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eLife assessment
Picard et al. propose a Facial Expression Pain Signature (FEPS) derived from functional magnetic 
resonance imaging (fMRI) data to predict facial expressions associated with painful heat stimulation. 
This important work advances our understanding of the brain mechanisms associated with facial 
expressions of pain. It provides solid evidence that facial expressions of pain contain information 
that is complementary to other pain-related brain processes. The work will be of broad interest to 
researchers from varied fields ranging from neurosciences to psychology and affective sciences.

Abstract Pain is a private experience observable through various verbal and non-verbal 
behavioural manifestations, each of which may relate to different pain-related functions. Despite 
the importance of understanding the cerebral mechanisms underlying those manifestations, there is 
currently limited knowledge of the neural correlates of the facial expression of pain. In this functional 
magnetic resonance imaging (fMRI) study, noxious heat stimulation was applied in healthy volunteers 
and we tested if previously published brain signatures of pain were sensitive to pain expression. 
We then applied a multivariate pattern analysis to the fMRI data to predict the facial expression of 
pain. Results revealed the inability of previously developed pain neurosignatures to predict the facial 
expression of pain. We thus propose a facial expression of pain signature (FEPS) conveying distinc-
tive information about the brain response to nociceptive stimulations with minimal or no overlap 
with other pain-relevant brain signatures associated with nociception, pain ratings, thermal pain 
aversiveness, or pain valuation. The FEPS may provide a distinctive functional characterization of the 
distributed cerebral response to nociceptive pain associated with the socio-communicative role of 
non-verbal pain expression. This underscores the complexity of pain phenomenology by reinforcing 
the view that neurosignatures conceived as biomarkers must be interpreted in relation to the specific 
pain manifestation(s) predicted and their underlying function(s). Future studies should explore other 
pain-relevant manifestations and assess the specificity of the FEPS against simulated pain expres-
sions and other types of aversive or emotional states.
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Introduction
Theories of pain communication highlight the diversity in pain manifestations, which occur through 
multiple channels: verbal reports, vocal complaints, changes of postures, and facial expressions. From 
an evolutionary perspective, several manifestations of pain appear to be preserved across vertebrate 
phyla and reflect various functional roles to preserve the integrity of the organism (Sneddon, 2019). 
Withdrawal behaviour allows the individual to move away from the noxious source, while facial expres-
sions in social species convey information about the presence of a potential threat and an appeal for 
assistance (Hadjistavropoulos et al., 2011). Functionally distinct manifestations imply at least partly 
segregated neurophysiological processing (Sliwa et al., 2022). Previous fMRI studies investigating 
the neural correlates of acute pain have suggested that spontaneous or induced fluctuations in pain 
facial expression partly reflect changes in activity within the cortical targets of the spino-thalamo-
cortical pathways. Kunz et al., 2011 found a positive association between facial responses to pain 
and the activity in the posterior insula, the primary somatosensory area, and the anterior cingulate 
cortex. These fluctuations are, however, independent of changes in stimulus intensity and are inversely 
related to activity in prefrontal regions (Kunz et al., 2011; Vachon-Presseau et al., 2016; Kunz et al., 
2020). This suggests that pain facial expression may reflect the integration of activity across distrib-
uted brain networks processing ascending nociceptive signals, determining action policy, and gating 
efferent facial motor outputs (see Kunz et al., 2011 and Kunz et al., 2020 for further discussion).

The interest in developing pain neuro markers has led researchers to use multivariate pattern anal-
ysis to investigate the distributed brain mechanisms underlying the experience of pain evoked by 
acute nociceptive stimuli. However, fMRI studies have revealed not one but several brain signatures 
of acute experimental pain that may reflect the diversity and complexity of pain-related function. 
The neurological pain signature (NPS; Wager et al., 2013) was developed to predict changes in pain 
induced by variations in stimulus intensity and captured by subjective reports, reflecting primarily 
the cerebral contributions to acute nociceptive pain (Krishnan et al., 2016; Wager et al., 2013). To 
account for spontaneous fluctuations in the perception of pain intensity, the stimulus-independent 
intensity of pain signature (SIIPS-1) was trained on noxious thermal trials after statistically removing 
the effects of the stimulus intensity and the NPS response (Woo et al., 2017). More recently, the affec-
tive dimension of pain has received more attention, resulting in a multivariate pattern predictive of 
negative affect ratings to thermal pain, referred to here as the thermal pain aversive signature (TPAS; 
Čeko et al., 2022). Finally, a signature was elaborated to characterise the neuronal representations 
associated with the valuation of pain (PVP) in the context of a decision task involving a cost-benefit 
analysis of future pain against a monetary reward (Coll et al., 2022). Taken together, those signa-
tures have contributed to improve our understanding of the neurobiological mechanisms of pain, as 
reflected in self-report or explicit decision-making.

Facial expression has been used as a reliable behavioural measure of pain across different mammal 
species (Dalla Costa et al., 2014; Craig, 1992; Evangelista et al., 2019; Langford et al., 2010; 
Sotocinal et al., 2011), but few studies have investigated the brain mechanisms associated with the 
spontaneous non-verbal communication of pain in humans (Kunz et al., 2011; Kunz et al., 2020). 
As an automatic behavioral manifestation, pain facial expression is considered to be an indicator of 
activity in nociceptive systems, and to reflect perceptual and affective-evaluative processes. Here, we 
assessed the association between pain facial expression and the available pain-relevant brain signa-
tures and we applied multivariate analysis with machine learning techniques to develop a predictive 
brain activation model of the facial responses to pain.

Results and discussion
The facial action coding system (FACS; Ekman and Friesen, 1978) was used to quantify the facial 
expression of pain in healthy participants while brain responses evoked by brief moderately painful 
heat stimulation were recorded using fMRI. For each trial, the intensity and the frequency of pain-
related action units were scored and combined into a FACS composite score (Materials and methods). 
The association with the NPS, the SIIPS-1, the PVP, and the TPAS was assessed across the whole brain 
using the correlation between the FACS scores and the dot product computed between each signa-
ture and the activation maps for each individual trial.

https://doi.org/10.7554/eLife.87962
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Pain facial expression was not significantly associated with NPS expression (pearson-r=.06; 
p=0.20; 95% CI = [–0.03, 0.14]), TPAS expression (pearson-r=0.05; p=0.26; 95% CI = [–0.04, 0.14]), 
PVP expression (pearson-r=0.02; p=0.67) and SIIPS-1 expression (pearson-r=0.07; p=0.10; 95% CI = 
[–0.01, 0.16]). These low values indicate that the available pain-relevant brain signatures show poor 
sensitivity to the facial expression of pain. This motivated the development of a new multivariate brain 
pattern to predict pain expression.

We used a multivariate approach at the voxel level across the whole brain to develop the FEPS 
(see Materials and methods). A LASSO principal component regression was applied to predict the 
FACS composite scores from the trial-by-trial fMRI activation maps. The FEPS was able to predict the 
FACS composite scores with a performance significantly above chance level (averaged cross-validated 
prediction across 10 folds: pearson-r=0.54 ± 0.10 (95% CI = [0.39; 0.64]); R2=0.22 ± 0.08 (95% CI = 
[–0.09; 0.33]); RMSE = 0.99 ± 0.08 (95% CI = [0.88; 1.10]); p<0.001 compared to a permuted distribu-
tion; Figure 1-AB). These results indicate that we were able to develop a multivariate brain pattern 
accounting for some variance in the facial responses related to pain.

The distributed pattern of activity predicting pain expression was projected back on the brain to 
examine the spatial distribution of higher weights contributing to the prediction (Figure 1C). Positive 
weight clusters were found in the primary motor cortex (M1; bilateral), the frontal pole, the right 
posterior parietal cortex, and the dorsal part of the parietal operculum, adjacent to the secondary 
somatosensory cortex (S2) (Supplementary file 1A). These regions are, respectively, associated with 
motor control, reward and affective value, attentional processes, and nociceptive pain processing 
(Price, 2000; Rushworth et al., 2011; Shackman et al., 2011). Regions showing negative weights 
included the dorsolateral PFC (dlPFC), the ventrolateral PFC (vlPFC), the mid-cingulate cortex (MCC), 
the subgenual ACC, the ventral part of the parietal operculum, the precuneus, and the vmPFC 
(Supplementary file 1B). Negative weights imply that increased activity in those regions is associated 
with decreased facial response, consistent with a role in the inhibition of pain expression (Kunz et al., 
2011). The contribution of the dlPFC and the vlPFC to the model’s prediction aligns with the role of 
these regions in inhibitory control and cognitive regulation, respectively (Goldin et al., 2008).

A supplementary analysis was conducted to evaluate whether the activity pattern in the primary 
motor cortex (M1) alone could be sufficient for predicting facial expressions. The choice of this partic-
ular region was informed by prior research indicating that M1 presented the strongest correlation with 
the facial expression of pain (Kunz et al., 2011). If the facial expression of pain primarily reflected a 
motor component without providing substantial insights into the pain experience, then the activity 
of the motor cortex alone should have been equally effective as the activity of the whole brain in 
predicting the FACS scores. This M1 model did lead to a significant prediction of pain facial expres-
sion (see Figure 1—figure supplement 2), but the whole brain model was significantly better (t(532) 
= 2.73, p=0.003).

These results are consistent with the distributed nature of brain activity associated with the produc-
tion and regulation of pain facial expression reflecting in part the ascending nociceptive response and 
the ensuing affective processes, as well as top-down socio-affective regulation underlying the imple-
mentation of learned display rules (Karmann et al., 2016).

This study was not designed to assess the specificity of the FEPS against other aversive states 
but the warm stimulation condition allowed us to compare the FEPS response to a painful vs a non-
painful thermal stimulation. The FEPS expression score was computed on the activation maps of the 
warm trials and compared to the pain trials, with and without pain facial expression (Figure 1—figure 
supplement 3B). The results indicated higher expression scores in the painful condition than in the 
warm condition (Pain - Warm contrast: EMM = 0.24 ± 0.02, t(1034)=10.33, p<0.0001, 95% CI = [0.20, 
0.29], Cohen’s d=0.63). Given the intra-individual and inter-individual variability in facial responses 
to pain, we repeated this comparison, stratifying the trials within the pain condition based on FACS 
scores: null FACS scores (FACS = 0) and non-null FACS scores (FACS >0). The FEPS scores were larger 
in the pain condition where facial responses were displayed, compared to both the pain condition 
without facial expression and the warm condition (PainFACS>0 - PainFACS=0 contrast: EMM = 0.58 ± 0.03, 
t(1065)=17.19, p<0.0001, 95% CI = [0.50, 0.66], Cohen’s d=1.69; PainFACS=0 - Warm contrast: EMM 
= –0.06 ± 0.03, t(1057)=–2.24, p=0.07, 95% CI = [–0.13, 0.003], Cohen’s d=–0.18; PainFACS>0 - Warm 
contrast: EMM = 0.52 ± 0.03, t(1055)=19.64, p<0.0001, 95% CI = [0.46, 0.58], Cohen’s d=1.52). Note 
that the comparison of PainFACS>0 vs PainFACS=0 is redundant with the regression approach used as the 

https://doi.org/10.7554/eLife.87962
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Figure 1. Facial expression of pain signature (FEPS): a brain signature of the facial expression of pain. (A) Relationship between the actual and the 
predicted facial action coding system (FACS) composite scores for each cross-validation fold. (B) Distribution of the Pearson’s r scores across the cross-
validation folds. (C) Predictive weight map of pain expression thresholded at FDR corrected q<0.05 using bootstrap tests performed with 5000 samples 
(with replacement). The thresholded map is shown for visualization and interpretation purposes only, although the prediction was made using voxel 
weights across the whole brain. MNI coordinates of the clusters with the related z-score can be found in Supplementary file 1A and B. The colour bar 

Figure 1 continued on next page

https://doi.org/10.7554/eLife.87962
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primary analysis model (Figure 1) and should not be considered as additional evidence. The observa-
tion that the PainFACS=0 trials did not differ significantly from the Warm trials and that both conditions 
showed a mean score close to 0 (Figure 1—figure supplement 3B) indicate that the FEPS does not 
respond to innocuous thermal stimuli and only responds to noxious heat when a facial expression is 
produced.

Several regions identified in the FEPS have also been reported in other pain-related brain signa-
tures. Regions predictive of pain facial expression and pain intensity (NPS and SIIPS-1) include S2, the 
vmPFC, and the precuneus. The vlPFC is a region that does not receive direct spino-thalamo-cortical 
nociceptive afferents, and was reported both in the FEPS and in the SIIPS-1. Overlap between the 
FEPS and the PVP (pain value pattern) includes regions associated with reward and affect (i.e. OFC). 
Finally, the primary motor cortex, and S2 were also reported as contributing regions in the TPAS. The 
spatial comparison showing some common regions across these pain-relevant signatures suggests 
possible shared features with the FEPS.

We computed the cosine similarity between the FEPS and other pain-related brain signatures to 
further examine the shared and specific representations between those predictive patterns (see Mate-
rials and methods). Cosine similarity ranging from 0.00 to 0.10 was found between the FEPS and the 
other pain-related brain signatures reflecting the overall low similarity between the signatures at the 
whole-brain level (Figure 2A). The highest similarity value with the FEPS was found for the SIIPS-1, 
consistent with the notion that the facial expression of pain may reflect, at least partly, changes in 
brain responses associated with spontaneous fluctuations in pain experience captured by pain ratings. 
Similarity with the FEPS was further assessed across different cortical networks (Figure 2B). The signif-
icant positive similarity with the SIIPS-1 at the frontoparietal level and in the default-mode network 
may suggest common mechanisms in self-representation, prediction, and emotional regulation of the 
pain experience that would be reflected in both facial expression and subjective reports (Pan et al., 
2018). Recruitment of the frontoparietal network may also be involved in the conscious representation 
of the pain context, making nociceptive information available for integration into decision-making 
processes (Coll et al., 2022; Bastuji et al., 2016; Del Cul et al., 2007; Zheng et al., 2020). The 
similarity between the FEPS and the SIIPS-1 in the somatomotor network indicates potential overlaps 
between the sensory aspect of the pain experience captured by the facial expression and the pain 
intensity ratings. This is consistent with our previous report showing that changes in pain facial expres-
sion by the cognitive modulation of perceived pain intensity are correlated to changes in the nocicep-
tive response of the somatosensory cortex (Kunz et al., 2020). Finally, the convergent similarities in 
the limbic network with the PVP is consistent with a key role of affective pain processing influencing 
facial expression, and perceived pain value (Garcia-Larrea and Peyron, 2013; Roy et al., 2009).

In research and clinical practice, verbal reports of perceived pain intensity are considered to be the 
gold standard for measuring pain. Other measures that are often weakly correlated with those subjec-
tive reports, like facial expressions of pain, are often considered a less valid metric of the experience 
of pain even though they provide important complementary information on pain-related processes 
(Hadjistavropoulos et al., 2011). The FEPS was able to predict the magnitude of the facial expres-
sion of pain above the chance level. Regions that contribute to the prediction include motor and 
pain-related areas associated with both sensory and affective processing of pain. Although it shares, 
to some extent, similar representations with other pain-relevant signatures within various cerebral 
networks, the FEPS is distinctive from these other signatures. Results of this study provide unique 
evidence of the complementary information provided by facial expression on pain-related brain 
processes. Future studies must provide a more comprehensive account of diverse pain manifestations 
and their related function to better capture the pain phenomenon in its entirety.

represents the z-scored regression weights reflecting the positive and negative association with the magnitude of the FACS composite score of pain 
expression.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Behavioral scores across trials.

Figure supplement 2. Predictive performance of the M1-based model.

Figure supplement 3. Facial expression of pain signature (FEPS) pattern expression and pain facial expression.

Figure 1 continued

https://doi.org/10.7554/eLife.87962
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Limitations
We recognize that our study has several limitations. First, given our limited sample size, further 
research will be necessary to verify the generalizability of the FEPS across other samples, but also 
across diverse experimental conditions (e.g. electrical, mechanical, and chemical pain) and popula-
tions (e.g. young vs old, chronic pain). Conducting future generalizability studies is crucial to ensure 
that the FEPS is a valid signature and is not only a result of model overfitting.

Even though the model developed from the entire brain activity could predict pain facial expres-
sion scores (FACS scores) beyond chance levels, it is important to highlight its inability to accu-
rately predict the higher facial expression scores. This observation may be explained by the positive 
asymmetry in the distribution of facial expression scores, despite the log transformation applied to 

Figure 2. Spatial similarity between the facial expression of pain signature (FEPS) and other pain-related signatures. (A) Pattern similarity between the 
FEPS and other pain-related brain signatures using the weights of the full brain patterns. Pattern similarities were computed at the voxel level using 
the cosine similarity; a value of 1 reflects proportional patterns; a value of 0 reflects orthogonal patterns; a value of –1 reflects patterns of opposite 
directions. The left panel shows the similarity matrix, and the right panel shows only the significant similarities between the pain-related signatures 
(*p<0.05; **p<0.01; ***p<0.001). (B) Deconstructing the pattern similarity with regards to seven cortical networks as defined in the Yeo atlas24: Visual 
Network (VN); Somatomotor Network (SMN); Dorsal Attention Network (DAN); Ventral Attention Network (VAN); Limbic Network (LN); Frontoparietal 
Network (FPN); Default Mode Network (DMN). Null distributions computed using permutation tests are shown, and the actual similarity values are 
represented by the vertical bar. Significant similarity values were found in the FPN (similarity = 0.20; p=0.002), the SMN (similarity = 0.21; p=0.02), and 
the DMN (similarity = 0.15; p=0.04) for the SIIPS-1, in the LN (similarity = 0.26; p=0.001), and DMN (similarity = 0.13; p=0.03) for the pain value pattern 
(PVP).

https://doi.org/10.7554/eLife.87962
https://www.zotero.org/google-docs/?broken=qzK4gf
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mitigate the observed skewness in the behavioral data. It is possible that the brain signature of pain 
facial expression might not adequately capture the heterogeneity of facial expressiveness in the 
population, especially for highly expressive individuals (Kunz et al., 2008). To address this limitation 
in the generalizability of the model, it could be re-trained with more observations associated with 
high FACS scores, thereby improving the extraction of predictive features associated with a greater 
level of facial expressivity. It is also possible that non-linear models might provide a better prediction 
and/or that the higher pain expressiveness might engage additional brain mechanisms not captured 
here.

The whole-brain model also overestimated the lowest facial responses with the intercept of the 
regression lines being systematically greater than 0 (see Figure 1A). This means that even when no 
facial expression was detected, there was still some brain activation matching the FEPS. Again, this 
may reflect a limitation of the linear model applied here. It is also possible that the FACS method 
might miss subtle movements of the face and/or that the FEPS captures meaningful variability in the 
pain-related brain activity below the threshold of facial expression.

It is also essential to assess the specificity of the FEPS in future studies. This involves examining 
whether the FEPS responds specifically to facial expressions of pain rather than broadly reflecting any 
facial movements including simulated facial expressions of pain and facial expression of emotions. 
Despite the similarities between facial expressions of pain and those associated with negative 
emotions, it is possible to behaviorally distinguish them. This suggests the potential to identify distinct 
brain patterns predictive of different facial responses (Simon et al., 2008). However, to our knowl-
edge, there are no available brain imaging datasets to assess the specificity of the FEPS in that context.

Due to our limited sample size, we were not able to analyze each pain-related facial action unit 
separately or to explore different combinations. This could be valuable, especially considering the 
reported differences in the association between diverse pain-related action units and the sensory and 
affective components of pain (Kunz et al., 2011; Kunz et al., 2020).

Despite the limitations of this study, the evidence provided by our findings highlights the impor-
tance of facial expression as a complementary source of information to assess central nociceptive 
processes and acute pain. These results should be regarded as a benchmark for future research on 
non-verbal pain-related manifestations and may provide a foundation for the assessment of brain 
mechanisms underlying non-verbal communication across domains.

Materials and methods
Participants
Secondary analyses of brain imaging data acquired in 34 healthy participants were performed in 
this study (18 women, 16 men; age mean ± SD = 23.4±2.5 years)(Kunz et al., 2011). No partic-
ipants reported having a history of neurological or psychiatric disease, nor chronic pain. Partici-
pants reported not using alcohol nor analgesics for at least 24 hr before the experimental session. 
All participants provided written informed consent and received monetary compensation for their 
participation. The information about the video recording of the face was indicated in the consent 
form but this was not emphasized and it was not mentioned at the time of data acquisition. All proce-
dures were approved by the ethics committee of the Centre de recherche de l’institut universitaire 
de gériatrie de Montréal.

Study design
Pre-experimental session
Participants were submitted to a pre-experimental session to assess the range of thermal pain sensi-
tivity using a magnitude estimation procedure. All participants included in this study had normal 
thermal pain sensitivity (see Kunz et al., 2008 for more details regarding the procedure; Rainville 
et al., 1992). The degree of facial expressiveness was also evaluated (low/nonexpressive (n=13): facial 
responses in 20% or less of painful trials; expressive (n=21): facial responses in more than 20% of 
painful trials; Kunz et al., 2011). Our sample was representative of the interindividual variability in 
facial expressivity of pain as reported in the literature (Kunz et al., 2006; Kunz et al., 2008) and data 
from all participants were used in the present study.

https://doi.org/10.7554/eLife.87962
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Thermal stimuli
Thermal stimulations were induced using a Medoc TSA-2001 thermosensory stimulator with an MRI-
compatible 3×3 cm2 contact probe (Medoc), positioned at the level of the lower left leg. Thermal 
stimuli lasted 9 s (2 s ramp up, 5 s plateau at targeted temperature, 2 s ramp down) and were followed 
by an interstimulus interval of 18–25  s. The experiment was programmed using E-prime software 
(Psychology Software Tools, Pittsburgh, Pennsylvania, United States). A baseline temperature of 
38  °C was applied between stimuli for all participants. The target temperatures were determined 
individually before the MRI scans to induce a warm non-painful sensation in the control condition, 
and a moderate to strong self-reported pain intensity (targeting 75-80/100 on the pain scale, where 
50/100 corresponds to the pain threshold; temperature (mean ± SD)=47.8 ± 0.90 °C). Participants 
were not aware that the warm and painful temperatures remained constant across trials. The order 
of the control condition and experimental condition was pseudorandomized. There were eight trials 
for each experimental condition per run, for a total of 16 trials per condition and a total of 544 trials 
per condition across all participants (34 participants × 16 pain trials). After each stimulus, participants 
rated the warm or pain sensation by moving a cursor with an MRI-compatible response key on a 
computerized visual analog scale.

Facial expression
The facial expression of the participants was recorded using an MRI-compatible camera (MRC Systems) 
mounted onto the head coil of the MRI scanner. To be able to quantify facial expressions that occurred 
during the stimulation, a signal was sent from the stimulator to the sound card to automatically mark 
the onset of each stimulus on the video recording. Two certified FACS coders evaluated the video 
recordings to rate the frequency, and intensity (on a 5-point scale) of pain-related action units (AUs; 
AU4, AU6-7, AU9-10, and AU43) for each trial (see Kunz et al., 2011 for details about the AUs selec-
tion). In the frequency count, an AU was considered as occurring either for the first time or if it was 
already present, an intensity increase of 2 points was recorded as a new occurrence. Additionally, if 
there was a distinct interruption followed by a reappearance of the AU for a given time window, it was 
also added to the frequency count. From the frequency and intensity scores, a composite score (FACS 
composite score) was computed by taking the product between the mean AU frequency and mean 
AU intensity values, reflecting pain expression for each trial. A logarithmic transformation was applied 
in order to normalize the FACS composite scores (‍Transformedscores = log

(
FACSscores + 1

)
‍; skewness 

= 0.75, kurtosis = –0.84). The transformed FACS composite scores during the painful trials were used 
as the predictive variable. All results were reported based on the log-transformed scores. To examine 
whether the facial expression could be confounded with the pain reports, we predicted the trial-by-
trial FACS composite scores from the pain ratings using a mixed effect model with the participants 
as a random effect, and allowing random slopes. Pain ratings were not associated to facial responses 
(R2

GLMM(m)=0.008, R2
GLMM(c)=0.74, β=0.10 ± 0.07, 95% CI = [–0.01; 0.21], t(32.57)=1.82, p=0.07, Supple-

mentary file 1C). Even if the likelihood and the strength of facial expression of pain generally increase 
with pain ratings in response to the increase of stimulus intensity, this result is not surprising in the 
present context where the stimulus intensity is held constant, and spontaneous fluctuations in both 
facial expression and subjective ratings are observed (see Kunz et al., 2011 and Kunz et al., 2018 for 
a discussion on those results).

To test for a possible habituation or sensitization effect on the facial expressivity throughout 
the experiment, a mixed effect model was conducted with the trials, the runs, and the interaction 
between the trials and the runs considered as fixed effects, and the participants as random effects. No 
evidence of such habituation or sensitization on the log-transformed FACS scores were found in the 
results (R2

GLMM(m)=0.00; R2
GLMM(c)=0.71; trial: β=–0.002 ± 0.02, 95% CI = [–0.03; 0.03], t(496.01)=–0.12, 

p=0.90; run: β=0.02 ± 0.22, 95% CI = [–0.22; 0.25], t(496.16)=0.15, p=0.88; trial × run: β=0.001 ± 0.02, 
95% CI = [–0.05; 0.05], t(496.05)=0.05, p=0.96; Figure 1—figure supplement 1A and Supplemen-
tary file 1D). The same analysis conducted on the pain intensity ratings led to the same conclusions 
(R2

GLMM(m)=0.01; R2
GLMM(c)=0.49; Trials: β=0.01 ± 0.21, 95% CI = [–0.40; 0.42], t(496.13)=0.04, P=0.97; 

Runs: β=1.98 ± 1.47, 95% CI = [–0.91; 4.87], t(496.47)=1.35, p=0.18; Trials × Runs: β=–0.03 ± 0.29, 
95% CI = [–0.61; 0.54], t(496.21)=–0.12, p=0.91; Figure 1—figure supplement 1C and Supplemen-
tary file 1E).

https://doi.org/10.7554/eLife.87962
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Anatomical and functional acquisition
MRI images were acquired using a 12-channel head coil 3T Siemens TRIO scanner. T1-weighted struc-
tural data were collected using a MP-RAGE sequence (TR = 2300 ms, TE = 2.91 ms, flip angle = 9°, 
FOV = 256 mm, matrix size = 240 × 256, voxel size = 1 × 1 × 1.2 mm, 170 whole-brain volumes). 
Functional data were acquired using an EPI T2*-weighted sequence (TR = 3000 ms, TE = 30 ms, flip 
angle = 90°, FOV = 220 × 220 mm2, voxel size = 3.44 × 3.44 × 3.40 mm, 40 interleaved axial slices).

Preprocessing of fMRI data
The fMRI data were preprocessed using SPM8 (Statistical Parametric Mapping, Version 8; Wellcome 
Department of Imaging Neuroscience, London, United Kingdom) on MATLAB 7.4 (The MathWorks 
Inc, Natick, Massachusetts, United States). Preprocessing steps included a slice-timing correction, a 
correction for head movements, and co-registration between functional and anatomical images for 
each participant. Functional images were normalized into the MNI space. A spatial smoothing proce-
dure (6 mm FWHM Gaussian kernel) and a high pass filter (128 s) were also applied.

BOLD signal was modeled using a canonical hemodynamic response function. First-level analyses 
were computed using the GLM to obtain a pain activation map for each trial using SPM8. Additionally, 
the six movement parameters and averaged signals from the white matter and the cerebrospinal fluid 
were included as nuisance regressors. Eleven trials were discarded due to excessive movements in 
the painful condition, and eight trials were excluded in the warm condition, resulting in a total of 533 
and 536 activation maps for the pai and the warm conditions, respectively. The activation maps of 
individual painful trials were used to develop theFEPS.

Analyses
Association between the facial expression of pain and pain-related brain 
signatures
The dot product between the neurologic pain signature (NPS; Wager et  al., 2013), the stimulus 
intensity independent pain signature-1 (SIIPS-1; Woo et al., 2017), the predictive value of pain (PVP; 
Coll et al., 2022), the Thermal Pain Aversive Signature (TPAS; Čeko et al., 2022), and the trial-by-
trial activation maps was computed to derive a measure of similarity (pattern expression) between 
the unthresholded signatures and the activation maps. These scalar values were then correlated with 
the FACS composite scores to assess the association between the facial expression of pain and the 
NPS, the SIIPS-1, the PVP, and the TPAS, separately. Pearson-r correlation coefficients and p-values 
are reported.

Multivariate pattern analysis
We applied a least absolute shrinkage and selection operator principal component regression 
(LASSO-PCR) with a 10-fold cross-validation procedure for multivariate pattern analysis (Wager et al., 
2011) using scikit-learn implementation (Pedregosa et al., 2011). The algorithm was trained on ∼70% 
of the data and tested on the remaining ∼30%, and the LASSO alpha hyperparameter was set at 
1.0. The analyses were performed using the trial-by-trial activation maps as input to the model and 
the participants as a grouping factor (i.e. data from a given participant could only be either in the 
training set or the testing set for a given cross-validation fold). This procedure was used to predict 
FACS composite scores from activation maps. The performance of each regression model was eval-
uated using Pearson’s correlation coefficient (pearson-r), coefficient of determination (R2; computed 
using scikit-learn), and root mean square error (RMSE). The scikit-learn’s implementation of the coef-
ficient of determination was used, allowing negative values if the model showed worse performance 
compared to an unfitted model (i.e. a horizontal line). The averaged performance metrics across folds 
are reported for each analysis. To test if the models performed significantly above chance, permuta-
tion tests were computed using 5000 iterations, leading to a p-value corresponding to the probability 
that the R2 between the observed and predicted FACS scores would be obtained by chance. A boot-
strap resampling procedure was also performed to evaluate the stability of the voxel contribution to 
the model performance, and to derive confidence intervals for the performance metrics. This proce-
dure consists of randomly sampling 5000 times the dataset with replacement. The resulting samples 
contain the same number of observations as the dataset. The LASSO-PCR procedure as described 

https://doi.org/10.7554/eLife.87962
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above is then applied on each sample. Z-scores and p-values are calculated on the overall regression 
coefficients.

This analysis procedure was first applied at the whole brain level. It was repeated using a spatial 
mask including only the precentral region bilaterally. This mask was derived from the Oxford-Harvard 
Cortical Atlas (Caviness et al., 1996). This secondary analysis was conducted to verify if the pattern 
of activity within the primary motor cortex (M1) might be sufficient to predict facial expression. The 
performance between the model based on the primary motor cortex activity and the whole-brain 
model was compared using a corrected resampled t-test (Nadeau and Bengio, 1999). To ensure that 
the whole brain model prediction of the facial responses was not confounded with the pain ratings, we 
predicted the facial composite scores from the FEPS pattern expression scores (i.e. the dot product 
between the trial-by-trial activation maps and the unthresholded FEPS signature), and included the 
trial-by-trial pain ratings using a mixed effect model including the participants as a random effect, and 
allowing the slopes to vary. Variance in the facial composite scores was significantly explained by the 
FEPS pattern expression scores (R2

GLMM(m)=0.40; R2
GLMM(c)=0.69; FEPS scores: β=0.62 ± 0.04, 95% CI = 

[0.54; 0.70], t(431.79)=14.8, p<0.001; pain ratings: β=0.02 ± 0.05, 95% CI = [–0.07; 0.11], t(30.34)=0.48, 
p=0.68; FEPS scores × pain ratings: β=–0.09 ± 0.04, 95% CI = [–0.17; –0.01], t(194.89)=–2.25, p=0.03; 
see Supplementary file 1F; also see Figure 1—figure supplement 3A for the scatterplot and the 
regression line between the log-transformed scores and the FEPS pattern expression scores across 
all data points). These results confirm the prediction of the facial response by the FEPS scores even 
when pain ratings are included as a predictors in the model. However, a small but significant negative 
interaction between the FEPS scores and the pain ratings was found. This possible moderator effect 
indicates that, for a constant stimulus, the positive slope between the FEPS scores and the facial 
responses is slightly reduced when pain ratings are higher. This may reflect a saturation effect across 
the two output channels (i.e. verbal reports and facial expressions).

Response of the FEPS to pain and warm
To test if the FEPS was more activated during the painful condition compared to the warm conditions, 
the FEPS expression scores were further computed on the warm trials. A linear mixed model was 
performed to examine the relation between the FEPS scores and the experimental conditions (Warm 
and Pain), considering those conditions as a fixed categorical effect and the participants as a random 
effect. Contrasts on the estimated marginal means (least-squares means) were conducted to assess 
the statistical significance of the difference between the FEPS expression scores on the warm trials 
and the painful trials. Given that there are also trials where the FACS scores were equal to zero in the 
painful condition, the same analyses were repeated, this time separating the FEPS expression scores 
based on whether FACS scores were greater or equal to 0 in the painful condition. The estimated 
marginal means (EMM) contrast between experimental conditions were reported with the associated 
t-value and p-value (corrected for multiple comparisons using the Tukey method).

Spatial similarity across the FEPS and pain-related brain signatures
Similarity between the FEPS and other pain-related brain signatures was assessed using the cosine 
similarity computed across all voxels (‍Similarity

(
X, Y

)
= X·Y

|X||Y|‍). This metric was computed on the 
unthresholded NPS, SIIPS-1, PVP, and TPAS maps. To further explore the cortical similarities between 
the FEPS and other pain-related brain signatures, we also computed the cosine similarity across 
different cortical networks (i.e. visual, somatomotor, dorsal attention, ventral attention, limbic, fron-
toparietal, and default mode) (Yeo et al., 2011). Permutation tests (n=1000) using generative null 
models preserving the spatial autocorrelation of a target brain map were used to assess the signif-
icance of the similarity between the brain signatures (Burt et al., 2020). p-values were calculated 
from the generated null distributions as the fraction of permuted samples where the absolute cosine 
similarity was equal, or larger than the cosine similarity obtained on the original signatures.
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results for the effect of pain ratings on the logarithmic transformed facial action coding system 
(FACS) scores. (D) Mixed-effect model results for the effect of runs and trials on the logarithmic 
transformed FACS scores. (E) Mixed-effect model results for the effect of runs and trials on 
the pain ratings. (F) Mixed-effect model results for the effect of the facial expression of pain 
signature (FEPS) expression scores and the pain ratings on the logarithmic transformed FACS 
scores.
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