Color figure online)
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Fig. 12 Left: the g-LPO1 branch in purple, where the energy increases from top to bottom and from light
to dark. Right: the DPO-LPO2 branch, split into the DPO sub-branch (left, where orbits are in blue and
planar positive hyperbolic) and of the LPO2 sub-branch (right, where orbits are in green and planar
elliptic). The black dashed orbit is the degenerate orbit, undergoing birth–death bifurcation (Color
figure online)

Fig. 13 Jupiter–Europa: A planar-to-spatial bifurcation of a simple closed planar DPO orbit (grey dashed);
the reflection at the xy-plane yields its symmetric family
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persists only approximately for the corresponding deformed orbits. These families
are plotted in Fig. 12, where this behavior is manifest. The data for each new branch
is given in Tables 4, 5 and 6 in Appendix B. Via this bifurcation analysis, one may
predict the existence of the DPO-LPO2 branch, which a priori is not straightforward
to find. While these families are already known and appear e.g., in page 12 of [35],
this suggests a general mechanism which we will exploit, cf. Figs. 15, and 16. Note
that [35] provides an online data base for planar and x-axis symmetric periodic orbits,
and we match their notation for orbits (DPO, LPO, etc.). The novelty of this article is
to focus on spatial bifurcations of these planar orbits, employing our novel methods
and tools.

4.2 Result II: Bifurcation Graphs with the Same Topology

In the Jupiter–Europa system, the spatial CZ-index of the simple closed DPO-orbit at
around C ¼ 3:00109352 jumps by þ1, see Table 5 in Appendix B. Therefore it
generates a planar-to-spatial bifurcation, see the plot in Fig. 13. As in Hill’s problem,
this new family of spatial orbits appears twice by using the reflection at the xy-plane.
Surprisingly, compared to Fig. 10, because the symmetry is preserved, the bifurcation
graph has the same topology after deformation and is still non-generic, see the graph
in Fig. 14.

4.3 Result III: Bifurcation Graphs Between Prograde and Retrograde Orbits

A bifurcation graph relating third covers of g; g0, and fifth covers of planar retrograde
orbits, known as family f, was obtained by Aydin [18]; see Fig. 15. The third covers
of LPO2 and fifth covers of DRO were found using Cell-Mapping [36]. Taking
Fig. 15 as a starting point, we compare it to the Jupiter–Europa system. The result is
plotted in Fig. 16.

Fig. 14 Left: The bifurcation graph between simple closed g-orbit and the new families of spatial orbits
generated by the spatial index jump in Hill’s system. Right: In the Jupiter–Europa system. The horizontal
symmetry corresponds to the reflection at the xy-plane
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Let us focus on the two unlabeled vertices on the right of Fig. 15 which are not of
birth–death type. After deformation, the (red) family starting at g03 on the right of
CZ-index 15 glues to the (blue) family of the same index ending in f 5, resolving the
vertex at which they meet; note that similarly as in Result I, f is replaced with DRO,
and g0, with LPO2. The two other families meeting at the same vertex coming from
g03 and g3 now glue to a family undergoing birth–death, where now g0 is replaced by
g-LPO1, and g, with DPO. A similar phenomenon happens at the other vertex, where
the (pink) family starting at g03 with CZ-index 14 on the right glues to the (green)
family of the same index, and the other two families now undergo birth–death. These
families might have been hard to find without this analysis.

Fig. 15 Bifurcation graph for Hill’s lunar problem by Aydin [18], between the 3rd cover of g, the 3rd cover
of g0 and the 5th cover of f, based on work of Kalantonis [37]. A cross means collision, and b–d means
birth–death bifurcation. The horizontal symmetry in the diagram, relating full and dashed edges, means that
the corresponding families are related by a symmetry. For instance, the non-dashed red 15 on the right is
related by the dashed red 15 on the right by reflection along the xy-plane. The other red 15 families on the
left are obtained by applying the extra two spatial symmetries j; ej. Similarly for the pink 14 families. The
blue and green families are doubly symmetric; one of the symmetries breaks at bifurcation, where the red
and pink families appear (Color figure online)
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Another notable feature is the (red) family between LPO23 and DRO5 of CZ-index
15. This is a spatial family connecting two planar orbits, one of which is retrograde
(DRO5), and the other, prograde (LPO23). This family is plotted in Fig. 18.

4.4 Result IV: Bifurcation Graph for Saturn–Enceladus

The periodic orbits in the Saturn–Enceladus system were found by continuation in
the l-parameter, and its bifurcation graph corresponding to the one shown in Fig. 16
has exactly the same topology (but different energy values); it is plotted in Fig. 19.

Fig. 16 Bifurcation graph for the Jupiter–Europa system, between g-LPO13, DPO3, LPO23, and DRO5.
The data for the pink family is collected in Table 8, for the red one in Table 9, for the blue one in Table 10
and for the green in Table 11. Some orbits of the blue and green family are plotted in Fig. 17. The
horizontal symmetry is reflection along the xy-plane. Note that non-dashed red 15 and non-dashed blue 15
are no longer related by a symmetry (Color figure online)
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Figure 20 gives a bifurcation graph corresponding to the pink families of Fig. 19 (but
drawn upside down). Note that it is not only topological, as we also record the
starting value along the z axis. The corresponding families of orbits are plotted in
Fig. 21.

Fig. 17 Jupiter–Europa: Two families of spatial orbits branching out from the g-LPO13 orbit (grey
dashed); right: these orbits are symmetric w.r.t. the x-axis and their data is collected in Table 10. This is the
(blue) family of CZ-index 15 in Fig. 16; left: these orbits are symmetric w.r.t. the xz-plane and their data is
collected in Table 11. This is the (green) family of CZ-index 14 in Fig. 16 (Color figure online)

Fig. 18 The red prograde to retrograde spatial connection, with constant CZ-index 15. It starts at the top
right where the grey dashed orbit is an LPO2, and the red family bifurcates from its third cover. Its
continuation is on the left and then at the bottom from right to left, where on the last the family ends at the
fifth cover of planar retrograde orbit (grey dashed) (Color figure online)
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5 Conclusion

We presented a toolkit extracted from the general methods of symplectic geometry,
aimed at studying periodic orbits of Hamiltonian systems, with their bifurcations in
families, eigenvalue configurations, and stability, in a visual, and resource-efficient
way. In the presence of symmetry, the information attached to orbits, and the methods
involved, may be significantly refined. We illustrated these methods on numerical
examples, for systems of current interest which are modelled by a restricted three-
body problem (Jupiter–Europa, Saturn–Enceladus). We studied families of planar to
spatial bifurcations, via bifurcation analysis and deformation from the Hill’s lunar
problem. The numerical findings are in agreement with the theoretical predictions,
and the bifurcation graphs are completely novel. Appendix A yields an orbit in the

Fig. 19 Bifurcation graph for Saturn–Enceladus. Its topology is exactly the same as that of Fig. 16, but
with different energy values (Color figure online)
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Saturn–Enceladus system which approaches the plumes at an altitude of 29 km, and
therefore may be used for future missions.

Fig. 20 A bifurcation graph for
Saturn–Enceladus of xz-plane
symmetric orbits, which
corresponds to the pink families
in Fig. 19. Horizontal axis is z
starting value. Vertical axis is
energy (Color figure online)

Fig. 21 Plots of the orbits represented by the bifurcation graph of Fig. 20. It starts at the top right where the
grey dashed orbit is an LPO2, and the pink family bifurcates from its third cover. Its continuation is on the
left and then from the second row from right to left (Color figure online)
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Appendix A: Halo Orbits and Polar Orbits

We apply the same methods to the family of Halo orbits coming out of L2 in the
Saturn–Enceladus system. It turns out that this family gets very close to the plumes;
the same family appears also in the whitepaper on the Enceladus Orbilander [38]. We
continue this family of periodic orbits past a birth–death degeneracy to connect it to
the family of polar orbits, compute the indices as well as the distance to the surface at
the minimal angle with the pole. We have taken 237,948 km for the semi-major axis
of the orbit of Enceladus around Saturn, and 252.1 km for the radius of Enceladus to
compute the distance to the surface. The most interesting part of the family occurs
just after the index change from 3 to 4, where the orbit is both stable and getting close
to the surface as illustrated in Fig. 22 (Tables 1, 2, and 3).

The orbit can of course be continued further as a polar orbit, but this will result in
a physical collision.

Fig. 22 Plots of a Halo-polar orbit (C ¼ 3:000034709155895) with an altitude of 29 km in the RTBP
model for Saturn–Enceladus. The units are normalized, so distance Saturn–Enceladus is set to 1. The
Conley–Zehnder index has just jumped to 4, and the type is (E2). Enceladus is displayed in red and gray
(Color figure online)

Table 1 Halo 2 family to polar near bifurcation for Saturn–Enceladus

C x(0) z(0) Distance to
surface
(km)

Angle
(�)

lCZ

3.0000347723579006 1.0026629054297493 �0.004864325835487838 47 14 3

3.0000347323578973 1.0026358028989037 �0.004870378097113008 42 12 3

3.000034706717895 1.0025922078191964 �0.004879135320319407 33 10 3

3.000034709155895 1.0025751548678687 �0.004882249068671777 29 10 4

3.000034719155896 1.0025570306848521 �0.004885374862351879 25 9 4

3.0000349743579013 1.0024341077005268 �0.004902014803197094 0.6 4 4
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As the sevenfold cover of the Halo orbit makes a jump in index from 20 to 22 as
indicated in Table 2, we deduce by invariance of local Floer homology that there
must be periodic orbits of index 20 and 21 to compensate. These can then be found
by a search nearby the sevenfold cover. One of the orbits, both of which hug the
sevenfold cover of the Halo orbit closely, is shown in Fig. 23. The seven strands have
a maximal distance of 0:8km from each other. Many more bifurcations of a similar

Table 3 Orbit data of the displayed orbit

C x(0) z(0) Alt (km)

3.000034757415899 1.0024991770058109 �0.0048974554261678876 14

Fig. 23 A zoomed view of a
periodic orbit coming out of the
sevenfold cover of the Halo
orbit: orbit data is displayed in
Table 3

Fig. 24 A GIT plot of the family of Halo orbits, with their corresponding CZ-index. The bifurcation from
blue to red is of birth–death type, and from red to green, a period-doubling (Color figure online)

123

51 Page 34 of 48 The Journal of the Astronautical Sciences



type occur, but most of the resulting orbits collide with Enceladus. For reference, see
the GIT-Broucke stability diagram in Fig. 24, which shows how the family crosses
the stable region from side to side, and therefore crosses every rational line; this
means that every cover bifurcates at some value of the parameter.

Appendix B: Tables

In this appendix, we give tables with the data associated to the various families we
have considered (Tables 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, and 19).

Table 4 Data for g-LPO1 branch for JE

C x(0) _yð0Þ T (C/B)-sign & Floquet multipliers lpCZ / lsCZ /
lCZ

3.01142113 1.0226290 0.10284894 0.13999 ðþ=�Þ up ¼ 0:137, ð�Þ
us ¼ 0:142

3 / 3 / 6

3.00383366 1.00797270 0.05073828 1.17402 ðþ=�Þ up ¼ 0:332, ð�Þ
us ¼ 1:290

3 / 3 / 6

3.00372747 1.00538715 0.07480305 1.33771 ðþ=�Þ up ¼ 0:556, ð�Þ
us ¼ 1:572

3 / 3 / 6

3.00365597 1.00378076 0.09779235 1.59835 ðþ=�Þ up ¼ 1:068, ð�Þ
us ¼ 2:089

3 / 3 / 6

3.00360358 1.00244635 0.12945606 2.08332 ðþ=�Þ up ¼ 1:845, ð�Þ
us ¼ 3:136

3 / 3 / 6

3.00360326 1.00243628 0.12977936 2.08832 ðþ=�Þ up ¼ 1:858, ðþ=þÞ
ks ¼ �1:03

3 / 3 / 6

3.00360049 1.00234732 0.13271728 2.13332 ðþ=�Þ up ¼ 1:987, ðþ=þÞ
ks ¼ �1:05

3 / 3 / 6

3.00359960 1.00231829 0.13370950 2.14831 ðþ=�Þ up ¼ 2:037, ðÞ
us ¼ 3:166

3 / 3 / 6

3.00358255 1.00180287 0.15481646 2.43323 ðþ=þÞ kp ¼ �4:39, ðÞ
us ¼ 3:796

3 / 3 / 6

3.00343430 1.00043030 0.32769866 3.13136 ðþ=þÞ kp ¼ �129, ðÞ
us ¼ 5:223

3 / 3 / 6
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Table 5 Data for DPO branch for JE

C x(0) _yð0Þ T (C/B)-sign & Floquet multipliers lpCZ / lsCZ /
lCZ

3.00374605 1.00900895 0.04460670 1.25362 ð�=�Þ kp ¼ 1:29, ð�Þ
us ¼ 1:385

2 / 3 / 5

3.00358658 1.00884026 0.04739922 1.41448 ð�=�Þ kp ¼ 2:23, ð�Þ
us ¼ 1:565

2 / 3 / 5

3.00356924 1.00889026 0.04727261 1.43426 ð�=�Þ kp ¼ 2:36, ð�Þ
us ¼ 1:589

2 / 3 / 5

3.00340053 1.00928559 0.04673515 1.64653 ð�=�Þ kp ¼ 4:29, ð�Þ
us ¼ 1:829

2 / 3 / 5

3.00323697 1.00958786 0.04684116 1.88433 ð�=�Þ kp ¼ 8:52, ð�Þ
us ¼ 2:094

2 / 3 / 5

3.00257321 1.00913170 0.05562606 2.88768 ð�=�Þ kp ¼ 136, ð�Þ us ¼ 3:092 2 / 3 / 5

3.00237147 1.00863170 0.05990199 3.16288 ð�=�Þ kp ¼ 246, ðÞ us ¼ 3:334 2 / 3 / 5

3.00109352 1.00470170 0.09778837 5.12979 ð�=�Þ kp ¼ 2485, ðÞ
us ¼ 6:161

2 / 3 / 5

3.00109192 1.00469670 0.09785369 5.13303 ð�=�Þ kp ¼ 2570, ðþ=þÞ
ks ¼ 1:027

2 / 4 / 6

3.00107109 1.00463170 0.09871030 5.17546 ð�=�Þ kp ¼ 3062, ðþ=þÞ
ks ¼ 1:540

2 / 4 / 6

Table 6 Data for LPO2 branch for JE

C x(0) _yð0Þ T (C/B)-sign & Floquet multipliers lpCZ / lsCZ /
lCZ

3.00374885 1.00955895 0.04118756 1.25694 ðþ=�Þ up ¼ 0:190, ð�Þ
us ¼ 1:397

3 / 3 / 6

3.00371150 1.01150895 0.03105844 1.34143 ðþ=�Þ up ¼ 0:538, ð�Þ
us ¼ 1:555

3 / 3 / 6

3.00369790 1.01200895 0.02882949 1.37591 ðþ=�Þ up ¼ 0:625, ð�Þ
us ¼ 1:620

3 / 3 / 6

3.00363027 1.01440084 0.01977091 1.62295 ðþ=�Þ up ¼ 1:101, ð�Þ
us ¼ 2:094

3 / 3 / 6

3.00357414 1.016776 0.0130372 2.1215 ðþ=�Þ up ¼ 1:878, ð�Þ
us ¼ 3:131

3 / 3 / 6

3.00357388 1.016787 0.013014 2.12519 ðþ=�Þ up ¼ 1:885, ðþ=þÞ
ks ¼ �1:02

3 / 3 / 6

3.00356878 1.01701395 0.01253366 2.20708 ðþ=�Þ up ¼ 2:120, ðÞ
us ¼ 3:225

3 / 3 / 6

3.00353952 1.01771395 0.01187914 2.65553 ðþ=þÞ kp ¼ �9:64, ðÞ
us ¼ 4:144

3 / 3 / 6

3.00349789 1.01765259 0.01364657 2.95454 ðþ=þÞ kp ¼ �36:3, ðÞ
us ¼ 4:743

3 / 3 / 6
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Table 7 Data for DRO branch for JE

C x(0) _yð0Þ T (C/B)-sign & Floquet multipliers lpCZ / lsCZ /
lCZ

3.00429783 0.99502455 0.07670173 0.40998 ð�=þÞ up ¼ 5:862, ðÞ
us ¼ 5:894

1 / 1 / 2

3.00156431 0.99037034 0.06224607 1.02778 ð�=þÞ up ¼ 5:245, ðÞ
us ¼ 5:406

1 / 1 / 2

3.00101739 0.98833167 0.06026263 1.32856 ð�=þÞ up ¼ 4:973, ðÞ
us ¼ 5:216

1 / 1 / 2

3.00060753 0.98623049 0.05949811 1.64998 ð�=þÞ up ¼ 4:712, ðÞ
us ¼ 5:050

1 / 1 / 2

3.00054882 0.98587513 0.05946574 1.7052 ð�=þÞ up ¼ 4:670, ðÞ
us ¼ 5:026

1 / 1 / 2

2.99962388 0.97762100 0.06369886 3 ð�=þÞ up ¼ 4:001, ðÞ
us ¼ 4:787

1 / 1 / 2

2.99935885 0.97409965 0.06735824 3.5 ð�=þÞ up ¼ 3:987, ðÞ
us ¼ 4:863

1 / 1 / 2

2.99908502 0.97038828 0.07212000 4 ð�=þÞ up ¼ 3:995, ðÞ
us ¼ 5:001

1 / 1 / 2

2.99868251 0.96488658 0.08024713 4.6003 ð�=þÞ up ¼ 4:185, ðÞ
us ¼ 5:254

1 / 1 / 2

Table 8 Data for one branch bifurcation from 3rd cover of the LPO2-orbit for JE

C x(0) z(0) _yð0Þ T (C/B)-sign & Floquet
multipliers

lCZ

3.00363027 1.01440084 0 0.01974709 4.86 ð�=þÞ u3
p ¼ 3:305, u3

s ¼ 0 14! 16

3.00362881 1.01439256 0.00046114 0.01976648 4.87 ð�=þÞ u1 ¼ 3:300, ðÞ
u2 ¼ 6:281

14

3.00359018 1.01415816 0.00242577 0.02031752 4.90 ð�=þÞ u1 ¼ 3:208, ðÞ
u2 ¼ 6:280

14

3.00357914 1.01409052 0.00273476 0.02047842 4.91 ðþ=þÞ k ¼ �1:05, ðÞ
u ¼ 6:278

14

3.00354287 1.01386628 0.003555363 0.02101794 4.94 ðþ=þÞ k ¼ �1:18, ðÞ
u ¼ 6:255

14

3.00325974 1.01198527 0.00688259 0.02594794 5.2 ðþ=þÞ k ¼ �1:62, ðÞ
u ¼ 5:963

14

3.00298774 1.00985792 0.00824897 0.03258269 5.5 ðþ=�Þ u1 ¼ 2:566, ðÞ
u2 ¼ 5:657

14

3.00270453 1.00652898 0.00795347 0.04651756 5.85 ð�=þÞ u1 ¼ 1:947, ðÞ
u2 ¼ 5:978

14

3.00264234 1.00560524 0.00778449 0.05051319 5.88 ðþ=þÞ k ¼ �1:09, ðÞ
u ¼ 5:958

14

3.00263168 1.00544296 0.00774780 0.05124733 5.88 ð�=þÞ u1 ¼ 3:488, ðÞ
u2 ¼ 5:937

14
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Table 8 continued

C x(0) z(0) _yð0Þ T (C/B)-sign & Floquet
multipliers

lCZ

3.00260038 1.00454296 0.00720347 0.05686831 5.86 ð�=þÞ u1 ¼ 4:662, ðÞ
k ¼ 1

b–d

3.00260927 1.00399399 0.00658371 0.06201856 5.8 ð�=þÞ u ¼ 4:813, ðþ=þÞ
k ¼ 2:278

15

3.00266582 1.00306075 0.00521508 0.07465765 5.6 ð�=þÞ u ¼ 4:443, ðþ=þÞ
k ¼ 3:660

15

3.00278841 1.00150186 0.00269606 0.11584022 5 ð�=þÞ u ¼ 3:653, ðþ=þÞ
k ¼ 1:829

15

3.00279353 1.00129733 0.00238127 0.12512611 4.9 ð�=þÞ u1 ¼ 3:540, ðÞ
k ¼ 1

b–d

3.00277937 1.00084704 0.00169978 0.15351993 4.66 ð�=þÞ u1 ¼ 3:246, ðÞ
u2 ¼ 5:702

14

These spatial orbits are simply-symmetric w.r.t. the xz-plane and ends at collision. Its symmetric family is
obtained by using the reflection at the xy-plane

Table 9 Data for one branch bifurcation from LPO23-orbit for JE, ending at DRO5

C x(0) _yð0Þ _zð0Þ T (C/B)-sign & Floquet
multipliers

lCZ

3.00363027 1.01440084 0.01974709 0 4.86 ð�=þÞ u3
p ¼ 3:305, u3

s ¼ 0 14! 16

3.00351924 1.01408954 0.01928185 0.01342237 4.96 ð�=�Þ k1 ¼ �1:24, ð�=�Þ
k2 ¼ 1:09

15

3.00321170 1.01314307 0.01799332 0.02676988 5.25 ð�=�Þ k1 ¼ �1:62, ð�=�Þ
k2 ¼ 1:45

15

3.00302231 1.01246670 0.01723541 0.03300118 5.46 ðþ=�Þ u ¼ 2:749, ð�=�Þ
k ¼ 1:78

15

3.00273486 1.01099334 0.01657953 0.04285920 5.82 ðþ=�Þ u ¼ 1:618, ð�=�Þ
k ¼ 1:55

15

3.00270684 1.01077857 0.01644568 0.04412031 5.85 ðþ=�Þ u ¼ 1:801, ð�=�Þ
k ¼ 1:40

15

3.00266563 1.01548137 0.01548137 0.04575934 5.88 ðþ=�Þ u ¼ 2:506, ð�=�Þ
k ¼ 1:35

15

3.00243536 1.01068879 0.00516070 0.04995370 6 ð�=þÞ u ¼ 5:761, ð�=�Þ
k ¼ 8:52

15

3.00204821 1.01119864 −0.01174966 0.05089250 6.24 ð�=þÞ u ¼ 5:965, ð�=�Þ
k ¼ 31:1

15

3.00172312 1.01167768 −0.02457421 0.04793350 6.5 ð�=þÞ u ¼ 6:016, ð�=�Þ
k ¼ 30:0

15

3.00147493 1.01207539 −0.03349482 0.04374826 6.75 ð�=þÞ u ¼ 6:070, ð�=�Þ
k ¼ 22:3

15

3.00127220 1.01242785 −0.04020652 0.03910792 7 ð�=þÞ u ¼ 6:124, ð�=�Þ
k ¼ 15:2

15

3.00096072 1.01304236 −0.04944170 0.02947258 7.5 15
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Table 9 continued

C x(0) _yð0Þ _zð0Þ T (C/B)-sign & Floquet
multipliers

lCZ

ð�=þÞ u ¼ 6:201, ð�=�Þ
k ¼ 6:16

3.00073221 1.01358551 −0.05528744 0.01932635 8 ð�=þÞ u ¼ 5:911, ð�=�Þ
k ¼ 1:14

15

3.00055690 1.01409401 −0.05914769 0.00388381 8.5 ð�=þÞ u ¼ 4:550, ð�=�Þ
k ¼ 1:00

15

3.00054882 1.01412064 −0.05930512 0 8.52 ð�=þÞ u5
p ¼ 4:500, u5

s ¼ 0 16! 14

The CZ-index is constant, and gives a bridge between the planar orbits. These spatial orbits are x-axis-
symmetric. Its symmetric family is obtained by reflection at the ecliptic

Table 10 Data for one branch bifurcation from g-LPO13 for JE

C x(0) _yð0Þ _zð0Þ T (C/B)-sign & Floquet
multipliers

lCZ

3.00365597 0.98557900 −0.01951876 0 4.79 ð�=þÞ u3
p ¼ 3:205, u3

s ¼ 0 14! 16

3.00365338 0.98556744 −0.01945341 0.00182488 4.80 ð�=þÞ u ¼ 3:214, ð�=�Þ
k ¼ 1:001

15

3.00363389 0.98561874 −0.01938011 0.00580611 4.82 ð�=�Þ k1 ¼ �1:01, ð�=�Þ
k2 ¼ 1:005

15

3.00329911 0.98657072 −0.01815373 0.02416862 5.12 ð�=�Þ k1 ¼ �1:54, ð�=�Þ
k2 ¼ 1:378

15

3.00314093 0.98708523 −0.01763006 0.02950246 5.30 ð�=�Þ k1 ¼ �1:02, ð�=�Þ
k2 ¼ 1:685

15

3.00300399 0.98759083 −0.01727225 0.03377964 5.46 ðþ=�Þ u ¼ 2:290, ð�=�Þ
k ¼ 1:977

15

3.00281046 0.98856773 −0.01745284 0.04009001 5.73 ðþ=�Þ u ¼ 0:976, ð�=�Þ
k ¼ 2:451

15

3.00275889 0.98918471 −0.01885469 0.04265726 5.82 ðþ=�Þ u ¼ 0:134, ð�=�Þ
k ¼ 4:422

15

b–d

3.00275823 0.98925887 −0.01917383 0.04284561 5.82 ð�=�Þ k1 ¼ 1:041, ð�=�Þ
k2 ¼ 5:013

14

3.00276196 0.98939330 −0.01992825 0.04305515 5.83 ð�=�Þ k1 ¼ 1:148, ð�=�Þ
k2 ¼ 6:636

14

3.00296320 0.98997681 −0.03157520 0.03598567 5.75 ð�=�Þ k1 ¼ 1:064, ð�=�Þ
k2 ¼ 100:2

14

3.00316033 0.99025736 −0.04249067 0.02045809 5.68 ð�=�Þ k1 ¼ 1:011, ð�=�Þ
k2 ¼ 400:3

14

3.00323676 0.99035914 −0.04685850 0.00096495 5.65 ð�=�Þ k1 ¼ 1:0001,
ð�=�Þ k2 ¼ 619:3

14

3.00323697 0.99035942 −0.04686768 0 5.65 u3
s ¼ 0, ð�=�Þ k ¼ 620:23 13! 15

These spatial orbits are x-axis-symmetric and connected to one branch bifurcation from DPO3 via b–d. Its
symmetric family is obtained by reflection at the ecliptic
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Table 11 Data for one branch bifurcation from 3rd cover of the g-LPO1-orbit for JE

C x(0) z(0) _yð0Þ T (C/B)-sign & Floquet
multipliers

lCZ

3.00365597 0.98557900 0 −0.01951876 4.79 ð�=þÞ u3
p ¼ 3:205,

u3
s ¼ 0

14! 16

3.00365461 0.98556706 −0.00036219 −0.01947401 4.80 ð�=þÞ u1 ¼ 3:215, ðÞ
u2 ¼ 6:281

14

3.00363389 0.98568597 −0.00175392 −0.01975974 4.82 ðþ=þÞ k ¼ �1:01, ðÞ
u ¼ 6:277

14

3.00360033 0.98588066 −0.00278699 −0.02023321 4.84 ðþ=þÞ k ¼ �1:12, ðÞ
u ¼ 6:263

14

3.00331461 0.98766211 −0.00655464 −0.02492170 5.11 ðþ=þÞ k ¼ �1:52, ðÞ
u ¼ 5:978

14

3.00314742 0.98883839 −0.00763969 −0.02842198 5.29 ðþ=�Þ u1 ¼ 3:031, ðÞ
u2 ¼ 5:756

14

3.00289637 0.99094696 −0.00836889 −0.03579903 5.61 ðþ=�Þ u1 ¼ 1:373, ðÞ
u2 ¼ 5:309

14

3.00285045 0.99142732 −0.00835072 −0.03776509 5.67 0:376� 0:570i,
0:806� 1:221i

14

3.00277633 0.99243798 −0.00805049 −0.04244268 5.78 0:491� 0:121i,
1:917� 0:472i

14

3.00277358 0.99249304 −0.00802039 −0.04284315 5.79 ðþ=þÞ k1 ¼ 1:987,
ð�=�Þ k2 ¼ 2:016

14

3.00276770 0.993012244 −0.00750257 −0.04644237 5.82 ðþ=þÞ k1 ¼ 1:000,
ð�=�Þ k2 ¼ 7:181

14

b–d

3.00277093 0.99302677 0.00744432 −0.04668427 5.82 ð�=þÞ u ¼ 6:138,
ð�=�Þ k ¼ 8:013

13

3.00296373 0.99201168 0.00567451 −0.04755480 5.75 ð�=þÞ u ¼ 6:233,
ð�=�Þ k ¼ 100:3

13

3.00316033 0.99081340 0.00306250 −0.04704925 5.68 ð�=þÞ u ¼ 6:263,
ð�=�Þ k ¼ 400:3

13

3.00323697 0.99035942 0 −0.04686768 5.65 ð�=�Þ k ¼ 620:23,
u3
s ¼ 0

13! 15

These spatial orbits are simply-symmetric w.r.t. the xz-plane and they are connected to one branch
bifurcation from the 3rd cover of the DPO-orbit via birth–death. Its symmetric family is obtained by using
the reflection at the ecliptic
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Table 12 g-LPO1 branch for SE

C x(0) _yð0Þ T (C/B)-sign & Floquet multipliers lpCZ / lsCZ /
lCZ

3.00033109 1.00061213 0.01702742 0.22681 ðþ=�Þ up ¼ 0:218, ð�Þ
us ¼ 0:232

3 / 3 / 6

3.00015209 1.00157026 0.00982528 1.13552 ðþ=�Þ up ¼ 0:421, ð�Þ
us ¼ 1:245

3 / 3 / 6

3.00014609 1.00109981 0.01422219 1.33077 ðþ=�Þ up ¼ 0:534, ð�Þ
us ¼ 1:549

3 / 3 / 6

3.00014309 1.00076095 0.01889960 1.60328 ðþ=�Þ up ¼ 1:118, ð�Þ
us ¼ 2:081

3 / 3 / 6

3.00014089 1.00047925 0.02552883 2.13798 ðþ=�Þ up ¼ 1:962, ðþ=þÞ
ks ¼ �1:06

3 / 3 / 6

3.00014069 1.00044659 0.02664172 2.22579 ðþ=�Þ up ¼ 2:302, ðÞ
us ¼ 3:324

3 / 3 / 6

3.00014049 1.00041446 0.02785333 2.31612 ðþ=þÞ kp ¼ �1:58, ðÞ
us ¼ 3:513

3 / 3 / 6

3.00013817 1.00020619 0.04126365 2.90065 ðþ=þÞ kp ¼ �35:5, ðÞ
us ¼ 4:711

3 / 3 / 6

Table 13 DPO branch for SE

C x(0) _yð0Þ T (C/B)-sign & Floquet multipliers lpCZ / lsCZ /
lCZ

3.00014744 0.99838904 −0.00977411 1.23860 ð�=�Þ kp ¼ 1:188, ð�Þ
us ¼ 1:364

2 / 3 / 5

3.00014064 0.99826971 −0.00934116 1.41906 ð�=�Þ kp ¼ 2:270, ð�Þ
us ¼ 1:571

2 / 3 / 5

3.00012744 0.99811661 −0.00917943 1.88166 ð�=�Þ kp ¼ 8:463, ð�Þ
us ¼ 2:091

2 / 3 / 5

3.00011304 0.99809959 −0.00985129 2.46619 ð�=�Þ kp ¼ 46:25, ð�Þ
us ¼ 2:697

2 / 3 / 5

3.00010524 0.99815786 −0.01051283 2.76504 ð�=�Þ kp ¼ 101:1, ð�Þ
us ¼ 2:979

2 / 3 / 5

3.00008192 0.99846180 −0.01309687 3.59018 ð�=�Þ kp ¼ 500:3, ð�Þ
us ¼ 3:699

2 / 3 / 5

3.00006838 0.99867270 −0.01491712 4.08764 ð�=�Þ kp ¼ 911:4, ð�Þ
us ¼ 4:164

2 / 3 / 5
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Table 14 LPO2 branch for SE

C x(0) _yð0Þ T (C/B)-sign & Floquet multipliers lpCZ / lsCZ /
lCZ

3.00014639 1.00217453 0.00646333 1.30672 ðþ=�Þ up ¼ 0:451, ð�Þ
us ¼ 1:499

3 / 3 / 6

3.00014319 1.00276240 0.00405869 1.57114 ðþ=�Þ up ¼ 1:018, ð�Þ
us ¼ 2:009

3 / 3 / 6

3.00014299 1.00279991 0.00393120 1.59627 ðþ=�Þ up ¼ 1:060, ð�Þ
us ¼ 2:059

3 / 3 / 6

3.00014075 1.00328757 0.00253817 2.11312 ðþ=�Þ up ¼ 1:881, ðþ=þÞ
ks ¼ �1:03

3 / 3 / 6

3.00014061 1.00331899 0.00247078 2.17031 ðþ=�Þ up ¼ 2:043, ðÞ
us ¼ 3:142

3 / 3 / 6

3.00014030 1.00338269 0.00235356 2.31077 ðþ=þÞ kp ¼ �1:22, ðÞ
us ¼ 3:484

3 / 3 / 6

3.00013613 1.00339866 0.00308260 3.07749 ðþ=þÞ kp ¼ �69:2, ðÞ
us ¼ 5:041

3 / 3 / 6

Table 15 DRO branch for SE

C x(0) _yð0Þ T (C/B)-sign & Floquet multipliers lpCZ / lsCZ /
lCZ

3.00010525 1.00137692 −0.01325298 0.67023 ð�=þÞ up ¼ 5:595, ðÞ
us ¼ 5:673

1 / 1 / 2

3.00004405 1.00224224 −0.01182054 1.29643 ð�=þÞ up ¼ 5:001, ðÞ
us ¼ 5:234

1 / 1 / 2

3.00002425 1.00276541 −0.01163206 1.70339 ð�=þÞ up ¼ 4:671, ðÞ
us ¼ 5:027

1 / 1 / 2

2.99999205 1.00419386 −0.01226462 2.84090 ð�=þÞ up ¼ 4:060, ðÞ
us ¼ 4:785

1 / 1 / 2

2.99996645 1.00592895 −0.01421020 4.06771 ð�=þÞ up ¼ 4:007, ðÞ
us ¼ 5:025

1 / 1 / 2

2.99995365 1.00682933 −0.01550883 4.56302 ð�=þÞ up ¼ 4:172, ðÞ
us ¼ 5:236

1 / 1 / 2

2.99986545 1.01156940 −0.02377257 5.79878 ð�=þÞ up ¼ 5:114, ðÞ
us ¼ 5:951

1 / 1 / 2
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Table 16 Purple 14 for SE

C x(0) z(0) _yð0Þ T (C/B)-sign & Floquet
multipliers

lCZ

3.00014299 1.00279991 0 0.00393120 4.78 ð�=þÞ u3
p ¼ 3:182, u3

s ¼ 0 14! 16

3.00014260 1.00281790 0.00019127 0.00386379 4.84 ð�=þÞ u1 ¼ 3:259, ðÞ
u2 ¼ 6:282

14

3.00014129 1.00277804 0.00047538 0.00395858 4.87 ðþ=þÞ k ¼ 3:208, ðÞ
u ¼ 6:280

14

3.00012209 1.00211470 0.00153818 0.00578987 5.36 ðþ=�Þ u1 ¼ 3:111, ðÞ
u2 ¼ 5:740

14

3.00010829 1.00137563 0.00156298 0.00875806 5.82 ð�=þÞ u1 ¼ 0:776, ðÞ
u2 ¼ 5:669

14

3.00010291 1.00087722 0.00139401 0.01128814 5.86 ðþ=�Þ u1 ¼ 4:665, ðÞ
u2 ¼ 6:126

14

b–d

3.00010295 1.00083899 0.00135458 0.01162196 5.84 ð�=þÞ u ¼ 4:783, ðþ=þÞ
k ¼ 1:517

15

3.00010612 1.00055789 0.00095022 0.01542803 5.53 ð�=þÞ u ¼ 4:334, ðþ=þÞ
k ¼ 3:712

15

3.00011036 1.00024558 0.00044664 0.02518603 4.86 ð�=þÞ u ¼ 3:504, ðþ=þÞ
k ¼ 1:109

15

b–d

3.00011031 1.00021998 0.00040764 0.02663091 4.80 ð�=þÞ u1 ¼ 3:424, ðÞ
u2 ¼ 5:916

14

3.00010281 1.00003238 0.00010169 0.05878312 4.17 ð�=þÞ u1 ¼ 3:781, ðÞ
u2 ¼ 5:884

14

3.00010021 1.00001491 0.00006054 0.07739259 4.08 ð�=þÞ u1 ¼ 3:965, ðÞ
u2 ¼ 6:041

14

These spatial orbits are simply-symmetric w.r.t. the xz-plane and ends at collision. Its symmetric family is
obtained by using the reflection at the xy-plane

Table 17 Red 15 for SE

C x(0) _yð0Þ _zð0Þ T (C/B)-sign & Floquet
multipliers

lCZ

3.00014299 1.00279991 0.00393120 0 4.78 ð�=þÞ u3
p ¼ 3:182, u3

s ¼ 0 14! 16

3.00013559 1.00272159 0.00369764 0.00343416 5.00 ð�=�Þ k1 ¼ �1:39, ð�=�Þ
k2 ¼ 1:13

15

3.00012559 1.00256280 0.00349797 0.00541943 5.26 ð�=�Þ k1 ¼ �1:53, ð�=�Þ
k2 ¼ 1:52

15

3.00012139 1.00248791 0.00342004 0.00611889 5.38 ðþ=�Þ u ¼ 2:928, ð�=�Þ
k ¼ 1:73

15

3.00011759 1.00241319 0.00335832 0.00672992 5.50 ðþ=�Þ u ¼ 2:395, ð�=�Þ
k ¼ 1:90

15

3.00010399 1.00204385 0.00282460 0.00925842 5.90 ð�=þÞ u ¼ 3:184, ð�=�Þ
k ¼ 1:41

15
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Table 17 continued

C x(0) _yð0Þ _zð0Þ T (C/B)-sign & Floquet
multipliers

lCZ

3.00009759 1.00208424 0.00127533 0.00976558 5.98 ð�=þÞ u ¼ 5:692, ð�=�Þ
k ¼ 6:55

15

3.00009417 1.00210781 0.00047162 0.00992209 6.03 ð�=þÞ u ¼ 5:846, ð�=�Þ
k ¼ 13:5

15

3.00009145 1.00212691 −0.00015208 0.00999912 6.07 ð�=þÞ u ¼ 5:888, ð�=�Þ
k ¼ 18:8

15

3.00007425 1.00225503 −0.00382600 0.00970041 6.38 ð�=þÞ u ¼ 5:974, ð�=�Þ
k ¼ 32:3

15

3.00005185 1.00244477 −0.00788343 0.00765368 7.00 ð�=þÞ u ¼ 6:092, ð�=�Þ
k ¼ 15:2

15

3.00004205 1.00254154 −0.00938862 0.00615688 7.40 ð�=þÞ u ¼ 6:171, ð�=�Þ
k ¼ 7:51

15

3.00003105 1.00266948 −0.01085595 0.00374582 8.01 ð�=þÞ u ¼ 5:829, ð�=�Þ
k ¼ 1:08

15

3.00002425 1.00276636 −0.01162574 0.00034005 8.51 ð�=þÞ u ¼ 4:510, ð�=�Þ
k ¼ 1:05

15

3.00002405 1.00277176 −0.01163165 0 8.54 ð�=þÞ u5
p ¼ 4:489, u5

s ¼ 0 16! 14

The CZ-index is constant, and gives a bridge between the planar orbits. These spatial orbits are x-axis-
symmetric. Its symmetric family is obtained by reflection at the ecliptic

Table 18 Blue 15 and Blue 14 for SE

C x(0) _yð0Þ _zð0Þ T (C/B)-sign & Floquet
multipliers

lCZ

3.00014309 0.99718487 −0.00386895 0 4.80 ð�=þÞ u3
p ¼ 3:217, u3

s ¼ 0 14! 16

3.00014289 0.99717670 −0.00383214 0.00048106 4.83 ð�=þÞ u ¼ 3:246, ð�=�Þ
k ¼ 1:016

15

3.00014169 0.99719319 −0.00380810 0.00145833 4.85 ð�=�Þ k1 ¼ �1:04, ð�=�Þ
k2 ¼ 1:027

15

3.00013425 0.99730021 −0.00365996 0.00377737 5.02 ð�=�Þ k1 ¼ �1:45, ð�=�Þ
k2 ¼ 1:183

15

3.00012251 0.99749232 −0.00343875 0.00594605 5.34 ð�=�Þ k1 ¼ �1:03, ð�=�Þ
k2 ¼ 1:700

15

3.00012093 0.99752153 −0.00341248 0.00620193 5.39 ðþ=�Þ u ¼ 2:758, ð�=�Þ
k ¼ 1:782

15

3.00011193 0.99772535 −0.00333595 0.00766874 5.69 ðþ=�Þ u ¼ 0:976, ð�=�Þ
k ¼ 2:451

15

3.00010800 0.99793026 −0.00365343 0.00862538 5.84 ðþ=�Þ u ¼ 0:092, ð�=�Þ
k ¼ 2:549

15

b–d

3.00010820 0.99796166 −0.00381731 0.00868408 5.84 ð�=�Þ k1 ¼ 1:196, ð�=�Þ
k2 ¼ 3:812

14
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Table 18 continued

C x(0) _yð0Þ _zð0Þ T (C/B)-sign & Floquet
multipliers

lCZ

3.00010958 0.99799080 −0.00423992 0.00854277 5.83 ð�=�Þ k1 ¼ 1:171, ð�=�Þ
k2 ¼ 10:02

14

3.00012042 0.99807079 −0.00718764 0.00594564 5.71 ð�=�Þ k1 ¼ 1:068, ð�=�Þ
k2 ¼ 203:9

14

3.00012568 0.99810519 −0.00868716 0.00307711 5.66 ð�=�Þ k1 ¼ 1:011, ð�=�Þ
k2 ¼ 485:0

14

3.00012738 0.99811615 −0.00918031 0 5.65 u3
s ¼ 0, ð�=�Þ kp ¼ 620:1 13! 15

These spatial orbits are x-axis-symmetric and connected to one branch bifurcation from DPO3 via b–d. Its
symmetric family is obtained by reflection at the ecliptic

Table 19 Green 14 and Green 13 for SE

C x(0) z(0) _yð0Þ T (C/B)-sign & Floquet
multipliers

lCZ

3.00014306 0.99718487 0 −0.00386895 4.80 ð�=þÞ u3
p ¼ 3:217, u3

s ¼ 0 14! 16

3.00014210 0.99720294 0.00036902 −0.00390227 4.84 ð�=þÞ u1 ¼ 3:197, ðÞ
u2 ¼ 6:282

14

3.00014182 0.99721138 0.00041974 −0.00392247 4.85 ðþ=þÞ k ¼ �1:01, ðÞ
u ¼ 6:281

14

3.00013324 0.99748294 0.00114054 −0.00461090 5.05 ðþ=þÞ k ¼ �1:48, ðÞ
u ¼ 6:089

14

3.00012084 0.99793674 0.00156551 −0.00595530 5.39 ðþ=�Þ u1 ¼ 2:704, ðÞ
u2 ¼ 5:684

14

3.00011446 0.99822206 0.00164295 −0.00696832 5.60 ðþ=�Þ u1 ¼ 1:776, ðÞ
u2 ¼ 5:499

14

3.00011146 0.99838620 0.00163494 −0.00763914 5.71 0:458� 0:723i,
0:624� 0:986i

14

3.00010841 0.99863569 0.00153928 −0.00887793 5.82 0:595� 0:212i,
1:489� 0:530i

14

3.00010824 0.99866658 0.00151731 −0.00906541 5.83 ðþ=þÞ k1 ¼ 1:448, ð�=�Þ
k2 ¼ 1:786

14

3.00010818 0.99869599 0.00149114 −0.00926286 5.84 ðþ=þÞ k1 ¼ 1:034, ð�=�Þ
k2 ¼ 2:566

14

b–d

3.00010852 0.99871851 0.00144710 −0.00949590 5.84 ð�=þÞ u ¼ 6:109, ð�=�Þ
k ¼ 4:479

13

3.00010970 0.99869031 0.00139716 −0.00954957 5.83 ð�=þÞ u ¼ 6:135, ð�=�Þ
k ¼ 10:065

13

3.00011700 0.99844373 0.00110062 −0.00936425 5.75 ð�=þÞ u ¼ 6:253, ð�=�Þ
k ¼ 102:96

13

3.00012680 0.99813343 0.00026518 −0.00918878 5.65 ð�=þÞ u ¼ 6:280, ð�=�Þ
k ¼ 572:25

13
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