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We prove the absence of a Lavrentiev gap for vectorial integral 
functionals of the form

F : g + W 1,1
0 (Ω)m → [0,+∞], F(u) =

ˆ

Ω 
J(x,Du) dx,

where the boundary datum g : Ω ⊂ Rd → Rm is sufficiently 
regular, ξ �→ J(x, ξ) is convex and lower semicontinuous, 
satifies p-growth from below and suitable growth conditions 
from above. More precisely, if p ≤ d− 1, we assume q-growth 
from above with q ≤ (d−1)p

d−1−p , while for p > d − 1 or p = 1
if d = 2, we require essentially no growth conditions from 
above and allow for unbounded integrands. Concerning the x
dependence, we impose a well-known local stability estimate 
that is redundant in the autonomous setting, but in the 
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general non-autonomous case can further restrict the growth 
assumptions.
© 2024 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).

1. Introduction

In this paper we consider integral functionals of the form
ˆ

Ω 

J(x,Du) dx, (1.1)

where Ω ⊂ Rd is a bounded, open set with Lipschitz boundary, u : Ω → Rm and J ≡
J(x, ξ) : Ω × Rm×d → [0,+∞] is such that J(x, ·) is convex and lower semicontinuous. 
For parts of our results we additionally enforce the growth assumption

|ξ|p ≤ J(x, ξ) ≤ C(|ξ|q + 1), for all ξ ∈ Rm×d. (1.2)

Since the work of Lavrentiev [25], it is known that for a general integral functional 
F : W 1,p(Ω)m → R, it may happen that

inf
u∈W 1,p(Ω)m

F [u] < inf
u∈C∞(Ω)m

F [u].

The occurrence of this phenomenon, which is known as Lavrentiev phenomenon, is a 
serious obstruction to regularity theory and numerical approximation, when it occurs. 
In theories of nonlinear elasticity the Lavrentiev phenomenon is related to physical phe
nomena, such as cavitation, and hence of particular interest [23].

The theory of Lavrentiev’s phenomenon for functionals of the form (1.1) with J ≡
J(x,Du), was developed in [31], [32] and [33]. In this paper, we adopt the viewpoint 
and terminology of [12] and view the Lavrentiev phenomenon through the so-called 
Lavrentiev gap. Suppose X is a topological space of weakly differentiable functions and 
Y ⊂ X. Introduce the sequentially lower semicontinuous (slsc) envelopes

FX = sup{ G : X → [0,+∞] : G slsc ,G ≤ F on X }

FY = sup{ G : X → [0,+∞] : G slsc ,G ≤ F on Y }.

The Lavrentiev gap functional is then dfined for u ∈ X as

L(u,X, Y ) =
{
FY (u) −FX(u) if FX(u) < +∞,

0 else.

http://creativecommons.org/licenses/by/4.0/
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Note that L(u,X, Y ) ≥ 0 and that L(u,X, Y ) > 0 for some u ∈ X when the Lavrentiev 
phenomenon occurs. However, in general, it can happen that L(u,X, Y ) > 0 for some 
u ∈ X, but the Lavrentiev phenomenon does not occur. There is an extensive literature 
on the Lavrentiev phenomenon and gap functional in this abstract set-up, an overview 
of which can be found in [13], [22] to which we also refer for further references. Here, we 
only comment that in all situations we consider, it holds that FX [u] =

´
Ω J(x,Du) dx

and

FY [u] = inf

⎧⎨⎩lim inf
j→∞ 

ˆ

Ω 

J(x,Duj) dx : (uj) ⊂ Y, uj ⇀ u weakly in X

⎫⎬⎭ .

Thus, the Lavrentiev phenomenon is related to approximation properties of function 
spaces and there is a wide literature available studying it from this angle, see [1,7,14] 
and references therein.

Integrands satisfying (1.2) were first studied in the seminal papers [26,27]. There is by 
now an extensive literature regarding the regularity theory of the corresponding integral 
functionals. We refer to [28,29] for an overview and further references. Concerning the 
Lavrentiev gap and considering integrands J ≡ J(x, ξ) satisfying (p, q)-growth (1.2), in 
the local setting, X = W 1,p

loc (Ω)m and Y = W 1,q
loc (Ω)m, the situation is somewhat well 

understood. In [18] it was shown that the Lavrentiev phenomenon can occur if

p < d < d + α < q,

when J(·, ξ) is α-Hölder-continuous. The dependence of the above restriction on d was 
recently removed in [3]. In light of the regularity theory obtained in [18], this range 
of (p, q) is sharp. In order to prove non-occurrence of the Lavrentiev phenomenon it 
seems unavoidable to impose further structure conditions than just Hölder-continuity of 
J(·, ξ). A variety of possible assumptions are known, see e.g. [16,19,24]. The key to all 
assumptions is to ensure that J(x, ξ) ∼ J(y, ξ) if x ∼ y and |ξ| is not too large.

Recently, there has been an increasing interest in proving lack of the Lavrentiev gap 
in the non-autonomous setting in the presence of boundary conditions. In other words, 
considering X = g + W 1,p

0 (Ω)m and Y = g + W 1,q
0 (Ω)m for a suitable boundary value 

g. [6] considers functionals modeled on the double-phase functional J ≡ |ξ|p + a(x)|ξ|q. 
Then, for g ∈ W 1,q(Ω)m, the Lavrentiev gap vanishes if

q < p + αmax
(
1, p 

d
,
)
.

This approach has been extended to certain anisotropic functionals in [8]. In [9] the 
occurrence of the Lavrentiev phenomenon was studied for the double-phase functional 
under a family Sκ of smoothness assumptions. In particular, it was shown that the 
Lavrentiev phenomenon cannot occur if
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q < p + κ.

Moreover, it is shown that this range is sharp. C0,α and C1,α-regularity of J(·, ξ) implies 
that J lies in Sα and S1+α, respectively. For κ ≥ 1, the spaces Sκ do not necessarily 
contain all integrands J with C�κ�,κ−�κ�-continuous x-dependence. However, none of 
these results cover the general non-autonomous, vectorial setting: in [6,9] the integrands 
depend essentially only on the norm of the gradient, while in [8] the authors require 
an additive decomposition into integrands depending only on the gradient of a single 
component of the vector-valued map u.

In this work we focus specifically on the vectorial setting. Let us first describe our 
results for autonomous integrands, that is J ≡ J(ξ). Here, it is known that the Lavrentiev 
gap cannot occur in the one-dimensional case d = 1 [2], nor in the scalar case m = 1
[15]. Recently, it has even been shown that in the scalar setting m = 1, there is no 
gap for functionals of the form 

´
Ω f(u,Du) dx, assuming only convexity in the gradient 

variable [11]. In the vectorial setting d,m > 1, when J ≡ J(ξ), it is easy to see by 
mollfication arguments that without imposing boundary conditions, the Lavrentiev gap 
cannot occur, at least on compactly contained subsets of Ω, regardless of the values of 
(p, q) in (1.2). While it is possible that even under the presence of sufficiently smooth 
boundary conditions, the Lavrentiev phenomenon/gap cannot occur, this seems non
trivial to show and the situation is unclear. In fact, we are not aware of any result 
focusing on the autonomous, vectorial case. In this paper we show that if p > d − 1
or p = 1 if d = 2, the Lavrentiev gap functional vanishes without any upper growth 
assumption. In fact, we even admit ifinite integrands, our only assumption being that 
0 ∈ int(dom J). In case p ≤ d−1, we prove that the Lavrentiev gap vanishes if q < (d−1)p 

d−1−p

(q < +∞ if p = d− 1). Thus, our results can be seen as a partial extension of the scalar 
results to the vectorial setting, covering all exponents in dimension two.

Turning to the non-autonomous case, we require in addition the following standard 
stability estimate: for every M > 1 there exists CM > 0 and a non-negative function 
αM ∈ L1(Ω) such that

J(x, ξ) ≤ CM

(
ess inf

y∈Bδ(x)∩Ω
J(y, ·)

)∗∗

(ξ) + αM (x) (1.3)

for all 0 < δ 
 1, all x ∈ Ω and all |ξ| ≤ Mδ−d/p, where ∗∗ denotes the biconjugate 
function with respect to the ξ-variable. For a more detailed discussion of this assumption 
see Remark 2.1 (iii). Here the novelty of our results is that in contrast to [6,8,9] we do 
not impose any structure on the gradient dependence. This comes with the drawback 
that, considering for instance an integrand of the form J(x, ξ) = V0(ξ)+a(x)V1(ξ), where 
V0, V1 are non-negative and convex, 0 ≤ a ∈ C0,α(Ω), V0 satifies a two-sided p-growth 
condition, and V1(ξ) ≤ C(|ξ|q + 1), the admissible range of exponents is restricted to

q < p + α
p 
d
,
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since without structural assumptions we are not able to reduce the analysis to L∞
functions via truncation. However, especially in the fast-growth regime p > d−1, we can 
handle new types of integrands, see Example 2.7. In particular, we highlight that we do 
not require any form of Δ2-condition.

Using classical arguments, our results both for the case p ≤ d− 1 (Theorem 2.2) and 
the case p > d − 1 or p = 1 if d = 2 (Theorem 2.3) also allow us to treat non-convex 
integrands with convex growth, see Corollary 2.5.

Our techniques in the convex case rely on a by now standard approach. By pulling in 
the boundary data, we put ourselves in a situation where mollfication arguments apply. 
In the autonomous situation, there is no interaction between the two scales, while in 
the non-autonomous set-up it is essential to use the same scale for both the boundary 
argument and the mollfication. The novelty of our approach lies in a careful use of 
convexity (especially for unbounded integrands) in combination with the use of an ad
hoc partition of unity that is adapted to the function u ∈ g + W 1,p

0 (Ω)m. It is at this 
point that the integrability of the map u itself has to be compatible with the growth of 
the energy, which then forces a relation between the W 1,p-regularity of u and the upper 
bounds on the energy. In particular, the assumptions could be drastically weakened if 
we either can assume that u ∈ L∞(Ω)m or when Ω is star-shaped with respect to a ball 
(in this case no partition of unity is necessary).

The outline of our paper is as follows: In Section 2 we establish our notation, collect the 
assumptions and state our main results. We also give examples of the types of integrands 
we are able to consider there. The proofs are postponed to Section 3, while in Appendix A
we provide the necessary details to extend our results to locally star-shaped sets in the 
case of autonomous integrands.

2. Statement of the main result

Let d ≥ 2 and let Ω ⊂ Rd be a bounded, open set with Lipschitz boundary and let 
p ∈ [1,+∞). We consider non-autonomous integral functionals of the form

F (u) =
ˆ

Ω 

J(x,Du(x)) dx ∈ [0,+∞], u ∈ W 1,p(Ω)m,

where the integrand J : Ω ×Rm×d → [0,+∞] has the following properties:

Assumption 1. The function J : Ω×Rm×d → [0,+∞] is jointly measurable and satifies

(a1) for a.e. x ∈ Ω the map ξ �→ J(x, ξ) is convex and lower semicontinuous;
(a2) for a.e. x ∈ Ω it holds that |ξ|p ≤ J(x, ξ) for all ξ ∈ Rm×d;
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(a3) there exist C, θ > 0 and a non-negative function α ∈ L1(Ω) such that{
J(x, ξ) ≤ C|ξ|q + α(x) if p ≤ d− 1 and d ≥ 3,
sup|ξ|≤θ J(x, ξ) ∈ L1(Ω) if p > d− 1 or d = 2 ,

(2.1)

where in the first case the exponent q > p satifies the bound{
q ≤ (d−1)p 

d−1−p if p < d− 1,
q < +∞ if p = d− 1.

(2.2)

(a4) for every M > 1 there exists CM > 0 and a non-negative function αM ∈ L1(Ω)
such that

J(x, ξ) ≤ CM

(
ess inf

y∈Bδ(x)∩Ω
J(y, ·)

)∗∗

(ξ) + αM (x) (2.3)

for all 0 < δ 
 1, all x ∈ Ω and all |ξ| ≤ Mδ−d/p. Here ∗∗ denotes the biconjugate 
function with respect to the ξ-variable.

Let us comment on the assumptions.

Remark 2.1. 

(i) Our assumptions yield new results especially in the autonomous setting, where 
Assumption (a4) is redundant.

(ii) The integrability assumption on the local supremum in (2.1) is equivalent to the 
integrability of J(x, ξi) for finitely many ξ1, . . . ξn that generate a simplex with 
non-empty interior. This follows from the fact that convex functions attain their 
maximum in the corners of such a simplex.

(iii) Assumption (a4) is a slight variation of the version in [14, p. 89], where it was 
used to show modular density of C∞

c in Sobolev-Musielak-Orlicz spaces. It is of 
very abstract nature and allows us to control the effect of convolution in the non
autonomous setting. In [6, Lemma 6.2] it is shown that the biconjugate can be 
omitted in the isotropic setting, i.e., when J only depends on the modulus of |ξ|, 
and when J satifies a polynomial upper bound. On the other hand, in [14, Remark 
3.7.6] it is emphasized that in the general anisotropic case there is no hope to 
avoid the convex envelope. It can be omitted provided the ifimum still dfines 
a convex, lower semicontinuous function with respect to ξ (see [21, Theorem 4.92 
(iii)]), which is for instance ensured by the property that the ifimum is attained 
at a point ŷ ∈ Bδ(x) that does not depend on ξ. This condition was considered for 
instance in [19] to prove the absence of a local Lavrentiev gap for non-autonomous 
integrands with (p, q)-growth. We emphasize that in general (a4) can impose further 
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restrictions on the exponents in (a3). Some classes of integrands satisfying (a4) are 
presented in Example 2.7.

We first state the theorem for p ≤ d − 1, where our assumptions cover the case of 
functionals with (p, q)-growth.

Theorem 2.2. Let p ∈ [1, d−1]. Assume J : Ω×Rm×d → [0,+∞) satifies Assumption 1. 
Let g ∈ W 1,p(Ω)m be such that 

´
Ω J(x, sDg(x)) dx < +∞ for all s ∈ R. Then for all 

u ∈ g + W 1,p
0 (Ω)m there exists a sequence un ∈ g + C∞

c (Ω)m such that un → u in 
W 1,p(Ω)m and

lim
n→+∞

ˆ

Ω 

J(x,Dun) =
ˆ

Ω 

J(x,Du) dx.

In particular, it holds that

inf
u∈g+W 1,p

0 (Ω)m

ˆ

Ω 

J(x,Du) dx = inf
u∈g+C∞

c (Ω)m

ˆ

Ω 

J(x,Du) dx.

The next theorem concerns the cases p > d − 1 and p = 1 if d = 2 with possibly 
unbounded integrands. Here we need to assume stronger regularity of the boundary 
datum.

Theorem 2.3. Let p > d− 1 or p = 1 if d = 2. Assume J : Ω×Rm×d → [0,+∞] satifies 
Assumption 1. Let g ∈ C1

c (Rd)m satisfy 
´
Ω J(x, sDg) dx < +∞ for some s > 1. Then 

for all u ∈ g +W 1,p
0 (Ω)m there exists un ∈ g +C∞

c (Ω)m such that un → u in W 1,p(Ω)m
and

lim
n→+∞

ˆ

Ω 

J(x,Dun) =
ˆ

Ω 

J(x,Du) dx.

In particular, it holds that

inf
u∈g+W 1,p

0 (Ω)m

ˆ

Ω 

J(x,Du) dx = inf
u∈g+C∞

c (Ω)m

ˆ

Ω 

J(x,Du) dx.

Our third result concerns the case when in contrast to Theorem 2.3 the integrand J
is finite-valued, where the regularity of the boundary data can be weakened.

Corollary 2.4. Let p > d − 1 or p = 1 if d = 2. Assume that J : Ω × Rm×d → [0,+∞)
satifies Assumption 1. Let g ∈ W 1,∞(Ω)m. Then for all u ∈ g + W 1,p

0 (Ω)m there exists 
un ∈ g + C∞

c (Ω)m such that un → u in W 1,p(Ω)m and
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lim
n→+∞

ˆ

Ω 

J(x,Dun) =
ˆ

Ω 

J(x,Du) dx.

In particular, it holds that

inf
u∈g+W 1,p

0 (Ω)m

ˆ

Ω 

J(x,Du) dx = inf
u∈g+C∞

c (Ω)m

ˆ

Ω 

J(x,Du) dx.

Our final result deals with non-convex integrands that have convex growth.

Corollary 2.5. Let G : Ω×Rm×d → [0,+∞] be jointly measurable and continuous in the 
second variable. Assume that there exists a non-negative function α ∈ L1(Ω), a constant 
C > 1 and a function J : Ω × Rm×d → [0,+∞] as in either Theorem 2.2, Theorem 2.3
or Corollary 2.4 satisfying

1 
C
J(x, ξ) − α(x) ≤ G(x, ξ) ≤ CJ(x, ξ) + α(x) for all (x, ξ) ∈ Ω ×Rm×d.

Then the conclusions of Theorem 2.2, Theorem 2.3 or Corollary 2.4 hold, respectively, 
with J replaced by G.

Remark 2.6. Some comments are in order:

(i) The integrability assumption on g in Theorem 2.2 is satified whenever g ∈
W 1,q(Ω)m.

(ii) For unbounded integrands the integrability assumption on g in Theorem 2.2 would 
not be satisfactory. The weaker assumption in Theorem 2.3 comes with the draw
back that we have to require C1-regularity of g. If we assume that J(·, sDg) ∈ L1(Ω)
for all s ∈ R, then in terms of regularity g ∈ W 1,p(Ω)m suffices since we can use 
the same argument as for Theorem 2.2.

(iii) In Theorem 2.3 the slightly stronger integrability of Dg for some s > 1 is redundant 
if we assume a suitable Δ2-condition.

Example 2.7. Below we provide some examples of integrands covered by our results.

(1) ((p, q)-double phase functionals). Consider J(x, ξ) = V0(ξ) + a(x)V1(ξ) with 0 ≤ a ∈
C0,α(Ω), α ∈ (0, 1] and V0, V1 are nonnegative, convex and satisfy |ξ|p ≤ V0(ξ) ≤
C(|ξ|p + 1), 0 ≤ V1(ξ) ≤ C(|ξ|q + 1). Standard computations yield that J satifies 
Assumption 1 provided

(i) 1 
p
− 1 

d− 1 ≤ 1
q

(to ensure (a3)), (ii) q
p
≤ 1 + α

d 
(to ensure (a4)).

Note that condition (ii) implies (i). For this class of integrands, if V0, V1 are even, 
the conclusions of Theorem 2.2 are already known, see e.g. [6,8,9] and in view of 
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counterexamples in [3,18] are optimal for p ≥ d. Let us mention that in [6] the 
absence of the Lavrentiev gap is proven under weaker assumptions on the exponents, 
namely q ≤ p + αmax{1, p 

d}, provided V0, V1 are radial. The argument in [6] relies 
on an additional truncation argument which seems not applicable in the vectorial 
setting without additional structure assumptions on the integrand.

(2) (double phase without Δ2). Let us briefly describe an extreme version of the double 
phase functional covered by Corollary 2.5: Fix exponents p > d−1, 0 < q ≤ d−1

d < 1
and α > dq

p−dq > 0, and consider

G(x, ξ) = |ξ|p + a(x1) exp(|ξ|q) with a(s) = exp
(
− 1 
sα

)
1(0,+∞)(s)

where x = (x1, x
′) ∈ Rd. Since q < 1, the function G is not globally convex. However, 

a direct calculation of the second derivative shows that x �→ exp(xq) is convex on 
[xq,+∞), where xq

q := 1−q
q , while it is concave on [0, xq]. Based on this observation, it 

is not difficult to check that at xq
∗ := 1

q > xq
q the tangent line tq(s) = exp(xq

∗)qxq−1
∗ s

at the graph of x �→ exp(xq) always lies below the graph (due to concavity it suffices 
to verify the two points 0 and xq; at xq the claim follows from convexity). Thus, 
defining the function

J(x, ξ) =
{
|ξ|p + a(x1) exp(|ξ|q) if |ξ| > x∗,

|ξ|p + a(x1)tq(|ξ|) if |ξ| ≤ x∗,

we have that J ≤ G ≤ J + C∗ with C∗ = exp(xq
∗) and J satifies (a1)--(a3) of 

Assumption 1. We check condition (a4). Fix δ ∈ (0, 1
2 ] and M > 1. We distinguish 

the cases x1 ≤ 2δ
1 

α+1 and x1 > 2δ
1 

α+1 . For x = (x1, x
′) with x1 ≤ 2δ

1 
α+1 , we have 

for all |ξ| ≤ Mδ−
d 
p

J(x, ξ) ≤ G(x, ξ) ≤ |ξ|p + exp(−2−αδ−
α 

α+1 ) exp(Mqδ−
dq
p ) ≤ |ξ|p + αM

with αM := supδ∈(0, 12 ] exp(−2−αδ−
α 

α+1 + Mqδ−
dq
p ) < ∞, where we use that α 

α+1 >
dq
p . Hence, stability condition (2.3) is satified. For x = (x1, x

′) with x1 > 2δ
1 

α+1 it 
holds that (

ess inf
y∈Bδ(x)∩Ω

J(y, ·)
)∗∗

(ξ) ≥ J((x1 − δ)e1, ξ)

and an elementary computation, using x1 − δ > x1
2 and xα+1

1 ≥ 2α+1δ, yields

a(x1) 
a(x1 − δ) = exp

⎛⎝ x1ˆ

x1−δ

s−α−1

α + 1 
ds

⎞⎠ ≤ exp
(

δ

(α + 1)(x1 − δ)α+1

)
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≤ exp
(

δ2α+1

(α + 1)xα+1
1

)
≤ exp

(
1 

(α + 1)

)
.

Hence, for all M > 1 stability condition (2.3) is satified (with CM = exp((α+1)−1)) 
also in that case.

We remark that the integrand in this example is non-doubling. In particular, it is 
not covered by [6,9]. In addition, it is easy to check that also the anisotropy condition 
of [8, Remark 4.1] does not hold.

(3) (fast anisotropic autonomous growth) We give an example of the type of anisotropic 
integrand to which Theorem 2.3 applies. Consider with ai,j , qi,j ≥ 1,

J(ξ) =
{
e
∑m

i=1
∑m

j=d|ai,jξij |qi,j if ξ11 > −1
+∞ else

Note that (a1) and (a2) are clearly satified for any p > 1. Since 0 ∈ int(dom J), 
(a3) also holds.

(4) If p > d − 1, we can add to any of the examples above a penalization term of the 
form

ΦK(ξ) =
{

0 if ξ ∈ K,
+∞ otherwise,

where K ⊂ Rm×d is a convex set with 0 ∈ int(K). Such a term of course limits the 
possible boundary conditions.

3. Proofs

3.1. Construction of cut-off functions

In the following lemma we generalize [30, Lemma 4.10] and construct suitable cut-off 
functions η which optimize the integrability of ∇η ⊗ ui for finitely many functions ui, 
exploiting the exponent improvement for the Sobolev embedding in lower dimensions; 
see [4,5] for related results. These cut-off functions are the key ingredient to localize our 
constructions.

Lemma 3.1. Let N ∈ N, p ≥ 1 and q > p satisfy⎧⎪⎪⎨⎪⎪⎩
q ≤ (d−1)p 

d−1−p if p < d− 1,
q < +∞ if p = d− 1,
q = +∞ if p > d− 1 or d = 2.
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Then there exists C = CN,d,m,p,q < +∞ such that the following is true:
For any ball BR = BR(x0), any u1, . . . , uN ∈ W 1,p(BR)m and δ ∈ (0, 1

2 ] there exists 
η ∈ W 1,∞

0 (BR) satisfying

0 ≤ η ≤ 1, η = 1 in B(1−δ)R, ‖∇η‖L∞(BR) ≤
2 
δR

(3.1)

and for all i ∈ {1, . . . , N}

‖∇η ⊗ ui‖Lq(BR) ≤
CR

d
q− d 

p−1

δ1+ 1 
p− 1 

q

⎛⎜⎝R

( ˆ

BR\B(1−δ)R

|Dui|p dx
) 1 

p

+
( ˆ

BR\B(1−δ)R

|ui|p dx
) 1 

p

⎞⎟⎠
(3.2)

with the convention that d/ + ∞ = 1/ + ∞ = 0.

Proof. The result for the case p > d − 1 was shown in [30, Lemma 4.10], so we assume 
that p ∈ [1, d−1] and extend the argument to these exponents. Without loss of generality, 
we can suppose that x0 = 0. Set S1 := {x ∈ Rd : |x| = 1}.

Step 1 We prove the statement for u1, . . . , uN ∈ C1(BR)m. For i ∈ {1, . . . , N} and 
C := 4N , we set

Ui :=
{
r ∈ [(1−δ)R,R] : 

ˆ

S1

|Dui(rz)|p dHd−1(z) ≤ C

δ(1 − δ)d−1Rd

ˆ

BR\B(1−δ)R

|Dui|p dx
}
.

(3.3)
Fubini’s Theorem and the definition of Ui in the form

ˆ

BR\B(1−δ)R

|Du(x)|p dx =
R̂

(1−δ)R

rd−1
ˆ

S1

|Du(rz)|p dHd−1(z) dr

≥((1 − δ)R)d−1
ˆ

((1−δ)R,R)\Ui

ˆ

S1

|Du(rz)|p dHd−1(z) dr

>
C(δR− |Ui|)

δR

ˆ

BR\B(1−δ)R

|Du(x)|p dx

imply |Ui| ≥ (1 − 1 
C )δR, or equivalently |(1 − δR,R) \ Ui| ≤ δR

C . Analogously,

Vi :=
{
r ∈ [(1 − δ)R,R] : 

ˆ

S1

|ui(rz)|p dHd−1(z) ≤ C

δ(1 − δ)d−1Rd

ˆ

BR\B(1−δ)R

|ui|p dx
}

(3.4)
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satifies |Vi| ≥ (1− 1 
C )δR, or equivalently |(1−δR,R)\Vi| ≤ δR

C . Setting U :=
⋂N

i=1 Ui∩Vi, 
from the choice C = 4N we obtain

|U | ≥ δR− 2N
C

δR = δR

2 
. (3.5)

Next, we dfine η ∈ W 1,∞(BR; [0, 1]) by

η(x) = η̃(|x|), where η̃(r) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if r ∈ (0, (1 − δ)R),

1 
|U |

R̂

r

χU (s) ds if r ∈ ((1 − δ)R,R).

By definition, we have that 0 ≤ η ≤ 1, η = 1 in B(1−δ)R, η ∈ W 1,∞
0 (BR) and for x = rz

with r ∈ [0, R] and z ∈ S1

|∇η(rz)| =
{

0 if r / ∈ U ,
1 
|U | if r ∈ U .

(3.6)

Hence, recalling (3.5), the map η satifies all the properties in (3.1).
Next, we use that the exponent q ∈ (p,+∞] is such that W 1,p(S1)m embeds contin

uously into Lq(S1)m,1 so that there exists C < +∞ such that for all v ∈ C1(S1)m we 
have

‖v‖Lq(S1) ≤ C‖Dτv‖Lp(S1) + C‖v‖Lp(S1)

where Dτ denotes the tangential derivative. Applying the above estimate to vr ∈
C1(S1)m dfined by vr(z) := u(rz) for all z ∈ S1 with u ∈ C1(BR)m, we obtain with the 
chain rule

‖u(r·)‖Lq(S1) ≤ Cr‖Du(r·)‖Lp(S1) + C‖u(r·)‖Lp(S1). (3.7)

Hence, via the change of coordinates x = rz with r = |x| and z = x 
|x| we deduce that

‖∇η ⊗ ui‖Lq(BR) ≤|U | 1 q R
d−1
q ‖∇η‖L∞(BR) sup 

r∈U
‖ui(r·)‖Lq(S1)

≤CR
d−1
q

|U |1−
1
q

sup 
r∈U

(
r‖Dui(r·)‖Lp(S1) + ‖ui(r·)‖Lp(S1)

)

≤CR
d
q− d 

p−1

δ1+ 1 
p− 1 

q

(
R‖Dui‖Lp(BR\B(1−δ)R) + ‖ui‖Lp(BR\B(1−δ)R)

)
1 This can be proven in details using charts for the sphere.
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where we use the definition of U , (3.5) and 1 − δ ≥ 1
2 in the last inequality. This proves 

the claim for C1-functions.

Step 2 Conclusion. Consider u1, . . . , uN ∈ W 1,p(BR)m. By standard density results, 
we find (ui,j)j ⊂ C∞(BR)m such that ui,j → ui in W 1,p(BR)m. By Step 1, we find for 
every j ∈ N a cut-off function ηj ∈ W 1,∞

0 (BR) satisfying

0 ≤ ηj ≤ 1, ηj = 1 in B(1−δ)R, ‖∇ηj‖L∞(BR) ≤
2 
δR

, (3.8)

‖∇ηj ⊗ ui,j‖Lq(BR)

≤ CR
d
q− d 

p−1

δ1+ 1 
p− 1 

q

⎛⎜⎝R

( ˆ

BR\B(1−δ)R

|Dui,j |p dx
) 1 

p

+
( ˆ

BR\B(1−δ)R

|ui,j |p dx
) 1 

p

⎞⎟⎠ . (3.9)

In view of the bounds in (3.8) and the Banach-Alaoglu Theorem, there exists η ∈
W 1,∞

0 (BR) such that up to subsequences (not relabeled) ηj
� 
⇀ η in W 1,∞(BR). Moreover, 

η also satifies the bounds in (3.1). Since ∇ηj
� 
⇀ ∇η weakly∗ in L∞(BR)d and ui,j → ui

(strongly) in Lp(BR)m, we deduce that ∇ηj ⊗ ui,j converges weakly in Lp(BR)m×d to 
∇η⊗ui and by the boundedness of the right-hand side in (3.9) also weakly in Lq(BR)m×d

(weakly∗ if q = +∞). Hence the claimed estimate (3.2) follows from (3.9) and the weak 
or weak∗ lower-semicontinuity of the norm. �
3.2. Approximation results

In this section we show the approximation result that essentially will prove our main 
theorems. It heavily relies on Lemma 3.1. In Lemma 3.3 below we show the approximation 
claim for C1-boundary conditions as in Theorem 2.3. In the proof of Theorem 2.2 we will 
apply this lemma for zero boundary conditions. We start with the following elementary 
lemma.

Lemma 3.2. Let J : Ω×Rm×d → [0,+∞] be jointly measurable and convex in the second 
variable. Assume that there exists θ > 0 such that sup|ξ|≤θ J(x, ξ)) ∈ L1(Ω). Let g ∈
W 1,p(Ω)m be such that 

´
Ω J(x, sDg) dx < +∞ for some s > 1. Then there exists r > 0

such that sup|ξ|≤r J(·,Dg+ ξ) ∈ L1(Ω). In particular, the map ξ �→ J(x, ξ) is continuous 
at ξ = Dg(x) for a.e. x ∈ Ω.

Proof. Let ξ ∈ Rm×d be such that |ξ| ≤ s−1
s θ, where θ > 0 and s > 1 are given by the 

assumptions. It follows from convexity that

J(x,Dg + ξ) ≤ 1
s 
J(x, sDg) + s− 1

s 
J

(
x,

s 
s− 1ξ

)
≤ J(x, sDg) + sup 

|η|≤θ

J(x, η).
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As J is non-negative, this implies the claimed integrability provided that r ≤ s−1
s θ. The 

second statement follows from the continuity of convex functions on the interior of their 
domain (see, e.g., [21, Theorem 4.36]). �
Lemma 3.3. Let J : Ω × Rm×d → [0,+∞] satisfy Assumption 1 and let g ∈ C1

c (Rd)m. 
If for some s > 1 it holds that 

´
Ω J(x, sDg) dx < +∞, then for any u ∈ g + W 1,p

0 (Ω)m
there exists a sequence un ∈ g + C∞

c (Ω)m such that un → u strongly in W 1,p(Ω)m and

lim
n→+∞

ˆ

Ω 

J(x,Dun(x)) dx =
ˆ

Ω 

J(x,Du(x)) dx.

Proof. We divide the proof into several steps.
Step 1: Preliminary considerations

It suffices to consider the case when 
´
Ω J(x,Du) dx < +∞ since otherwise the state

ment follows from Fatou’s lemma (recall that J is lower semicontinuous in the second 
variable) and the density of C∞

c (Ω)m in W 1,p
0 (Ω)m. Moreover, writing u = g + v with 

v ∈ W 1,p
0 (Ω)m, it follows that ut := g + tv converges to u in W 1,p(Ω)m when t ↑ 1 and 

moreover
ˆ

Ω 

J(x,Dg + tDv) dx ≤ t

ˆ

Ω 

J(x,Dg + Dv) dx + (1 − t)
ˆ

Ω 

J(x,Dg) dx t↑1→ 
ˆ

Ω 

J(x,Du) dx,

so again due to Fatou’s lemma and a diagonal argument it suffices to show the claim for 
functions u = g + v ∈ g + W 1,p

0 (Ω)m such that 
´
Ω J(x,Dg + s0Dv) dx < +∞ for some 

s0 > 1. As we explain now, this entails that J(x, ·) is continuous in Dg(x)+Dv(x) for a.e. 
x ∈ Ω. To this end, we show that Dg(x) + Dv(x) belongs to the interior of dom(J(x, ·)). 
Given s0 as above, let δ > 0 be such that 1 − 1 

s0
> δ and let ξ ∈ Rm×d be such that 

|ξ| ≤ δr, where r > 0 is given by Lemma 3.2. Then by convexity we have that

J(x,Dg+Dv+ξ) ≤ 1 
s0

J(x,Dg+s0Dv)+
(

1 − 1 
s0

− δ

)
J(x,Dg)+δJ(x,Dg+δ−1ξ) < +∞

for a.e. x ∈ Ω, where we used Lemma 3.2 to control the third function on the RHS. The 
continuity of ξ �→ J(x, ξ) in ξ = Dg(x) + Dv(x) follows from the continuity of convex 
functions on the interior of their domain.
Step 2: Moving the support of u− g inside Ω

Now fix u ∈ g + W 1,p
0 (Ω)m with the properties above. First extend v = u − g to be 

0 outside Ω, so that v ∈ W 1,p(Rd)m. For every x ∈ Ω we consider a ball Brx(x) ⊂⊂ Ω, 
while for x ∈ ∂Ω the Lipschitz regularity of ∂Ω implies that (up to an Euclidean motion) 
there exists a cylinder Cx = Bd−1

r′x
(0) × (−hx, hx) with x ∈ Cx and

Ω ∩ Cx = {(y′, yd) ∈ Cx : yd < ψx(y′)} (3.10)
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for some Lipschitz-function ψx : Bd−1
r′x

(0) → (−hx, hx). Up to reducing r′x, we may 
assume that

ψx(Bd−1
r′x

(0)) ⊂⊂ (−hx, hx). (3.11)

Choose then rx < min{r′x, hx} such that Brx(x) ⊂⊂ Cx and such that the Lipschitz
constant Lx of ψx satifies

0 < 2Lxrx ≤ hx + inf
|y′|≤r′x

ψx(y′), (3.12)

which is possible due to (3.11). Due to the compactness of Ω, we find a finite family of 
above balls Bi = Brxi

(xi) (1 ≤ i ≤ N) that cover Ω. These balls will be fixed throughout 
the rest of the proof, so we omit the dependence on the radii rxi

or the number N of 
certain quantities. For interior points xi ∈ Ω, we dfine zi = xi, while for points xi ∈ ∂Ω
we choose zi ∈ Rd such that in the local coordinates we have zi = (0,−hxi

) (i.e., at the 
bottom of the local graph representation). Now let 0 < ρk < 1 be such that limk ρk = 1
and for any 1 ≤ i ≤ N we dfine the a˙ine map Tk,i and its inverse T−1

k,i by

Tk,ix = zi + ρk(x− zi), T−1
k,i y = zi + 1 

ρk
(y − zi), (3.13)

where the purpose of the latter is to move the support of v locally inside Ω. Having this 
in mind, we dfine the functions

vk,i = ρkv ◦ T−1
k,i , gk,i = ρkg ◦ T−1

k,i .

Note that both functions are well-defined since v and g are dfined on Rd. Since ρk → 1
and g ∈ C1

c (Rd)m, via a density argument with respect to v one shows that for all 
1 ≤ i ≤ N it holds that

vk,i → v in W 1,p(Rd)m, gk,i → g in W 1,∞(Rd)m as k → +∞. (3.14)

Next, let (θi)Ni=0 be a smooth partition of unity subordinated to the cover {Rd \
Ω, (Bi)Ni=1} of Rd (note that we work on the ‘manifold’ Rd and therefore supp(θi) is 
compactly contained in Bi and θ0 vanishes on a neighborhood of Ω). We build an ad 
hoc Lipschitz partition of unity as follows: choose δ0 > 0 such that for each 1 ≤ i ≤ N

we have supp(θi) ⊂⊂ B(1−δ0)rxi
(xi) and then use Lemma 3.1 (with δ = δ0 that is fixed 

for the rest of the proof) for the finite family of functions {vk,j − v}Nj=1 ⊂ W 1,p(Bi)m to 
obtain ηk,i ∈ W 1,∞

0 (Bi) such that 0 ≤ ηk,i ≤ 1,

ηk,i = 1 on supp(θi), ‖∇ηk,i‖L∞(Bi) ≤ C

and for all 1 ≤ j ≤ N
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‖∇ηk,i⊗(vk,j−v)‖Lq(Bi) ≤ C‖vk,j−v‖W 1,p(Bi)
k→+∞−→ 0 (q = ∞ if p > d−1). (3.15)

We dfine the Lipschitz partition of unity as follows: for k ∈ N we set

ϕk,0 = θ0

θ0 +
∑N

j=1 ηk,j
, ϕk,i = ηk,i

θ0 +
∑N

j=1 ηk,j
.

Here the denominator is always ≥ 1 since ηk,j = 1 on supp(θj). Therefore the gradient 
of ϕk,i (1 ≤ i ≤ N) satifies for any vector a ∈ Rm the pointwise estimate

|∇ϕk,i ⊗ a| ≤ |∇ηk,i ⊗ a|
θ0 +

∑N
j=1 ηk,j

+
ηk,i

∣∣∣∇θ0 ⊗ a +
∑N

j=1 ∇ηk,j ⊗ a
∣∣∣(

θ0 +
∑N

j=1 ηk,j

)2

≤ |∇θ0 ⊗ a| + 2
N∑
j=1 

|∇ηk,j(x) ⊗ a|. (3.16)

Set

vk(x) =
N∑
i=1 

ϕk,i(x)vk,i(x).

As a next step we aim to regularize vk via convolution at the scale | 1 
ρk

−1| 
 1. In order 
to ensure that the regularized function has compact support, we need to quantitatively 
control the support of vk: let dk 
 1 and consider x ∈ Ω such that dist(x, ∂Ω) ≤ dk. We 
show that for a suitably small constant c0 > 0 the choice dk = c0| 1 

ρk
− 1| implies that 

vk(x) = 0. To this end, consider a ball Bi with x ∈ Bi. We argue that ϕk,i(x)vk,i(x) = 0
for such i, which then implies that vk(x) = 0. Since there are only finitely many sets in 
the covering and ‘interior’ balls are compactly contained in Ω, for dk small enough we 
know from our construction of the covering and (3.10) that, up to a Euclidean motion, 
with the corresponding cylinders Ci = Cxi

and radii r′i = r′xi
we can write

Ω ∩ Ci = {(y′, yd) ∈ Ci : yd < ψi(y′)}

for a Lipschitz function ψi : Bd−1
r′i

(0) → (−hi, hi). Since supp(ϕk,i) = supp(ηk,i) ⊂
Bi ⊂⊂ Ci, there exists 0 < θ < mini ri such that ϕk,i(x) = 0 whenever dist(x, ∂Ci) ≤ θ. 
Hence we can assume that dist(x, ∂Ci) > θ. We will show that zi + 1 

ρk
(x− zi) ∈ Ci \ Ω, 

which then implies that vk,i(x) = 0. Since x ∈ Ci and dist(x, ∂Ci) > θ and the zi are 
fixed, it follows that for ρk sufficiently close to 1 we have zi + 1 

ρk
(x− zi) ∈ Ci. Hence, in 

order to show that this point does not belong to Ω, it suffices to show that in the local 
coordinates (where zi = (0,−hi)) we have

ψi

(
1 
ρk

x′
)

< −hi + 1 
ρk

(xd + hi). (3.17)
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Let dx ∈ ∂Ω be such that |x − dx| = dist(x, ∂Ω). Note that dx ∈ Ci (otherwise the 
line from x to dx intersects ∂Ci at a distance less than dk 
 θ), so that we can write 
dx = (y′, ψi(y′)) for some y′ ∈ Bd−1

r′i
(0). To show (3.17), let Li be the Lipschitz constant 

of ψi. Then we can estimate

ψi

(
1 
ρk

x′
)
−

(
1 
ρk

− 1
)
hi −

1 
ρk

xd

≤ ψi (y′) − xd︸ ︷︷ ︸
≤|dx−x|≤dk

+Li

∣∣∣∣y′ − 1 
ρk

x′
∣∣∣∣− (

1 
ρk

− 1
)
hi −

(
1 
ρk

− 1
)
xd

≤ dk + Li

(
1 
ρk

− 1
)
|x′| + Li |y′ − x′|︸ ︷︷ ︸

≤|dx−x|≤dk

−
(

1 
ρk

− 1
)

(hi + xd)

≤ (Li + 1)dk +
(

1 
ρk

− 1
)

(Li|x′| − hi − xd)

≤ (Li + 2)dk +
(

1 
ρk

− 1
)

(Li|x′| − hi − ψ(y′))

≤ (Li + 2)dk + 1
2

(
1 
ρk

− 1
)

(−hi − inf
|y′|≤r′i

ψ(y′)︸ ︷︷ ︸
=:κi

(3.11)
< 0 

),

where we used (3.12) in the last estimate. Hence we find c0 > such that the choice 

dk = c0

(
1 
ρk

− 1
)

turns the right-hand side negative for all 1 ≤ i ≤ N . We thus proved 
that

vk = 0 on dist(·, ∂Ω) ≤ c0

∣∣∣∣ 1 
ρk

− 1
∣∣∣∣ =: 4εk. (3.18)

Step 3: Convolution and energy estimates
Denoting by φk a family of standard mollfiers supported in Bεk(0), (3.18) implies 

that we have φk � vk ∈ C∞
c (Ω)m. We next show that vk → v in W 1,p(Ω)m, which then 

also implies that φk �vk → v in W 1,p(Ω)m. Indeed, due to Young’s convolution inequality 
(recall that v was extended by 0 to Rd, so the expression below makes sense) we have 
that

‖φk � vk − v‖Lp(Rd) ≤ ‖φk � vk − φk � v‖Lp(Rd) + ‖φk � v − v‖Lp(Rd)

≤ ‖vk − v‖Lp(Rd) + ‖φk � v − v‖Lp(Rd) → 0

and the same argument shows the convergence of the gradients. By convexity, we have 
that vk → v in Lp(Ω)m due to (3.14), while for the gradients we first observe that on Ω
(where ϕk,0 vanishes) the gradient of vk can be expressed as
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Dvk =
N∑
i=1 

ϕk,iDvk,i +
N∑
i=1 

∇ϕk,i ⊗ (vk,i − v).

Hence the estimate (3.16) and the uniform gradient bound for ηk,i imply that

ˆ

Ω 

|Dvk − Dv|p dx ≤ c(p)
ˆ

Ω 

∣∣∣∣∣
N∑
i=1 

ϕk,i(Dvk,i − Dv)

∣∣∣∣∣
p

dx

+ c(p)
ˆ

Ω 

∣∣∣∣∣
N∑
i=1 

∇ϕk,i ⊗ (vk,i − v)

∣∣∣∣∣
p

dx

≤ C
N∑
i=1 

ˆ

Ω 

|vk,i − v|p + |Dvk,i − Dv|p dx → 0 as k → +∞ .

Now we establish the energy estimate. Given t ∈ (0, 1), we consider the sequence uk,t :=
g+ tφk � vk ∈ g+C∞

c (Ω)m. Then uk,t → g+ tv in W 1,p(Ω)m as k → +∞. We claim that

lim sup
t↑1 

lim sup
k→+∞ 

ˆ

Ω 

J(x,Duk,t) dx ≤
ˆ

Ω 

J(x,Du) dx. (3.19)

To this end, we write the gradient of uk,t as

Duk,t = t

N∑
i=1 

φk � (ϕk,i(Dvk,i + Dgk,i))

+ (1 − t)
2 

(
Dg + 2t 

1 − t

N∑
i=1 

φk � (ϕk,i(Dg − Dgk,i) + ∇ϕk,i ⊗ (vk,i − v))
)

+ (1 − t)
2 

(
Dg + 2t 

1 − t

N∑
i=1 

(ϕk,iDg − φk � (ϕk,iDg))
)
.

Thus, using convexity of J(x, ·), we have that

ˆ

Ω 

J(x,Duk,t) dx ≤
ˆ

Ω 

tJ

(
x,

N∑
i=1 

φk � (ϕk,i(Dvk,i + Dgk,i))
)

dx

+ 1 − t

2 

ˆ

Ω 

J t
k,1(x) + J t

k,2(x) dx

with the error terms
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J t
k,1(x) := J

(
x,Dg + 2t 

1 − t

N∑
i=1 

φk � (ϕk,i(Dg − Dgk,i) + ∇ϕk,i ⊗ (vk,i − v))
)
,

J t
k,2(x) := J

(
x,Dg + 2t 

1 − t

N∑
i=1 

(ϕk,iDg − φk � (ϕk,iDg))
)
.

Let us first analyze the error terms, starting with J t
k,1. Since 0 ≤ ϕk,i ≤ 1 and Dgk,i → Dg

uniformly on Rd, the sequence φk � (ϕk,i(Dg−Dgk,i)) converges uniformly to 0 on Ω. For 
the term φk � (∇ϕk,i ⊗ (vk,i − v)) we combine the bound (3.16) applied to a = vk,i − v

and (3.15) to deduce that |∇ϕk,i ⊗ (vk,i − v)| converges to 0 in Lq(Bi) (with q = ∞
if p > d − 1) and since supp(ϕk,i) ⊂ Bi) also in Lq(Rd). The same convergence then 
holds for the sequence φk � (∇ϕk,i ⊗ (vk,i − v)). Hence, taking into account Assumption 
(a3) we can either use the q-growth from above or Lemma 3.2 to apply the dominated 
convergence theorem and find that

lim
t↑1 

lim
k→+∞

1 − t

2 

ˆ

Ω 

J t
k,1(x) dx = lim

t↑1 
1 − t

2 

ˆ

Ω 

J(x,Dg) dx = 0.

For the integral involving J t
k,2 the argument is similar: we first simplify the sum by noting 

that on Ω we have

N∑
i=1 

(φk � (ϕk,iDg) − ϕk,iDg) = φk � Dg − Dg → 0 uniformly on Ω.

Thus again Lemma 3.2 allows us to apply the dominated convergence theorem and we 
deduce that

lim
t↑1 

lim
k→+∞

1 − t

2 

ˆ

Ω 

J t
k,2(x) dx = lim

t↑1 
1 − t

2 

ˆ

Ω 

J(x,Dg) dx = 0.

Thus, in order to show (3.19), it suffices to show that

lim
k→+∞

ˆ

Ω 

J

(
x,

N∑
i=1 

φk � (ϕk,i(Dvk,i + Dgk,i))
)

dx =
ˆ

Ω 

J(x,Du) dx. (3.20)

First, let us verify the pointwise convergence of the integrand. It holds that∥∥∥∥∥
N∑
i=1 

ϕk,i(Dvk,i + Dgk,i) − Du

∥∥∥∥∥
Lp(Ω)

≤
N∑
i=1 

‖Dvk,i − Dv‖Lp(Ω) + ‖Dgk,i − Dg‖Lp(Ω) → 0,

while outside of Ω the map Dvk,i vanishes. Since Dgk,i is uniformly bounded, we deduce 
that
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N∑
i=1 

φk � (ϕk,i(Dvk,i + Dgk,i)) → Du in Lp(Ω)m×d.

Hence, in order to show (3.20), due to Vitali’s convergence theorem and the a.e. continuity 
of J(x, ·) at Du(x) established at the beginning of the proof, it suffices to show that the 
sequence of integrands is bounded by an equi-integrable sequence of functions. It is here 
where we rely on the full strength of the stability estimate (2.3). We use it to replace 
the x-variable in the first component of J by T−1

k,i x (cf. (3.13)) and to interchange the 
action of J and the convolution. For technical reasons, we set J(·, ξ) ≡ 0 on Rd \ Ω.

Using a standard estimate for convolutions and that vk,i has compact support in Ω, 
for any x ∈ Rd we have that

∣∣∣∣∣
(
φk �

N∑
i=1 

ϕk,i(Dvk,i + Dgk,i)
)

(x)

∣∣∣∣∣ ≤ Cε
− d 

p

k

∥∥∥∥∥
N∑
i=1 

ϕk,i(Dvk,i + Dgk,i)

∥∥∥∥∥
Lp(Bεk

(x))

≤ Cε
− d 

p

k

N∑
i=1 

‖Dvk,i‖Lp(Ω) + ‖Dg‖L∞(Rd).

Due to (3.18), we deduce that for a suitably large constant C > 0 we have that

∥∥∥∥∥φk �
N∑
i=1 

ϕk,i(Dvk,i + Dgk,i)

∥∥∥∥∥
L∞(Rd)

≤ Cε
− d 

p

k ≤ C

∣∣∣∣ 1 
ρk

− 1
∣∣∣∣− d 

p

. (3.21)

We apply the stability estimate (2.3) for x ∈ Ω and the scale δk = 2 diam(Ω)
∣∣∣ 1 
ρk

− 1
∣∣∣. 

Due to (3.18), we may assume that εk ≤ δk. To simplify notation, set ωk(x, ξ) =(
ess infy∈B2δk (x)∩Ω J(y, ·)

)∗∗
(ξ). Then by (2.3)

J

(
x, φk �

N∑
i=1 

ϕk,i(Dvk,i + Dgk,i)
)

≤ Cωk

(
x, φk �

N∑
i=1 

ϕk,i(Dvk,i + Dgk,i)
)

+ α(x).

Since α ∈ L1(Ω), we can continue by bounding the remaining RHS term by an equi
integrable sequence of functions. Recall that ωk is convex and lower semicontinuous in 
the ξ-variable, so that it respects Jensen’s inequality. Therefore

ωk

(
x, φk �

N∑
i=1 

ϕk,i(Dvk,i + Dgk,i)
)

≤
ˆ

Bεk
(x)

φk(x− y)ωk

(
x,

N∑
i=1 

ϕk,i(y)(Dvk,i(y) + Dgk,i(y))
)

dy
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≤
N∑
i=1 

ˆ

Bεk
(x)

φk(x− y)ϕk,i(y)ωk(x,Dvk,i(y) + Dgk,i(y)) dy, (3.22)

where the last inequality follows from convexity (recall that ϕk,0 vanishes on a neigh
borhood of Ω, so for k large enough the above weights sum up to 1 for all x ∈ Ω). Now 
we need to distinguish two cases for y ∈ Bεk(x): if T−1

k,i y ∈ Ω, then

|T−1
k,i y − x| ≤ |T−1

k,i y − y| + |y − x| < δk + εk ≤ 2δk,

so that the elementary inequality f∗∗ ≤ f and the definition of ωk yield that

ωk(x,Dvk,i(y) + Dgk,i(y)) ≤ J(T−1
k,i y,Dvk,i(y) + Dgk,i(y)). (3.23)

If instead T−1
k,i y / ∈ Ω, then it follows from the definition of vk,i that Dvk,i(y) = 0. To 

control the contribution coming from Dgk,i, recall that Dgk,i → Dg uniformly. Together 
with the uniform continuity of Dg, for k large enough and y ∈ Bεk(x) we find that

ωk(x,Dgk,i(y)) ≤ sup 
|ξ|≤r

ωk(x,Dg(x) + ξ) ≤ sup 
|ξ|≤r

J(x,Dg(x) + ξ),

where r > 0 is given by Lemma 3.2. Combined with (3.23) we obtain the global bound

ωk(x,Dvk,i(y) + Dgk,i(y)) ≤ J(T−1
k,i y,Dvk,i + Dgk,i) + sup 

|ξ|≤r

J(x,Dg(x) + ξ)

for all x ∈ Ω, y ∈ Bεk(x). Inserting this estimate into (3.22), we infer that

ωk

(
x, φk �

N∑
i=1 

ϕk,i(Dvk,i + Dgk,i)
)

≤
N∑
i=1 

ˆ

Bεk
(x)

φk(x− y)ϕk,i(y)J(T−1
k,i y,Dvk,i + Dgk,i) dy

+ sup 
|ξ|≤r

J(x,Dg(x) + ξ).

The last RHS function is integrable by Lemma 3.2, so it suffices to show that for each 
i ∈ {1, . . . , N} the sequences in the RHS sum are equi-integrable. By the change of 
variables T−1

k,i y = z and the scaling of the mollfier, we obtain that
ˆ

Bεk
(x)

φk(x− y)ϕk,i(y)J
(
T−1
k,i y,Dvk,i(y) + Dgk,i(y)

)
dy

≤
ˆ

T−1
k,i Bεk

(x)

φk(x− Tk,iz)J (z,Dv(z) + Dg(z)) dz ≤ C −
ˆ

BCεk
(x)

J(z,Du(z)) dz
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= C
1 

(Cεk)d|B1(0)|1B1(0)(·/Cεk) � J(·, Du(·))(x).

By the properties of approximate identities (cf. [20, Theorem 8.14]), the last sequence 
converges strongly in L1(Ω) (and thus is equi-integrable) since x �→ J(x,Du(x)) ∈ L1(Rd)
due to the trivial extension by 0 outside of Ω. We thus conclude the proof. �

We now prove the first main result for exponents p ≤ d− 1.

Proof of Theorem 2.2. For u ∈ W 1,p(Ω)m set F (u) =
´
Ω J(x,Du) dx. We show that for 

any u ∈ g + W 1,p
0 (Ω)m there exists a sequence un ∈ g + C∞

c (Ω)m such that un → u

in W 1,p(Ω)m and F (un) → F (u). We first reduce the analysis to a simpler situation. 
Arguing as at the beginning of the proof of Lemma 3.3, we may assume without loss of 
generality that F (u) < +∞. Let t ∈ (0, 1). Then ut := g + t(u− g) ∈ g +W 1,p

0 (Ω)m and 
by convexity we have

F

(
(1 + t)

2t (ut − g)
)

= F

(
(1 + t)

2 
(u− g)

)
= F

(
(1 + t)

2 
u + (1 − t)

2 
(1 + t)
(t− 1) g

)
≤ (1 + t)

2 
F (u) + (1 − t)

2 
F

(
(1 + t)
(t− 1) g

)
< +∞,

where we use for the last inequality that by assumption F (sg) < +∞ for all s ∈ R. 
Moreover, we have F (ut) ≤ (1 − t)F (g) + tF (u) < +∞ and

lim
t↑1 

F (ut) ≤ F (u)

and since ut → u in W 1,p(Ω)m when t ↑ 1 and 1+t
2t > 1, a diagonal argument allows us 

to show the approximation for functions u such that additionally F (s(u− g)) < +∞ for 
some s > 1. We next apply Lemma 3.3 with zero boundary datum to find a sequence 
vn ∈ C∞

c (Ω)m such that vn → u− g in W 1,p(Ω)m and

lim
n→+∞

ˆ

Ω 

J(x, sDvn) dx =
ˆ

Ω 

J(x, sD(u− g)) dx < +∞. (3.24)

Up to a subsequence (not relabeled), we can also assume vn → u−g and Dvn → Du−Dg

a.e. in Ω. We show that

lim
n→+∞

ˆ

Ω 

J(x,Dg + Dvn) dx =
ˆ

Ω 

J(x,Du) dx,

which proves the assertion. By Fatou’s lemma and the non-negativity and lower semi
continuity of J , we have
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lim inf
n→∞ 

ˆ

Ω 

J(x,Dg + Dvn) dx ≥
ˆ

Ω 

J(x,Du) dx.

To show the corresponding inequality for the lim sup, we first observe that for all ξ ∈
Rm×d

J(x,Dg + ξ) = J(x, (1 − 1
s )

s 
s−1Dg + 1

s sξ) ≤ J(x, s 
s−1Dg) + J(x, sξ). (3.25)

Hence, the desired inequality follows with help of estimate (3.25), Fatou’s lemma and 
(3.24):

lim sup
n→∞ 

ˆ

Ω 

J(x,Dg + Dvn) dx ≤− lim inf
n→∞ 

( ˆ

Ω 

J(x, s 
s−1Dg) + J(x, sDvn)

− J(x,Dg + Dvn) dx
)

+ lim
n→∞

ˆ

Ω 

J(x, s 
s−1Dg) + J(x, sDvn) dx

≤
ˆ

Ω 

J(x,Du) dx.

Note that here we used that also ξ �→ −J(x, ξ) is lower semicontinuous due to the fact 
that J(x, ·) is even continuous, being convex and finite-valued. �

Next, we prove our results on unbounded and locally bounded integrands.

Proof of Theorem 2.3. The result is contained in the statement of Lemma 3.3. �
Proof of Corollary 2.4. We can apply Lemma 3.3 with g = 0 and then repeat the con
struction used in the proof of Theorem 2.2, where no additional growth assumptions 
were used except the integrability of x �→ J(x, sDg(x)) for every s ∈ R. This holds for 
g ∈ W 1,∞(Ω)m since (2.3) implies that J(·, ξ) ∈ L1(Ω) for all ξ ∈ Rm×d, which combined 
with convexity yields that x �→ sup|ξ|≤R J(x, ξ) ∈ L1(Ω) for all R > 0. For the claimed 
integrability of J(·, ξ), note that for δ 
 1 (but fixed) we have

J(x, ξ) ≤ C ess inf
y∈Bδ(x)∩Ω

J(y, ξ) + α(x)

for some α ∈ L1(Ω). We prove that the first RHS function is bounded. To this end, 
assume by contradiction that there exists a sequence (xk)k∈N ⊂ Ω such that

ess inf
y∈Bδ(xk)∩Ω

J(y, ξ) ≥ k for all k ∈ N.
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Passing to a subsequence (not relabeled), we can assume that xk → x0 for some x0 ∈ Ω. 
But then

ess inf
y∈Bδ/2(x0)∩Ω

J(y, ξ) ≥ lim
k→+∞

ess inf
y∈Bδ(xk)∩Ω

J(y, ξ) = +∞,

which contradicts the fact that J is finite-valued. �
We finally treat the non-convex case, where the argument is essentially taken from 

[17, Chapter X, Proposition 2.10].

Proof of Corollary 2.5. Let un ∈ g + C∞
c (Ω)m be the sequence given by either Theo

rem 2.2, Theorem 2.3 or Corollary 2.4. Thus un → u in W 1,p(Ω)m and 
´
Ω J(x,Dun) dx →´

Ω J(x,Du) dx and after extracting a subsequence (not relabeled) we have Dun → Du

a.e. in Ω. In view of Fatou’s lemma, it suffices to show

lim sup
n→+∞ 

ˆ

Ω 

G(x,Dun) dx ≤
ˆ

Ω 

G(x,Du) dx.

It is not restrictive to assume that 
´
Ω G(x,Du) dx < +∞. In this case also ´

Ω J(x,Du) dx < +∞. Applying Fatou’s lemma to the non-negative integrand −G(x, ξ)+
CJ(x, ξ) + α(x) we infer that

ˆ

Ω 

−G(x,Du) + CJ(x,Du) + α(x) dx

≤ lim inf
n→+∞ 

⎛⎝ˆ

Ω 

−G(x,Dun) + CJ(x,Dun) + α(x) dx

⎞⎠
≤ − lim sup

n→+∞ 

ˆ

Ω 

G(x,Dun) dx

+
ˆ

Ω 

CJ(x,Du) + α(x) dx.

Now removing the finite term 
´
Ω CJ(x,Du)+α(x) dx from both sides, the claim follows 

by rearrangement. �
Appendix A. The autonomous case on locally strongly star-shaped sets

In this appendix we provide the necessary details to extend our results from open, 
bounded sets with Lipschitz boundary to the more general class of open, bounded sets 
that are locally star-shaped. We first recall their definition.
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Definition A.1 ((Locally) strongly star-shaped sets). 

i) An open bounded set Ω, which is star-shaped with respect to a point z ∈ O, is called 
strongly star-shaped if the relative interior of each segment from z to a point in ∂Ω
is contained in Ω.

ii) A bounded, open set Ω is called locally strongly star-shaped if for every x ∈ ∂Ω there 
exists an open neighborhood O of x such that O ∩ Ω is strongly star-shaped.

It is a classical result that bounded, open sets with Lipschitz boundary are locally 
strongly star-shaped, but as shown in [10, Proposition 2.10] the boundary of such a set 
can also have particular cusps. However, as the following elementary lemma shows, the 
boundary always has measure zero. This fact was used in the proof of Lemma 3.3.

Lemma A.2. Let Ω be locally strongly star-shaped. Then |∂Ω| = 0.

Proof. Since Ω is compact, we can write Ω as a finite union of strongly-star shaped sets. 
Using the inclusion ∂(A ∪ B) ⊂ ∂A ∪ ∂B, it thus suffices to show that the boundary 
of any strongly star-shaped set has zero measure. Hence we assume that Ω is strongly 
star-shaped. Moreover, up to a translation it is not restrictive to assume that the center 
point z is the origin. Consider its radial function rΩ : Sd−1 → (0,+∞) dfined by

rΩ(ν) = sup{λ > 0 : λν ∈ Ω}.

Since Ω is strongly star-shaped, it follows that ν �→ rΩ(ν)ν dfines a bijection between 
Sd−1 and ∂Ω. Hence the family (s∂Ω)s>0 is pairwise disjoint, so that only countably 
many of the sets can have positive measure. But |s∂Ω| = sd|∂Ω|, which implies that 
|∂Ω| = 0. �

The following result is [10, Proposition 2.11].

Lemma A.3. Let Ω be a bounded, open set that is locally strongly star-shaped. Then there 
exist finitely many open sets G1, . . . , Gk ⊂ Rd that cover ∂Ω and such that each set 
Ui := Gi ∩Ω is strongly star-shaped with respect to some zi ∈ Ui. Moreover, there exists 
δ > 0 such that for all λ ∈ (1 − δ, 1) it holds that

(zi + λ(Ω − zi)) ∩ Ui ⊂⊂ Ω for all i = 1, . . . , k. (A.1)

With the above lemma at hand, we can adapt the proof of Lemma 3.3 as follows: 
instead of covering the boundary with the cylinders Cx, we can use an open set Gx such 
x ∈ Gx and such that there exists zx ∈ Ux = Gx ∩ Ω satisfying (A.1), so in particular 
for a sequence ρk ↑ 1 we have

dist((zx + ρk(Ω − zx)) ∩ Ux, ∂Ω) = dk > 0. (A.2)
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Note that (ρk)k∈N and dk do not depend on x. The point zi is then replaced by the point 
zxi

in a finite subcover, while the remaining construction remains the same. In this case 
the function vk still has compact support in Ω. Indeed, for x ∈ Uxi

with dist(x, ∂Ω) < dk
the equation (A.2) yields that x / ∈ zi + ρk(Ω − zi) and since v = 0 outside of Ω we 
conclude that

vk,i = 0 on Uxi
∩ {dist(·, ∂Ω) < dk}. (A.3)

Hence the convolution has to be performed at a scale εk ∼ dk, which in general cannot 
be compared to 

∣∣∣ 1 
ρk

− 1
∣∣∣. However, this was only used for applying the stability estimate 

(2.3), which is not needed in the autonomous setting. The remaining arguments did 
not rely on Lipschitz regularity of the boundary, provided we dfine W 1,p

0 (Ω)m as the 
norm-closure of C∞

c (Ω)m.
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