
communications physics Article

https://doi.org/10.1038/s42005-024-01908-y

Quantum origin of anomalous Floquet
phases in cavity-QEDmaterials
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Anomalous Floquet topological phases are unique to periodically driven systems, lacking a static
analog. Inspired by Floquet Engineering with classical electromagnetic radiation, Quantum Floquet
Engineering has emerged as a promising tool to tailor the properties of quantum materials using
quantum light. While the latter recovers the physics of Floquet materials in its semi-classical limit, the
mapping between these two scenarios remains mysterious in many aspects. In this work, we discuss
the emergence of quantum anomalous topological phases in cavity-QED materials, linking the
topological phase transitions in the electron-photon spectrum with those in the 0- and π-gaps of
Floquet quasienergies. Our results establish the microscopic origin of an emergent discrete time-
translation symmetry in the matter sector, and link isolated c-QED materials with periodically driven
ones. Finally, we discuss the bulk-edge correspondence in terms of hybrid light-matter topological
invariants.

Topological systems in condensed matter have attracted wide attention
during the last decades. Their robust and exotic physical properties, which
can be characterized using simple topological arguments1, 2, have found a
wide number of applications3–5.

In particular, topological systems in periodically driven (Floquet) set-
ups have gained special attention6–12. Initially, they were in the spotlight for
their external control, which allowed them to simulate complex static
topological phases. However, the discovery of anomalous Floquet topolo-
gical phases13–17, a uniquephenomenonofperiodically driven systemswhere
a system with topologically trivial bands displays topologically protected
edge states, renewed the interest in their topology.

Simultaneously, the research in cavity-QED (c-QED) materials is
booming due to recent experimental advances that allow to explore new
regimes of light-matter interaction18–21. In this case, the material couples to
quantized light and forms an isolated hybrid state with properties dictated
by themutual influence between electrons and photons. Here, the interest is
not only to understand the fundamental interactions between light and
matter but also to tame these interactions for their use in quantum
technologies22, 23.

The link between c-QED materials and Floquet physics is currently
being unfolded. It has been demonstrated that the semi-classical limit of
c-QED materials features aspects of Floquet physics, such as the band
renormalization by Bessel functions24. Attempts to further understand this
emergence of an effective Floquet description in the semi-classical limit of
c-QED materials have given birth to Quantum Floquet engineering25–30.
Intuitively, their relation can be understood from the point of view that, if a

cavity field in its steady state is traced out, the matter effectively couples to a
time-periodic drive with frequency set by the cavity. However, for this to be
true, both the back-action from thematteronto the cavityfield and the light-
matter correlations must be negligible. This defines the semi-classical limit
of c-QED materials where one effectively obtains the physics of Floquet
systems24, 31.

This relation is not a mere curiosity and has profound implications. It
stems from the fact that there is a microscopic mechanism by which the
discrete time-translation symmetry of Floquet systems H(t) =H(t+ T),
effectively emerges from the isolated photon-electron quantum system32. It
also provides a bridge between widely different conserved quantities: the
energies of the c-QEDmaterial and the quasienergies of the Floquet system,
which are notably defined modulo 2π only.

In this work, we shed light into these questions by asking: what is the
microscopic origin of anomalous Floquet topological phases? Can we extend
the mapping between quantum and classical light to seek anomalous Flo-
quet phases in electron-photon systems? Notice that the existence of
anomalous Floquet phases strongly depends on the hypothesis of time
periodicity, and it is because of this symmetry that their topological classi-
fication goes beyond that of static systems33.

We show that anomalous topological phases can emerge in c-QED
materials when the cavity mode is resonant with the band transitions of a
topological system. If this resonant interaction has the right symmetries, it
opens additional gaps between distinct photonic bands that contain edge
states, and in contrast with the original ones, they are made of entangled
light-matter excitations. We find that despite the existence of these
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additional edge states, the topological invariant for the interacting system
vanishes, invalidating the bulk-boundary correspondence, in analogy with
the anomalous topology of Floquet phases. To resolve this, we demonstrate
that it is possible to assign two topological invariants to the system and
through them, establish a bulk-boundary correspondence that perfectly
predicts the existence of edge states. Furthermore, the existence of these pair
of invariants allows us to identify theπ-gap of Floquet systemswith the gaps
opened by this resonant interaction, establishing a link between cavity-QED
materials and periodically driven systems.

Results and discussion
Model Hamiltonian
The Su-Schrieffer-Heeger (SSH) model has been a canonical model of a
topological insulator in one dimension for a long time34–37. Not only its
topology in the static case has been studied, but also its periodically driven
version has been used to analyze Floquet phases8, 38–40. For example, when
coupled to light via thePeierls substitution, one can easily show the control of
topological edge states at high-frequency12. The Peierls substitution implies
the photo-dressing of the hopping amplitudes Jij connecting sites i and j
through Jij ! Jij expf�i

R
i!jAðr; tÞdrg, whereA(r, t) is the vector potential

associated with the time-periodic field. Usually, the amplitude of the vector
potential is taken to be constant,A0 ≠A0(t). As a further revision is out of the
scope of the present work, we suggest the reader check reference41.

However, genuinely new phases of the Floquet-driven system
emerge for low driving frequency and particular driving protocols that
are resonant with the system42. To fully understand this, let us very briefly
review the basics of Floquet theory for (semi-classically) driven topolo-
gical systems. For a given time-periodic Hamiltonian, H(t) =H(t+ T)
(with T being the driving period), Floquet theory tells us that the cor-
responding time-dependent Schrödinger equation i∂t ∣χðtÞ

� ¼ HðtÞ∣χðtÞ�
has generalized Floquet solutions ∣χðtÞ� of the form ∣χðtÞ� ¼ e�iεt ∣uðtÞ�.
Here, ∣uðtÞ� are the so-called Floquet states, which inherit the time
periodicity of the driving field, ∣uðtÞ� ¼ ∣uðt þ TÞ�, while the phase ε is
the quasienergy, the conserved quantity in driven systems that takes the
role of the energy in static ones. Importantly, the quasienergy spectrum
can be defined up to an integer multiple of the driving frequency
ω = 2π/T, ε→ε+ nω, which does not change the corresponding Floquet
state ∣uðtÞ�. Hence, the quasienergy spectrum of the driven system is
made out of infinitely many replicas, known as Floquet replicas, sepa-
rated by ω. Each replica contains a finite set of independent quasienergies
and Floquet states fεj; ∣uðtÞ

�g, with index j running up to the dimension
of the driven quantum material.

The quasienergy spectrum contains two inequivalent gaps: the 0-gap,
which appears within a given Floquet replica, and the π − gap appearing
between adjacent replicas due to the repeating structure. Hence, this second
gap is specific for time-periodic driven systems, and when the driving fre-
quency is reduced, it can be closed and reopened through a topological
phase transition. In such cases, both gaps could host topological edge states,
while the winding number of the quasienergy bands remains trivial17, 43, 44.
Such topological phases are called anomalous13, 45, and cannot be properly
captured by an effective static matter Hamiltonian or, equivalently, a stro-
boscopic description of the system dynamics.

This coexistence of topological edge states with topologically trivial
Floquet bands is ahallmarkof Floquetphases lacking a static analog. For this
reason, if Floquet phases are to arise from c-QED materials in a semi-
classical limit, it is important to understand their quantum origin. For that,
we study an SSH chain interacting with a single-mode cavity via the fol-
lowing photon-assisted hopping (see Fig. 1):

H ¼ Ωdyd þ
XN
j¼1

J1½d�byj aj þ J2½d�ayjþ1bj þ h.c.
� �

; ð1Þ

wherewe have defined the photon-assistedhopping J1 d½ � � J þ g d þ dy
� �

and J2 d½ � � J 0 � g d þ dy
� �

. Thefirst term in Eq. (1) describes a cavitywith

frequencyΩ andphotonoperatorsd andd†, while the second termdescribes
the hopping of spinless fermions between sites A and B of the chain with
operators aj; a

y
j ; bj and b

y
j . Importantly, the hopping in the chain is not only

dimerized with J and J 0, but also modulated by the absorption/emission of
photons, with opposite signs for the intra- and inter-dimer hopping. Some
experimental works have demonstrated the coexistence of these inequi-
valent topological edge states in the gaps of driven SSH chains, in the semi-
classical regime44, 46. In this case, the driving protocol also has the form
of a hopping modulation, with J1ðtÞ ¼ J1 þ 2V cosðωtÞ and J2ðtÞ ¼ J2�
2V cosðωtÞ, where V is the driving amplitude. Note that the sign change
between J1(t) and J2(t) ismimickedby J1[d] and J2[d] in thequantumversion
of Eq. (1).

As Eq. (1) describes a complex problem, let us first introduce the basic
properties of the unperturbed SSH chainHamiltonianHSSH =H(g = 0). For
Periodic BoundaryConditions (PBC), the chainHamiltonian can be exactly
diagonalized and results in two eigenstates, ∣φ ± ðkÞ

�
, with energies:

E ± kð Þ ¼ ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2 þ J 02 þ 2JJ 0 cos kð Þ

q
: ð2Þ

The topology can be characterized by the Zak phase, which is obtained
by integrating the Berry connection A0

μ;μ over the FBZ
47–49:

γ0 ¼
Z π

�π
A0

μ;μðkÞdk ¼
Z π

�π
hφμðkÞji∂kjφμðkÞidk; ð3Þ

where ∣ϕμðkÞi (μ=± ) are the eigenstates of the unperturbed SSHchain.Due
to chiral symmetry, σzHSSH(k)σz =−HSSH(k) (where σz iswritten in the basis
of the ∣φ± ðkÞ

�
), the Zak phase can also be written as:

γ0 ¼
Z π

�π

dk
4i

tr σzH
�1
SSHðkÞ∂kHSSHðkÞ

h i
; ð4Þ

and connected with the winding number ν0 of the Bloch vector d0 in
HSSH(k) = d0 ⋅ σ in parameter space, following γ0 = πν0. In particular, for the

Fig. 1 | Schematic figure of the total system. a The SSH chain interacts with the
cavityfield through the photon-assisted hopping, as described by Eq. (1).bWhen the
coupling to a resonant cavity is added, the hybridized band structure showcases
anomalous gaps (violet) and single-particle gaps (green), which can be both popu-
lated by topological edge states (right), as opposed to the band structure of the
isolated chain (left), in which only single-particle edge states can appear.
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unperturbed SSH chain ν0 ¼ �ΘðJ 0=J � 1Þ, predicting the existence of
edge states for J 0>J (see “Methods” section).

Nowweare in a position todelucidate thephysics of Eq. (1) for g ≠ 0. In
Fig. 2 we plot the spectrum as a function of the cavity frequency and choose
the hopping amplitudes so that the isolated chain has non-trivial topological
properties (J<J 0). The color code corresponds to the electronic localization
probability, which we define as the probability of finding an electron in
either one of the ending sites, P1+N =∑i=1,N∣〈i∣Ψ〉∣2, where ∣Ψi corresponds
to each of the eigenstates of Eq. (1). P1+N should be larger for edge states,
whereas for bulk states it will be negligible.

Figure 2 shows that as the cavity becomes resonant with the electronic
system, additional edge states emerge within newly formed gaps between
adjacent photonic bands (region I). It is clear that these edge states are
qualitatively different from the ones appearing in the gap between the
valence and the conduction band (shown in region II), which are linked to
the ratio between hopping amplitudes (J<J 0) and persist for high cavity
frequency (region II). This is expected, since the topology of the SSHchain is
approximately unaffected by the cavity at high-frequency31, for small cou-
pling strengths. However, important changes are produced by the non-
perturbativemechanismof resonancewhen the cavity frequency is lowered.
This scenario shows clear similarities to the anomalous Floquet phases
arising in driven topological systems, with edge states appearing in the
nonequivalent 0− and π− gaps. However, note that in the quantum case
considered here every gap in region I is different from each other since the
interaction with the photonic field depends on the number of photons
considered. This can be readily seen in the localization probability of the
anomalous edge states, and how it increases as higher-energy photonic
bands are considered.

We will now demonstrate that this hybrid phase with resonantly
coupled photons and fermions is not topologically trivial. To proceed, first
notice that if the cavity frequency is much larger than the bandwidth
2jJ þ J 0j, the bands inEq. (2) are good approximations in theweak coupling
regime. Therefore, it is reasonable to re-write the full Hamiltonian on this

basis, and define the interaction term as the g − dependent part,
V ¼ gðdy þ dÞ byj aj � ayjþ1bj

� �
. With all, the Hamiltonian takes the fol-

lowing form:

~H ¼Ωdyd þ
X
k;ν¼±

Eν kð Þcyk;νck;ν

þ g d þ dy
� �X

k

X
μ;ν¼±

Vμ;ν kð Þcyk;μck;ν ;
ð5Þ

where cyk;ν and ck,ν are the creation/annihilation operators of fermionic
eigenstates in the unperturbed SSH chain, and the matrix elements of the
coupling between the two systems are given byVμ,ν(k) = 〈φμ(k)∣V∣φν(k)〉. The
expressions for each component can be found in the “Methods” section.
Importantly, the structure of Eq. (5) is reminiscent of that of the quantum
Rabimodel (QRM),where the interaction term is linear in both the fermionic
and photonic operators. Note that in our case, both the longitudinal Vν,ν(k),
and transversal Vν;�νðkÞ coupling terms are nonzero. Importantly, as we are
interested in the topology of the total system, we will neglect the diagonal
contribution Vν,ν(k), as it is known that the longitudinal coupling does not
alter the eigenstates of the unperturbedHamiltonian.Wewill later show that
this is a judiciouschoice that allowsus to simplify the formof theHamiltonian
and obtain analytical results that capture the topological phase transitions.

Following the analogy with the QRM, and since we are mainly inter-
ested in the terms that can lead to resonances, we can also perform a
Rotating Wave Approximation (RWA) on the resulting Hamiltonian,
which leads to a Jaynes-Cummings (JC) Hamiltonian with a momentum
dependence. Just as in the JC model, the total number of excitations is
conserved, which allows us to write the Hamiltonian in a block diagonal
form with basis elements: f∣φþðkÞ; n

�
; ∣φ�ðkÞ; nþ 1

�g:
~H n; kð Þ ¼ nΩþ Eþ kð Þ �igΓ kð Þ ffiffiffiffiffiffiffiffiffiffiffi

nþ 1
p

igΓ kð Þ ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
nþ 1ð ÞΩþ E� kð Þ

 !
; ð6Þ

where we have defined ΓðkÞ � J þ J 0ð Þ sin kð Þ=EþðkÞ. Equation (6) can be
directly diagonalized and results in the following bands:

ϵ± kð Þ ¼Ω nþ 1
2

� 	

±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eþ kð Þ �Ω

2


 �2
þ g2 nþ 1ð ÞΓ kð Þ2

s
:

ð7Þ

This last expression captures the nΩ separating each photonic sub-
space, and the Ω-dependent gap between ϵ+ and ϵ−. Note that the gap
reduces as the resonance Ω = 2E+(k) is approached, however, a non-zero
value of the transverse light-matter coupling g prevents the gap closure by
generating an anti-crossing proportional to g2(n+ 1)Γ(k).

The anti-crossing only becomes an exact crossing at thehigh symmetry
points k0 =mπ, for m 2 Z. This is because Γ(k0) = 0, and a crossing
2E+(k0) =Ω will not be lifted by the interaction. Hence, we can predict the
frequencies at which the gap exactly closes due to the resonance, as
Ω± ¼ 2Eþðk0Þ ¼ 2jJ ± J 0j. Along the first Brillouin zone, this means that
the gap closes at k = 0, π, respectively. Blue vertical lines in Fig. 2 indicate
these values of the frequency, and one can see that they perfectly predict the
appearance of additional edge states induced by the resonant coupling
between the cavity and system.

To gain further intuition, we also re-write the RWA Hamiltonian for
each block in the original basis, by using the explicit dependence of the
eigenstates ∣ϕ± ðkÞ

�
in terms of the original fermionic operators. This yields:

Hðn; kÞ ¼
nþ 1

2

� �
Ω Eþ

Eþ�Ω
2�ig

ffiffiffiffiffiffiffi
nþ1

p
Γ

JþJ 0e�ik

Eþ
Eþ�Ω

2þig
ffiffiffiffiffiffiffi
nþ1

p
Γ

JþJ 0eik nþ 1
2

� �
Ω

0
@

1
A: ð8Þ

Fig. 2 | Energy spectrum of the total light-matter Hamiltonian. Light-matter
energy spectrum E/Ω of a topological SSH chain (J 0 ¼ 2; J ¼ 1) interacting with a
cavity as indicated in Hamiltonian in Eq. (1). It is plotted as a function of its
frequency Ω, for a fixed light-matter interaction strength g = 0.35. The interaction
produces resonant gaps with edge states for the range Ω ∈ [Ω+, Ω−], defined as
Ω± ¼ 2jJ ± J 0j. The color code indicates localization at the edge, so that the presence
of edge states is clearly visible as highly localized states, as opposed to bulk states,
which showcase negligible weight on the ending sites of the chain. All plots in units of
J. The chain has N = 12 unit cells, which corresponds to 2N sites. The cut-off for the
photonic field is set to nmax ¼ 50.
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wherewehaveomitted thedependenceon k inE+(k) andΓ(k) for simplicity.
Clearly, it retains a chiral form in each subspace, since the diagonal terms do
not depend on k and just give a constant energy shift. In the high-frequency
regimeΩ≫ J; J 0, it describes copies of the SSHchainHamiltonian, correctly
predicting the topology for a largely detuned cavity. However, the off-
diagonal elements now describe the hopping of polaritons, which near the
resonance can strongly affect the topology due to the dominance of the term
proportional to g.

Topological invariant
In order to topologically characterize the additional edge states of the sys-
tem, one can extend the definition of the Zak phase for the isolated SSH
chain γ0 (or equivalently, that of the winding number ν0) to a generalized
one γ (or its generalized winding number ν). It is obtained from the light-
matter eigenstates ∣Ψi of Eq. (1) with both, photonic and fermionic parts.
The numerical calculation of γ as a function of the cavity frequency is shown
in Fig. 3a for the ground (orange) and first excited (violet) states. Note that it
takes integer values only and that in the high-frequency regime, the topo-
logical invariant is non-vanishing for both states, in agreement with the
result for the unperturbed SSH chain. However, while the ground state
remains topologically non-trivial for arbitrary values of the cavity frequency,
one finds that the first excited state becomes trivial when the resonance is
reached. This situation reminds us of the anomalous Floquet topological
phase, where with the emergence of edge states in the π-gap, the Floquet
band invariant becomes trivial13, 16, 17, 42. However, in our case, the system is
isolated and made of fermions interacting with photons.

To understand the origin of the additional contribution to γ at reso-
nance, we explicitly calculate the Zak phase of the hybrid eigenstates, using
the eigenstates of the effective Hamiltonian in Eq. (6):

∣ψμ k; nð Þ
E
¼ αμ k; nð Þ∣n; φþ kð Þ�þ βμ k; nð Þ∣nþ 1; φ� kð Þ� ð9Þ

with α± and β± being the corresponding coefficients, that we can leave
undetermined.

The Berry connection can be calculated to yield:

Aμ;μ ¼ ihψμðk; nÞj∂kψμðk; nÞi
¼ iα�μ ∂kαμ

� �
þ iβ�μ ∂kβμ

� �
þA0;

ð10Þ

where A0
± ¼ hφ± ðkÞji∂kjφ± ðkÞi is the Berry connection for the unper-

turbed SSH chain andwe have used that ∣αμ∣
2 þ ∣βμ∣

2 ¼ 1. This shows that
the connection separates in two contributions, one coming from the
unperturbed SSH chain and another coming from the resonant interaction
between the cavity and the chain. The latter is purely amany-body effect that
entangles each band with a subspace with a different number of photons.
The Zak phase is obtained by integrating the Berry connectionAμ,μ over the
FBZ:

γ ¼ ~γþ γ0; ð11Þ

and as it is quantized in chiral systems and A0
± is independent of the

interaction with the cavity, the new contribution from light-matter
interaction ~γ, must also be quantized.

This is shown in Fig. 3b, where we plot all contributions: the violet
curve corresponds to the topological invariant obtained from the effective
Hamiltonian in Eq. (8) for its ground state, whereas the blue and green
curves are the contributions from the unperturbed SSH γ0π and the reso-
nant interaction ~γπ, respectively. It can be seen that in the resonant regime
Ω∈ [Ω+,Ω−], there is a one-to-one correspondence between the change in
the total invariant γ/π and the contribution from the resonance ~γπ ¼ 1,
which in combination with γ0π =−1, gives to a trivial total γ/π = 0. This
might lead to the incorrect conclusion that the system is topologically trivial
and therefore lacks topological edge states,which is not true, as evidencedby
the energy spectrum in Fig. 2. Importantly, notice the perfect agreement
between the violet curves appearing in Fig. 2a and b. First of all, note the
Hamiltonian ~Hðn; kÞ in Eq. (8) does not include the ground state of the total
system, just as the regular Jaynes-Cummings model does not include the
ground state where neither the emitter nor the photonic field are excited.
This confirms that the RWA Hamiltonian correctly describes the relevant
physics for the topological changes. This further explains why the topology
of the ground state for the total light-matter Hamiltonian remains unaf-
fectedby the interaction (seeorange curve inFig. 3a): the state ∣φ�; n ¼ 0i is
completely decoupled from the rest.

The change in the invariant can also be understood graphically.
Because of the chiral form ofH(n, k), the winding number ν can be used for
the topological characterization as well. In Fig. 4a, we plot the trajectory of
the Bloch vector d(k) in H(n, k) = d(k) ⋅ σ, as k is varied across the First
Brillouin Zone. We choose different cavity frequencies, Ω/J = [4, 6, 7]
(corresponding to the curves (1), (2), and (3), respectively), to visualize the
topological phase transitions shown in Fig. 3. The color gradient helps
visualize the direction of the curve as k changes. In Fig. 4b, we plot the
trajectory for ~dðkÞ in ~Hðn; kÞ ¼ ~dðkÞ � σ (note that ~Hðn; kÞ must be pre-
viously rotated to the x − y plane to do so). Fig. 4c corresponds to the
trajectory of d0 inHSSH = d0 ⋅ σ, which is only dependent on the value of the
hopping amplitudes (as before, they are chosen again such that the chain is
in its non-trivial topological phase). At high frequency, the topology of the
hybrid system, given by curve (3) in Fig. 4a, is identical to that of the
unperturbed SSH chain. Their trajectories enclose the origin counter-
clockwise, resulting in ν = ν0 =−1. Note that, simultaneously, curve (3) in
Fig. 4b has a trivial winding ~ν ¼ 0. However, curve (1) in Fig. 4a
(Ω− <Ω <Ω+) hasν = 0, accounting for the additional contribution coming
from ~νwithopposite sign. By canceling eachother, theypredict a total trivial
topological phase50.

From these findings, we can conclude that the winding number of
H(k, n) is not a good topological invariant to characterize the presence of
topological edge states. Instead, it must be separated into two contributions,

Fig. 3 | Topological invariant for the total and effective light-matter Hamilto-
nian. a Zak phase γ/π, as defined in Eq. (3), obtained for the total light-matter
system, using the numerical eigenstates ∣Ψi of Eq. (1). It is plotted as a function of
cavity frequency Ω, for the ground (orange, dashed) and first excited state (violet,
solid). b Zak phase γ/π, as defined in Eq. (3), obtained from the RWA effective
HamiltonianH(n, k) in Eq. (8), with n = 0 (violet curve), and contributions from the
resonance ~γ=π (green, dashed), and the unperturbed SSH chain ν0 (blue, dot-
dashed). The dashed, vertical lines indicate the boundaries of the region (I) (Fig. 2),
where all gaps host edge states. All parameters are chosen as in Fig. 2:
J ¼ 1; J 0 ¼ 2;N ¼ 12J=1,J′=2,N=12 unit cells, g ¼ 0:35; nmax ¼ 50.
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one corresponding to thewinding number of the unperturbed SSH chain ν0
and another to the winding number ~ν, corresponding to the RWA
Hamiltonian in the eigenstates basis, Eq. (6). This invariant is quantized and
unambiguously predicts the appearance of edge states in the gaps created by
the light-matter resonant interaction.

Light-matter entanglement
So far, we have seen that quantum anomalous topological phases emerge
when the material is originally in a non-trivial topological phase and the
cavity frequency is tuned to resonance with the band transitions. In that
situation, photons interact with the topological system and polaritons are
formed, and under the RWA approximation, this interaction can be ana-
lytically studied by the effective Hamiltonian in Eq. (6). The formation of
polaritons can strongly affect the topological properties of the system,
resulting in the creation of anomalous edge states in the additional gaps
opened by the resonant interaction.

Now, it can be easily shown that these anomalous edge states are in fact
made of maximally entangled light and matter degrees of freedom, by
obtaining the entanglement entropy between both subsystems
Slm ¼ �Tr fρl log ρlg, where ρl = Trm{ρlm} is the reduced densitymatrix for
the cavity and m indicates that the trace has been taken over the matter
degrees of freedom. The results are shown in Fig. 5, where we plot Slm as a
function of the cavity frequency, considering that the system is prepared in
either Fig. 5a an anomalous edge state, and Fig. 5b a single-particle edge
state. The anomalous edge states show a robust entanglement structure,
close to the value Slm ¼ log 2 (dashed, gray line in the plot), which indicates
that it is a maximally entangled state. The slight deviations from this value
can be explained by finite-size effects and the small contribution of other
bulk states. The behavior of single-particle states is completely different, as
the entanglement decays monotonically as the high-frequency regime is
approached.

This result on light-matter entanglement allows us to better under-
stand the connection between anomalous topological phases of Floquet
systems and topological phases in c-QED materials. If the semi-classical
limit is taken in Eq. (1), the presence of single-particle edge states can be

reproduced by an effective matter Hamiltonian even after the photons are
traced out, because light-matter entanglement is not relevant. This is pre-
cisely the case of high-frequency expansions that are typically used in Flo-
quet engineering, which yield a photo-dressed Hamiltonian for the matter
part only when the stroboscopic dynamics are looked at. On the contrary,
the presence of maximal entanglement in the anomalous edge states means
that photons cannot be safely traced out of the total system, and that, when
the semi-classical limit is taken, micromotion (i.e., short-term) dynamics
will have an important contribution. This means that a stroboscopic
effectiveHamiltonian for thematter part only will not be enough to capture
the physics of the system. In fact, the appearance of anomalous Floquet
phases in a driven setup is linked to the impossibility of smoothly deforming
the corresponding evolution operator into that of an undriven system51.

These results shed light on the analogy between anomalous Floquet
phases and their quantum counterpart, as in both cases the presence of edge
states in every gap coexist with a trivial topological invariant. It is then
crucial to remind ourselves that we are considering here a c-QEDsetup, that
is, an isolated system where the total Hamiltonian is static. So it seems
reasonable to ask: how is it possible that Floquet phases describe the semi-
classical limit of c-QED materials if, without quasienergies, anomalous
phases should not exist? The key is that c-QED materials are many-body
systems,made out of both electrons and photons, and tracing out part of the
system (in our case the cavity photons) can produce an effective periodically
drivenHamiltonian in thematter sector. In conclusion, the interactionwith
a cavity can induce an emergent discrete time-translation symmetry in the
matter part, which is responsible for the appearance of fully quantum
anomalous topological phases, that are made of strongly hybridized light-
matter degrees of freedom.

For further insight, we also plot the average photon number 〈n〉 for the
anomalous edge states, as shown in Fig. 6. The vertical, dashed lines
represent the boundaries of the region [Ω−,Ω+], where the anomalous edge
states showcase a non-integer 〈n〉. This is expected since they are made of a
superposition of different Fock states. In fact, the spatial and Fock structure
of these anomalous edge states ∣Ψa:s:

�
, as given by ∣〈Ψa.s.∣Ψa.s.〉∣2, is also

depicted in subplot Fig. 6b.Wechooseone edge state frompairs 1 and2.The
index i runsover all sitesof the chain, i∈ [1, 2N],while the color indicates the
Fock subspace nwhich is occupied. As shown in the left plot, the anomalous
edge states in gap 1 have the spatial profile of an edge state, on both the n = 0
and n = 1 Fock subspaces. Similarly, the anomalous edge states in gap 2 are

Fig. 5 | Light-matter entanglement Slm for both anomalous and single-particle
edge states. a Slm for anomalous edge states. The numbers in the legend correspond
to the position of each anomalous edge state pair in the energy spectrum, starting
from the 1 pair being at the resonant gap of the lowest energy. b Slm for the single-
particle edge state. Again, the numbers correspond to the position of the single-
particle edge states in the energy spectrum, which can be easily identified in the high-
frequency limit. All parameters are chosen as in Fig. 2: J ¼ 1; J 0 ¼ 2;N ¼ 12 unit
cells, g ¼ 0:35; nmax ¼ 50.

Fig. 4 | Topological invariant as winding number. Trajectory of Bloch vectors in
parameter space for a H(n, k), b ~Hðn; kÞ, and c HSSH(k), for different cavity fre-
quencies:Ω/J = [4, 6, 7] (corresponding to curves (1), (2), and (3), respectively). We
set n = 0 for (a and b). The color gradient helps to visualize the curve direction as k is
swept across the Brillouin zone. All parameters are chosen as in Fig. 2:
J ¼ 1; J 0 ¼ 2;N ¼ 12J=1,J′=2,N=12 unit cells, g ¼ 0:35; nmax ¼ 50.
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mainly defined on n = 1 and n = 2. As the high-frequency limit is approa-
ched, the anomalous edge states merge with the bulk states belonging to
different photonic subspaces. Since the cavity frequency is larger than the
electronic bandwidth, this means that 〈n〉 will take an integer value,
approximately, as can be seen on the right-hand side of Fig. 6a.

Entangled light-matter dynamics
Charge and photon dynamics can in fact help us visualize the previous
results on light-matter entanglement. A well-known result for charge
dynamics in the isolated SSH chain with topological edge states is the
appearance of periodic Rabi oscillations between the ending sites for a
particle that is initially occupying the edge12, 52. The frequency of the oscil-
lation is given by the energy splitting between the edge states due to finite-
size effects, while the leakage to the bulk is suppressed. Similarly, for a
topological chain interacting with a highly-detuned cavity, charge, and
photon dynamics are essentially decoupled: the behavior of the charge
would be governed by the presence or absence of edge states, just as in the
isolated chain, while for photons, no time-dependence is expected to
appear31.

This scenario, however, becomes increasingly complex when we
consider the coupling to a resonant photonicfield, with the presence of both
single-particle and anomalous edge states. In this case, charge and photon
dynamics are dominated by the fact that the edge states arising from light-
matter resonances showcase a superposition of different photon numbers
(see Fig. 6). Anomalous edge states have the spatial profile of conventional
edge states, with the additional feature of having a non-zero weight on
different photonic subspaces. This gives rise to photon dynamics and can be
equated to the characteristic time-dependence of anomalous edge states in
Floquet systems44, leading to the formation of unique interference patterns
in the entangled light-matter dynamics that are exclusive to the anomalous
phase arising in the hybrid light-matter system.

Let us investigate charge-photon dynamics for a configuration with
coexisting single-particle and anomalous edge states, by setting Ω = 4
(middle part of the region I, Fig. 2). Let the initial state be ∣1; n ¼ 2i, where 1
refers to a charged particle occupying thefirst site of the chain andn refers to

the number of photons. Generally speaking, three pairs of edge states will
contribute the most to the charge dynamics: the pair of single-particle edge
states with predominant weight on the Fock subspace n = 2, and the two
pairs of anomalous edge states appearing in the adjacent resonant gaps,
located at a distance of ±Ω/2.

The resulting dynamics for this configuration are shown in Fig. 7. For
the matter part, we plot the occupation probability of the first site of the
chain, P ch1 ðtÞ ¼ jh1jUðtÞj1; n ¼ 2ij2, as a function of time, whereUðtÞ ¼
expð�iHtÞ corresponds to the time evolution operator. The upper plot of
Fig. 7a depicts the long-term behavior of P ch1 ðtÞ, which showcases clear
oscillations, as expected for a topological system displaying edge states. The
dashed, vertical line (orange) indicates the oscillation period, which is
obtained through Fourier Transform (FT) analysis (see Supplementary
Fig. 1 for additional details on the FT in Supplementary Note 1). The
comparison with the energy scales of the Hamiltonian confirms that this
oscillation is in fact related to the energy splitting of the single-particle edge
states with 〈n〉≈2. However, a closer inspection reveals that, for short times,
P ch1 ðtÞ displays a beating (lower plot of Fig. 7a), i.e., amodulated-amplitude
oscillation, which is an unavoidable signature of interference between dif-
ferent eigenstates. Such patterns appear due to the presence of two slightly
different frequencies f1 and f2, whose interference results in a faster oscil-
lation with frequency (f1+ f2)/2, and amplitude modulation of frequency
∣f1− f2∣/2. The corresponding period of both oscillations is indicated with
dashed, vertical lines (magenta), based on the results of the FT. This
behavior is a result of the characteristic photonoccupationof the anomalous
edge states, which allows for some overlap between them and the single-
particle ones. Then, the small energy differences between the single-particle
and the anomalous edge states appearing in the upper and lower resonant
gap give rise to two close-by frequencies that create this interference effect.
Note that, in the absence of anomalous edge states, the single-particle ones
are typically isolated from other eigenstates of the system,30, 31, which is the
reason why the leakage to the bulk is negligible for reasonable system sizes.
In subplot of Fig. 7b, we show the photon dynamics, i.e., the photon
occupation of the Fock subspace n; Pph

n ðtÞ ¼ jhnjUðtÞj1; n ¼ 2ij2.We plot
this quantity for n = 2 (red curve), which shows the same behavior as
P ch1 ðtÞ, as expected. Photons inherit the beating pattern as well since the
oscillation between single-particle and anomalous edge states also involves

Fig. 7 | Entangled light-matter dynamics. Photon and charge dynamics, for the
initial state ∣1; n ¼ 2i, considering a configuration with both anomalous and single-
particle edge states. a Electronic occupation probability of the first site of the chain
Pch
1 ðtÞ as a function of time, for two different time scales. The dashed, vertical lines

indicate the relevant oscillation periods, as obtained from the Fourier Transform.
b Photon dynamics Pph

n ðtÞ for the subspace n = 1 (yellow) and n = 2 (red) as a
function of time. In both plots, the dashed, vertical lines indicate the relevant
oscillation periods. Parameters: Ω ¼ 4; J 0 ¼ 2; J ¼ 1; g ¼ 0:35;N ¼ 8; nmax ¼ 50.

Fig. 6 | Average number of photons 〈n〉 for anomalous edge states, and spatial-
light structure. a 〈n〉 is plotted for two different pairs of anomalous edge states (see
legend), 〈n〉 is plotted for both edge states. The vertical, dashed lines are the
boundaries of the region [Ω−, Ω+]. bWeight of the anomalous edge states on each
site of the chain i∈ [1, 2N], for each photon subspace n (red for n = 0, blue for n = 1,
and green for n = 2). All parameters are chosen as in Fig. 2: J ¼ 1; J 0 ¼ 2;N ¼ 12
unit cells, g ¼ 0:35; nmax ¼ 50.
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the exchange of photons. The time-dependence of Pph
n¼2ðtÞ leads to the

population of other Fock subspaces, as that with n = 1 (yellow curve).

Conclusions
In summary, our results provide a bridge between isolated, hybrid light-
matter systems and periodically driven ones with classical AC fields. We
have shown that anomalous Floquet topological phases can emerge in the
semi-classical limit of c-QED materials and have described their quantum
origin. Far from the semi-classical limit they also display edge states and
trivial bands, but their physical properties are very different due to the
presence of back-action and light-matter correlations. This confirms that an
effective, discrete time-translation symmetry emerges in the matter sector
due to the coupling to cavity photons, as otherwise anomalous topological
phases could not be present.

The required ingredient to create this anomalous hybrid phase in
c-QED materials is a cavity that is resonant with a topological system that
already displays edge states. However, the interaction term also needs to
have the right symmetry, to produce an exact crossing between different
Fock subspaces.

To confirm the topological origin of this hybrid light-matter phase we
have identified two topological invariants, ν0 and ~ν, which predict the
presence of edge states in the single-particle and resonant gaps, respectively.
One is the standard winding number of non-interacting one-dimensional
chiral systems, while the other is a winding number that captures the
resonant light-matter interaction. We have shown that although their sum
vanishes, it is their independent value thatmatters anddefines a light-matter
invariant for the system, which establishes the correct bulk-to-boundary
correspondence. Importantly, our result shows a link between the unequi-
valent 0 and π gaps of Floquet systems, and the single-particle and
interaction-induced gaps, respectively.

Our findings could be experimentally verified on different platforms,
for example, ion traps, where it should be possible to engineer the required
interaction by combining longitudinal and transverse phononic degrees of
freedom53. Importantly, phonons would need to have the right range of
frequencies to produce a resonant interaction with the chain. Another
possibility would be the use of superconducting circuits54, where the cou-
pling to the cavity can be simulated by additional waveguides. Dimerization
can be obtained by locally changing the capacitance in the LRC circuits55.

Lastly, we can envision future research lines based on our results, such
as the extension to other non-trivial topological systems, as the Creutz
ladder or other quasi-one-dimensional ladder models56.

Methods
Derivation of the effective Hamiltonian
The effective Hamiltonian can be directly derived from the original
Hamiltonian in Eq. (1). The first step is to find the eigenvectors ∣φ± ðkÞ

�
of

HSSHðkÞ, obtained from the unperturbed SSHchainHamiltonianwithPBC,
HSSH ¼PkΨ

y
kHSSHðkÞΨk, with:

HSSHðkÞ ¼
0 J þ J 0eik

J þ J 0e�ik 0

 !
ð12Þ

and Ψk ¼ ak; bk
� �

. The corresponding eigenvalues are given in Eq. (2).
Then, rewriting the full Hamiltonian in this basis for the fermionic part, we
arrive at Eq. (5). In particular, the matrix elements of the coupling between
the two systems are given by the following expressions:

Vþ;þ kð Þ ¼ 1� cos kð Þð Þ J � J 0ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2 þ J 02 þ 2JJ 0 cos kð Þ

p ð13Þ

Vþ;� kð Þ ¼ �i sin kð Þ J þ J 0ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2 þ J 02 þ 2JJ 0 cos kð Þ

p ¼ �iΓ kð Þ ð14Þ

V�;þ kð Þ ¼ i sin kð Þ J þ J 0ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2 þ J 02 þ 2JJ 0 cos kð Þ

p ¼ iΓ kð Þ ð15Þ

V�;� kð Þ ¼ � 1� cos kð Þð Þ J � J 0ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2 þ J 02 þ 2JJ 0 cos kð Þ

p ð16Þ

Calculation of the topological invariant
Starting from the simplest case of the unperturbed SSH chain, where chiral
symmetry is givenby aσzoperator,we canobtain theBerry connection from
the eigenstates of HSSH; ∣φμi:

A0 ¼ hφμji∂kjφμi ¼ � J 0 J cos kð Þ þ J 0½ �
2 J2 þ J 02 þ 2JJ 0 cos kð Þ� 
 ð17Þ

Interestingly, the expression is identical for the two eigenstates. This is the
reason why the calculation of the Zak phase, by integrating over the whole
FBZ, results in the same values for both (we define z≡ eik):

γ0 ¼ �
I

dz
4i

z2 þ 2 J 0
J z þ 1

z z � zþ
� �

z � z�
� � ¼ �πΘ 1� J=J 0

� � ð18Þ

beingΘ(x) theHeaviside functionand the integral in the complexplaneover
the unit circle. This demonstrates that for the SSH chain, the Zak phase is
quantized in the topological phase, J<J 0.

Because the system has chiral symmetry, it is also possible to directly
calculate the winding number from the Hamiltonian:

ν0 ¼
Z π

�π
tr σzH

�1
SSH∂kHSSH

n o dk
4πi

¼ �Θ 1� J=J 0
� �

; ð19Þ

which coincides with the expression from the Zak phase, divided by π. This
particular feature allows us to relate the quantized Zak phase with the value
of the winding number via the relation γ0 = πν0.

This relation between the Zak phase and the winding number can be
extended to the many-body Zak phase, if the many-body system is also
chiral, as in our present case. To calculate the many-body Zak phase we
consider a momentum space discretization and calculate the infinitesimal
rotation of many-body eigenstates, ∣ΨμðkÞi, as they are parallel transported
along the FBZ. Summing over all contributions we arrive at:

γμ ¼ �
Xπ�δk

k¼�π
Im log hΨμðkÞjΨμðkþ δkÞi

h in o
; ð20Þ

and define νμ = γμ/π. Notice that now the index μ of the many-body
eigenstates runs over all many-body eigenstates.

To complete the description of the topological phases, and in particular
of thephasewithmany-body edge states andvanishingwindingnumber,we
focus on the analytically solvable model of Eq. (8). The Hamiltonian is the
basis of eigenstates ofHSSH and because it is chiral, its winding number for
each subspace can be calculated with an identical formula. Notice however
that in order to use the same chiral operator,σz, onemust performa rotation
of theHamiltonian. Similarly, from its eigenstates, one can calculate the Zak
phase analytically, or numerically. All this gives the same result for ~ν.

Code availability
The code to reproduce the figures and numerical calculations of this work
can be found in (B. Pérez-González (2024), https://doi.org/10.5281/zenodo.
13353498).

Received: 21 April 2024; Accepted: 5 December 2024;

https://doi.org/10.1038/s42005-024-01908-y Article

Communications Physics |           (2024) 7:419 7

https://doi.org/10.5281/zenodo.13353498
https://doi.org/10.5281/zenodo.13353498
www.nature.com/commsphys


References
1. Laughlin, R. B. Quantized hall conductivity in two dimensions. Phys.

Rev. B 23, 5632–5633 (1981).
2. Thouless, D. J., Kohmoto, M., Nightingale, M. P. & den Nijs, M.

Quantized hall conductance in a two-dimensional periodic potential.
Phys. Rev. Lett. 49, 405–408 (1982).

3. Klitzing, K. V., Dorda, G. & Pepper, M. Newmethod for high-accuracy
determination of the fine-structure constant based on quantized hall
resistance. Phys. Rev. Lett. 45, 494–497 (1980).

4. Ma,S.&Anlage,S.M.Microwaveapplicationsofphotonic topological
insulators. Appl. Phys. Lett. 116, 250502 (2020).

5. Gilbert, M. J. Topological electronics. Commun. Phys. 4, 70
(2021).

6. Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in
semiconductor quantum wells. Nat. Phys. 7, 490–495 (2011).

7. Kitagawa, T., Oka, T., Brataas, A., Fu, L. & Demler, E. Transport
properties of nonequilibrium systems under the application of light:
Photoinduced quantum hall insulators without landau levels. Phys.
Rev. B 84, 235108 (2011).

8. Gómez-León, A. & Platero, G. Floquet-bloch theory and topology in
periodically driven lattices. Phys. Rev. Lett. 110, 200403
(2013).

9. Delplace, P., Gómez-León, A. & Platero, G. Merging of Dirac points
and Floquet topological transitions in ac-driven graphene. Phys. Rev.
B 88, 245422 (2013).

10. Grushin, A.G., Gómez-León, A. &Neupert, T. Floquet fractional Chern
insulators. Phys. Rev. Lett. 112, 156801 (2014).

11. Perez-Piskunow, P. M., Usaj, G., Balseiro, C. A. & Torres, L. E. F. F.
Floquet chiral edge states in graphene. Phys. Rev. B 89, 121401
(2014).

12. Pérez-González, B., Bello, M., Platero, G. & Gómez-León, A.
Simulation of 1d topological phases in driven quantum dot arrays.
Phys. Rev. Lett. 123, 126401 (2019).

13. Rudner, M. S., Lindner, N. H., Berg, E. & Levin, M. Anomalous edge
states and the bulk-edge correspondence for periodically driven two-
dimensional systems. Phys. Rev. X 3, 031005 (2013).

14. Gómez-León, A., Delplace, P. & Platero, G. Engineering anomalous
quantumhall plateaus andantichiral stateswith ac fields.Phys. Rev. B
89, 205408 (2014).

15. Quelle, A., Weitenberg, C., Sengstock, K. & Morais Smith, C. Driving
protocol for a Floquet topological phase without static counterpart.
New J. Phys. 19, 113010 (2017).

16. Rudner, M. S. & Lindner, N. H. Band structure engineering and non-
equilibrium dynamics in Floquet topological insulators. Nat. Rev.
Phys. 2, 229–244 (2020).

17. Gómez-León, Á. Anomalous floquet phases. A resonance
phenomena. Quantum 8, 1522 (2024).

18. Forn-Díaz, P. et al. Observation of the Bloch-Siegert shift in a qubit-
oscillator system in the ultrastrong coupling regime. Phys. Rev. Lett.
105, 237001 (2010).

19. Niemczyk, T. et al. Circuit quantum electrodynamics in the
ultrastrong-coupling regime. Nat. Phys. 6, 772–776 (2010).

20. Yoshihara, F. et al. Superconducting qubit–oscillator circuit beyond
the ultrastrong-coupling regime. Nat. Phys. 13, 44–47 (2017).

21. Frisk Kockum, A., Miranowicz, A., De Liberato, S., Savasta, S. & Nori,
F. Ultrastrong coupling between light and matter. Nat. Rev. Phys. 1,
19–40 (Springer US, 2019).

22. Romero, G., Ballester, D., Wang, Y. M., Scarani, V. & Solano, E.
Ultrafast quantum gates in circuit QED. Phys. Rev. Lett. 108, 120501
(2012).

23. Schlawin, F., Kennes, D.M. & Sentef, M. A. Cavity quantummaterials.
Appl. Phys. Rev. 9, 011312 (2022).

24. Sentef, M. A., Li, J., Künzel, F. & Eckstein, M. Quantum to classical
crossover of Floquet engineering in correlated quantum systems.
Phys. Rev. Res. 2, 033033 (2020).

25. Bomantara, R. W. & Gong, J. Generating controllable type-II weyl
points via periodic driving. Phys. Rev. B 94, 235447 (2016).

26. Li, J. & Eckstein, M. Manipulating intertwined orders in solids with
quantum light. Phys. Rev. Lett. 125, 217402 (2020).

27. Li, J., Schamriß, L. & Eckstein, M. Effective theory of lattice electrons
strongly coupled to quantum electromagnetic fields. Phys. Rev. B
105, 165121 (2022).

28. Dmytruk,O.&Schiro,M.Controlling topological phasesofmatterwith
quantum light. Commun. Phys. 5, 271 (2022).

29. Eckhardt, C. J. et al. Quantum Floquet engineering with an exactly
solvable tight-binding chain in a cavity.Commun. Phys. 5, 122 (2022).

30. Pérez-González, B., Gómez-León, A. & Platero, G. Topology
detection in cavity QED. Phys. Chem. Chem. Phys. 24, 15860–15870
(2022).

31. Pérez-González, B., Platero, G. & Gómez-León, Á. Light-matter
correlations in quantum Floquet engineering. arXiv preprint
arXiv:2302.12290 (2023).

32. Shirley, J. H. Solution of the Schrödinger equation with a Hamiltonian
periodic in time. Phys. Rev. 138, B979–B987 (1965).

33. Roy, R. & Harper, F. Periodic table for Floquet topological insulators.
Phys. Rev. B 96, 155118 (2017).

34. Su, W. P., Schrieffer, J. R. & Heeger, A. J. Solitons in polyacetylene.
Phys. Rev. Lett. 42, 1698–1701 (1979).

35. Heeger, A. J., Kivelson, S., Schrieffer, J. R. & Su, W. P. Solitons in
conducting polymers. Rev. Mod. Phys. 60, 781–850 (1988).

36. Jackiw,R. &Rebbi, C. Solitonswith fermion number 1/2.Phys. Rev.D.
13, 3398–3409 (1976).

37. Pérez-González, B., Bello, M., Gómez-León, A. & Platero, G. Interplay
between long-range hopping and disorder in topological systems.
Phys. Rev. B 99, 035146 (2019).

38. Dal Lago, V., Atala, M. & Foa Torres, L. E. F. Floquet topological
transitions in a driven one-dimensional topological insulator. Phys.
Rev. A 92, 023624 (2015).

39. Olin, S. & Lee, W.-C. Topological phase transition in the
commensurate multifrequency floquet Su-Schrieffer-Heeger model.
Phys. Rev. B 107, 094310 (2023).

40. Asbóth, J. K., Tarasinski, B. & Delplace, P. Chiral symmetry and bulk-
boundary correspondence in periodically driven one-dimensional
systems. Phys. Rev. B 90, 125143 (2014).

41. Eckardt, A. & Anisimovas, E. High-frequency approximation for
periodically driven quantum systems from a Floquet-space
perspective. N. J. Phys. 17, 093039 (2015).

42. Balabanov, O. & Johannesson, H. Robustness of symmetry-
protected topological states against time-periodic perturbations.
Phys. Rev. B 96, 035149 (2017).

43. Cardano,F. et al. Detectionof zakphasesand topological invariants in
a chiral quantum walk of twisted photons. Nat. Commun. 8, 15516
(2017).

44. Cheng, Q. et al. Observation of anomalous π modes in photonic
Floquet engineering. Phys. Rev. Lett. 122, 173901 (2019).

45. Kitagawa, T., Berg, E., Rudner, M. & Demler, E. Topological
characterization of periodically drivenquantumsystems.Phys. Rev. B
82, 235114 (2010).

46. Wu, S. et al. Anomalous π modes by Floquet engineering in optical
lattices with long-range coupling. Opt. Express 30, 44983–44991
(2022).

47. Berry,M. V. Quantal phase factors accompanying adiabatic changes.
Proc. R. Soc. Lond. A. Math. Phys. Sci. 392, 45–57 (1984).

48. Zak, J. Berry’s phase for energy bands in solids. Phys. Rev. Lett. 62,
2747–2750 (1989).

49. Atala, M. et al. Direct measurement of the Zak phase in topological
Bloch bands. Nat. Phys. 9, 795–800 (2013).

50. Downing, C. A., Sturges, T. J., Weick, G., Stobińska, M. & Martín-
Moreno, L. Topological phases of polaritons in a cavity waveguide.
Phys. Rev. Lett. 123, 217401 (2019).

https://doi.org/10.1038/s42005-024-01908-y Article

Communications Physics |           (2024) 7:419 8

www.nature.com/commsphys


51. Nathan, F. & Rudner, M. S. Topological singularities and the general
classification of Floquet-Bloch systems. New J. Phys. 17, 125014
(2015).

52. Bello, M., Creffield, C. E. & Platero, G. Long-range doublon transfer in
a dimer chain induced by topology and ac fields. Sci. Rep. 6, 22562
(2016).

53. Nevado, P., Fernández-Lorenzo, S. & Porras, D. Topological edge
states in periodically driven trapped-ion chains. Phys. Rev. Lett. 119,
210401 (2017).

54. Kim, E. et al. Quantum electrodynamics in a topological waveguide.
Phys. Rev. X 11, 011015 (2021).

55. Yu, X.-L. et al. Topological phase transitions, Majorana modes, and
quantum simulation of the Su–Schrieffer–Heegermodel with nearest-
neighbor interactions. Phys. Rev. B 101, 045422 (2020).

56. Zurita, J., Creffield, C. & Platero, G. Tunable zeromodes and quantum
interferences in flat-band topological insulators. Quantum 5, 591
(2021).

Acknowledgements
Weacknowledgesupport from theEuropeanUnion’sHorizon2020 research
and innovation program under Grant Agreement No.899354(SuperQuLAN),
the Proyecto Sinergico CAM 2020 Y2020/TCS-6545 (NanoQuCoCM), and
from CSIC Interdisciplinary Thematic Platform (PTI+) on Quantum
Technologies (PTI-QTEP+).GPandBPGaresupportedbySpain’sMINECO
through Grant No. PID2020-117787GB-I00 and by the CSIC Research
Platform PTI-001. G P and BPG also acknowledge the agreement between
Carlos III University and the CSIC through the UA.

Author contributions
B.P.G. and A.G.L. did the analytical and numerical analysis. B.P.G., A.G.L.,
and G.P. discussed and analyzed the results, and contributed to the writing
of the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s42005-024-01908-y.

Correspondence and requests for materials should be addressed to
Beatriz Pérez-González, Gloria Platero or Álvaro Gómez-León.

Peer review informationCommunications Physics thanks Yiming Pan and
the other, anonymous, reviewer(s) for their contribution to the peer review of
this work. A peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License,
which permits any non-commercial use, sharing, distribution and
reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if you modified the licensed material. You
do not have permission under this licence to share adapted material
derived from this article or parts of it. The images or other third party
material in this article are included in the article’s Creative Commons
licence, unless indicated otherwise in a credit line to thematerial. If material
is not included in thearticle’sCreativeCommons licenceandyour intended
use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder. To
view a copy of this licence, visit http://creativecommons.org/licenses/by-
nc-nd/4.0/.

© The Author(s) 2024

https://doi.org/10.1038/s42005-024-01908-y Article

Communications Physics |           (2024) 7:419 9

https://doi.org/10.1038/s42005-024-01908-y
http://www.nature.com/reprints
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
www.nature.com/commsphys

	Quantum origin of anomalous Floquet phases in cavity-QED materials
	Results and discussion
	Model Hamiltonian
	Topological invariant
	Light-matter entanglement
	Entangled light-matter dynamics

	Conclusions
	Methods
	Derivation of the effective Hamiltonian
	Calculation of the topological invariant

	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




