
Machine Learning for Assembly

Modeling in Computer-Aided Design

Dissertation
Zur Erlangung des Doktorgrades Dr. rer. nat.

Institut für Software & Systems Engineering
Fakultät für Angewandte Informatik

Universität Augsburg

Carola Anna Lenzen

Machine Learning for Assembly Modeling in Computer-Aided Design

Reviewers: Prof. Dr. Wolfgang Reif
Prof. Dr. Bernhard Bauer
Prof. Dr. Alexander Schiendorfer

Day of Defense: December 09, 2024

I

Abstract

In the domain of assembly modeling, design engineers utilize computer-aided de-
sign (CAD) software to develop complex assemblies. However, the increasing volume
and size of non-standardized part catalogs from various manufacturers pose significant
challenges in the selection of suitable parts from the vast number of options. This the-
sis addresses these challenges by proposing a novel methodology that leverages machine
learning techniques to support inexperienced designers in the assembly design process by
extracting expert knowledge from previous assemblies. Specifically, it investigates the use
cases of global part recommendation, localized part recommendation and handling anoma-
lies in assemblies.

The first contribution is a generic, data-driven approach to extract patterns of proven
part combinations across multiple real-world assemblies. The core methodology utilizes a
graph-based representation of assemblies, wherein parts are represented as nodes and their
connections as edges. Leveraging this representation, the methodology provides means and
guidelines for modeling arbitrary part recommendation tasks by applying graph machine
learning.

As second contribution, we developed an embedding technique to learn the similarity of
parts in terms of their usage across multiple assemblies. This technique adapts a method
from the field of natural language processing to general graph structures. The resulting
embeddings provide features for the parts in all learning tasks to enhance the models’
generalization capabilities.

The third contribution comprises an automated approach to generate learning instances
for self-supervised machine learning from assembly data which can be tailored to a spe-
cific learning task on assemblies. This method addresses the scarcity of labeled data in
real-world assembly datasets without involving domain experts. Moreover, this thesis in-
troduces an algorithm for generating synthetic anomalous assemblies by extracting regular
part combinations from a dataset of assemblies.

Finally, this thesis is the first to address part recommendation during assembly modeling
by analyzing previous assemblies through machine learning. It proposes a general frame-
work for a recommendation task, modeled as a classification problem to generate a fixed
number of recommendations. The experimental results across all use cases demonstrate
that machine learning-based methods can greatly enhance the efficiency of assembly mod-
eling, improve knowledge transfer among engineers, and reduce time for perusing extensive
part catalogs.

II

III

Acknowledgments

First, I would like to express my gratitude to my doctoral supervisor Prof. Dr. Wolfgang
Reif for his guidance and support throughout the years, the freedom he gave me in shaping
my research topic and the excellent technical equipment he provided. I am also grateful
for the critical questions in our discussions and the different perspectives he pointed out.
In addition, I would like to thank Prof. Dr. Bernhard Bauer and Prof. Dr. Alexander
Schiendorfer for their work as reviewers of this thesis.

I am very grateful to both Prof. Dr. Alexander Knapp and Dr. Gerhard Schellhorn for
their contributions to the quality assurance of this thesis. I would like to thank Dr. Stefan
Bodenmüller in particular for his persistent proofreading work. Additional thanks go to
Dr. Constantin Wanninger for sharing his expertise in CAD design and his support in
revising the figures of this thesis.

Many thanks to all former and current colleagues at the Institute for Software & Systems
Engineering who have created a workplace where I have enjoyed working. The inspiring
discussions and amusing conversations during the lunch breaks enriched my working days.
My special thanks go to Prof. Dr. Alexander Schiendorfer, who guided me during the first
years of my doctoral studies.

I am especially grateful to the students that have contributed to the research project
KOGNIA and this thesis. In particular, I would like to thank Maximilian Jannack for his
work on programming the Part Embedding Refiner, Michael Huber for his contribution to
the pretraining of part recommendation models, and Leon Toplak for his preliminary work
on exploring strategies for localized part recommendation.

My special thanks to my family and friends for continuously supporting me, be it through
motivating conversations or the necessary distraction in challenging situations. Finally, I
would like to express my deepest gratitude to my loving husband Philip who motivated,
supported and believed in me throughout the entire period. His support and suggestions
have contributed significantly to the success of this thesis.

Carola Lenzen

IV

Contents

1 Introduction 1
1.1 Challenges in Assembly Modeling . 2
1.2 Goals of this Thesis . 3
1.3 Research Project KOGNIA . 5
1.4 Scientific Contribution . 5
1.5 Thesis Outline . 7

2 Computer-Aided Design Foundations 9
2.1 Part Modeling . 11
2.2 Assembly Modeling . 12
2.3 Enhancing Reusability in Assembly Modeling via Part Catalogs 14

3 Data and Machine Learning Foundations 19
3.1 Basic Concepts of Machine Learning . 20

3.1.1 Artificial Neural Networks . 24
3.1.2 Deep Learning . 27

3.2 The Graph Data Structure . 28
3.3 Graph Machine Learning . 32

3.3.1 Categorization of Learning Tasks on Graphs 33
3.3.2 Graph Neural Networks . 35

3.4 Embedding Discrete Objects . 44
3.4.1 Learning Embeddings . 45
3.4.2 Word2Vec . 45

4 Assembly Data 51
4.1 Representing CAD Assemblies as Graphs . 52
4.2 Assembly Datasets . 54
4.3 Unsupervised Pretraining of Part Embeddings 56

4.3.1 Experimental Results . 59
4.3.2 Further Uses for Trained Embeddings 60
4.3.3 Related Work . 64

V

VI CONTENTS

5 Part Recommendation in Assembly Modeling 67
5.1 Generating Recommendation Instances from Assemblies 70
5.2 Baselines and Upper Bound . 75
5.3 Experimental Setup . 76
5.4 Experimental Results . 78
5.5 Digressions . 88

5.5.1 Pretraining of Part Recommendation Models 88
5.5.2 Graph Transformers for Part Recommendation 89
5.5.3 Context-Specific Number of Recommendations 90

5.6 Related Work . 92

6 Localized Recommendation By Targeted Part Placement 95
6.1 Generating Instances From Assemblies . 98
6.2 Variant I: Recommending Part Types for User-Given Extension Point . . . 100

6.2.1 Experimental Setup . 101
6.2.2 Experimental Results . 102

6.3 Variant II: Recommending Extension Point and Part Type 105
6.3.1 Modeling Approach (1): First Predicting Part Type, Afterward Ex-

tension Point . 106
6.3.2 Modeling Approach (2): First Predicting Extension Point, Afterward

Part Type . 109
6.3.3 Experimental Setup . 110
6.3.4 Experimental Results . 112

6.4 Related Work . 116

7 Handling Anomalies in Assemblies 119
7.1 Generating Synthetic Anomalous Assemblies 121
7.2 Detecting Anomalous Parts in Assemblies 126

7.2.1 Experimental Setup . 127
7.2.2 Experimental Results . 128

7.3 Recommending Alternative Parts . 130
7.3.1 Experimental Setup . 133
7.3.2 Experimental Results . 133

7.4 Related Work . 136

8 Summary and Outlook 139
8.1 Summary . 139
8.2 Lessons Learned . 143
8.3 Outlook . 144

Bibliography 147

Chapter 1
Introduction

Summary This chapter sets the stage for this thesis by outlining the challenges in as-
sembly modeling, particularly in selecting appropriate parts from extensive part catalogs.
It presents the goals and use cases addressed by the research, which include leveraging
machine learning techniques to extract design knowledge from past assembly data to im-
prove part selection processes by recommending parts next needed or analyzing assemblies
in terms of anomaly during the design process. The chapter also introduces the research
project KOGNIA which provided the inspiration for the problems addressed in this thesis.
Finally, it details the scientific contributions that this thesis offers and concludes with an
outline of its contents.

Contents
1.1 Challenges in Assembly Modeling 2
1.2 Goals of this Thesis . 3
1.3 Research Project KOGNIA . 5
1.4 Scientific Contribution . 5
1.5 Thesis Outline . 7

Engineering drawings of parts and assemblies have been an integral component of the
manufacturing industry since the First Industrial Revolution [107]. By the Third Industrial
Revolution, however, the drawings had become so complex that they were error-prone and
time-consuming to create, both of which impacting on revenue. Consequently, companies
started to leverage software for computer-aided design (CAD) to reduce costs and creation
time for their designs [10]: Sketchpad, an early design system for technical drawings with
a graphical user interface, allowed to draft 2D designs on a computer screen just like with
pencil and paper. Additionally, designers were already able to move and modify objects on
the screen, which allowed to refine and alter details without the need for mechanical erasers.
Once CAD software became affordable (e.g., ADAM, 1971, was designed to work on all
mainframe computers) and introduced solid modeling capabilities in 3D (Synthavision,
1972), it revolutionized the way engineering designs were created: CAD systems allow
to easily create, copy, or modify parts of the designs, to store them for later use in other
models, and to scale them automatically without dimensional error. This not only improves
quality of the design, but also speeds the design process up by ten times compared to
technical drawing by hand [107]. Latest with the introduction of CAD systems for common

1

2 CHAPTER 1. INTRODUCTION

Personal Computers (AutoCAD, 1982), they became the standard way of creating technical
designs across numerous industries, such as automotive, shipbuilding, or aerospace [119].

As the complexity of product designs was – and still is [113] – continuously increasing,
it eventually became more cost and time efficient to create designs based on the same
generic parts [4]. On the one hand, manufacturing departments could optimize tooling
and equipment specifically for producing and assembling those parts. On the other hand,
design engineers could focus on designing the assembly instead of creating customized part
designs from scratch – a shift from part modeling to assembly modeling. This eventually
led to the rise of highly specialized part manufacturers offering mass-produced standard
parts and providing CAD models of these parts to their customers [4]. In turn, industrial
companies refrained more and more from manufacturing customized parts in-house and in-
stead purchased such standard parts selected from part catalogs of the part manufacturers.
As the mass-produced parts could be manufactured both at fewer costs and with better
quality assurance, this in turn reduced the time-to-market and overall costs of products:
The production effort shrank to mainly assembling the final product from standard parts
instead of manufacturing all parts of the product entirely in-house.

Nowadays, numerous manufacturers produce parts in standardized sizes and specifi-
cations that can be used across multiple applications, such as screws, bearings and mo-
tors [50]. Each of them maintains their very own part catalogs, and the number as well
as the volume of those is still increasing [113]. This poses a challenge for design engi-
neers [87, 35]: They have to select the one part which fits best for their assembly out of
thousands of more or less similar parts. And while they search for possible candidates, they
typically have to peruse multiple part catalogs from different manufacturers which are dif-
ficult to compare: As there is no standardized format for the catalogs, part manufacturers
use proprietary formats which often differ in detail and presentation of the parts.

1.1 Challenges in Assembly Modeling

At the time when individual parts for each product or machine were still custom-designed
and manufactured, it was neither necessary nor possible to transfer knowledge about com-
patible combinations of parts to the next product. However, this changed with the rise
of available parts catalogs, as the same parts can be reused in several designs since then.
Nowadays, there are multiple suppliers of parts catalogs and their number and volume are
constantly increasing [113]. Consequently, designers have to go through many options when
searching for a suitable part during assembly modeling, which is very time-consuming and
a source of error for inexperienced designers in particular. According to a survey of design
engineers from multiple companies [44], they spend almost an hour a day searching for
suitable parts in the catalogs available to them and the same amount of time for modeling
the required part themselves if their search was unsuccessful.

Furthermore, knowledge of compatible part combinations is an essential factor in se-
lecting the best-suited part from all candidates for a new assembly. Once a suitable
combination of parts has been found, a designer can transfer this knowledge to assem-
blies for comparable application problems which require a similar design. For example, in
contract manufacturing or special machine construction, customers typically commission
slight product adaptations to solve comparable yet slightly different problems, which al-
lows experienced designers to adapt solutions they have found for similar problems in the
past [81, 74]. However, although experienced designers have gained knowledge of proven

1.2. GOALS OF THIS THESIS 3

part combinations over the course of their careers, this knowledge must be preserved and
made accessible to other designers, especially inexperienced ones; otherwise, they are forced
to reinvent the wheel once the experts leave the company.

Current numbers prove that the challenge of knowledge transfer between design en-
gineers becomes increasingly important: First, the number of experienced engineers is
declining due to the retirement of baby boomer engineers [32]. In addition, temporary
workers hired to cover high order volumes may have design experience but are not familiar
with the specific parts used in the current company and therefore have little advantage over
inexperienced designers in finding suitable parts. Furthermore, knowledge transfer often
faces significant challenges, for instance because the transfer is deliberately withheld, or
the knowledge is hard to formalize [149]. For example, by hoarding knowledge, individuals
may seek to make themselves indispensable to the company. However, even if there is a
willingness to share expertise, it cannot always be clearly communicated, even if it stems
from years of experience. Only a limited part of human knowledge can be consciously
retrieved and actively communicated [142] as it is deeply embedded.

There have already been efforts to support a designer in finding a part effectively to
overcome the challenge posed by the enormous variety of available parts [91, 45]. This
includes the classic search for impact terms or designations, which becomes more challeng-
ing due to inconsistent designations and heterogeneous organization of the parts across
multiple catalogs. Other techniques focus more on the geometry of the parts so that, for
example, parts of similar shape can be searched for by providing a reference part [13] or a
drawn 2D or 3D sketch of the envisioned part [45]. However, the engineer must have the
right part in mind or have the right idea in order to come up with the right part.

Unfortunately, retrieving this particular knowledge, i.e., formalizing expert knowledge
about part combinations and transferring it to inexperienced design engineers, turned out
to be a time-consuming and error-prone task if carried out manually [9]. Instead, it would
be beneficial to have a generic approach that is applicable to any collection of assemblies
and parts, and automatically extracts expert knowledge from existing designs, i.e., with-
out the necessity of manually modeling design knowledge. A support system built on this
approach could educate inexperienced designers regarding suitable combinations and even-
tually transfer the expert knowledge. Ideally, such a system also reduces the search space
for parts and thus solves the challenge arising from the variety of available parts, too.

1.2 Goals of this Thesis

We now translate the challenges outlined above into specific problems that designers en-
counter within the area of assembly modeling, which we will address as use cases in the
context of this work. The main challenge we focus on is the difficulty in easily or auto-
matically sharing design knowledge about good part combinations from previous designs
between designers. We therefore aim at educating inexperienced designers by providing
the design knowledge of experts with an assistance system. Precisely, we want to provide
recommendations for next required parts for the current state of the assembly. For exam-
ple, the recommendations can comprise a list of suitable parts for the current assembly,
from which the designer can select the desired one. To obtain them, however, we need
to derive knowledge about suitable parts from part combinations which appear in simi-
lar assemblies. Finally, the assistant system should also assess the quality of the current
assembly and indicate unusual part combinations. As they rarely appear or not at all in

4 CHAPTER 1. INTRODUCTION

existing designs, they are more likely to be inappropriate for the intended application. Note
that such a system primarily supports novice designers and can thus shorten their learning
phase, but also facilitates knowledge transfer among experienced designers, enabling them
to benefit from the insights of their peers. Decisive factors for the realization of such an
assistant system are the decreasing number of designers, which limits the pool of potential
contributors, as well as the desire to minimize additional work for the remaining designers.

In summary, we primarily aim to support inexperienced designers in assembly modeling
by extracting implicit design knowledge from existing assemblies through following an
automated approach that minimizes the involvement of domain experts. In order to tackle
the challenges in assembly modeling presented above, we identified three main use cases
to support engineers during assembly design:

• The first use case comprises global part recommendation during design, i.e., recom-
mendation of next, directly attachable parts to the current assembly. Such a rec-
ommendation system based on experienced design knowledge would already utilize
design knowledge from earlier assemblies.

• However, especially inexperienced designers would benefit from additional support
in locating the recommended parts within the current design, i.e., where to attach
the recommended parts, which we refer to as localized part recommendation. For
example, either the assistance system could recommend both a next part and the
part from the assembly it could be attached to, or design engineers could select an
existing part to receive targeted suggestions of suitable parts for it.

• Finally, the third use case deals with quality assessment of assemblies. Unusual part
uses or combinations may result from a lack of knowledge about or unsuccessful
searches for suitable parts. Therefore, an assistant system should be capable of
handling anomalies in assemblies, i.e., it should identify anomalous parts and support
in correcting them by suggesting alternatives.

In general, we assume that the experienced designers’ knowledge is contained in their
designs as these involve information on both the parts used and the combinations of parts to
solve a specific application problem. Therefore, we have to extract this implicit knowledge
in the form of recurring patterns from these designs and to make it available to other de-
signers after processing. To make design knowledge explicit, several methods are available.
For instance, in his thesis [9], Stefan Bartsch developed a part recommendation system
that assists designers using explicitly modeled design knowledge. The work revealed that
precise recommendations, even for a few considered parts, can be realized only with high
manual effort on modeling the design knowledge. This approach is therefore unsuitable for
handling large quantities of parts and contradicts our goal to minimize additional design-
ers’ work. Further, due to the heterogeneity of information in different parts catalogs and
CAD systems, our approach should only rely on universally available information.

Instead of a specialized, manual approach, we therefore aim at developing a generic,
data-driven approach leveraging artificial intelligence, which applies to any assembly data.
This aligns with the ongoing trend of evolving computer-aided processes like designing,
engineering and manufacturing (referred to CAx) into artificial intelligence-aided processes
(AIAx) [28, 57, 160, 167]. In particular, by providing a data-driven support for designers
during assembly modeling, the assistance system belongs to the category of AI-aided design
(AIAD).

1.3. RESEARCH PROJECT KOGNIA 5

Concretely, we aim at extracting universally available information inherently embedded
within the designs themselves: the parts used and their combination within assemblies. To
do so, we leverage machine learning techniques. This sub-area of artificial intelligence
deals with the extraction of patterns from data. In our case, we extract recurring patterns
representing design knowledge from existing assemblies. As assemblies can be naturally
represented as graphs, we employ graph neural networks, a specific form of neural networks
designed to process graph structures. To automate the approach, we use techniques of
automatic generation of labeled data – called self-supervision – which obviates manual
labeling of assembly data by designers.

1.3 Research Project KOGNIA

The inspiration for addressing the challenges in assembly modeling described above origi-
nates from the research project KOGNIA1 [46, 66]. It aims to support CAD designers in
the design process, particularly in assembly modeling. CADENAS GmbH, the project’s
industrial partner, specializes in developing software solutions for engineering, including a
part management system that assists engineers manage and find parts, such as by searching
for geometrically similar parts based on a sketch [45].

As a first simple attempt to the project, the above-mentioned thesis [9] addressed
the development of an assistance system for designers based on modeled knowledge. It
revealed that high prediction accuracy requires a great deal of effort for only a few parts.
Consequently, the project’s focus was set on a generic, data-driven approach using machine
learning.

The assembly data examined in this thesis were provided by KOGNIA, and the ma-
jority of the research results on part recommendation were achieved within the scope of
this initiative, including the development of a demonstrator presented in Chapter 5. A
press release [135] summarizes the most significant results achieved upon the project’s
completion.

1.4 Scientific Contribution

This thesis contributes to the field of artificial intelligence-aided design and focuses on
the application of graph machine learning to assembly modeling. The relevance of its
contributions has been recognized by the scientific community, as they already serve as
the basis for further research in this area (e.g., [89]). In particular, this thesis makes the
following main contributions:

Methodology to Apply Graph Machine Learning to Assembly Modeling This
thesis provides an automated, generic approach to extract design knowledge from assem-
blies. Knowledge about which parts have to be combined in order to achieve the overall
purpose of an assembly is implicitly encoded by the used parts as well as the connections
between them. Consequently, the assemblies are transformed into a graph representation
based on the connections between the assembled parts. The methodology provides means

1Project KOGNIA (Konstruktionsunterstützung durch künstliche Intelligenz und automatisiertes
maschinelles Lernen) has been funded by the Bavarian Ministry of Economic Affairs, Regional Devel-
opment and Energy (StMWi).

6 CHAPTER 1. INTRODUCTION

and guidelines for extracting implicit design knowledge from those graphs, and for mod-
eling a machine learning task leveraging this knowledge based on arbitrary graph neural
network architectures.

Embedding Representation of Assembly Parts An important aspect for general-
ization capabilities of machine learning models in the domain of assembly modeling is the
similarity of parts in terms of their usage. Thus, this thesis gives an embedding technique
for assembly graphs inspired by natural language processing in order to grasp part simi-
larity based on frequent combinations with other parts. As parts occurring infrequently
in a given assembly dataset may obtain a poor embedding, an interactive editor to refine
embeddings based on user-given similarity constraints is provided.

Data Augmentation Approach for Instance Generation from Assemblies Real-
world assembly datasets typically comprise only final assemblies without labels, and usually
not enough to serve as training instances. This thesis contributes an automated approach to
generate instances for self-supervised machine learning from assembly datasets. It increases
the number of instances through data augmentation and is customizable with regard to
the shape of instances required for a given learning task.

Models for Part Recommendation Tasks This thesis is the first to employ machine
learning techniques for recommending parts based on extracted design knowledge from
previous assemblies. It provides reference models for part recommendation tasks in which
new parts are to be added to an assembly or existing parts are to be replaced. Notably,
a subset of the models is capable of incorporating a given location within the assembly,
others can recommend a suitable location for a part. To assess the performance of part
recommendation models, novel baseline and upper bound models are given. In addition,
a reference model was also applied to detect anomalous parts in assemblies. The pro-
posed models were carefully evaluated on real-world assemblies and consistently achieved
excellent results in all use cases.

Publications The following publications were created in the context of the work pre-
sented in this thesis.

1. Carola Lenzen, Alexander Schiendorfer, and Wolfgang Reif. Graph Machine Learning for
Assembly Modeling. In Learning on Graphs Conference (LoG), 2022

2. Carola Gajek, Alexander Schiendorfer, and Wolfgang Reif. A Recommendation System
for CAD Assembly Modeling based on Graph Neural Networks. In European Conference on
Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML
PKDD), 2022

3. Carola Lenzen and Wolfgang Reif. Localized Recommendation in Assembly Modeling: Em-
ploying GNNs for Targeted Part Placement. In International Conference on Machine Learn-
ing and Applications (ICMLA), 2024

4. Carola Lenzen, Vinzenz Löffel, and Wolfgang Reif. Handling Anomalies in CAD Assemblies:
Detecting Anomalous and Suggesting Alternative Parts. In International Conference on
Computational Science and Computational Intelligence (CSCI), 2024

1.5. THESIS OUTLINE 7

1.5 Thesis Outline

The remainder of this thesis is structured as follows:
The subsequent two chapters lay the necessary foundations for this thesis: Chapter 2

provides an overview of the application domain of this thesis, namely computer-aided
design (CAD), and covers various types of modeling, including part modeling and assembly
modeling. The chapter emphasizes the impact of standardized, mass-produced parts on
designing and their integration into CAD systems organized in so-called part catalogs to
streamline the assembly design process.

Chapter 3 introduces the reader to fundamental machine learning concepts relevant to
this thesis. It covers the definition of graph structures and machine learning techniques on
graphs. Thereafter, it focuses on graph neural networks (GNNs), a special form of neural
networks designed for processing graphs, and highlights four architectures in detail. The
chapter concludes with a consideration of methods for embedding discrete objects, such
as parts in assemblies, and presents word2vec [96] as a learning technique from natural
language processing, which is not based on specifics of natural language.

Chapters 4 to 7 constitute the main contributions of this work.
Chapter 4 introduces the representation of CAD assemblies as undirected graphs over

parts and presents the three assembly datasets examined in this thesis. These are real-
world datasets, as the designs originate from orders submitted to specific configurators for
assemblies. Further, it presents a new unsupervised pretraining technique called part2vec
to learn low-dimensional embeddings of parts which are later employed as features for the
parts. This technique is a generalization of word2vec [96] from the field of natural language
processing to arbitrary graph structures. Moreover, the chapter highlights additional ap-
plications of the trained embeddings for designers and their companies and concludes with
the presentation of a developed embedding refiner, which allows a user to define similarity
constraints for particular parts in order to enhance the embedding of infrequent parts in
the assembly dataset.

The subsequent three chapters present solutions for the considered use cases of assembly
modeling using graph machine learning. They each present the proposed methodology
for addressing the respective problem and present the experimental results on the three
assembly datasets.

Chapter 5 presents an interactive recommendation model that suggests a fixed number
of part types for a given assembly during design – referred to as global part recommenda-
tion. It describes the procedure for generating corresponding recommendation instances
from the final assemblies in a self-supervised manner and introduces various comparison
models for assessing the recommendation results. This includes a self-developed frequency-
based baseline inspired by market basket analysis and an upper bound estimation of the
maximal achievable performance. Potential techniques for improvement are then exam-
ined, such as pretraining of the recommendation models and employing Graph Transform-
ers. Experiments and evaluation results from a user study confirm that the global part
recommendation has been successfully implemented.

Chapter 6 addresses the use case of localized part recommendation in assembly mod-
eling through two use case variants. The first variant involves recommending part types
for a designer-given extension point in the design, while the second variant focuses on
recommending both an extension point and a part type. The extension point refers to a
part already included in the current assembly. The chapter further explains the necessary

8 CHAPTER 1. INTRODUCTION

adjustments for instance generation in order to integrate the information of the extension
point. For both variants, different modeling approaches are examined and compared to
baseline models on the assembly datasets.

Chapter 7 deals with anomaly detection in assemblies, specifically the identification of
anomalous parts originating from the previous selection of an unsuitable part type. Since
the assemblies examined in this thesis do not exhibit any anomalies, it presents an algorithm
to generate synthetic anomalous assemblies by leveraging an extracted set of proven part
combinations extracted from the assembly datasets. Furthermore, it leverages concepts of
the first localization variant of Chapter 6 in order to recommend alternative parts for the
anomalous one while not including their type information in the recommendation model.
Experimental results on the assembly datasets show the successful modeling of both tasks.

Finally, Chapter 8 summarizes the content and findings of this thesis, provides lessons
learned about the presented methodologies throughout this thesis, and presents an outlook
on future work.

Chapter 2
Computer-Aided Design Foundations

Summary This chapter provides a foundational overview of computer-aided design
(CAD) with an emphasis on part and assembly modeling. While parts constitute atomic
components, an assembly is composed of multiple parts with pairwise constraints defined
relative to the parts’ topology – so-called mating conditions. The chapter further high-
lights the shift in design practices due to the availability of standardized, mass-produced
parts in part catalogs, which allow designers to select from pre-existing parts rather than
having to create new ones from scratch for modeling new products. Lastly, it discusses the
integration of these parts into CAD systems to streamline the assembly design process.

Contents
2.1 Part Modeling . 11
2.2 Assembly Modeling . 12
2.3 Enhancing Reusability in Assembly Modeling via Part Catalogs . . . 14

For a deeper insight into the application domain in which this thesis is located, this
chapter provides an overview of different modeling variants of computer-aided design, in
particular the design of individual parts and their assemblies. Finally, we discuss the setting
examined in this thesis, in which designers create assemblies consisting of parts stemming
from catalogs of manufacturers. Our explanations on part and assembly modeling follow
fundamental literature [124, 105].

Computer-aided design (CAD) refers to the use of computer systems for assisting in
the creation, modification, analysis and optimization of an engineering design [105]. This
area is currently experiencing great popularity due to the increasing use of 3D printing
in many branches such as automotive, aviation and healthcare, but also in the private
sector [65]. Before the use of computers, engineering drafts were created on paper to
document the designs. Depending on the information to be depicted, the drawings took
various forms, from small sketches to detailed drawings on large sheets of paper using
drafting machines. This is why CAD is also referred to as computer-aided drafting. In the
course of the twentieth century, CAD became the standard method of creating engineering
drawings [71]. This led to an increase in both the productivity of the designer and the
quality of the designs.

9

10 CHAPTER 2. COMPUTER-AIDED DESIGN FOUNDATIONS

Modern CAD systems are user-oriented systems based on interactive computer graph-
ics, in which designers create and manipulate design data based on geometric operations.
The designs should be more thought of as vector graphics rather than bitmaps indicating
colored dots on a monitor: The central item within a CAD system that designers create
and interact with is a model, more specifically a mathematical model of the designed object.
The name is derived from the fact that the object’s geometry is defined by a combination
of geometric figures (such as points, lines, circles and so on) and their relationship to each
other, which can both be described by mathematical equations, for example dimensions
or parallelism. CAD systems are therefore equipped with an engine that generates the
geometric object based on its model.

CAD models can be created in both two and three dimensions. Typically, CAD systems
support a combination of different modeling types. The first step in 3D modeling is often
based on 2D modeling, for example by first creating a sketch of the geometry on a plane
in 2D, which is then expanded to include the third dimension.

As another categorization, a CAD model can represent a single, individual part or a
whole collection of multiple connected parts, so-called assemblies. A part model is self-
contained: it can be stored independently within the CAD system and the mathematical
equations defining it are entirely sufficient to regenerate and display the part on its own.
Part models are composed of basic geometric shapes using geometric operations. By con-
trast, an assembly model is made up of a set of part models. To be precise, the assembly
model does not contain them, instead it references the individual part models and defines
their position, either globally in a given coordinate system of the assembly or locally, i.e.,
in relation to each other. By adding parts to an assembly, their model remains unaffected;
however, due to referencing, changes to the part models are reflected in the assembly.
There are typically separate workspaces in CAD systems for part modeling and assembly
modeling.

Part models can be further divided into surface models and solid models. The former
have no volume and consist only of surfaces, which could be imagined as being made of
a wafer-thin material. Solid models, on the other hand, do have volume, i.e., all faces of
the model are connected to other faces to form, for instance, a cuboid. For the purposes
of this dissertation, we will only consider solid part models.

Over time, a large variety of different CAD systems have been developed. Common
CAD systems include for instance AutoCAD, CATIA, SolidWorks or FreeCAD [134]. Un-
fortunately, no standard CAD format has been established, so each CAD system vendor
developed their own proprietary file formats which complicates data exchange between
different systems. However, there exist few neutral file formats that every CAD system
can read, for example DXF, IGES and STEP. Neutral formats typically contain less in-
formation, e.g., only edge, surface and volume models [124]. Furthermore, CAD models
can be exported to various formats, such as polygon meshes, point clouds or solid objects
consisting of geometric elements.

In the following, we will have a closer look at the design variants part and assem-
bly modeling. In our explanations, we refer to the example of a bicycle as an assembly
from [124].

2.1. PART MODELING 11

2.1 Part Modeling

The focus of this thesis is on assembly modeling, so we will only briefly outline the creation
of part models to convey an overall picture of CAD. Parts are atomic production elements
that cannot be disassembled into several parts and are typically manufactured from a
single material [26], such as a screw. All the information required to represent a part can
be taken from the associated model file. In some CAD systems, they are also referred to as
components; however, this term also refers to more complex elements consisting of several
elements similar to assemblies, so we will keep to the term part for atomic elements.

In many CAD systems, part modeling is an iterative three-step process in which geomet-
ric shapes are repeatedly sketched in 2D and then extended by the third dimension [124].
This is also known as a feature-based process, whereby a feature is a self-contained segment
of a part model, e.g., a protrusion or a cut-out. The first step involves selecting a two-
dimensional plane in which a two-dimensional geometry is created in the subsequent step.
Initially, this can be a plane of the initial coordinate system or a custom-added plane; if
geometric elements already exist, their faces can also be chosen. A two-dimensional shape
is then created in the selected plane, for example a circle if a cylinder is to be modeled.
The 2D shape can also be transformed into more complex shapes using geometric oper-
ations such as union or intersection, e.g., to form the basic shape of a bicycle pedal as
depicted in Figure 2.1. In the third step, the two-dimensional shape is expanded to 3D,
giving the model its three-dimensional features. The designer selects which segment of the
2D geometry is to be used to create the feature and which method is to be used; typical
options are extruding, revolving and sweeping. Extruding expands a 2D geometry along
a single direction, transforming a circle into a cylinder; revolving creates surfaces that re-
volve about an axis, turning a circle into a sphere or ring; and sweeping expands a shape
along an arbitrarily smooth path, which is used to model tubes, for instance.

The right-hand side of Figure 2.1 shows the 3D shape of a bicycle pedal after extrusion.
Most 3D part models are complex and thus require new features to be added onto the base
feature. These three steps are then repeated, for example by adding notches (by negative
extrusion) and spikes to the pedal to model its profile.

x

y

z

W “ 75.00

W { 2 “ 37.50

Figure 2.1: Part modeling illustrated by the basic shape of a bicycle pedal. The basic shape
is sketched in 2D on the left, showing the result after the first two part modeling steps.
A parametric constraint positions the hole horizontally in the center of the pedal; other
constraints are omitted. The resulting 3D shape after creating the feature, i.e., extrusion
along the normal axis z, is shown on the right. Adjustment of [124, Figures 8.1 and 8.2].

12 CHAPTER 2. COMPUTER-AIDED DESIGN FOUNDATIONS

As mentioned, a (part) model consists of mathematical equations that determine its
shape and position. So-called constraints can be used to specify dimensions or define
the position of geometric elements in relation to each other, for example by parallelism,
perpendicularity or coincidence. Some constraints are automatically inferred by the CAD
system, for instance if a dimension between two lines is given, the system sets them as
parallel. The dimensional constraints can be hard-coded with fixed values or specified
parametrically in relation to certain dimensions. This can be used, for example, to ensure
that the pedal’s hole for connection to the crank is always positioned in the center of the
pedal. To do this, the designer sets the dimension between the center of the hole and the
sides to half the width or height of the pedal. If a designer then needs to change the size
of the model, they only need to adjust a few dimensions which can save a lot of time in a
later design project. Constraining can also be seen as removing degrees of freedom. Two-
dimensional objects have three degrees of freedom as they can be moved in the x and y
directions as well as rotated around the z-axis. In the case of an underconstrained setting,
i.e., if not all degrees of freedom have been removed, CAD systems would have multiple
possibilities for representing the respective element (since there are several solutions of the
mathematical model) and would not necessarily display the part model in the same way
when the model file is opened. For example, if the position of a hole is not fully constrained,
it could be placed at any position along the remaining degrees of freedom.

The core idea of parametric constraints has furthermore been extended to so-called
part families or family tables [124]. These part models are essentially very similar, only
deviating slightly in a few aspects like a certain dimension or detail features. Instead of
creating separate models for slightly different variants of a part, a designer specifies a set
of permitted values for the corresponding parameters. For example, a designer can define
a single model for a pedal and limit its width and length to specific values (e.g., 8, 10 and
12 cm, respectively, which results in nine different specific parts).

Modern CAD systems also offer functionality for analyzing and validating the created
models, for example if some shapes are intersecting, i.e., are sharing the same volume
of space, or to compute the distance between two faces, which is relevant to prevent
manufacturing problems.

2.2 Assembly Modeling

In assembly modeling, separately saved models of individual parts are combined within a
CAD system to form a holistic model, the assembly. Instead of actually containing the
parts and their geometry, an assembly only references the associated part models and stores
information about their relationship. The parts can be joined together in various ways,
for example welded, fastened together or simply form a working unit in a more complex
product like a motor [124]. It allows engineers to define how different parts fit together to
form a complex design and view it from different perspectives.

This modeling distinguishes between two types of assemblies: A bottom-up assembly
relies on previously designed parts, which are brought together in the assembly to create
a complex product. This method is comparable to building blocks, whereby each block
represents an individual part and the overall construction represents the entire assembly.
The top-down approach, however, starts with designing the final assembly in a holistic
sense, followed by breaking it down into individual parts. This procedure is suitable if the
individual parts are manufactured in-house – which is also the case in 3D printing – as it

2.2. ASSEMBLY MODELING 13

allows all individual parts to be designed relative to other parts, ensuring perfect assembly
alignment. In contrast to this variant, the bottom-up approach is supported by all CAD
systems [124]. This thesis also concerns itself with the modeling of bottom-up assemblies.

An assembly exhibits three essential characteristics, which we will discuss in detail
below: instantiation of parts, positioning of parts and assembly structure [124].

Instantiation of Parts In many assemblies, the same parts occur several times, for
instance the struts on a bicycle wheel. Therefore, the parts of an assembly are actually
instances of the part models. This concept is the same as in software development, where
multiple objects can be created as instances of a class. This means that a particular part
only needs to be modeled once in order to be added to an assembly multiple times. Changes
to this part model are then reflected in all of its instances. This allows the assembly to
store instance-based information, for example about its respective position, which leads us
to the second characteristic of assemblies.

Positioning of Parts within an Assembly A central aspect of combining a collection
of parts into a complex product is to specify the position of the individual part instances
with respect to the 3D modeling space. This is a prerequisite for deciding whether parts
collide or interfere with each other, which requires readjustments to be made on the as-
sembly. Similar to part modeling, constraints can also be applied to assemblies in order
to determine the location and orientation of the part instances within an assembly model.
In the context of assembly modeling, they are also termed mating conditions or simply
mates. There are six degrees of freedom in the 3D space. The part’s position can in prin-
ciple be specified by coordinates in a global coordinate system, but is typically carried out
using local relations between the parts. For example, dimensions can be defined between
geometric entities such as planes, edges and points; but parallelism, perpendicularity or
contact can also be specified. These can again be defined as parametric constraints with
reference to specific dimensions. The available constraint types typically differ among the
CAD systems [68]. The final position of all parts based on these mates is calculated by the
CAD system’s geometry constraint engine. As opposed to part modeling, in the context
of assemblies it is common to remove only some degrees of freedom – previously referred
to as underconstraining – in order to explicitly model certain directions of movement of
the parts, for example the rotation of a gear or allowed translation of a bolt in a certain
direction. Assembly constraints are meant to represent the designers’ intention, but are
sometimes misused to simplify the modeling workflow.

Assembly Structure Complex assembly designs such as manufacturing machines con-
tain a huge amount of parts. In order to get a better overview and maintenance of individual
components, the parts are often arranged hierarchically in so-called subassemblies instead
of a flat list. This hierarchical structure is also known as assembly tree. The subassemblies
are basically virtual containers for grouping specific part instances or other subassemblies.
When employing an assembly hierarchy, it is best to define the mating conditions based
on the same structure as well: Every assembly tracks positional information of its direct
parts and of the origin coordinate system of its direct subassemblies. The top-level as-
sembly relies on all the positional information and composes the coordinate systems of
the subassemblies to display all the parts regardless of their assembly level in the defined
position.

14 CHAPTER 2. COMPUTER-AIDED DESIGN FOUNDATIONS

BICYCLE ASSEMBLY
SEAT
CRANK SUBASSEMBLY

CRANK
PEDAL
PEDAL

REAR WHEEL SUBASSEMBLY
TIRE
RIM/SPOKES

FRONT WHEEL SUBASSEMBLY
TIRE
RIM/SPOKES

HANDLEBARS
FRAME

BICYCLE ASSEMBLY
SEAT
CRANK
PEDAL
PEDAL
TIRE
TIRE
RIM/SPOKES
RIM/SPOKES
HANDLEBARS
FRAME

Figure 2.2: Two variants of the assembly structure of a bicycle: hierarchically with sub-
assemblies (left) or as a flat list of parts (right). Parts are colored blue and assemblies are
colored black. Adapted from [124].

The same assembly can basically be represented by several hierarchies. Of course,
not every arbitrary segmentation into subassemblies is meaningful, as this is typically
related to the spatial proximity of parts. However, the exact structuring into subassemblies
depends on the preferences of the respective designer. It is therefore likely that two different
designers will create two different assembly hierarchies for the same assembly. Figure 2.2
shows two possible assembly hierarchies for structuring a bicycle assembly.

2.3 Enhancing Reusability in Assembly Modeling via Part
Catalogs

In the early days of product manufacturing, the individual parts of a machine were custom-
designed in CAD systems and manufactured specifically for each product. However, creat-
ing custom parts was costly due to the extensive design and production time involved, and it
eventually became more practical to draw on existing parts rather than designing new ones
from scratch [4]. This led to the rise of part manufacturers offering mass-produced parts
at lower costs, which are often more economical and quality-assured compared to custom-
made parts. These manufacturers produce parts in standardized sizes and specifications
that can be used across multiple applications, such as screws, bearings and motors [50]. As
a result, companies purchase these parts instead of manufacturing them in-house, leading
to a shift from part modeling to assembly modeling.

Nowadays, there are numerous part manufacturers which are offering a wide range of
parts [113, 50]. The manufacturers provide their customers with product catalogs called
part catalogs, which include detailed descriptions and technical specifications of the parts.
As an example, we have a look at the Product Overview 2023 part catalog of the Festo SE &
Co. KG [72]. The company offers a wide range of products, such as pneumatic components,
motors, vacuum technology, grippers, and valves, among others. As an example, Figure 2.3

2.3. REUSABILITY IN ASSEMBLY MODELING 15

Figure 2.3: Excerpt from the part catalog of Festo SE & Co. KG showing several shut-off
valves and ball valves. [72, p. 120]

shows an excerpt of the chapter about valves: For several shut-off valves and ball valves,
detailed technical specifications such as standard nominal flow rate or operating pressure
are given, together with a description about usage, installation, and notable aspects such
as configuration variants or special characteristics.

In addition to the print version of their part catalogs, manufacturers started to provide
digital versions tailored for the use in CAD systems. As these digital catalogs contain the
3D CAD models of the parts, CAD software vendors can integrate the digital catalogs into
their systems in order to make them available to designers. For example, the company
CADENAS GmbH offers an online library of part catalogs called 3Dfindit1: At the time
of writing, the library contained over 6,800 catalogs from various manufacturers, and the
company provided plugins for 35 CAD systems to access the catalogs directly in the tools.

Typically, customers tend to peruse catalogs from multiple manufacturers and com-
pare the offered parts before selecting the one which fits best for their assembly. However,
keeping track of and selecting the right parts from these extensive catalogs can be chal-
lenging due to the large volume of options [87, 35]: The digital version of the Festo SE
& Co. KG part catalog contained over 50,800 parts in total at the time of writing this
thesis. Fortunately, some manufacturers (including Festo SE & Co. KG) applied a similar
hierarchical structure as in the print version to the digital catalogs, such as an increasingly
refined categorization of part types. This enables designers to search for a specific part at
least the same way as if they searched in the print version: For instance, to find the ball
valve with type code QH-QS from the example above, a designer would choose the Festo
catalog in 3Dfindit, select Valves, refine the category by Shut-off valves, and finally find
the part under Ball valves and on-off valves (cf. Figure 2.4).

1https://www.3dfindit.com/en/cad-bim-library

https://www.3dfindit.com/en/cad-bim-library

16 CHAPTER 2. COMPUTER-AIDED DESIGN FOUNDATIONS

Figure 2.4: Search path and results in 3Dfindit [49] for ball valves and on-off valves in the
digital catalog of Festo SE & Co. KG.

Unfortunately, the digital part catalogs are not standardized, and each manufacturer
can organize its catalog in a custom way (or not at all and just provide a flat list of parts in
arbitrary order). This makes searching across catalogs and comparing parts from different
manufacturers a manual and time-consuming task, as existing software solutions struggle
with defining a generalized categorization due to the proprietary formats. For example,
3Dfindit provides a single category filter value Fluid power for the Ball valves and on-off
valves category of the Festo catalog – however, applying this filter on top-level resulted
in over 39,800 parts. At least the classification filter allows for more fine-grained filtering,
but the result set still consisted of over 3,600 parts at the time of writing. Still, the
filter’s values depend on semantic annotations which differ for similar parts from different
manufacturers, forcing the designer to validate the results by manually pursuing the catalog
when comparing parts.

The comparison of parts from different manufacturers itself, however, is another dif-
ficult and error-prone task for designers due to the lack of standardization among digital
part catalogs. While the print versions usually provide information about technical spec-
ifications or special characteristics of a part, this is not always the case for their digital
pendants. Figure 2.5 shows the detailed properties of two ball valves in 3Dfindit: The first
table contains technical specifications for the variant QH-QS-6 of the Festo valve from
the previous example, the second for the ball valve KH1/2NPT71X of the manufacturer
Parker (confer their print catalog [27] for more details). Obviously, they both contain
geometric properties of the part, but use different labels for the respective fields. Further,
the Festo valve lacks essential information required to assess the suitability of the part for
use in an assembly: Its operating pressure range is not provided, whereas the table for the
Parker valve not only lists its nominal pressure, but also the material of the valve.

To support designers in comparing and finding similar parts from different catalogs,
3Dfindit offers a feature called similarity search [47, 48]. A designer can select a refer-
ence model from a part catalog, upload a 3D model, or create a 2D sketch, and the tool
searches for parts with similar geometric and structural features. However, for a detailed
comparison, design engineers still has to manually compare the specific properties of the
parts themselves to decide between them. Since in the worst case the property names are
completely different, this poses a risk that parts unsuitable for the intended use will be
selected, even if they look similar to the desired part.

2.3. REUSABILITY IN ASSEMBLY MODELING 17

F
ig

ur
e

2.
5:

C
om

pa
ri

so
n

of
av

ai
la

bl
e

in
fo

rm
at

io
n

on
tw

o
ba

ll
va

lv
es

fr
om

di
gi

ta
lc

at
al

og
s

of
di

ffe
re

nt
pa

rt
m

an
uf

ac
tu

re
rs

in
3D

fin
di

t
[4

9]
:

T
he

up
pe

r
ta

bl
e

sh
ow

s
in

fo
rm

at
io

n
on

th
e

ba
ll

va
lv

e
of

ty
pe

Q
H

-Q
S-

6
fr

om
th

e
Fe

st
o

ca
ta

lo
g,

w
he

re
as

th
e

lo
w

er
ta

bl
e

sh
ow

s
in

fo
rm

at
io

n
on

th
e

va
lv

e
K

H
1/

2N
P
T
71

X
of

th
e

m
an

uf
ac

tu
re

r
P
ar

ke
r.

18 CHAPTER 2. COMPUTER-AIDED DESIGN FOUNDATIONS

Chapter 3
Data and Machine Learning Foundations

Summary This chapter introduces the reader to the fundamental concepts and es-
tablished methodology in machine learning required for the following sections. After a
general introduction, the chapter focuses on the data structure of graphs and machine
learning methods for graphs. This includes the necessary definitions and notations in
order to represent the assemblies as graphs. We present the principles of graph neural
networks (GNN), a form of neural network that was specifically designed for processing
graphs, and outline four specific architectures, all of which have promising properties
for processing assemblies for our use cases: Graph Convolutional Networks (GCN) [79],
Graph Attention Networks (GAT) [144], Graph Isomorphism Networks (GIN) [157] and
GraphSAGE [58]. Finally, we discuss techniques for embedding discrete objects, such as
parts in an assembly. In particular, the technique word2vec [96] is presented, which orig-
inates from the field of natural language processing (NLP), but is not specific to natural
language and can thus be transferred to our domain of CAD assemblies.

Contents
3.1 Basic Concepts of Machine Learning 20

3.1.1 Artificial Neural Networks 24
3.1.2 Deep Learning . 27

3.2 The Graph Data Structure . 28
3.3 Graph Machine Learning . 32

3.3.1 Categorization of Learning Tasks on Graphs 33
3.3.2 Graph Neural Networks . 35

3.4 Embedding Discrete Objects . 44
3.4.1 Learning Embeddings . 45
3.4.2 Word2Vec . 45

Machine learning (ML) is a sub-area of artificial intelligence (AI) which aims at au-
tomatically extracting knowledge and patterns from data. ML thus refers to a subset of
AI techniques. In contrast to traditional approaches in software engineering where a sys-
tem’s behavior is explicitly programmed by hard-coded rules, ML aims to extract (i.e.,
learn) these rules from data. The foundation of ML is built upon multiple disciplines such
as mathematics, statistics, information theory and computer science, from which various
learning algorithms emerged. Due to increasing data volumes and ever more efficient com-

19

20 CHAPTER 3. DATA AND MACHINE LEARNING FOUNDATIONS

puting systems, ML achieved ever faster and better results and thus enjoyed increasing
popularity. ML is used in countless application areas, such as computer vision, natural
language processing (NLP), recommendation systems, medical diagnosis aid and industrial
applications, as it is also the case for this thesis. AI methods outside of ML are nowadays
referred to as classical AI.

At the beginning, we want to provide an overview of the mathematical notations used
in this thesis which is presented in Table 3.1.

Table 3.1: Overview of the most common mathematical notations used in this thesis.

Notation Explanation

M An uppercase, bold and italic symbol denotes a matrix.
x A lowercase, bold and italic symbol denotes a vector.
c A lowercase and italic symbol denotes a scalar.
xi Denotes the piq-th scalar entry of a vector x
mij Denotes the pi, jq-th scalar entry of a matrix M

M⊺, x⊺ Transpose of matrix or vector
Rn The n-dimensional real space, also called Euclidean space
Bn The n-dimensional binary space
N0 The natural numbers including zero, i.e., t0, 1, 2, . . . u
S Calligraphic symbols denote more complex structures like sets and tuples.

|S| Denotes the cardinality of a set S, i.e., the number of its elements
ta, b, cu Denotes the set containing the elements a, b and c
*a, b, b+ Denotes the multiset containing once the element a and twice the element b
xa, b, cy Denotes the tuple consisting of the elements a, b and c. Notation of instances.

3.1 Basic Concepts of Machine Learning

The techniques used in this thesis to address the use cases presented are mainly from the
field of machine learning, which is why we will briefly outline the most important basic
concepts and established methodology from foundational literature [51, 118, 15].

Datasets and Instances Since ML aims to extract patterns and rules from data, the
applications are based on so-called datasets. A dataset usually consists of multiple different
instances which serve as examples or sampling points of the function to be learned. An
instance consists of an input, which is fed into the ML algorithm, and optionally a desired
output, also referred to as target or label. The typically multidimensional input consists of
multiple discrete or continuous features representing properties of the respective instance.
The target values can also have several dimensions and can take on both discrete and
continuous values. Since machine learning methods are based on mathematical methods,
discrete features (and targets) must be translated into numerical values. A common ap-
proach is one-hot encoding where a new binary feature is created for each discrete value. If
a certain discrete value is present, the corresponding new binary feature is set to 1, while
all others are set to 0.

3.1. BASIC CONCEPTS OF MACHINE LEARNING 21

Categorization of ML Tasks Machine learning can be broadly divided into supervised
and unsupervised learning. In the first case, the data consists of input and corresponding
target. The goal is to learn a function mapping the input to the target which can be
afterward evaluated on unseen inputs. Supervised learning can be further divided into
classification and regression. In classification, the target function takes on discrete values
representing possible categories of the instances, whereas in regression, inputs are mapped
to numerical, continuous values. In contrast to supervised learning, the data in unsuper-
vised learning consists of input values only. The goal of this learning method is to analyze
patterns within the data. Instead of evaluating them through an output value, the aim
is to discover similarities in the data that provide insights into their structure or finding
a more condensed representation. For both forms, the achievable quality of the learning
technique highly depends on the quality and quantity of the data. Since the collection of
targets proves to be very expensive in some domains, hybrid forms such as semi-supervised
learning have emerged, in which only a (small) part of the data is labeled. Self-supervision
refers to training models using the data itself to generate target values instead of relying
on external labels provided by humans.

A central challenge in machine learning is generalization which refers to the ability of a
model to produce adequate predictions for unseen data. For good generalization, the model
must extract the general concept from the data without learning too many specifics that do
not apply to the unseen data. Learning methods can also be differentiated according to the
type of generalization: Instance-based methods memorize the training instances and refer to
identical or similar seen training data during inference. This requires a similarity measure
on the input. In contrast, in model-based learning, a mapping is built from the given data
which is afterward used to infer predictions for unseen data instances. These models are
characterized by model parameters, which are adjusted during training to fit the given
training data. Often, models or the training process as a whole also have hyperparameters
that determine its functioning. Hyperparameters are used for many purposes, for instance
to specify how the data is normalized, or to restrict the complexity of the model function.
They need to be set prior to training as they cannot be learned. To find a suitable
hyperparameter setting for the current problem, we need to train the model on various
combinations of hyperparameters in order to find a suitable set. This procedure is called
hyperparameter optimization or tuning.

Data Split For learning from data, the overall dataset is divided into three disjoint
sets: the training data is used to adjust the model parameters, while validation data is
used to determine the hyperparameters, compare different models and model architectures.
Finally, the test data is used to estimate the generalization error on unseen data after
selecting a final model. The prerequisite is that the assumption of independently, identically
distributed (i.i.d.) [51] data applies, i.e., the instances of each data set are independently
distributed, the distribution of all sets does not fluctuate, and all instances are drawn
from the same probability distribution. Violating this assumption can lead to considerable
performance degradation and poor generalization.

Training and Evaluation To evaluate the quality of a learning model, the difference
between the model outputs and the target values is determined using a so-called loss func-
tion. In the case of unsupervised learning, the instances do not comprise target values,
so the loss functions evaluate properties of the data instead, for example, measure the

22 CHAPTER 3. DATA AND MACHINE LEARNING FOUNDATIONS

reconstruction error from a compressed representation or evaluate other task-specific fea-
tures [51]. The loss function is also used to optimize the model parameters during training:
Gradient Descent [22] measures the local gradient of the loss function with regard to the
current model parameters and adjusts them in the direction of descending gradient in or-
der to minimize the loss. This requires the loss function to be differentiable. Formally, a
parameter θi is updated according to

θi Ð θi ´ α
BL

Bθi
(3.1)

with learning rate α ą 0 and loss function L. The learning rate controls the intensity of
the parameter adjustment and is a hyperparameter. Instead of adjusting the parameters
after each individual instance, with Mini-Batch Gradient Descent [14] the loss gradients of
all instances of a small batch are summed up before the model parameters are adjusted.
Typically, the training data set is iterated multiple times; each round is called an epoch.
When a model fits too closely or even exact to its training data and thus learns too
specific concepts that do not generally apply, overfitting occurs [118]. This leads to poor
generalization and should therefore be avoided. During training, overfitting can be detected
by a strong discrepancy between training and validation loss. Overfitting can result from
too long training, for example.

In contrast to loss functions, performance measures or performance metrics are used to
evaluate the quality of a model after training has been completed. These functions measure
the quality of the actual learning task, for example the accuracy of image classification. In
classification problems, the loss function and performance measure typically differ for the
same task, as performance measures are usually unsuitable for parameter adjustment due
to their non-differentiability. Furthermore, the value range of loss functions often depends
on the specific modeling of the problem (e.g., output dimension), so different modelings
should always be compared using performance measures. The loss function is chosen so
that its minimization leads to models that achieve high values of the performance metric.

Loss functions and performance metrics relevant to this thesis are presented below.

• (Categorical) Cross-Entropy Cross-entropy measures the quality of a binary
or multi-class classification model. Specifically, this loss function measures the dif-
ference between the one-hot encoded true distribution p of the labels and the output
distribution q for all instances of a given instance set D by

Hbpp, qq “ ´
ÿ

xPD
ppxq logb qpxq (3.2)

where logb z denotes the logarithm of z to base b.

• Top-k Rate This performance metric computes the ratio that the label lies within
the top k predictions of a model. Its value monotonically increases with the number
of predictions k.

• Shannon Entropy The (Shannon) entropy stems from information theory and
measures the disorder of a distribution. It corresponds to the cross-entropy measuring
the difference between the same distribution, formally defined as

Hbppq “ Hbpp, pq “ ´
ÿ

xPD
ppxq logb ppxq (3.3)

3.1. BASIC CONCEPTS OF MACHINE LEARNING 23

• Perplexity Perplexity measures the uncertainty of a model in a certain multi-class
prediction. It is based on the Shannon entropy. The larger the value, the less certain
the model is about the prediction. It can be calculated by

PP ppq “ 2´
ř

xPD ppxq log2 ppxq “ 2H2ppq (3.4)

for an output distribution p over all classes.

• Precision and Recall These performance metrics evaluate the predictive quality
of a model in a binary classification problem. Precision is the fraction of predicted in-
stances that are indeed true, i.e., the fraction of correct predicted among all predicted
instances:

Precision “
true positives

true positives ` false positives
(3.5)

Recall on the other side is the fraction of positive targets that were indeed predicted
by the model:

Recall “
true positives

true positives ` false negatives
(3.6)

• F-score In many application areas, both good precision and recall should be
achieved, which is why both metrics are often combined into one value as the F-score
given by:

F-score “
2pr

p` r
(3.7)

Here, p denotes precision and r denotes recall.

Hyperparameter Tuning Finding a suitable set of hyperparameters for the tackled
task can be carried out fully manually or by an automatic selection strategy. Grid Search
and Random Search are the most common automatic strategies [118]. At the beginning,
one must specify a set of promising values per hyperparameter, typically selected in a log-
arithmic way. Grid Search involves systematically exploring every joint of the Cartesian
product of the pre-selected hyperparameter values. Random Search requires probability
distributions for all hyperparameters, according to which a set of values is drawn in every
step. For each hyperparameter set, the model is trained on the training set and evaluated
on the validation set. Finally, the hyperparameter set that leads to the best generalization
error on the validation data is selected. The same procedure can be repeated iteratively on
a finer grid for promising regions of the hyperparameters found. More advanced hyperpa-
rameter optimization techniques like Bayesian Optimization internally build a probabilistic
model that maps hyperparameter sets to the loss evaluated on the validation set in order to
target the selection of next hyperparameter values. Regions in the hyperparameter space
that led to good generalization results are explored more deeply than regions with poorer
results.

Early stopping has been established for determining the training duration: Both the
training and validation loss are monitored over the training epochs. The training stops if
the loss did not decrease on the validation set within a certain epoch span, also referred to
as patience. Early stopping can thus prevent a model from overfitting to the training data.

24 CHAPTER 3. DATA AND MACHINE LEARNING FOUNDATIONS

3.1.1 Artificial Neural Networks

Today, ML is dominated by (artificial) neural networks, which were designed as a simpli-
fied model of the human brain. They aim to learn complicated concepts by constructing
them from simpler ones in a hierarchical manner. Their prediction function is basically a
mathematical function over the input. The basic computational unit of a neural network
is the neuron. Neurons are connected by edges that are assigned real-valued weights. A
neuron takes in inputs from previous neurons weighted by the corresponding edge weight,
sums all these products and applies a transformation function called activation function
before returning a real-valued output. The weighted sum before applying the activation
function is called activation. The structure of an artificial neuron is shown in Figure 3.1.
The weights are adaptable (i.e., parameters) and control the influence of every input of a
neuron. To approximate a specific function, the weights must be set properly.

x1

x2

x3

...

xn

Inputs

ř

Activation

z “
n
ř

i“1
wixi

w1

w2

w3

w4

Weights

σ

Activation
Function

y

Output

Figure 3.1: Mathematical model of a neuron [118].

In order to represent complex functions, neurons are arranged in so-called layers that
are stacked as modules in a sequential manner in order to form the network. For example,
we might have a neural network consisting of three sequential layers l1, l2 and l3. The
function of the overall network is given as the composition fpxq “ l3pl2pl1pxqqq. There are
different types of layers, which differ in the number and structure of connections with the
neurons of the previous layer. Neural networks are often termed according to the most
common or specific type of layer they are composed of. The simplest and most common
layer is feed-forward or fully-connected, which performs a linear transformation including
a bias vector b on the vector of all inputs x computing z “ Wx ` b. The entries wij of
the weight matrix W correspond to the edges weights of neuron i of the previous layer to
neuron j of the current layer. A neural network consisting only of feed-forward layers is
also referred to as a multilayer perceptron (MLP) [117]. Typically, all neurons in a layer
have similar connection scheme to the previous layer, however, differing in terms of the
learned parameters.

For complexity reasons, neural network layers often represent linear functions. Since
the concatenation of linear functions (due to multiple sequential layers) is still linear, a
non-linear component – also referred to as nonlinearity – is required in between layers

3.1. BASIC CONCEPTS OF MACHINE LEARNING 25

x
´5 ´4 ´3 ´2 ´1 1 2 3 4 5

y

´1

1

2

3Sigmoid σpxq “ 1
1`expp´xq

ReLUpxq “ max p0, xq

LeakyReLUpxq “ max pα1x, xq

ELUpxq “ max
`

α2 pexppxq ´ 1q , x
˘

Figure 3.2: Overview of most common activation functions [118]. ReLU, LeakyReLU and
ELU represent the identity function for positive inputs, thus their graphs fall together.
LeakyReLU is illustrated with default value α1 “ ´0.1 for the gradient of the negative
slope, ELU with α2 “ 1.

to build more complex functions, which is solved by the activation function: A neuron’s
activation is passed into a non-linear activation function in order to produce its output.
Figure 3.2 displays the most common activation functions developed over time that we will
encounter in the experiments in this thesis. Only the Softmax activation function is not
shown because, unlike the other activation functions, it does not operate on a single neuron
but on all neurons in a layer together. Therefore, it is also referred to as Softmax layer.
Specifically, it converts a real-valued vector z P Rm into a probability distribution of same
size, formally: Softmax : Rm Ñ p0, 1qm. It is commonly applied in classification tasks in
order to transform the neuron activations of the final layer into a probability distribution
of the problem classes. Its formula is given by

Softmaxpzqi “
exppziq

m
ř

j“1
exppzjq

(3.8)

where exppq denotes the exponential function.

In course of time, different types of neural network layers have been developed that are
tailored to specific tasks and data types. In the context of this thesis, we are mainly working
with graph neural networks, which are discussed in detail in Section 3.3.2. These generalize
the convolution operation, which is used in the context of image processing by convolutional
neural networks, to graphs. Furthermore, we employ or refer to other architectural concepts
and layer types in some passages, thus we briefly outline them below.

Convolutional Neural Network (CNN) Yann LeCun is considered the founder of
CNNs [83], which were designed to process and analyze grid-like data structures, such as
images. The core component of a CNN layer is the convolution, a mathematical operation
which can be visualized as sliding a filter (matrix) over the input grid while multiplying the
filter and grid values. The filters aim to detect local patterns, such as edges or textures, and
represent the learnable parameters of the corresponding convolutional layer. Note that the

26 CHAPTER 3. DATA AND MACHINE LEARNING FOUNDATIONS

same filter, i.e., the same collection of parameters, is employed for the whole image within
a layer, which is referred to as parameter sharing. Through multiple layers, the initially
extracted simple concepts can be progressively combined into more complex features of the
data so that the neural network is finally able to distinguish, e.g., cats from dogs.

Recurrent Neural Network (RNN) RNNs [120] are specialized for processing sequen-
tial data such as natural language text, audio and video streams or time series data. Besides
sequential connections, they also use loops – so-called recurrent connections – within their
architecture to maintain a memory of previous inputs, allowing them to capture temporal
patterns and dependencies. In particular, they process each element of the input using
the same weight matrix and thereby perform parameter sharing. However, because of this
repeated multiplication, standard RNNs struggle with learning long-range dependencies
due to issues like vanishing or exploding gradients during training [51]. Gated RNNs ad-
dress this problem by incorporating a more complex memory cell structure with gates that
control the information flow, enabling the network to learn both short-term and long-term
dependencies effectively. The long short-term memory (LSTM) [122] model introduced
by Hochreiter and Schmidhuber is such a gated RNN architecture that uses four different
gates that control which information is added to, retained or discarded from the cell state
and eventually output by the cell.

Autoencoder The autoencoder architecture [118] was designed to learn efficient repre-
sentations of input data by encoding them into a lower-dimensional latent space and then
reconstructing the original input from this compressed representation. The size of the la-
tent space is to be chosen as a hyperparameter. The network consists of two main parts:
an encoder encpq that transforms an input into a compact representation and a decoder
decpq that reconstructs the input from this encoded form. Formally speaking, an autoen-
coder is trained to satisfy the equation dec pencpxqq “ x for any input x. By training the
autoencoder to minimize the reconstruction error, i.e., the difference of target x and the
model’s output dec pencpxqq, the model learns to capture the most important features of
the data in the compressed representation. The specific layer types of an autoencoder are
chosen depending on the data type to learn the representation for, e.g., in the context of
images, convolutional layers are typically utilized.

Attention Mechanisms The attention mechanism is a technique to improve a model’s
prediction performance by focusing on relevant aspects of the input. It allows the model
to assign different attention scores or attention coefficients to different parts of the input
and thus to prioritize relevant information over less important details for the prediction.
The scores are determined by a learnable function over the current representation of the
input and afterward normalized by Softmax to a distribution of attention weights. Fi-
nally, the input is multiplied by the respective attention weights before computing the
model’s output. The attention mechanism has been presented in 2014 by Bahdanau et
al. [6] which led to a significant improvement in neural machine translation, i.e., translat-
ing natural language text utilizing neural networks. It is nowadays employed in numerous
applications, even outside pure NLP, for example in the generation of image captions [156].
Furthermore, it laid the foundational groundwork for the development of the Transformer
architecture [141] by Vaswani et al. in 2017 which once more revolutionized neural ma-
chine translation and even became the state-of-the-art technique in most applications of

3.1. BASIC CONCEPTS OF MACHINE LEARNING 27

computer vision and natural language processing [118]. The architecture generalizes the
concept of attention to self-attention: While in classical attention, the input is attended
when processing the output, in self-attention each element of the input attends each other
element in the input and thus captures their relationship. The use of self-attention re-
placed recurrent layers to encode a sequential input, so that the Transformer architecture
is based purely on feed-forward layers (in addition to techniques for training stability such
as regularization).

3.1.2 Deep Learning

Deep learning is formally described as learning with neural networks composed of at least
three successive processing layers. Deep networks can approximate more complex functions
which allows processing raw input data instead of handcrafted features. This eliminates
manually driven feature extraction and transfers this responsibility to the models. The
model should extract important features for the respective task itself. There are numerous
examples where this approach has yielded better results, a popular one is the drastic
improvement in the image classification of the ImageNet dataset1 [60]. However, larger
models have more parameters, which means they require more data to adequately adjust
them. This phenomenon is called the curse of dimensionality : The number of instances
needed to approximate a function increases exponentially with its dimensionality. Growing
computational power and the availability of large datasets have allowed to train deep
models successfully. This has led to performance breakthroughs in numerous domains,
such as computer vision or NLP.

Some applications require complex and therefore deep networks, but only a limited
amount of data is available. Transfer learning is a popular strategy to overcome the curse
of dimensionality in these cases. It is motivated by the observation that many features
learned by deep neural networks, especially in the early layers, are often general and can
be useful across different tasks or domains. Therefore, a model that has been trained on
another task is used as a basis for a different but related task. In particular, the task-
specific posterior layers of this pretrained model are replaced by new, untrained ones and
the whole model is trained – also called fine-tuned – on the small amount of data from
the new task. Thus, transfer learning significantly reduces computational resources and
training time, which makes it a popular approach even when the data is not limited.

The parameter adjustment of neural networks during training is performed by Gradient
Descent. For the last layer, it is straightforward how to determine the gradient of the loss
function with respect to the weights. However, no intermediate target representation is
known for the previous layers, thus no intermediate loss and loss gradient can be com-
puted. This was a long-standing problem with neural networks, which was finally solved
by Backpropagation [148]. This method allows determining loss gradients for parameters
in all layers of a neural network by propagating the loss backwards layer by layer through
the network using the chain rule of calculus. Successive layers of a neural network basically
form a concatenation of functions, e.g., fpxq “ f2

`

f1pxq
˘

for a network composed of two
layers representing functions f1 and f2, respectively. The influence of these functions and
their associated parameters, i.e., the weights of the layers, can be determined by deriving
the concatenated function f using the chain rule.

1The ImageNet project has created a large image database which is used as a benchmark for various
computer vision tasks. The dataset can be accessed here: https://www.image-net.org/

https://www.image-net.org/

28 CHAPTER 3. DATA AND MACHINE LEARNING FOUNDATIONS

In standard Gradient Descent, local minima and in particular saddle point plateaus of
the loss landscape cause difficulties, which is why more complex optimizers were developed.
At the time of writing this thesis, ADAM (adaptive momentum) [77] is the most widely used
algorithm, which combines adaptive adjustment of the loss landscape with summarizing
previous gradients (momentum). It has been shown to work effectively on large datasets.

As already mentioned, deep networks can approximate increasingly complex functions.
This raises the risk of overfitting, i.e., the model adapting too much to the training data
and thus representing a too complex function. Therefore, methods have been developed to
restrict the complexity of a neural network and give the model a preference for a specific set
of model functions, so-called regularization techniques. Highly variable functions typically
have high weight values, which is why the first presented technique, weight decay, limits
the range of the model weights. For this purpose, an additional summand is introduced
into the loss function, which penalizes high weight values, e.g., the Euclidean norm of the
weight matrices. Dropout [133] deactivates certain neurons based on a given probability
(hyperparameter), so that several neurons of the same layer are forced to learn similar
concepts. In this way, the neurons should learn several concepts at the same time, i.e.,
learn a more general concept overall, which should counteract overfitting. Dropout is
commonly employed in computer vision for regularizing CNNs.

3.2 The Graph Data Structure

The following formal descriptions of graphs depend mainly on [59, 16], unless otherwise
stated.

In its simplest form, a graph2 G “ pV, Eq is defined as a pair consisting of a finite set
of nodes or vertices V and a finite set of edges E Ď V ˆ V representing pairwise relations
between nodes. Both the nodes and the edges are unordered. If we want to clearly indicate
which graph G the sets belong to, this is specified in the subscript of the sets (VG and EG).
An edge e “ pu, vq P E denotes that there is a connection from node u to node v, also
referred to u being adjacent to v. The order of a graph is the number of its nodes |V|. A
graph is called undirected if all edges are bidirectional, i.e., pu, vq P E implies pv, uq P E . If
this property does not hold, the graph is called directed. In simple graphs, there can be
at most one edge from one node to another, whereby edges from a node to itself (so-called
self-loops) are not permitted. In some applications, it is necessary to distinguish between
different types of edges and nodes: A multi-relational graph can have several edge types
to express different relations between the nodes. For this purpose, we extend the notation
of the edges by the relation type r, for example pu, r, vq P E . Similarly, the nodes can be
assigned to different types T “ tτ1, . . . , τku so that we divide the set of nodes into disjoint
sets V “ V1 Y V2 Y ¨ ¨ ¨ Y Vk where Vi X Vj “ H holds for i ‰ j. The graph definition can
be extended by a type function T : V Ñ T which assigns each node its type. Node types
often exhibit certain attributes, which is why this is also referred to as attributed nodes.
In heterogeneous graphs, both nodes and edges are annotated with types. Their edges are
often constrained according to the node types so that certain edges can only connect nodes
of certain types.

2In this thesis, the term “graph” is used to describe the abstract data structure. Other resources in
the field of data mining may interchangeably utilize the term “network” to refer to the same type of data.
However, we may use the latter to describe specific, real-world instantiations of this data structure, e.g.,
social networks, or to refer to artificial neural networks.

3.2. THE GRAPH DATA STRUCTURE 29

In literature, there are many more special forms of graphs; explanations of these are
omitted in this thesis. As the assemblies studied in this thesis are represented by undi-
rected, simple graphs with additional attributes, we confine the subsequent definitions to
apply solely to this form.

The neighbors N pvq Ď V of a node v are given by the set of nodes directly connected
to it, i.e., N pvq “ tu P V | pv, uq P Eu “ tu P V | pu, vq P Eu. The degree degpvq of
a node v indicates the number of undirected edges it is involved in, which corresponds
to the number its neighbors: degpvq “ |N pvq|. In addition to the direct relationships
represented by edges, the indirect relationships in a graph incorporating multiple nodes
are also of interest: A path is a sequence of edges such that the start node of an edge is
the end node of the preceding edge. Its length is defined as the number of its edges. If
two nodes u, v P V are connected by a path, v is reachable from u and vice versa. An
undirected graph is called connected if there is a path between any two nodes. If the
start node and end node of a non-empty path are the same, it is called a cycle. A graph
without cycles is called acyclic, a connected graph without cycles is called a tree. Following
the terminology used for trees, in general graph structures we also refer to a node v with
exactly one neighbor (|N pvq| “ 1) as a leaf node. For a path of length n, i.e., n consecutive
edges within the sequence, the start and end nodes are referred to as n-hop distant. Based
on this, the definition of neighbors introduced above, more precisely to be referred to as
1-hop neighbors, can be extended to n-hop neighbors Nnpvq which includes all nodes up
to n hops distant. The graph diameter is the length of the longest shortest path between
any two graph nodes, i.e., the length of the shortest path between the most distant nodes.
A graph G1 “ pV 1, E 1q is called a subgraph of G “ pV, Eq if V 1 Ď V and E 1 Ď E holds. Thus,
each graph is a subgraph of itself. The largest connected subgraphs are then the connected
components of the graph. Isolated nodes of a graph are trivial connected components Note
that a graph that has exactly one connected component is connected. Given a connected
subgraph G1 of G, if there exists another connected subgraph G2 of G which G1 is also a
subgraph of, then G2 subsumes G1. Otherwise, G1 is a connected component of the graph.

Constructive and Destructive Operations The process of constructing new graphs
from existing ones often involves the addition or removal of nodes and edges. We consider
the operations for simple graphs without any node or edge information. If v is a node of
graph G, we define the removal Gztvu as the subgraph that results from removing v from
V and, consequently, removing all edges involving v from E , formally defined as Gztvu “
`

Vztvu, Eztpu, u1q | v “ u_ v “ u1u
˘

. We call a node of a connected graph cohesive3 if its
removal would result in a graph composed of multiple connected components. Adding new
nodes to a graph simply extends its node set. When adding new edges, the corresponding
nodes must either already belong to the graph or its node set must be extended accordingly.

Representing Graphs A convenient representation of graphs is through an adjacency
matrix A P B|V|ˆ|V|. Its entries specify the number of edges between the nodes. As we do
not consider multiple edges between the same pair of nodes, the entries can take binary
values: either 1 indicating the presence of an edge or 0 otherwise. Therefore, we need to
put the nodes in an arbitrary order so that every node indexes a particular row and column
in the adjacency matrix. This ordering is necessary for its representation with algebraic
objects like matrices, but has no bearing on the structure of the underlying graph itself.

3In literature, such a node is also referred to as a “strong articulation point” in directed graphs [67].

30 CHAPTER 3. DATA AND MACHINE LEARNING FOUNDATIONS

1

2

3
4

5

G1 1

2

3
4

5

G2 1

2

3
4

5

G3

A1 “

¨

˚

˚

˚

˚

˝

0 1 0 0 0
1 0 1 1 0
0 1 0 0 0
0 1 0 0 1
0 0 0 1 0

˛

‹

‹

‹

‹

‚

A2 “

¨

˚

˚

˚

˚

˝

0 0 0 0 1
0 0 1 0 0
0 1 0 1 1
0 0 1 0 0
1 0 1 0 0

˛

‹

‹

‹

‹

‚

A3 “

¨

˚

˚

˚

˚

˝

0 0 1 0 1
0 0 1 0 0
1 1 0 1 0
0 0 1 0 0
1 0 0 0 0

˛

‹

‹

‹

‹

‚

Figure 3.3: Three isomorphic simple graphs Gi, i “ 1, 2, 3, with different node orderings,
their corresponding adjacency matrices Ai are displayed below. The nodes are each anno-
tated with their row/column index in the corresponding adjacency matrix. Example taken
from [138, Figure 1.3].

Figure 3.3 shows three exemplary graphs and their corresponding adjacency matrices. If
the graph is undirected, the adjacency matrix will be symmetrical, i.e., A “ A⊺. Based on
this node ordering, the node degrees can also be consolidated in a so-called degree matrix
D P N|V|ˆ|V|

0 . For undirected graphs, this is a diagonal matrix, where the degrees of the
nodes can be found on the main diagonal while all other entries are zero: dii “

ř|V|

j“1 aij .
For graphs with attributed nodes, the attributes are typically described by feature

vectors which can be stacked to a matrix as well: node-level attributes xv P Rd consisting
of d scalar features for each node v P V form a node feature matrix X P R|V|ˆd. For reasons
of simplicity, we will limit ourselves here to real-valued features. We assume the ordering of
the nodes to be consistent to the one in the adjacency matrix. For heterogeneous graphs,
each different type of node has its own type of attributes, represented in separate feature
matrices for each type. Attributes can also be associated with the graph itself, typically
serving as labels for a classification or regression graph-level task, e.g., predicting properties
of molecules.

Graph Isomorphism Finally, we would like to address the comparison of graphs. The
transition from unordered node and edge sets to the representation with algebraic objects
like an adjacency matrix using a random but fixed order of the nodes complicates the
comparison of graphs. If two graphs differ at most in the order of their nodes, but not
in their graph structure and attributes, the two graphs are called isomorphic. Formally
defined, if we have two graphs with adjacency matrices Ai and node feature matrices Xi for
i “ 1, 2 respectively, the two graphs are isomorphic if and only if there exists a permutation
matrix P P B|V|ˆ|V| such that PA1P

⊺ “ A2 and PX1 “ X2 hold. A permutation matrix
is a square binary matrix in which exactly one entry in each row and column is one and
all other entries are zero. Figure 3.3 shows three isomorphic graphs with different node

3.2. THE GRAPH DATA STRUCTURE 31

orderings and their corresponding adjacency matrices, whereby the nodes in the graphs are
annotated with their row/column index, respectively. The graphs do not have any node or
edge features. When looking at the adjacency matrices, it is hard to decide whether the
graphs are isomorphic. The middle graph G2 can be easily transformed to the right one G3

by swapping nodes 1 and 5.

The Weisfeiler-Lehman Graph Isomorphism Test Even though it has a straight-
forward definition, assessing graph isomorphism presents an inherently challenging task.
A naive approach would involve searching over the full set of permutation matrices to
evaluate whether there exists a single one that leads to an equivalence between the two
graphs, leading to computational complexity Op|V|!q. The graph isomorphism problem is
in the complexity class NP, however it does not belong to its two subclasses: The prob-
lem is known to be not NP-complete, but also no polynomial time algorithm exists that
correctly tests isomorphism for general graphs; thus the problem is referred to as NP-
indeterminate or NP-intermediate (NPI). At the same time, isomorphism for many special
classes of graphs can be solved in polynomial time, and in practice graph isomorphism
can often be solved efficiently. The Weisfeiler-Lehman algorithm [147] is known to solve
the isomorphism problem for a broad set of graphs [128, 5]. We will sketch the procedure
in its simplest form, commonly referred to as “1-WL”. It is based on the idea of iterative
neighborhood aggregation: The approach extracts node-level features that contain more
information than simply the node neighborhood and aggregates these richer features into a
graph-level representation. In a first step, an initial label lp0q

v is assigned to each node v P V,
e.g., the node degree or given node features. After that, the algorithm iteratively assigns
a new label to each node by hashing the multiset (denoted as * ¨ +) of current labels of the
node’s neighborhood including the node itself: lpiqv “ hash

`

*lpi´1q
u | u P N pvqYtvu+

˘

. After
running a given number of κ re-labeling iterations, a label lpκq

v summarizes the structure
of its κ-hop neighborhood. Two graphs are declared to be isomorphic if and only if their
graph-level multisets LG “ *lpiqv | v P V, i “ 0, . . . , κ+ are identical. Comparing all com-
puted labels after κ iterations of the Weisfeiler-Lehman algorithm is a popular approach
to approximate graph isomorphism. It is able to tell if two graphs are non-isomorphic, but
it cannot guarantee that they are isomorphic.

Permutation Equivariance and Invariance The representation of graphs with ad-
jacency and feature matrices is useful due to the efficient interoperability with existing
machine learning frameworks, but it enforces the nodes to be ordered. Algorithms and
models that process graphs should ideally calculate node and graph representations re-
gardless of the order of the nodes in the matrix representations by design. If they do not,
every single model would have to learn that the order is irrelevant, in addition to the actual
learning task. In short, the processing of two isomorphic graphs should internally lead to
the same representation. This property is called permutation invariance: A function f is
called permutation invariant if permuting the input, i.e., multiplying with a permutation
matrix, does not affect the output, i.e., fpPXq “ fpXq. In contrast, the property of the
function f that permuting the output of f is the same as applying f to the permuted in-
put is called permutation equivariance, formally defined as fpPXq “ P fpXq. Informally,
permutation invariance means that the function’s output does not depend on the arbitrary
ordering of the rows and columns in the input, while permutation equivariance means that
the ordering of the function’s output is consistent to the one in the input. In the context

32 CHAPTER 3. DATA AND MACHINE LEARNING FOUNDATIONS

of graphs, these properties are often expressed using the adjacency matrix. As this takes
into account the node order in both the rows and columns, the permutation matrix must
be multiplied to the adjacency matrix both from the left and transposed from the right,
i.e., fpPAP ⊺q.

Machine learning models processing graphs consist of a composition of permutation
invariant and equivariant functions (i.e., layers), depending on the use case, since con-
catenation of permutation invariant or equivariant functions preserves the property. For
graph-level tasks such as graph classification, the last layers are typically permutation in-
variant, since the classification is independent of the order of the nodes. For tasks at node
or edge level, however, the order is indeed relevant for the output, which is why permuta-
tion equivariant functions are used. Details on how to design a permutation equivariant
or invariant neural network layer can be found in Section 3.3.2.

3.3 Graph Machine Learning

The following explanations are mainly based on [59], unless otherwise stated.
Graph structures occur in many domains, for example as molecules in chemistry,

meshed surfaces in computer graphics, sensor networks or social networks in information
theory, traffic networks or knowledge graphs, to name a few. Hence, they were studied
early on; the first work on graph theory by Leonhard Euler dates back to the 18th cen-
tury. Due to the ever-increasing scale and complexity of graph datasets, machine learning
techniques were used to model, analyze and understand graph data. The field of analyz-
ing graph-structured real-world data without machine learning is nowadays referred to as
network analysis [59]. Early work on processing graph data with machine learning tech-
niques was based on extracting hand-crafted statistical features that served as input to
standard models like logistic regression. As is well known, hand-crafted features are inflex-
ible as they cannot be adapted through learning and are typically application-specific and
time-consuming to build. Thus, the approaches proceeded to learning the node and graph
representations, which includes the extraction of structural information about the graph.

The difficulty in processing graphs is their non-Euclidean nature. The Euclidean spaces
are defined by Rn for some finite dimension n; thus data is called Euclidean, if they can be
modelled in Euclidean space. For a long time, machine learning was applied on Euclidean
data such as tabular data, images or sequences. For images for example, each pixel can be
represented in a 3-dimensional space where x and y specify its coordinate and the z-axis
represents the color or intensity. This spatial representation instead of using a vector
induces so-called geometric prior [17], i.e., assumptions on spatial properties of the data
space. The term “prior” goes back to the mathematical concept of the prior probability
distribution in probability theory and expresses initial knowledge or belief about the data
space before observing specific instances [51]. In the field of computer vision, for example,
such a prior could be the belief that detecting edges on the image could be helpful for
object recognition.

Having priors (especially in models) is important as they restrict the set of function
fitting the data to those adhering to them. Non-Euclidean data, such as graphs and
manifolds, do not naturally fit into Rn. Let us consider a graph without any node or edge
features; there is no natural translation of a set of nodes into the Euclidean space. If
we map the nodes to certain points in this space, we might establish a certain prior that
does not actually exist between the nodes as in Euclidean space, nearby points are similar

3.3. GRAPH MACHINE LEARNING 33

to each other. The distance measure in graphs is also completely different: the distance
between nodes is defined by the length of the shortest path, as opposed to the length of
the straight line (Euclidean distance) between the points. A correct mapping establishing
no false priors of the graph structure might still be possible for small graphs, but fails for
more complex ones. Thus, using a space with a more suitable prior is preferable.

Geometric Deep Learning In mathematics, many alternative spaces have been defined
over time based on other geometries deviating from Euclidean laws. In 1872, a German
mathematician, Felix Klein, presented a framework to unify all these geometries: he pro-
posed to treat geometry as the study of invariances and symmetries, defining a geometry
by specifying its domain and what symmetries the data must adhere to. This concept shift
was adopted to machine learning in 2017 by Bronstein et al. who introduced the term Ge-
ometric Deep Learning [17, 18]. This group-theoretical framework attempts to generalize
deep neural networks to non-Euclidean domains. The approach is driven by the idea to
pick suitable model architectures according to the prevalent symmetries and invariances
of the domain underlying data. In terms of graphs, the symmetry is node ordering as the
nodes are defined as a set. Thus, we define equivariance or invariance to node permutation
and aim for neural network layers with these properties.

3.3.1 Categorization of Learning Tasks on Graphs

Machine learning on graphs – also referred to as graph machine learning or short GraphML
– can also be categorized into supervised and unsupervised tasks. However, there are more
appropriate categorizations of graph learning tasks. First, the methods can be differenti-
ated according to whether they are suitable for a single (usually large) graph like social
networks or many (small) graphs like molecules – some algorithms fall in both categories.
The second categorization of learning tasks refers to the component of the graph that is
to be reasoned about, i.e., nodes, edges, subgraphs or the entire graph itself.

Node Classification The goal in this type of learning problem is to assign a class
(represented by label yv) to each node v P V of an input graph, thus also called a node-level
task. For example, for each user of a social network, we want to decide whether it is a bot.
Other popular examples include classifying the topic of a document based on their citation
linkage [79] or the category of a product based on the products co-purchase graph [94].

Node classification seems very similar to typical classification in supervised learning
(each input is mapped to a label), but there are important differences. The i.i.d. assump-
tion, i.e., the central assumption for generalizability from training to unseen instances in
machine learning, does not hold for the nodes: Because of their connections, nodes are
just not statistically independent of all others. Successful methods for node classifica-
tion leverage these connections. Some of them exploit homophily, which describes the
property of nodes to have similar attributes as their neighboring nodes. For instance,
people typically form friendships with others who share similar interests or demographic
characteristics. Following that property would lead algorithms to assign similar labels to
neighboring nodes in a graph, i.e., propagating labels to neighboring nodes. In contrast,
heterophily describes the property that nodes are preferentially connected to dissimilar
nodes, i.e., with different attributes or labels. Node classification methods should leverage
these concepts instead of simply treating each node as separate instance.

34 CHAPTER 3. DATA AND MACHINE LEARNING FOUNDATIONS

In the context of node classification, often label information is only available for a small
subset of nodes in a graph, e.g., classifying bots in a social network from few manually
labeled examples. Consequently, a new type of learning task was introduced: transductive
learning as a differentiation from inductive learning. Inductive learning aims to infer
general rules from (labeled) training data, in our context labeled nodes, which are then
evaluated on unseen test data. For evaluation, unseen test nodes could be (incrementally)
added to the current graph, or the trained model can be used to process completely unseen
test graphs. Transductive learning however attempts to recognize patterns from all – both
labeled training and unlabeled test – data in order to transfer them from the training
instances to the test instances. This setup may be seen as propagating labels from training
nodes to unlabeled nodes, typically used in homophilous graphs [143]. By their nature,
transductive approaches cannot generalize to nodes outside the seen nodes during training,
e.g., new users in a social network. Some studies also refer to the transductive approach as
semi-supervised, since both labeled (training) and unlabeled (test) data are used. However,
standard formulations of semi-supervised learning usually require compliance with the i.i.d.
assumption, which, as described above, does not apply here.

Graph Classification and Regression This type of graph application is focused on
predictions yG for entire graphs G (i.e., a graph-level tasks), instead of its individual com-
ponents (i.e., edges or nodes). For example, one would like to predict chemical properties
such as hydrophobicity (classification) or solubility (regression) for molecules. The datasets
typically consist of several different graphs, where predictions are to be made specific to
each graph. This makes this graph machine learning category probably the most similar
to classical supervised learning. Typical approaches include component-wise predictions,
which are then aggregated appropriately at the graph level. However, the challenge in
these graph-level tasks lies in defining useful features that account for the relational struc-
ture within each instance. The task of graph clustering is quite related, where we aim to
learn a similarity measure of graph pairs, which is analogous to clustering in unsupervised
learning. Furthermore, clustering is also investigated on subgraphs, which is also referred
to as community detection. This involves identifying groups in graphs according to their
structural properties as nodes within these communities are much more likely to form edges
than with nodes outside their community.

Edge/Link Prediction This class of machine learning applications to graph data deals
with predicting whether two nodes should be connected by an edge, e.g., whether two
people in a social network should be recommended to connect or if a specific content should
be recommended to a user. More complex graph datasets like multi-relational biomedical
knowledge-graphs require advanced reasoning and inference strategies [106]. Depending
on the respective application and domain, this is also referred to as relation prediction,
graph completion or relational inferring. They all have in common that the training data
represents an incomplete set of edges Etrain Ĺ E over a fixed set of nodes V, while the goal
is to predict the missing edges of EzEtrain. This includes datasets with single graphs as
well as settings in which relations between several disjoint graphs are to be predicted. Like
node classification, edge prediction also blurs the boundaries between traditional machine
learning categories, thus being referred to as both a supervised and unsupervised problem.

3.3. GRAPH MACHINE LEARNING 35

3.3.2 Graph Neural Networks

A very simple approach to processing graph-structured data would be to neglect the edges
and only process the set of nodes, for example every node independently with an MLP
or Deep Sets [163]. In fact, in many ML applications, individual instances are in certain
relations (for example, images of the same object from different angles), but these are
typically disregarded and the instances are processed in isolation [144]. However, the
domain data is typically structured as graphs for a reason: In the applications, it is assumed
that the connections contain important information for the respective task and should
therefore be taken into account. However, previous neural network architectures are unable
to process graph structures, especially graphs of arbitrary size, which is why new models
had to be developed specifically for this data structure.

Graph neural networks (GNNs) are a class of neural networks designed specifically for
processing graphs. Numerous works have attempted to extend neural networks to handle
arbitrary graphs. The first GNN model is typically attributed to Gori et al. [52], who
introduced the term in 2005. They used random walks to extract sequences from graph
structures, which were then processed using recursive neural networks [37, 131]. Their
approach was restricted to directed acyclic graphs. Scarselli et al. [121] extended their
formulation in 2009 by incorporating edge features. This was followed by the development
of many other variants. Some work attempted to generalize the variety of emergent forms
under a unified scheme, such as the message passing neural network framework by Gilmer
et al. [43].

The basic GNNs can be motivated in different ways, we stick to the generalization of
convolutions to non-Euclidean data first formulated by Bruna et al. in [19], considering
graphs with attributed nodes without edge information. The main idea is to propagate
information along the edges and iteratively update the node states.

The convolutional operation has some desirable properties that motivated the general-
ization from grid-like data such as images (or sequences in 2D) to general graph structures,
confer Section 3.1. Due to the constant number of parameters in the convolutional filters,
the operation is independent of the size of the input and thus both computationally and
memory efficient. The geometric prior thus helps to avoid the curse of dimensionality. Fur-
thermore, convolution works on the local neighborhood of a node, taking into account the
structural information [143]. In the case of images, the neighborhood of a pixel considered
during convolution is always the same size and these neighbors have a fixed order – such
structural rigidity does not hold for general graph structures. Therefore, the convolution
option must be generalized from an ordered collection of fixed size to an unordered set of
arbitrary size as depicted in Figure 3.4. This was achieved by the message passing paradigm
that GNN layers adhere to. Vector messages are exchanged between nodes and transformed
along the edges using neural networks. Following a neighborhood aggregation scheme, a
node’s representation is computed by iteratively aggregating its neighbors’ transformed
messages. Thus, message passing represents a permutation equivariant function to update
a graph’s node representations. Message passing only changes the node information, but
not the structure of the graph.

Like all neural networks, GNNs consist of several stacked layers, cf. Figure 3.5. From
the perspective of a node v, the general update in a message-passing layer l is given by:

hpl`1q
v “ ϕplq

´

hplq
v , ψ

plq
´

thplq
u | u P N pvqu

¯¯

(3.9)

36 CHAPTER 3. DATA AND MACHINE LEARNING FOUNDATIONS

Image Convolution Graph Convolution

Figure 3.4: Comparison of image convolution (left) and graph convolution (right). The
direct neighbors of the highlighted center node are framed in green, respectively. For image
convolution, a p3ˆ3q-kernel matrix takes into account a center pixel and its eight neighbors.
While the neighbors of a node in an image are ordered and of same size, a graph node’s
neighbors N pvq are an unordered set of arbitrary size. Remake of [155, Figure 1].

where h
plq
v denotes the representation of v in the l-th layer. Furthermore, ϕplq and

ψplq are parameterized (i.e., trainable) mappings, e.g., fully connected layers followed by a
nonlinearity [155]. While ψplq transforms and aggregates the multiset of neighbor features,
ϕplq updates a node’s representation.

Permutation invariance is achieved by ψplq accepting an arbitrary number of inputs
for the aggregation. Simple examples for ψplq would be the sum, average or maximum.
For notational simplicity, we stick to the curly bracket representation for multisets, too,
also in the formulas of the following GNN architectures. The same mappings are used
within a layer (parameter sharing). The initial node representation h

p0q
v are set to the

input features for all nodes. Since the aggregation can be performed with any number of
elements, GNNs can handle graphs with different structures and even different sizes. The
node representations hplq

v have the same dimension for all nodes v P V for a specific layer l,
denoted as dl. In each message passing layer, the information of the direct neighbors is
aggregated. This means that at higher layers l ě 2, however, node information of more
distant nodes, precisely the l-hop neighbors, is also indirectly included as they have been
already propagated along l edges.

In message passing layers, the representation of individual nodes is updated; but for
graph-level tasks we need a representation for the entire graph. For this purpose, so-called
readout or pooling layers are used, which aggregate the node representations appropriately
into a global, graph-wide, representation:

hG “ readout
´

thplq
v | v P VGu

¯

(3.10)

The readout function should also be permutation invariant, which can already be achieved
by simple aggregators like sum or mean, for example. More sophisticated readout architec-
tures are useful for large graphs; the survey [155] provides an overview of current readout
approaches. Hence, with a subsequent fully connected layer and Softmax activation, a
graph classification can be performed.

3.3. GRAPH MACHINE LEARNING 37

Input

GNN Layer

σ

GNN Layer

σ . . .

Output

Figure 3.5: Visualization of a GNN “rolled out”: The input graph is processed by stacked
GNN layers, each followed by nonlinearity σ. In a GNN layer, every node aggregates the
features of its neighbor nodes and thus updates its own state. This is shown vertically per
layer for every node of the input graph, where the corresponding center node and its edges
are highlighted. Presentation taken from [69].

Relation to the Weisfeiler-Lehman Test The attentive reader may have noticed a
certain similarity between the functioning of message passing in GNNs and the Weisfeiler-
Lehman algorithm (Section 3.2), especially in terms of information aggregation. However,
different goals are pursued with iterative aggregation, respectively: While with GNNs
similar graphs should be embedded close to each other so that it is easy to generalize
for inference, in isomorphism testing we want to obtain very different representations
for similar but different graphs (which in fact is a property of hash functions). Despite
similarity, the isomorphism test is not suitable for machine learning on graphs. However,
it is used to assess the expressive power of a GNN and serves as inspiration for some
architectures. A major finding in GraphML is that GNNs are no more powerful than
the Weisfeiler-Lehman algorithm [101, 157]. Specifically, if the 1-WL isomorphism test
assigns the same label to two nodes, then any message-passing GNN will do the same.
Consequently, if the isomorphism test cannot distinguish two graphs, a message-passing
GNN can neither.

Various forms of GNN architectures have been developed according to the message
passing paradigm emerging from diverse application areas of graph data. Applications
originate from different fields that usually have few points of contact, so publications tend
to use different terminology and notation. For the sake of comparability, we have aimed for
a uniform notation and terminology for the explanations of the following architectures. In

38 CHAPTER 3. DATA AND MACHINE LEARNING FOUNDATIONS

accordance with the no free lunch theorem4 [152], none of the architectures is consistently
better – even though some address issues of former ones –, which is why we will present a
selection of suitable architectures and examine them for our use cases. We would like to
point out that all the following GNN architectures use linear transformations with feed-
forward layers. For reasons of readability, however, the bias term is always omitted in the
update rule equations. Since nonlinearity plays a crucial role in the expressive power of
neural networks, linear transformations are always used with a nonlinear activation function
that can be set as a hyperparameter. The dimension of the weight matrix controls the size of
the resulting hidden representations as it maps vectors zplq P Rdl to vectors zpl`1q P Rdl`1 .

Graph Convolutional Network (GCN)

Graph convolutional networks (GCNs) [79] have been introduced by Kipf and Welling
for semi-supervised node classification in 2017. They outperformed former established
approaches and were also more computationally efficient.

Let us derive and motivate the formula for a GCN layer in graph-level matrix notation
step by step [144]. According to the initial features X, the node representation after each
layer l are stored row-wise in a graph-level node representation matrix Hplq P R|V|ˆdl .
Transforming and aggregating the node representation can be expressed by applying a
learnable linear transformation W plq (feed-forward layer) and multiplying with the adja-
cency matrix A, followed by a nonlinearity σ such as ReLU:

Hpl`1q “ σ
´

AHplqW plq⊺
¯

(3.11)

The first dimension of the weight matrix serves as hyperparameter and determines the
dimension of the resulting node representations. This equation illustrates that only the
information of the neighboring nodes is used to update the node information, i.e., the
information of the node itself is discarded, which can lead to severe information loss.
Therefore, a small correction is performed by implicitly inserting self-loops so that the
node itself counts as a neighbor of itself. The adjusted adjacency matrix Ã “ A ` I |V|

results from the sum of the original adjacency matrix and the identity matrix of same
size. However, this adjustment modifies the scale of the resulting features, and therefore
normalization is needed. The GCN update rule uses symmetric normalization:

Hpl`1q “ σ

ˆ

D̃
´ 1

2 ÃD̃
´ 1

2HplqW plq⊺
˙

(3.12)

where D̃ refers to the degree matrix of Ã, i.e., d̃ii “
ř

j ãij . According to the authors,
these modifications resulted in a positive impact on training performance. The symmetric
normalization follows the formulation of generalized convolutions to graphs by [19].

For comparison with the other GNN architectures, we also introduce the formula from
the perspective of a single node. Note that the inclusion of the node itself for the update is
not visible in the node-wise formula, as this is achieved by previously adapting the graph

4The no free lunch theorem [152] states, that no machine learning algorithm is universally any better
than any other. Specifically, averaged over all possible data-generating distributions, every classification
algorithm has the same error rate when classifying previously unobserved inputs [51].

3.3. GRAPH MACHINE LEARNING 39

structure. The node-wise update rule of a GCN layer is given by

hpl`1q
v “ σ

¨

˝

ÿ

uPN pvq

1

cvu
W plqhplq

u

˛

‚ (3.13)

with normalization constant cvu “
a

|N pvq| ¨ |N puq|. The constant heavily depends on
the graph structure, not incorporating the node features, which is a limitation of this
architecture. Kipf himself stated, that adaptable assigning weights to neighbors depending
on their importance might be beneficial [80]. Some architectures, among them the next
one, have therefore replaced the constant with a learnable function of the neighboring node
features.

Graph Attention Network (GAT)

Graph attention networks (GAT) [144] address the limitation of fixed neighbor weighting
as in GCNs by generalizing the self-attention operator (cf. Section 3.1.1) introduced in the
Transformer architecture [141] to the graph domain. The key idea is to assign attention
weights to neighbor nodes, allowing the network to focus on the most relevant ones for the
specific task. Again, we consider the calculation rules for one GAT layer. First, the node
features are transformed: As for GCNs, at least one linear transformation, parameterized
by a weight matrix W , of the node features is required. Afterward, self-attention is
performed on the nodes by an attention mechanism a : Rdl ˆ Rdl Ñ R on pairwise node
representations, resulting in real-valued attention coefficients

evu “ a phv,huq (3.14)

indicating the importance of the features of node u to node v. A single feed-forward linear
layer together with a nonlinear activation function σ represents the attention mechanism.
In their paper [144], they employ LeakyReLU with a negative input slope of 0.2 as activa-
tion function. As a scalar output is desired, the corresponding weight matrix actually is a
weight vector a P R2dl :

a phv,huq “ σ
`

a⊺
“

Whv

›

› Whu

‰˘

(3.15)

where } represents vertical vector concatenation. Both the linear transformation and at-
tention mechanism are shared within a GAT layer. The most general formulation allows
attending every node to every other node, neglecting all structural information. By per-
forming masked attention, i.e., only computing the coefficients for adjacent nodes (or any
other desired neighborhood definition), the model takes the structural information into ac-
count. Similar to GCNs, the node itself is included in its neighborhood, so that attention
coefficients are computed for every node and direct neighbor as well as itself. To ensure that
the coefficients are easily comparable across different nodes, they are normalized across all
choices of neighbors using the Softmax function to attention weights, written out as

αvu “
exp pevuq

ř

wPN pvq

exp pevwq
(3.16)

40 CHAPTER 3. DATA AND MACHINE LEARNING FOUNDATIONS

Combining all computational steps, the node-wise update rule of a GAT layer l is given by

hpl`1q
v “ σ

¨

˝

ÿ

uPN pvq

αplq
vuW

plqhplq
u

˛

‚ (3.17)

including a nonlinearity σ and with attention weights

αplq
vu “

exp
´

σ
´

a⊺
plq

”

W plqh
plq
v

›

› W plqh
plq
u

ı¯¯

ř

wPN pvq

exp
´

σ
´

a⊺
plq

”

W plqh
plq
v

›

› W plqh
plq
w

ı¯¯ (3.18)

Again, the dimension of the resulting node representations h
pl`1q
v is a hyperparameter

determined by the number of rows of the weight matrix.
Compared to the node-wise update rule for GCN in Equation (3.13), only the calcu-

lation of the weights of the neighboring nodes has changed. Whereas with GCNs this
depended solely on the node degrees of the neighbors, with GATs they are calculated
depending on the node features. Thus, a GAT allows for assigning different weights (im-
portance) to neighbors.

Following the findings of [141] that employing multiple independent attention mech-
anisms per layer stabilizes the learning process of self-attention, multi-head attention is
included. This means, that κ P N independent mechanisms execute the transformations of
Equation (3.17). Their outputs must then be suitably aggregated into one; Veličković et
al. suggest concatenation for this. Consequently, the dimension of hpl`1q

v per node equals
κ ¨ dl`1 instead of dl`1. The number of heads is a second hyperparameter of a GAT layer.
For the final layer however, typically averaging over all attention heads is employed. By
using multi-head self-attention, the node-wise update rule changes to

hpl`1q
v “

κ
›

›

›

›

k“1

σ

¨

˝

ÿ

uPN pvq

αpl, kq
vu W pl, kqhplq

u

˛

‚ (3.19)

and for the final layer using average to

hpl`1q
v “ σ

¨

˝

1

κ

κ
ÿ

k“1

ÿ

uPN pvq

αpl, kq
vu W pl, kqhplq

u

˛

‚ (3.20)

The second element of the superscript pl, kq of the attention weights and weight matrix
denotes the index of the corresponding attention mechanism. As the computations of
the individual heads are completely independent, they can be parallelized, thus making
GAT layers highly efficient. Although more computations were included by the attention
mechanism, the computational complexity of a GAT layer is at the same level as a GCN
layer.

3.3. GRAPH MACHINE LEARNING 41

GraphSAGE

GraphSAGE was introduced by Hamilton et al. in 2017 [58] as framework for learning
representations especially for large graphs like social networks. The architecture was de-
signed in order to tackle the problem of transductive node representation methods to not
efficiently generalize to unseen nodes. The inductive single-graph datasets analyzed in this
paper were a citation network consisting of 300 thousand nodes with average node degree
of 9, and a network of Reddit posts consisting of 230 thousand nodes with average degree
of nearly 500. The difficulty in processing such large graphs is the number of nodes (and
thus the computational operations), but also the connection intensity, for example with
hub nodes like celebrities on social media.

As a form of GNNs, the node information is updated by exchanging messages with
neighboring nodes – but with a slight modification. The main novelty of this architecture
is a neighbor sampling step which results in the benefit of scalability to graphs with high
node degrees. Instead of taking all direct neighbors N pvq of every node v into account,
only a random sample N ˚pvq Ď N pvq of them is considered. In every layer and for every
processing of a graph, a new sample is chosen randomly. The specific sampling strategy
is a hyperparameter that needs to be selected. Still, every node is represented by some
aggregation of its neighbors, which works even for new unseen nodes. In the GCN and GAT
architectures discussed so far, only direct neighbors are considered, although an adaptation
of the neighborhood definition to neighborhood sampling or also integrating more distant
nodes would definitely be possible. The downside of sampling is potential information loss
as well as the higher variance of the gradient due to randomization during training which
could make the model harder to train.

The second important modification in GraphSAGE is that the function for aggregating
the neighbors’ representation is a learnable function. Formally, the intermediate node
representation after aggregating the sampled neighbors’ representation can be written as

h̃
plq
v “ aggregate

´

thplq
u | u P N ˚pvqu

¯

(3.21)

The authors propose three aggregator functions (hyperparameter) in their work, in order
to make their approach applicable to many applications: mean, pooling and LSTM. (i) For
the mean operator, simply the element-wise mean of the sampled neighbor’s representation
is taken. This aggregator is quite similar to GCNs, however does not incorporate the
normalization based on the node degrees. (ii) For the pooling aggregator approach, the
nodes representations are independently transformed by a shared MLP and element-wise
max-pooling is applied to the resulting vectors. Both of these operators are permutation
invariant as opposed to the last operator. (iii) LSTMs process inputs in a sequential
manner, thus they actually seem to be an unsuitable choice. This problem was addressed
by applying a random permutation to the nodes to force the model to only focus on the
features itself rather than on their order.

The aggregated neighbor information h̃
plq
v is used together with the representation of the

node itself to update its state. As usual, a linear transformation W plq and a nonlinearity σ
are used. In summary, this results in the node-wise update rule of a GraphSAGE layer by

hpl`1q
v “ σ

´

W plq
”

hplq
u

›

› h̃
plq
v

ı¯

(3.22)

The focus of GraphSAGE is primarily on scalability. In contrast to GAT, the neighbors
cannot be assigned different importance in the neighborhood aggregation.

42 CHAPTER 3. DATA AND MACHINE LEARNING FOUNDATIONS

Graph Isomorphism Network (GIN)

The last presented variant of GNNs, Graph Isomorphism Networks (GIN), were introduced
in 2018 by Xu et al. in their paper [157]. They found out that some GNN architectures like
GCN and GraphSAGE cannot distinguish some graph structures by design, i.e., they rep-
resent these similar but different graphs the same way. Therefore, the authors designed the
GIN architecture in order to create a more representational powerful GNN. The goal was
to be able to distinguish the same graph structures as the Weisfeiler-Lehman isomorphism
test [147] can.

Figure 3.6 illustrates some examples of graph structures that cannot be distinguished
by GCN and GraphSAGE. Their main design problem is using mean or max-pooling as
aggregation operation. Let’s consider an illustrative example when applying mean as ag-
gregation operator (cf. right example in the figure): assume we are having two graphs;
in the first the node v has the two neighbors a and b, while in the second graph the
two nodes each occur twice in the neighborhood of v. When performing neighbor ag-
gregation, node v is going to obtain the same representation in both graphs because
meanpxa,xbq “ meanpxa,xa,xb,xbq holds, where xi represents a node i’s representation.
For this example, also max-pooling fails to produce different representations.

u v

(a) Mean and max both fail

u v

(b) Max fails

u v

(c) Mean and max both fail

Figure 3.6: Three examples of graph pairs that GCN and GraphSAGE models cannot
distinguish due to their aggregator operators mean and max. Unlabeled nodes of the same
color have the same representation vector. Between the two graphs, nodes u and v get
the same updated representation even though their corresponding graph structures differ.
The subtitles indicate which aggregation operators fail when differentiating between the
two graphs. Remake of [157, Figure 3].

The problem described above occurs to a much lesser extent when using the sum as
an aggregation operation, which is why it is used for GINs. However, further architectural
differences to the models considered so far can be found. The GIN architecture is based on
the finding, that GNNs can have as large discriminative power as the Weisfeiler-Lehman
test, if their aggregation scheme is also an injective function. An injective function f maps
two different elements to two different images, formally x1 ‰ x2 ùñ fpx1q ‰ fpx2q. In
the context of GINs, the elements are multisets of node vectors.

The authors have shown that an update function g of a GNN layer l for a multiset S
(i.e., the node neighbors) and a single element c (i.e., the node itself) of the form

gplq pc,Sq “ ϕplq

˜

´

1 ` ϵplq
¯

¨ f plqpcq `
ÿ

sPS
f plqpsq

¸

(3.23)

3.3. GRAPH MACHINE LEARNING 43

for any ϵplq P R fulfills these properties for suitable functions f plq and ϕplq. We generously
omit the mathematical details here and refer the interested reader to [157] for the deriva-
tion. Due to the universal approximation theorem [61], these functions can be learned by
MLPs; by clever rewriting to function concatenation f pl`1q ˝ ϕplq over consecutive layers,
this can even be solved with a single MLP. We would like to explicitly point out that
the MLP must have at least two layers so that the universal approximation theorem ap-
plies. The number of layers and their respective output dimensions are hyperparameters.
Summarizing, the node-wise update rule of a GIN layer then takes the following form:

hpl`1q
v “ MLPplq

¨

˝

´

1 ` ϵplq
¯

¨ hplq
v `

ÿ

uPN pvq

hplq
u

˛

‚ (3.24)

The scalar ϵplq can be a learnable parameter or pre-set to a fixed value (hyperparameter).

Finally, we would like to provide an important note: Although the GIN architecture is
in theory superior to other GNN architectures, this does not always translate to real-world
problems. In theory, an MLP is able to map the required functions, but it is not given
that this will always be achieved. Therefore, despite the theoretical disadvantages, GCNs,
for instance, can yield better results in practical tests.

Issues of Graph Neural Networks Various problems can occur when using GNNs, the
two most important of which are over-squashing and over-smoothing [59]. Over-squashing
refers to the phenomenon of information loss, when too much information or information
over a too long dependency needs to be compressed into a fixed-size vector. This can
occur, if the learning task requires long-range dependencies for far away nodes or the
graph structure exhibits bottlenecks, e.g., connecting two strongly connected subgraphs.
The problem is therefore more likely to occur with larger graphs. It can be alleviated
by adapting the graph structure, also referred to “rewiring” [136]. In contrast, in the
case of over-smoothing, the node information is distributed too much so that all node
representations become very similar because the node-specific information becomes washed
out after several iterations. This phenomenon can be observed in cases where the node
neighbors dominate the node update. It becomes problematic when the learning task
requires a deep architecture, but the expressive power decreases as the depth increases. A
natural way to address this issue is to employ so-called skip connections, i.e., additional
connections of a layer to layers further up in the network, in order to preserve information
from previous layers [59].

Transformers are Graph Neural Networks The invention of the Transformer [141]
architecture in 2017, initially developed for machine translation, has led to a major break-
through in the field of NLP where nowadays nearly every use case is dominated by Trans-
formers [151]. In contrast to RNNs, which were used in the past, Transformers do not
process the input sequentially but calculate the importance of all input elements among
each other based on their features (self-attention mechanism) and from this an updated
internal representation of all elements. In other words, each element’s representation is
an aggregation of all other elements’ transformed features. This bears some similarities

44 CHAPTER 3. DATA AND MACHINE LEARNING FOUNDATIONS

to the message passing paradigm of GNNs: Recapitulating, GNNs learn node representa-
tions by iteratively aggregating its neighbors’ transformed features. The main difference is
that Transformers use the features of all elements to update an element’s features whereas
GNNs employ restrictions to only use the representation of the direct neighborhood for a
node update [103]. Let’s consider a sentence as fully connected graph where every word
is connected to every other word, as displayed in Figure 3.7, to clarify the connection.
Now, a GNN can be used to build features for each word and thus perform NLP tasks.
Neglecting the attention mechanism, GNNs are basically Transformers which operate on
arbitrary graph structures, not restricted to fully connected graphs. Since Transformers
make minimal assumptions about the structure of their input (a set of elements with op-
tional positional information), they usually require more training data to grasp the concept
compared to architectures with stronger inductive biases, like GNNs [103].

This is a short sentence

This

is sentence

a short

Figure 3.7: A sentence represented as fully connected graph. Directed edges starting from
first word “This” are highlighted.

The relationship between GNNs and Transformers as well as the great success of Trans-
formers led to the desire to apply them for arbitrary graph structures as well. This gave rise
to different architectural variants of so-called Graph Transformers, which still utilize the
attention mechanism introduced for standard Transformers [141], but handle the unique
challenges posed by graph-structured data in different ways.

3.4 Embedding Discrete Objects

Datasets can have both numerical continuous and discrete (also called categorical) features,
and the labels of the instances can also appear in both forms. Obvious examples would
be natural language text composed of words or image classification. While the numerical
features and targets can be used directly for processing in ML models (after some prepro-
cessing steps, if necessary), categorical features still need to be converted beforehand into
a suitable numerical representation. It may seem natural to count the number of disjoint
values k of a categorical attribute and assign a numerical value between 0 and k ´ 1 to
each value. However, numerical algorithms are based on the assumption that numbers that
are closer together are more closely related than values that are further apart – this ties
in with the rules in Euclidean space. Consequently, categories 0 and 1 need to be more
similar than e.g., category 0 and k ´ 1 (for k ą 2). In most cases, this order can only be
found with a great deal of domain knowledge and therefore manual effort, or not at all.
Alternatively, a generally valid approach is one-hot encoding the attribute, i.e., creating
a binary column for each categorical value. However, this encoding also has drawbacks:

3.4. EMBEDDING DISCRETE OBJECTS 45

The dimension of the one-hot encoding corresponds to the number of attribute values,
which means that a high number of attribute values may slow down training and degrade
performance due to the curse of dimensionality. Furthermore, this representation does not
express any similarity, as the one-hot vectors are orthogonal to each other5. Instead of
high-dimensional and sparse representations, low-dimensional and dense representations
are more suitable for learning.

3.4.1 Learning Embeddings

In the past, feature engineering involved the selection or construction of appropriate fea-
tures for a learning problem, primarily relying on mathematical methods. However, a more
contemporary approach is feature learning or representation learning, where the dense rep-
resentations themselves are learned by neural networks, either by an upstream model or
during training the task model. Specifically, this refers to learning a mapping from one dis-
crete object (type) to a point in the vector space – commonly referred to embeddings [51].
The dimension of the embedding is a hyperparameter that needs to be tuned. The posi-
tioning of the objects in the vector space is intended to provide added value for subsequent
algorithms, typically so that similar objects should be closer in the vector space. Learning-
based embedding methods are currently state-of-the-art because of their broad applicability
and performance. A major advantage is that these embeddings often can be reused success-
fully for other similar tasks (by applying fine-tuning or transfer learning), e.g., in the case
of word embeddings. Individual axes in the learned space could, for example, be “bright-
ness” or “weight”, which are used to arrange words in the embedding space. There, the
word “sun” would be assigned a significantly higher value on both axes than, for instance,
the word “lamp”, because the sun is both brighter and heavier than a lamp. Therefore,
embeddings are also referred to as distributed representations, since the meaning and other
properties of a word are distributed across different dimensions. In practice, though, very
few of the resulting features are interpretable to humans. However, the coded similarity of
the vectors enables the models to better understand inputs that were seen similarly during
training: By having similar vectors for similar words, a model can more easily recognize
the similarity of sentences, even if the exact words used are slightly different, resulting in
better generalizing models. For example, in a trained word embedding, all animals should
be arranged in one region, although pets such as cats and dogs should be much closer
together (as they are often mentioned in the same context) than other animals such as
elephants or whales.

3.4.2 Word2Vec

Representing discrete objects as dense vectors is at the core of deep learning’s successes in
NLP. In 2000, Yoshua Bengio et al. provided a major contribution to natural language pro-
cessing through their publication “A Neural Probabilistic Language Model” [12], in which
they introduced high-dimensional word embeddings gained from neural networks captur-
ing semantic relationships between words and thus representing word meaning. In 2013,

5Similarity of vectors is often measured by the cosine distance, which is the dot product of the vectors
normalized by the product of their magnitudes: SCpx,yq “ cospθq “

x¨y
}x}¨}y}

, where θ denoted the angle
between the vectors. For two different one-hot vectors, their dot product and thus the cosine distance
equals 0.

46 CHAPTER 3. DATA AND MACHINE LEARNING FOUNDATIONS

The quick brown fox jumps over the lazy dog.

(fox, quick) (fox, brown) (fox, jumps) (fox, over)

the 0

quick 0

brown 0

fox 1

jumps 0

over 0

lazy 0

dog 0

Input Layer

1.2

´0.7

0.4

´0.1

Hidden Layer

Embedding

0 the

1 quick

0 brown

0 fox

0 jumps

0 over

0 lazy

0 dog

Output Layer

Encoder Decoder

Figure 3.8: Illustration of the architecture of word2vec, which consists of an encoder and
decoder similar to an autoencoder, in the variant Skip-gram. The sentence shown above
has been transformed into Skip-gram instances, with showing the processing of the first
instance (fox, quick) in the model. To represent the words in the input and output, the
bag-of-word representation, i.e., one-hot encoding, is used. Example embedding vector for
the input word “fox” can be seen next to the hidden layer.

Mikolov et al. presented an efficient technique called word2vec [96] to learn word embed-
dings using neural networks on a large corpus of text. Modern large language models such
as GloVe [111], GPT [114] or BERT [31] – to name just a few – are further developments
and provide word embeddings trained on large datasets, but have particular modifications
specific to natural language properties built-in. In contrast, word2vec is not specialized in
natural language and can therefore be easily used and adapted for other application areas
– such as assembly modeling – which is why we present this technique in detail in the
following.

For word2vec [96], only plain text without annotations or manual labels is needed for
training. The result is an embedding vector for each word of the corpus. The basic idea
is that the meaning of a word is defined by its context words. So if two words occur
in the same context, it is assumed that they have something in common, i.e., that they
are similar in some way. Architecturally, the model is structured like an autoencoder

3.4. EMBEDDING DISCRETE OBJECTS 47

and consists of two processing feed-forward layers, in particular a hidden layer (encoder)
followed by a nonlinearity and an output layer (decoder), cf. Figure 3.8. As it is the case
for all neural networks, the input layer only represents the input and does not perform
any computations. Instead of trying to reproduce the input as in a real autoencoder,
successive words are mapped to each other, while cross-entropy serves as loss function.
There are two variants of word2vec: for Skip-gram, a center word is mapped to its context,
while for CBOW (Continuous Bag of Words), context words are mapped to a center word,
cf. Figure 3.9. Context words are words within a certain range before and after the center
word, defined by a hyperparameter window_size. Experiments show that the first variant
works well with small datasets and can better represent rare words, whereas the latter can
be trained faster, but focuses more on good representations for frequent words [96]. Since
the two variants of word2vec basically just swap input and target of the instances, but
the way the work is the same, we confine our following explanations to only one variant,
namely Skip-gram.

wi´2

wi´1

wi`1

wi`2

sum
wi

Input Projection Output

CBOW

wi´2

wi´1

wi`1

wi`2

wi

OutputProjectionInput

Skip-gram

Figure 3.9: The two model architectures of word2vec: CBOW and Skip-gram. The CBOW
architecture predicts the center word wi based on the context words (wi´2, wi´1, wi`1, wi`2)
for window_size “ 2, while the Skip-gram architecture predicts context words given the
center word. The Index indicates the position of a word in the considered sentence. Adop-
tion of [96, Figure 1].

Self-Supervised Instance Generation Word2vec falls into the category of self-super-
vised methods, as labeled (supervised) instances are extracted from unlabeled plain text.
The given training sentences are iterated word by word, creating multiple instances for each
current word, one for each pair of center word and context word. In other words, the text
is iterated in 2 ¨ window_size ` 1 consecutive words, while pairs consisting of the middle
word and every other within-window neighbor are built, thus skipping the middle word.
Therefore, the resulting instances are called Skip-gram instances. However, the instances
are not created beyond the limits of a sentence: So in most cases, exactly 2 ¨ window_size

48 CHAPTER 3. DATA AND MACHINE LEARNING FOUNDATIONS

Source Text Skip-Gram Instances from Source Text

The quick brown fox jumps over the lazy dog. (The, quick) (The, brown)

The quick brown fox jumps over the lazy dog. (quick, The) (quick, brown) (quick, fox)

The quick brown fox jumps over the lazy dog. (brown, The) (brown, quick) (brown, fox) (brown, jumps)

The quick brown fox jumps over the lazy dog. (fox, quick) (fox, brown) (fox, jumps) (fox, over)

The quick brown fox jumps over the lazy dog. (jumps, brown) (jumps, fox) (jumps, over) (jumps, the)

The quick brown fox jumps over the lazy dog. (over, fox) (over, jumps) (over, the) (over, lazy)

The quick brown fox jumps over the lazy dog. (the, jumps) (the, over) (the, lazy) (the, dog)

The quick brown fox jumps over the lazy dog. (lazy, over) (lazy, the) (lazy, dog)

The quick brown fox jumps over the lazy dog. (dog, the) (dog, lazy)

Figure 3.10: Example for creation of Skip-gram instances of the form (center word, context
word) for a given sentence with window_size = 2. Every word serves as center word
(highlighted in yellow), the two preceding and two subsequent words form the respective
context words, which are highlighted in blue.

instances are generated, but if the center word is too close to the beginning or end of the
sentence, a reduced number of instances is extracted. An example is shown in Figure 3.10.
Consequently, there are several targets (context words) for one input (center word). For
processing in the word2vec model, the words are represented by one-hot vectors – both the
input and the target.

The size of the model’s hidden layer defines the resulting embedding dimension as
hyperparameter; the dimensions of the input and output are determined by the size of the
vocabulary, i.e., the unique words of the text corpus. The hidden layer maps a given word
encoded as one-hot to a lower dimensional embedding vector, which is mapped back to
the dimension of the words by the decoder layer as visualized in Figure 3.8. The latter
one is only used in training and truncated for inference as the embeddings are calculated
in the hidden layer. The weight matrix of the encoder serves as lookup table for word
embeddings as the i-th row corresponds to the embedding of i-th word in the vocabulary.
Such embedding techniques are referred to as shallow embedding approaches [59]. The
activations of the output layer represent a distribution of scores over the entire vocabulary.
After applying the Softmax activation function, these can be interpreted as probabilities
over the vocabulary. The highest and therefore most probable value of the prediction
indicates the predicted word. Mikolov et al. [97] also present some techniques to increase
efficiency and improve computational complexity, such as negative sampling that aims for
balancing the number of positive and negative rewarded tokens.

Embedding Evaluation The problem of finding embeddings for words or categorical
objects in general is basically an unsupervised learning problem since we do not know the
target vectors. However, the evaluation of unsupervised models is very difficult due to
the lack of ground truth [104]. Word2vec solves this problem with a kind of trick: Due
to the architecture of mapping center words to context words (Skip-gram), a supervised

3.4. EMBEDDING DISCRETE OBJECTS 49

learning problem is solved during training. The model is based on the assumption that
if the supervised learning problem is well solved, the unsupervised learning problem for
predicting embedding vectors is also well solved. This means that a supervised learning
problem indirectly solves an unsupervised learning problem. Modern embedding methods
also solve the unsupervised problem with an auxiliary task, such as predicting the next
word or a missing word.

Existing methods for evaluating embeddings can be divided into extrinsic and intrinsic
methods. The survey [7] provides an extensive overview of recent advantages and widely-
used evaluation approaches; we will only give a short summary here. Extrinsic methods
evaluate embeddings on a supervised downstream task, typically the actual target learning
task. The idea is that meaningful features should lead to good task performance, perhaps
even with only a few instances [104]. These tasks, however, are typically elaborate and
slow to compute. A shortcoming of this approach is that it is difficult to identify the
reason for poor performance; it could be the representation, the downstream model or
their interaction. With intrinsic methods, specific intermediate subtasks are first defined
based on domain knowledge and the trained embeddings are then evaluated on them.
These subtasks are typically simple and fast to compute – but need to be hand-crafted in
the beginning. These include, for example, synonym detection (selecting the synonym for
a given word from a set of words), outlier word detection (identifying the outlier from a set
of words) or analogy completion. In the latter task, for given three words w1, w2 and w3,
the matching fourth word is to be provided, which answers the following question: “What
is the word that is similar to w3 in the same sense as w2 is similar to w1?”.

The analyses of the learned embeddings showed that the word analogies searched for in
analogy completion tasks – whether based on semantic or syntactic rules – can simply be
represented as arithmetic operations in the vector space. For instance, to find a word that
is similar to “swimming” in the same sense as “did” is similar to “doing”, we can compute
x “

ÝÑdid ´
ÝÝÝÑdoing `

ÝÝÝÝÝÝÝÑswimming. The closest word to point x measured by cosine distance
serves as answer. For well-trained embeddings, this word corresponds to the correct answer
“swam”. This means that there is a vector that maps the verb forms from progressive to
past, which is very similar to the vector from “doing” to “did”. Analogously, you can
find vectors for diminutive, assignment of capital cities to countries or male-to-female
transformations, to name just a few examples. Two examples are visualized in Figure 3.11.

man

king
woman

queen
doing

swimming

did

swam

Figure 3.11: Visualization of exemplary semantic (left) and syntactic (right) vectors that
can be found in a learned word2vec embedding space. The semantic vector translates male
word forms into female word forms whereas the syntactic vector performs a verb tense
transformation.

50 CHAPTER 3. DATA AND MACHINE LEARNING FOUNDATIONS

Intuition We would like to briefly provide an intuition why this architecture provides
embeddings that contain both semantic and syntactic similarity of words. The goal of
this model is to place similar words close to each other in the vector space. Let’s imagine
we have two sentences, “The quick brown fox jumps over the lazy dog” and a second one
where the word “fox” has been replaced by the word “dog”. If we mask the word “fox”,
we as humans realize that not all kinds of words can be placed here, but only those that
make sense in the context, i.e., things or animals that can jump over something. Assuming
we now have these two very similar sentences and consider the instances that each have
“fox” and “dog” as the center word, we would like to map the input for “dog” and “fox”
both to the same context words in the output. In order for two different inputs to produce
approximately the same output, the activation of the hidden layer must be similar. The
activation of the hidden layer corresponds to the embedding, cf. Figure 3.8.

Chapter 4
Assembly Data

Summary This chapter presents the real-world assembly datasets used in the thesis
which originate from customer orders in assembly configurators and provides an approach
to represent CAD assemblies as undirected graphs over parts. Further, it covers the
characteristics of the three datasets, which differ in number of part types and graph
characteristics, thus making them suitable for investigating our generic approaches for
the three use cases in assembly modeling. We developed an unsupervised pretraining
technique named part2vec to generate low-dimensional embeddings for part types using a
context-based approach as a generalization of word2vec [96] from sequential data to general
graph structures. In a preliminary study, suitable sizes of embeddings were examined. The
resulting representations of the parts serve as initial features for all use cases examined in
this work.

Contents
4.1 Representing CAD Assemblies as Graphs 52
4.2 Assembly Datasets . 54
4.3 Unsupervised Pretraining of Part Embeddings 56

4.3.1 Experimental Results . 59
4.3.2 Further Uses for Trained Embeddings 60
4.3.3 Related Work . 64

Publications The representation of assemblies as graphs has been introduced in [39,
86] and the datasets have been initially published in [39]. Furthermore, the results of the
preliminary study on the part type embeddings are published in [39].

The methodology presented in this thesis is based on representing assemblies as undi-
rected graphs over individual parts. However, the task of converting specific CAD models
into these graph representations is beyond the scope of this thesis. For the datasets ex-
amined in this work, this conversion was carried out by the industrial partner of project
KOGNIA. Consequently, we will present a problem formulation for the representation and
only basic description for the corresponding conversion in the following.

51

52 CHAPTER 4. ASSEMBLY DATA

4.1 Representing CAD Assemblies as Graphs

Due to the heterogeneity of available attributes of parts1 in part catalogs, our approach
uses the only information that is always available in a catalog: a unique part identifier.
We assume a set of pre-existing part types2 T which serves as the elementary building
blocks upon which a dataset of n assemblies tAiu

n
i“1 is built. In conformity with the field

of natural language processing, in which sentences are put together from a collection of
tokens, we also use the term vocabulary to refer to T . For instance, a part type might
refer to a particular kind of hinge or gear. The parts present within an assembly are
instantiations of these defined part types, comparable to software objects as instantiations
of classes in software systems. The type of part p is denoted as T ppq P T using a type
function T .

We assume furthermore that the considered assemblies are connected. If a CAD file
contains two (spatially) separate assemblies, for example two variants of a machine, these
are processed separately. Since the organization of an assembly in an assembly tree depends
entirely on the preferences of the designer (see Section 2.2), we must first carry out a
preprocessing step to neglect this hierarchy: expanding all subassemblies and summarizing
the parts within the leaf nodes into a flat list while keeping defined mates. As an example,
the right part of Figure 2.2 shows the resulting structure, a flat list of parts without
subassemblies, after flattening the assembly hierarchy on the left.

As a collection of parts that are connected to each other, flattened assemblies can be
naturally represented as graphs over parts: An assembly Ai specifies its containing parts
as nodes VAi , and information about connected parts as edges EAi . The part types of
the nodes can be obtained from the type function T . An assembly may contain several
instances of the same part type. As the available mating types differ in the CAD systems,
we neglect this distinction and only use one type of edge (“connected”). The edges are
conceptually symmetrical (part p1 is connected to part p2), i.e., it only matters which
parts are connected, not the edge’s direction. Therefore, all edges are bidirectional and
unweighted. Furthermore, there are neither multiple connections between two nodes nor
self-connections, resulting in simple graphs (cf. Section 3.2). Edges can result from speci-
fied mating conditions in CAD systems or can be read off by geometric proximity, which
resembles a physical connection of the parts in the later construction. The nodes, on
the other hand, are attributed and thus heterogeneous, as there is exactly one node type
(namely the type part) but they can take on different values with the part types. The
available information about parts varies greatly in the different part catalogs. As we aim
for a generic approach that should be suitable for all assembly data, we only extract the
information that is always available and omit heterogeneous metadata such as the type
of mate, material properties or geometric features of the parts. Companies with a long
design history often have designs in various formats from different CAD programs; a uni-
form representation is essential here. Nevertheless, this information can be incorporated,
for example as additional geometric or problem-specific features of the parts. Figure 4.1
displays an example assembly and its corresponding graph representation that is going to
be examined throughout this thesis.

1We use the term “part” over “component” to indicate that we deal with atomic parts, that cannot be
decomposed. This would also include a motor, for example, if it is an elementary part in a part model.

2The parts can be purchased or in-house parts.

4.1. REPRESENTING CAD ASSEMBLIES AS GRAPHS 53

Assembly Model

Extracted Graph

a

a

d

b c

Figure 4.1: Exemplary assembly of an attachment to robots for machining. The assembly
consists of five parts of four different part types T “ ta, b, c, du, i.e., it contains two part
instances of type a. The representation of the assembly as an undirected graph is shown
below, with the respective part type annotated at the part node. Part c is a basic holder
that is connected to a boring tool (d) via an extension (b). Two insert holders (a) are
further attached to the boring tool. They can be fitted with cutting inserts for milling
which are not part of this assembly.

54 CHAPTER 4. ASSEMBLY DATA

Ambiguous Edges Following the classification given in [169], which differentiates be-
tween structural scenarios where graph structure is explicit (such as in molecule generation)
and non-structural scenarios where graphs are implicit, e.g., inferred from text or images,
the applications proposed herein can be categorized as “semi-structural”. The extraction of
the graph structure is an ambiguous matter, as only some mating relations may be given
and even only a portion of them can be extracted canonically as some may serve other
purposes than denoting meaningful connections, e.g., to support the designer’s workflow.
In this case, some edges may need to be extracted from geometric proximity of parts where
also some difficulties arise: Parts that should touch each other do not necessarily have zero
distance – either the designer did not model it accurately enough or the different CAD
systems are based on different thresholds. Sometimes it is difficult to decide whether a gap
is intended; for example, a small air gap between two sheets may be intended in order to
ensure cooling. Due to these difficulties, the use of the distance between parts as an edge
weight is not advisable.

Permutation Invariance and Heterophily The assembly graphs do not contain any
temporal information about their creation: Although every assembly has been created by
a sequence of part insertion and connection operations, the resulting design only represents
its final state without storing its creation history. This means that the graphs are statically
attributed. At first glance, the design process might appear to be sequential, but this is not
the case: an assembly can be designed in different ways – again depending on the designer’s
preference – making no sequence correct or preferable. This permutation invariance is an
important property of the assembly data, making graph machine learning particularly suit-
able for application. However, the assembly datasets exhibit a specific property that is not
present in most graph-based datasets: heterophily. Two parts serving different purposes
and thus being dissimilar are likely to be connected in mechanical designs. The connection
of identical or similar parts may occur (for example in the case of extensions), but this is
the exception rather than the rule. The majority of graph datasets and benchmarks make
tactic assumptions of homophily, thus many algorithms are based on the assumption. Ac-
cording to findings of [170], many of these models show poor performance for heterophilous
datasets.

4.2 Assembly Datasets

Three independent real-world assembly datasets based on three distinct sets of part types
are available for this thesis3. The datasets were provided by project KOGNIA and originate
from so-called assembly configurators. There, users can put together assemblies online,
which are assembled and sent to the customer after ordering. The resulting assemblies are
acyclic, i.e., tree structures, which simplifies some preprocessing steps4.

Each dataset is composed of about 12,000 mechanical assemblies. The datasets differ in
the size of the vocabulary, while the assemblies differ in the number of parts per assembly
and graph diameters, as shown in Table 4.1. Due to their different characteristics, the

3The datasets were initially published in [39] and can be accessed via https://figshare.com/articles/
dataset/ECML22_GRAPE_Data/20239767. The assemblies are given as pseudonymized graphs, i.e., the part
types were pseudonymized to IDs.

4The methodology in this thesis is constantly described for arbitrary undirected graphs; simplifications
or modifications arising for trees are explicitly pointed out in the respective passages.

https://figshare.com/articles/dataset/ECML22_GRAPE_Data/20239767
https://figshare.com/articles/dataset/ECML22_GRAPE_Data/20239767

4.2. ASSEMBLY DATASETS 55

datasets are well suited to investigate the applicability of our approaches. Since the datasets
are based on independent vocabularies and thus no synergy effects are to be expected from
their combination, we investigate each dataset separately. In the course of the thesis,
we will consider different modifications of the assembly data to implement the use case
of (localized) part recommendation and anomaly detection. In order to distinguish them
notationally, we refer to an existing assembly in our database as A˚.

Table 4.1: Key facts of the three assembly datasets used. For each metric column, the first
line indicates the range of values and the second line the corresponding average value.

Dataset # Graphs # Part Types Node Degrees # Nodes # Edges Graph Diameter

A 11,826 1,930 1 – 9 4 – 33 3 – 32 2 – 32
H 1.7 H 6.12 H 5.1 H 4.45

B 11,895 3,099 1 – 13 4 – 69 3 – 68 2 – 38
H 1.9 H 18.18 H 17.2 H 10.06

C 11,943 1,924 1 – 16 4 – 20 3 – 19 2 – 6
H 1.7 H 6.74 H 5.7 H 2.94

We deliberately use real-world datasets that have not been pre-curated to ensure a
balance in graph size, labels, etc. As the assemblies are based on customer orders, the
same graphs and subgraphs may occur several times. These duplicates were deliberately
not deleted as they reflect the real-world bias. Accordingly, the sizes of the designs are
not equally distributed and the parts also occur with different frequencies. The uneven
distribution reflects the real-world bias of the problem and should therefore be maintained.
This is also common practice in other application domains such as NLP, as there is no equal
distribution across the words or letters.

Besides the described information, the datasets do not contain any further information,
in particular no labels describing the quality of an assembly. This corresponds to our
requirement to develop a procedure that is as automated as possible and ideally requires
no manual labeling or maintenance of the data by domain experts. The existing datasets
of assemblies have been ordered by customers in exactly this way, so we assume that they
are of good (enough) quality and therefore form a suitable knowledge base. Therefore,
we want to extract the implicit design knowledge contained therein, analogous to natural
language processing as stated in [114]: Even if some assemblies may not be perfect, this is
averaged out over the mass of data. Good designs prevail over mediocre ones due to their
frequency, so it can be assumed that good design knowledge is learned overall.

CAD Datasets in Literature Recently, interest in data-driven approaches in CAD has
increased, leading to the publication of several datasets, for instance the ABC dataset [82]
by Koch et al., the AutoMate dataset introduced in [68], the ShapeNet repository [24],
the DMU-Net dataset [30], or PartNet [100]. These datasets and applications are centered
around the part modeling side of the CAD workflow in contrast to assembly modeling.
Although segments of the 3D models (similar to parts of an assembly) are annotated in
some datasets, e.g., the seat, backrest and feet of an office chair, the same submodels (parts)
are not found in other objects. The designs are therefore not composed of a vocabulary
of part types, which is a prerequisite for our approach. However, some approaches share
representing designs as graphs with ours, although surfaces and edges become nodes there
opposed to parts in our approach.

56 CHAPTER 4. ASSEMBLY DATA

Preparations for Machine Learning

For all use cases considered, the assembly datasets were split 60:20:20 into training, valida-
tion, and test graphs5, confer Table 4.2, following a common data split strategy [42]. This
division is fixed for all experiments, even for the pretraining of part embedding. When
performing the data split, we ensured that all part types occur in the training graphs so
that no parts unknown in the training occur in the validation or test data.

Table 4.2: Data split of the three assembly datasets into training, validation and test
assemblies.

Dataset # Part Types # Training Assemblies # Validation Assemblies # Test Assemblies

A 1,930 7,095 2,365 2,366
B 3,099 7,137 2,379 2,379
C 1,924 7,165 2,389 2,389

To process the assembly graphs with neural networks, their graph structure is repre-
sented using an adjacency matrix. Strategies from Section 3.4 can be used to represent
the different part types of the nodes, for example by one-hot encoding this discrete feature
or learning an embedding for it. We thus replace the type function T : V Ñ T with the
feature matrix X composed of the respective representations of the part types. In some
machine learning applications such as NLP, representing discrete objects by continuous
vector embeddings instead of one-hot vectors has proven to be advantageous. Since assem-
bly modeling has many parallels to NLP, we investigate whether using part embeddings as
node features contributes to the performance of our models.

In addition to considering the relationships between parts in an assembly, it seems
natural to include geometric information about the parts in their features as well. In a
preliminary investigation [125], we examined algorithms that describe various geometric
properties of CAD models in order to find parts similar to a given reference part, includ-
ing some algorithms used for searching geometrically similar parts in [45]. We evaluated
these algorithms on the publicly available DMU-Net dataset [30], which contains models
of engineering parts from various categories, such as bearings, gears and wing nuts. Our
experiments revealed that across the different part categories, the set of features required
to successfully identify similar parts varied significantly. In summary, the overall task of
finding similar models across all categories could only be solved with moderate success.
As a consequence, we focus exclusively on the relationships within assemblies to extract
meaningful features for parts. We believe that this information is more conducive to our
use cases, because on the one hand, geometrically similar objects do not necessarily have to
serve the same function, and on the other hand, in assembly modeling, parts are selected
based on their function within the overall assembly rather than their shape.

4.3 Unsupervised Pretraining of Part Embeddings

Learning word embeddings was a milestone in the field of NLP. Nowadays, there are nu-
merous available embeddings trained by language models such as GloVe [111] or BERT [31]

5In this thesis, we use the validation set for finding suitable hyperparameters and comparing differ-
ent models for the same task in order to find the best one whereas the test set is used to measure the
generalization error. There is some ML literature that uses both terms in reverse.

4.3. UNSUPERVISED PRETRAINING OF PART EMBEDDINGS 57

on a huge text corpus, which are available for custom language applications. In contrast
to words, there are unfortunately no available embeddings for mechanical parts that we
could use and fine-tune for our tasks, which is why we need to create them ourselves.

With regard to our investigated data, we are aiming for a representation for the part
types T , as opposed to the nodes of the graphs. In this way, we want to ensure that the
initial representation of identical parts (i.e., parts of the same type) is identical, instead
of being assembly and neighboring part specific. With this, we can directly transform
the formulation for graphs with attributed nodes G “ pV, E , T : V Ñ T q to the machine
learning centered representation G̃ “ pA,Xq based on the adjacency matrix A and feature
matrix X. We want to investigate whether using part embeddings as node features is also
beneficial outside the domain of NLP, and in particular whether it can contribute to the
performance of our application models.

Similarities of Assemblies to Natural Language Assembly modeling has many par-
allels to NLP: Just as documents are composed of words, assemblies consist of parts.
Moreover, neighboring words (predecessor and successor) correspond to the possibly larger
set of adjacent nodes in a graph. Therefore, it is natural to investigate NLP techniques for
assemblies. Modern word embedding techniques are based on complex, multi-parameter
architectures (mostly Transformers) that require a large amount of training data and often
have language-specific modifications, making them unsuitable for the datasets considered
in this work. Word2vec (cf. Section 3.4.2), on the other hand, is based on a simpler ar-
chitecture that can determine embeddings very efficiently for large data sets, but has a
comparably small number of parameters and can therefore be trained with significantly
fewer data. In addition, this technique allows the text to be processed in its plain form
without domain experts having to annotate the sentence’s structure or individual words.
This meets our requirement to develop an automated system that requires as little human
input as possible. This technique has already been applied successfully outside of NLP,
e.g., in recommendation systems [53, 54, 140].

Part2Vec Word2vec has been designed for processing text, i.e., sequential data. Since
sequences are basically a special type of graph, we want to generalize this technique to
general graph structures. Following the naming scheme, we call this method part2vec6, as
we want to assign a vector to each part type. Since in word2vec the meaning of a word is
derived from its context, in part2vec the purpose or function of a part is inferred from its
connected parts. The embedding therefore describes similarity of parts in terms of usage.
The implicit relationships learned between the objects are also very promising for the use
cases under consideration: If a designer is to redesign an assembly in a different size or with
different materials in order to adapt it for other conditions, learned part relations such as
“aluminum to steel” or “9mm screw to 14mm screw” would be helpful, as counterparts to
the semantic and syntactic vectors for words (cf. Figure 3.11).

In experiments, the Skip-gram architecture (cf. Figure 3.9) has been shown to be suit-
able for representing rarely occurring tokens [96], so we use this variant for part2vec. For
text, the architecture trains a mapping from words to their context words within a defined
context window. The equivalent to n-distant words of a center word are n-hop distant

6In the original publication [39], we introduced the model as “comp2vec” as abbreviation for component.
Since we restricted ourselves to the term “part” in this thesis, we adjusted the model name for consistency
reasons.

58 CHAPTER 4. ASSEMBLY DATA

a

a

d

b c

Center Part Type Context Part Type

d a
d a
d b

Skip-gram Instances

a 0

b 0

c 0

d 1

Input Embedding

0.66 a

0.33 b

0 c

0 d

Output

Part Type Embedding

a
b
c
d

Resulting Embeddings

Figure 4.2: Pretraining of part embeddings: For a given assembly graph (top left), Skip-
gram instances are created with window_size “ 1 which map center part types to context
part types. The table on the top right displays the resulting instances with part type d as
center node. Training with the Skip-gram instances results in embeddings per part type
which are displayed as grayscale vectors on the bottom right. Since part types a and b,
as well as c and d, are connected to a similar set of parts, respectively, their resulting
embeddings are similar.

nodes of a center node in a graph. For a graph, this approach may result in more gener-
ated instances. The upper part of Figure 4.2 shows how Skip-gram instances are obtained
from an example graph. Despite adapting the instance extraction, the training process
itself remains the same as in word2vec. In particular, we also use cross-entropy as a loss
function here. After training, the embeddings can be obtained from the weight matrix of
the first layer as each row corresponds to the embedding of a part type in the vocabulary.

Because representation learning is a subdomain of unsupervised learning, the difficulty
is that the model cannot be evaluated directly due to the lack of labels. This is why
intrinsic (using specific intermediate subtasks) or extrinsic (on the real task) evaluation
is proposed for word embeddings in the literature [7]. The former is, in principle, trans-
ferable to assembly modeling, but requires high manual effort from design experts and
consequently contradicts our goal of automatic learning. Extrinsic methods, on the other
hand, are typically elaborate and slow to compute, therefore also undesirable. Fortunately,
the embeddings are learned by solving a supervised task (predicting context tokens from
center tokens), which allows to directly evaluate by loss. The model is based on the as-
sumption that the unsupervised task is well solved if the corresponding supervised task is
well solved, which is why we optimize for loss. As a consequence, different embedding sizes
can be compared, since the output dimension is defined by the task (vocabulary size) and

4.3. UNSUPERVISED PRETRAINING OF PART EMBEDDINGS 59

thus does not depend on hyperparameters.

4.3.1 Experimental Results

In a preliminary study, we investigated suitable embedding sizes for the three assembly
datasets. To do this, we used the assemblies divided into training, validation and test
sets, united the first two to form a new training set for creating embeddings and used the
remaining set as validation set. Since this model is used for data representation, we do not
need a test set to measure the generalization error. The new assembly sets were separately
transformed into sets of Skip-gram instances with window_size “ 2 as described above.
The resulting number of training and validation instances is shown in Table 4.3. Since all
part types occur in the training assemblies, we can create representations for all of them
so that we can present vectors for all parts in the validation or test assemblies in later
downstream tasks.

Table 4.3: Number of training and validation Skip-gram instances for part2vec of all three
assembly datasets.

Dataset # Part Types Size Training Set Size Validation Set

A 1,930 147,598 36,932
B 3,099 793,250 199,552
C 1,924 185,244 46,630

To rate the individual models (i.e., the trained embeddings), we computed the sum
of training loss and gap between training and validation loss, following the description
given in [51, p. 418]. In comparison, different embedding sizes behaved the same for
each dataset: Sizes between 20 and 90 as well as from 100 upwards each led to a similar
error level, respectively. Consequently, we chose the minimum per range, i.e., 20 and 100
respectively, as value for the embedding size hyperparameter for each dataset. The error
value of the 100-dimensional embedding was consistently below the 20-dimensional one,
consequently it should provide a better representation of the part types.

We identified these two embedding sizes as promising for all datasets when optimizing
according to the loss function of the supervised task (mapping center part types to context
part types). The selection of the embedding dimension was based on the assumption that
good part type embeddings can be found by optimizing the supervised task. To test this
assumption, we employ extrinsic evaluation as discussed above by using both embeddings to
represent the part types in our assembly datasets and measuring the achieved performance
on an actual task. This is done in the experiments of the first use case of this thesis, namely
global part recommendation (cf. Section 5.4). We expect that the recommendation model
can achieve better results with the 100-dimensional embedding as it was superior on the
supervised embedding task.

Embedding Visualization and Insights

High-dimensional spaces are hard to visualize, so they are typically transformed into two di-
mensions, using suitable dimension reduction techniques such as t-SNE [139] or UMAP [95]
that try to preserve the relations in the high-dimensional space in the low-dimensional
space as well. Figure 4.3 displays a section of the trained part embedding for dataset A

60 CHAPTER 4. ASSEMBLY DATA

transformed to 2D using t-SNE. By reducing many dimensions to two, some information is
obviously lost, but we can still recognize some relationships, especially that similar parts,
i.e., parts from the same category, are grouped close to each other. Clusters are clearly
visible in the entire projection space. Some parts categories have several clusters, such as
the blue category for cutting inserts. As cutting insert come in different sizes and thick-
nesses to suit the material being processed, it is natural that several clusters arise. Note
that the clusters are typically very dense, even if they partially overlap with other clusters
of other component categories due to the 2D projection.

4.3.2 Further Uses for Trained Embeddings

The trained embeddings are used as an initial representation of the parts for all considered
use cases, but can also serve other purposes: the learned relationships between the parts
can be made available to the designers through part clustering or suitable visualization,
e.g., Figure 4.4. The figure shows the nearest parts in the embedding space for two selected
parts, where on the left side the learning of similar parts was very successful, as the nearest
parts are also basic holders. In the right part, however, the next neighbors consist of more
different parts, ranging from extensions to serrated tools.

This can reveal implicit relationships in the assembly data that were previously un-
known and give designers an insight into black box neural networks. If the relationships
shown are plausible, the designers’ confidence in the assistance systems can be strength-
ened. In addition, the learned embeddings can become the basis for the company’s part
management. The availability of well-curated, hierarchical taxonomies of part types de-
pends on the level of maturity of a company and traditionally requires significant manual
effort which is why maintaining a knowledge basis is often neglected. A data-driven so-
lution that exploits usage patterns in assembly models could (pre-)organize a company’s
frequently used part types. Due to the preparatory work of the embedding model, less
manual effort of design experts is required.

Embedding Refinement by User Interaction

A high quality of embeddings is desirable: The better the representation of the parts, the
better the performance of the downstream models can be expected. The investigations
of the learned embeddings show that valuable relationships between the parts could be
extracted, but that there is still room for improvement in some areas (cf. Figure 4.4). It
would be helpful to have more assembly data, so that in particular the parts that have rarely
been used so far would occur more often, and thus a better representation could be learned
from more examples. Unfortunately, we are limited to the designs available. If designers
examine visualizations of the embeddings and discover incorrectly learned correlations,
these can be adjusted using manual feedback. Ideally, the model itself should recognize for
which examples it is quite uncertain and report this, which is what the research area of
active learning is concerned with. During the training, the model can interactively query
a teacher (human user or other information sources) to label new data points with the
desired outputs. Since reviewing the embedding is very time-consuming for numerous part
types, this is not a realistic strategy in practice.

Instead, we want to identify a subset of parts whose representation should be improved
through user interaction. To do this, we use three methods to identify potentially prob-
lematic parts: First, embeddings are usually inaccurate for rarely occurring parts, as the

4.3. UNSUPERVISED PRETRAINING OF PART EMBEDDINGS 61

x1
´60 ´40 ´20 20 40 600

x2

´40

´20

20

40

0

Cutting Insert
Mandrel
Precision Boring Tool
Tool Holder

Counterweight
Serrated Slide
Extension
Reducer

Figure 4.3: Inspection of the 2D projection of a section of the learned part2vec embedding
for dataset A. Dots of the same color represent different part types of the same category,
such as tool holders.

62 CHAPTER 4. ASSEMBLY DATA

Figure 4.4: Inspection of eight nearest parts to given part (shown centered in first row)
in the embedding space – good and bad example for learning similar representations of
similar parts shown on the left and right, respectively.

model had few different examples to infer the purpose or function of the part from its
combination with other parts. Rarely occurring parts can be easily identified during data
analysis, which is typically performed before using machine learning anyway.

Moreover, following the idea of active learning, we want to identify those parts that
the model is uncertain about. The uncertainty of a model can be measured for individual
instances by examining the probability distribution in the output: The measure perplexity
is based on entropy and therefore measures the disorder in a distribution. If many parts are
predicted with a low probability, i.e., the distribution is similar to a uniform distribution
the perplexity is very high. If, on the other hand, only a few parts are assigned positive
probability values, the perplexity takes on a low value. Consequently, input parts that lead
to high perplexity are potentially problematic.

Lastly, in companies with a large collection of parts, it can be assumed that there are
several parts that fulfill the same or a similar purpose. This means that there should
always be several parts nearby in the embedding space. If we now divide the parts in the
embedding space into clusters and some individual parts remain isolated, these are also
candidates for problematic parts. We employed HDBSCAN (hierarchical density-based
spatial clustering of applications with noise) [21], a cluster algorithm that outputs outliers
found in addition to the clusters formed.

For all potentially problematic parts found in prior analysis, their representation is to be
improved through user feedback if necessary. The fundamental property of the embedding
space is to place similar objects close to each other and thus place dissimilar objects far
away. Our goal is to adjust the positions of the potentially problematic parts to reinforce
this property.

4.3. UNSUPERVISED PRETRAINING OF PART EMBEDDINGS 63

Anchor xa

Positive xp

Negative xn

Pull

Push

Embedding Space

Figure 4.5: Visual impression of the effect of triplet loss for one given triplet: increasing
distance between anchor and negative, i.e., push negative away from anchor, while decreas-
ing distance between anchor and positive, i.e., pull positive towards anchor. Based on [76,
Figure 2].

In order to influence the embedding vectors during training, either additional training
instances can be created or constraints can be included as additional optimization criteria
in the loss function. The so-called triplet loss7 compares a reference input xa called anchor
to a similar input xp (called positive) and a dissimilar input xn (called negative). By
optimizing the following objective, it enforces the embedding model f to reduce the distance
between similar objects while increasing the distance for dissimilar objects, cf. Figure 4.5:

min
`

|fpxaq ´ fpxpq| ´ |fpxaq ´ fpxnq|
˘

The distance metric | ¨ | could be Euclidean distance, for example.

We developed a GUI application called Part Embedding Refiner, in which a designer can
define similarity constraints on parts that are transformed into triplets, see Figure 4.6: All
parts identified as potentially problematic are listed on the left, the positive and negative
parts are to be selected in the right-hand section. For this purpose, current neighbors of
the considered anchor are displayed, which can be marked as positive (similar) or negative
(dissimilar) by dragging it into the corresponding list. If no decision is made regarding a
part’s similarity to the anchor, it can be left in the original list, thus marked as neutral,
and excluded from the triplet analysis. Optionally, parts can be searched for in order
to mark them as positive or negative. The triplets created from the defined similarity
constraints in the application are taken into account when training the embedding. When
adjusting (i.e., fine-tuning) the learned embeddings for only a small set of parts, belatedly
moving individual parts in the embedding space could lead to the violation of globally
prevailing rules (e.g., semantic or syntactic vectors). Therefore, we do not simply perform
fine-tuning with the triplets on an earlier trained embedding, but extend the loss function
by a term with the triplet loss for training. Therewith, the model simultaneously attempts
to fulfill the original supervised task (map center parts to context parts) as well as the
newly introduced triplet constraints. A weighting factor (hyperparameter) determines the
influence of the constraints on the model.

7The triplet-loss was originally proposed in [126], whereas [127] introduced an earlier equivalent formu-
lation over ten years before.

64 CHAPTER 4. ASSEMBLY DATA

Figure 4.6: User interface for refining a learned part embedding: Found problematic parts
are displayed on the left. Current neighbors in the embedding space are listed on the right
in order for a user to assign them into three categories: (i) similar, (ii) dissimilar or (iii)
neutral or not sure. Categorized parts are transformed into triplet instances, on which the
embedding is fine-tuned.

The need for improvements in the embeddings of rarely occurring parts was also noted
in the course of a user study on global part recommendation that was carried out as part
of the research project KOGNIA (see Section 5.4). Due to the end of the project, it was
unfortunately no longer possible to conduct a user study of the embedding refiner with
design experts.

4.3.3 Related Work

A central criterion for the selection of a technique to create part type embeddings in this
thesis was the identified similarity of the assemblies to natural language. A similar com-
parison between CAD and natural language has already been made by Ganin et al. in their
paper “Computer-Aided Design as Language” [40]. They have created a tool to support
part modeling, in particular the creation of two-dimensional sketches, which provide the
basis for 3D part and employ NLP techniques to suggest work steps to create a 2D sketch.

Embedding methods for graphs are fundamentally differentiated with regard to the
component to be embedded: nodes, edges, subgraphs and entire graphs. An overview of
existing methods is provided in [20], and in the following, we focus on related work on the
category which matches our problem setting: Since the nodes in our graphs represent the

4.3. UNSUPERVISED PRETRAINING OF PART EMBEDDINGS 65

parts (of a particular part type) of the assemblies, our desired representation for part types
is most similar to representations for nodes.

In particular, our goal is to get a representation for the part types so that each instan-
tiation of this type gets the same feature vector. However, node embedding techniques aim
to map each node to an embedding, thus often including the node’s position in the graph
and structural properties [59]. Therefore, two nodes corresponding to two parts of the same
type could have different representations. Our focus is primarily on the function (purpose)
of the part type, incorporating the structural assembly information and interaction with
the connected parts is achieved by processing with message passing in GNNs. These tech-
niques aim to embed nodes that are “close” to each other to similar vector representations.
The definition of closeness between two nodes is majorly differentiated between first-order
(edge weight) and second-order proximity (similarity of neighborhood); for our setting, the
second variant is more appealing (as we do not have edge features).

Classical node embedding techniques focus on matrix factorization techniques, i.e.,
decomposing a matrix into the product of multiple smaller matrices, typically applied to
graph adjacency matrices. The goal is to capture the relationships between the nodes in
the graph in the lower-dimensional representation. However, many matrix factorization
techniques suffer from high computational costs due to their mathematical nature which is
challenging for large graphs. Moreover, they were found to capture more simple and static
relationships between the nodes compared to learning-based methods [59].

A notable subset of node embedding techniques are based on random walks: they ex-
tract node sequences from graphs to process them with embedding methods for sequences
successfully applied in the NLP domain, such as word2vec. It was found that a naive
evaluation of the optimization function can be computationally intensive for a large vocab-
ulary, so DeepWalk [112] uses hierarchical Softmax for approximation and node2vec [55]
uses a noise contrastive approach based on negative sampling. The key difference to our
proposed approach is that the generalization of word2vec to graphs is solved differently:
While DeepWalk and node2vec sample individual paths from the graphs, which are then
used as sentences for instance generation, we have generalized the definition of Skip-gram
instances from sequences to graphs (n-hop neighbors rather than n-distant words). Because
our approach does not involve sampling, it should produce more accurate embeddings, but
may be too computationally intensive for larger graphs. For our small graph datasets, this
is not an issue.

Finally, one could even use a GNN (or other machine learning methods applicable
to graphs such as Graph Transformers [98]) and extract internal node representations
from it: When a GNN processes a graph, the node representations get updated with
information about their neighboring nodes. These representations (e.g., taken from the
last hidden layer) can also be used as embeddings; however then these are graph-specific
node embeddings instead of part type embeddings. This means that even two parts of the
same type within a graph typically have different vectors.

66 CHAPTER 4. ASSEMBLY DATA

Chapter 5
Part Recommendation in Assembly
Modeling

Summary This chapter presents a methodology for generating part recommendations
in assembly modeling, based on analyzing past assemblies to predict the next needed part
for the whole assembly. For the representation of the parts in the assemblies, we use the
part embeddings previously trained with part2vec. We have developed an algorithm for re-
cursively decomposing assembly graphs, which forms the basis for generating instances for
part recommendation in a self-supervised manner. The proposed recommendation system
supports designers by suggesting relevant parts, reducing the need for manual searches in
part catalogs. The chapter includes experimental results and discusses the performance
of different GNN architectures, including the impact of pretrained embeddings and effects
of the properties of the real-world datasets. The GNN models achieve significantly better
results than simple recommendation strategies and a classical recommendation model.
When recommending ten parts, the expected part was included in between 82.1% and
92.8% of cases. The results thus demonstrate that our system can successfully suggest a
designer’s next required parts and thus significantly reduce the search time.

Contents
5.1 Generating Recommendation Instances from Assemblies 70
5.2 Baselines and Upper Bound . 75
5.3 Experimental Setup . 76
5.4 Experimental Results . 78
5.5 Digressions . 88

5.5.1 Pretraining of Part Recommendation Models 88
5.5.2 Graph Transformers for Part Recommendation 89
5.5.3 Context-Specific Number of Recommendations 90

5.6 Related Work . 92

Publications The algorithm for generating recommendation instances as well as the
methodology of the GNN-based recommendation system is published in [39]. This also
includes the baseline models and upper bound as well as their experimental comparison
with recommendation models based on GCNs and GATs.

67

68 CHAPTER 5. PART RECOMMENDATION IN ASSEMBLY MODELING

In assembly modeling, design engineers can choose from a variety of existing part types
stemming from various catalogs of purchased, standard or in-house parts. Consequently,
selecting the right part types is a cumbersome task as they have to pick from many possi-
bilities. Past assemblies contain information on both the collection of used parts and their
combination to solve a specific task. A governing assumption of our approach is that parts
that are used together frequently have a causal relationship that is captured in the data.
Consider, as a simplified example, a cabinet that consists of five plates, a hinge, a handle,
screws, etc. [39]. A heavy hinge might often be combined with a heavy door and similarly
for lighter parts, whereas combinations of a heavy door with fragile hinges are unlikely.
We propose to analyze a dataset of past assemblies composed of parts from a given set
of part types in order to suggest the next needed part. That way, experienced designers’
implicit knowledge could be extracted from existing assemblies and speed up the design
process. This can foster the transfer of knowledge between designers, so that inexperienced
designers in particular benefit and their learning phase is shortened.

In this problem setting, we assume that designers in principle already know which parts
they want to connect and in which way to form the desired assembly. Hence, we aim for
a recommendation system that supports them in supplying required parts so that they do
not have to search for them manually in the available part catalogs. Our system addresses
the prediction of part types, leaving the appropriate placement of the part to the designer.

For the part recommendation, there are some requirements that arise either from the
use case itself or from the general requirements of this thesis:

1. First, we assume that the designer continues to build incrementally on the assembly,
i.e., always builds a connected assembly. We exclude scenarios in which two separate
components are designed in parallel, which are joined after a certain time. Therefore,
the part recommendations should support the designer directly, i.e., the parts should
be directly attachable to the current assembly as opposed to needing some parts in
between in order to connect the current assembly with the recommended part type.

2. In line with our goal of an automated approach, we strive for a data-driven solution
that adapts to the sets of assemblies on which it is trained, rather than having design
engineers manually maintain domain-specific rules for building assemblies.

3. Furthermore, we aim for an interactive recommendation system that provides single-
step auto-complete-like suggestions rather than automatically completing or gener-
ating a design of an assembly from scratch. The design engineers should be in full
control of the design process at all times, being free to choose whether to select
from the suggestions or search the catalogs themselves. In terms of (graph) machine
learning, models generating a graph incrementally (e.g., node-by-node) as opposed
to all-at-once are called autoregressive [59]. They operate under the premise that
past states have an effect on current states and consequently predict future values
based on past values. This holds for part recommendation.

We decided to create a recommendation system with a fixed number of suggestions
ordered by relevance, even if that entails imperfect recommendations in some cases. In-
deed, we also investigated a context-specific number of recommendations also ordered by
relevance (cf. Section 5.5.3). For very specific assemblies, there may only be a few suit-
able parts, i.e., fewer than the number of recommendations, so that the recommendations
are filled with other parts. Since we are aiming for a recommendation system to support

69

designers instead of automatic assembly generation, this is acceptable. In addition, there
may also be numerous suitable parts, so that only some of them are suggested initially.
Recommendations listed at a later position can also correspond to the part currently being
searched for if this combination has rarely occurred in the existing designs. Therefore,
further suggestions may be requested later. The task of part recommendation is inherently
ambiguous as it depends on the designer’s design intent, who may be even connecting two
parts for the first time when designing a new innovative product. However, our focus is
on extracting and generalizing existing relationships between parts instead of inventing
creative combinations of parts. In this way, design knowledge can be transferred to similar
assemblies instead of simply reconstructing them.

We would like to emphasize that the type of recommendation in this use case differs from
standard recommendation systems like collaborative or content-based filtering [1]. A good
part recommendation does not depend on subjective preferences of the individual designer
– in the sense of “liking” of specific parts – but on the intended design. Although the design
sequence depends on the designer’s preferences, this does not apply to the selection of the
part types themselves. We assume that the graph structure is relevant for recognizing the
intention. Depending on which parts were connected, different designs can emerge.

In summary, the recommendation model should suggest a fixed number of k part
types τ1, . . . , τk P T for a given assembly A that can be added directly to it. If the
designer selects such a suggestion τ , they can add the instantiated part and connect it to
the current assembly. This is described by the constructive operator A ◁ τ . The assem-
blies are represented as undirected graphs over parts and exhibit symmetry properties that
makes them suitable for graph machine learning, cf. Chapter 4. We formulate the part
recommendation task as a graph classification problem where each class corresponds to a
part type τ P T and the recommendation model is trained to predict the next required
part type, see Figure 5.1. Formally, we aim at learning a discriminative model P pT | Aq,
where A refers to an assembly that is to be extended. This model is part of an autoregres-
sive model which, if unrolled, would lead to a generative process [59]. By using Softmax
as activation function in a final fully connected layer, we get normalized scores over all
part types that can be interpreted as a ranking of the recommendations. To evaluate the
models, the top-k rate is used as a performance measure, referring to the percentage of the
target part type being in the top-k predictions of a model. A comparison of the perfor-
mance values for different values of k helps to select the right number of recommendations.
In the context of the project KOGNIA, we were especially interested in k “ 10, as this
number of recommendations can be well integrated into a CAD system and offers a wide
choice of parts for designers.

The pretrained part embedding is used to represent the part types in the input. Intu-
itively, one may be inclined to reuse the same representation of parts in the output, i.e.,
to predict part embeddings instead of a one-hot encoding. Although it would significantly
reduce the model’s output dimension, this modeling also has severe disadvantages and was
therefore discarded:

a) For part recommendations, the predicted embedding must always be assigned to
a part. However, it is very likely that no part maps to the predicted embedding
exactly. In addition, it may even happen that there is no embedded part type in the
proximity of the prediction in the embedding space because none satisfies the desired
properties. It is unclear which part should be taken in this case.

70 CHAPTER 5. PART RECOMMENDATION IN ASSEMBLY MODELING

a

a

d

b c

Graph with
Part Type Embedding

GNN Layers

. . .

Readout and
Linear Layers

. . . r´3.5, . . . , 2.7s

Graph-Wise
Part Type Scores

Figure 5.1: Model architecture for part recommendation: The task of part recommendation
is modeled as a graph classification task. The given assembly graph is processed with
message passing in GNN layers followed by a readout and linear classification layer. The
classes correspond to all part types of the vocabulary T . The resulting scores per part
type are displayed as a list in gray. For training, these part type scores are converted into
probabilities using a Softmax function. The top k part types with the highest scores are
selected as the recommended part types. In this specific example, the last type would be
placed before the first in the ranking due to its higher score. Regularization techniques
applied in this process are not illustrated.

b) The number of desired recommendations determines the architecture of the model,
i.e., for k recommendations the model would be constituted of k times the embedding
dimension output neurons. So, if more recommendations are desired, the model must
be re-built and re-trained, or at least fine-tuned. In our modeling, we can simply pick
the desired number of most likely elements from the distribution over all part types.

Therefore, the recommendation model maps assemblies to part types (classification) instead
of part embeddings (regression).

Since we use pretrained embeddings to represent the parts, the question arises as to
why we need another model for processing the partial assemblies. The part2vec embed-
dings are so-called shallow embeddings, as their representation is pre-calculated and can
therefore be easily looked up [59]. That is because the vectors were individually optimized
in advance using the Skip-gram instances. In contrast, models taking into account the
node features and local graph structure, e.g., the neighboring nodes, go beyond the shal-
low approach. GNNs following the message passing paradigm are in fact such models.
Since we assume that not only the individual parts but also their interaction is relevant
for part recommendation, we process the graph context with GNNs.

As part of the research project KOGNIA, we developed a prototypical recommendation
system as a demonstrator in which a model for global part recommendation was integrated.
Figure 5.2 shows the demonstrator to illustrate how we envisioned the part recommendation
during assembly modeling in a CAD system. Suitable part types for the current assembly
are displayed on the right side, which are sorted according to the ranking predicted by the
recommendation model.

5.1 Generating Recommendation Instances from Assemblies

In order to train an ML model for part recommendation, we need supervised instances con-
sisting of “unfinished” assemblies, hereafter referred to as partial assembly or partial graph,
and directly attachable parts. However, we are only equipped with complete assemblies
purchased by customers, so we have to artificially generate the intermediate states during

5.1. GENERATING RECOMMENDATION INSTANCES FROM ASSEMBLIES 71

Figure 5.2: Demonstrator for global part recommendation developed as part of the project
KOGNIA: Customers can combine pneumatic cylinders with accessory parts. Displayed on
the right side are suitable parts for the current assembly which are sorted according to the
ranking predicted by our recommendation model. (The part designations were translated
into English for this figure.)

the design process. As already discussed, we do not know the original creation sequence
that led to the final design and different creation sequences can lead to the same assem-
bly. This means that even if we knew the original sequence, it would still be beneficial
to consider other alternatives, as another designer may have used a different approach.
Of course, in practice, not every creation history is equally likely: alternate adding parts
on opposite sides of a design may be less common. In particular, when a section of the
assembly is finished, it is quite conceivable that the designer will switch to another side to
continue. As we follow an incremental approach, we only consider the addition of a single
part in a single time step. Consequently, we do not make any prior assumptions about
the design history and therefore consider all possible ones, taking into account that the
assembly is always connected.

We recursively decompose the assembly graphs by means of “cutting off” nodes, re-
sulting in pairs xA, τ P T y consisting of the remaining partial assembly and the part
type of the cut-off node, as described by Algorithm 1. As the targets are extracted using
the assemblies themselves rather than needing external labels provided by humans, this
data generation follows the paradigm of self-supervision, cf. Section 3.1. Starting from an
assembly graph A˚ in our database, we iteratively cut off non-cohesive nodes until the
remaining graph contains a minimum number of nodes min_size. The definitions of node
removal and cohesiveness have been provided in Section 3.2. The instances resulting from
the decomposition are stored in the (initially empty) instance set D, whereby all duplicates
are eliminated. Finally, in order to process the recommendation instances with machine
learning models, part embeddings are used as node features of the graphs and the target
part type is replaced by its one-hot encoding.

72 CHAPTER 5. PART RECOMMENDATION IN ASSEMBLY MODELING

Algorithm 1 Decomposition of Assemblies into Recommendation Instances
1: procedure DecomposeGraph(A “ pV, E , T q, D)
2: seenGraphs Ð tAu

3: if |V| ą min_size then Ź domain-specific hyperparameter
4: for every non-cohesive part p P V do
5: D Ð D Y txAztpu, T ppqyu

6: if Aztpu R seenGraphs then Ź isomorphism test
7: DecomposeGraph(Aztpu,D)
8: seenGraphs Ð seenGraphs Y tAztpuu

9: return D

By tracking in seenGraphs which partial assemblies have already been decomposed, we
ensure not to change the bias of the data: Let us imagine that we remove two parts p1 and
p2 from an assembly; in one case p1 first, in the other case p2 first. The two subgraphs
resulting after both removals are isomorphic. If we would further decompose them, the
resulting decomposed instances would occur twice as often. If we consider the removal
permutations of three parts, the factor increases to six. However, we only want to examine
a certain intermediate assembly once, regardless of how we arrived at this state, which is
why we also use permutation invariant models for processing. Figure 5.3 illustrates the
decomposition procedure for our example assembly (Figure 4.1) up to a minimum size of
two nodes. Specifically, it displays the situation of duplicate recommendation instances
being discarded as well as already seen partial assemblies not being further decomposed.
Figure 5.4 shows the resulting instances for the given assembly after removing duplicates.
For the comparison of the reduced graph with the set of all seen graphs in line 6 of Algo-
rithm 1, we do not always have to perform a complete isomorphism test as two assembly
graphs having a different number of nodes or a different multiset of part types can never
be isomorphic.

For an entire assembly dataset tA˚
i uni“1 consisting of n assemblies, their corresponding

instance sets Di are unified into a multiset of instances, D “
Ţn

i“1Di, thus allowing for
duplicates. The reason for the multiset is again the bias of the real-world: If a certain
partial assembly occurs multiple times across all assemblies, it appears to be a common
subassembly and should therefore occur more frequently in the total instances of the entire
dataset.

The described procedure for generating recommendation instances follows a top-down
approach in which nodes are successively cut off. Since we only decompose each subgraph
once for an assembly A˚ (controlled by seenGraphs), it results in the same instances as a
bottom-up approach, in which a partial assembly is iteratively extended by adding nodes
to result in a recorded assembly A˚.

Regarding complexity, the decomposition produces Op|V|!q instances – depending on
the graph structure – which is prohibitive for large assemblies. The designs we considered
in our experiments (composed of up to 70 parts, cf. Table 4.1) were highly sequential, i.e.,
each individual (partial) assembly contained sufficiently few leaf nodes, so that this was not
an issue. To scale up the approach for larger graphs, we would suggest a sampling-based
approach that only performs a subset of the removals, or a random walk-based approach
as used for large network graphs [58], to work well.

5.1. GENERATING RECOMMENDATION INSTANCES FROM ASSEMBLIES 73

a

a

d

b c

Assembly A˚

iteration depth 1

a

a

d

b cI1

a

a

d

b c

duplicate of I1

a

a

d

b c

iteration depth 2

a

d

b c

a

d

b cI2

a

a

d

bI3 partial graph of I3 already
seen in I2, thus not
further decomposed

a

a

d

b

a

a

d

b

duplicate of I3

. . .

. . .

iteration depth 3

a

d

b

a

d

b

Figure 5.3: Tree of recommendation instances resulting from decomposition of assembly
graph up to a min_size of 2. The labels are depicted as blue rhombus. Some branches
are omitted (. . .) in order to highlight interesting situations: (1) In the first iteration, the
first two instances are duplicates (I1), which is why this instance is only included once in
the resulting instance set. In addition, the associated partial graph of the second instance
is not decomposed any further. (2) In the second iteration, the partial graph of the third
instance I3 is isomorphic to the partial graph of the previous instance and is therefore not
decomposed any further. However, as their labels are different, both instances I2 and I3
are added to the instance set.

74 CHAPTER 5. PART RECOMMENDATION IN ASSEMBLY MODELING

a

a

d

b c

Assembly A˚

Instances from
1st iteration

a

a d b c

a

a

d

b

c

Instances from
2nd iteration

a

d b c

a d b

c

a

a d b

a ad

b

Instances from
3rd iteration

d b

c d

b c

a

d b ad

b

a

ad

Figure 5.4: Visualization of resulting recommendation instances for deconstruction of ex-
ample assembly graph until min_size 2. The instances are composed of partial assembly
graph and part type as label (illustrated as blue rhombus).

Due to the different graph structures, in particular graph order and node degrees (cf. Ta-
ble 4.1), of the respective datasets, between 220 thousand and 2.5 million recommendation
instances arise from each of the twelve thousand assemblies, as Table 5.1 shows. The exe-
cution time for the decomposition of all assembly graphs in a dataset was between one and
a half and 16 hours when using multiprocessing with eight parallel processes on an Intel
Core i7-8700K processor with 3.70GHz. As the instances have to be computed once only,
the calculation time is acceptable.

Table 5.1: Number of recommendation instances for all three datasets.

Dataset # Part Types Size Training Set Size Validation Set Size Test Set Total

A 1,930 133,271 42,531 43,420 219,222
B 3,099 1,531,257 474,233 491,492 2,496,982
C 1,924 1,050,993 378,712 399,763 1,829,468

If we look at the generated instances, we see that there are several possible target part
types for a specific partial assembly due to multiple different parts that can be assembled
to the partial assembly, so the mapping from input to target is not unique. If we collect
all possible target part types for an input graph, we combine several single-label target
instances into a multi-label target instance. The multi-label target are sets, i.e., every part
type occurs at most once in a multi-label target. This corresponds to our understanding
that several parts fit to one partial assembly which is why we recommend several parts.

5.2. BASELINES AND UPPER BOUND 75

For training our recommendation models, we stick to single-label instances, as the more
frequent occurrence of an instance reflects the real-world bias and leads to higher ranking
of the corresponding part in the predictions. However, the aggregated multi-label instances
are suitable for further evaluation, and are thus used in the experiments.

In literature, there are various ways of representing instances for a multi-label task,
including breaking them down into multiple single-label instances as we do, referred to as
problem transformation method PT5 in [137]. Other presented methods randomly discard
all but one label per instance (PT1) or discard all instances with more than one label (PT2),
which would results in significant information loss. Method PT3 transfers every different
set of labels into a new label leading to datasets with a huge number of new classes but
few examples per class, which is undesirable for machine learning. Lastly, PT4 suggests
learning a binary classifier for every different label. This problem transformation is common
practice in machine learning, but undesirable for our use case: as the labels are evaluated
independently of each other, it is difficult to sort the predicted labels by relevance. If we
had perfectly trained binary classifiers, they would all predict 100% probability for the
corresponding target part, thus all predicted parts would be placed in first position.

We would like to emphasize that the instances were extracted from real-world data
and therefore show unequal distributions of parts in the assemblies, assembly sizes and
especially target part types. This distinguishes our datasets from well-curated ones, but is
common in the field of NLP, for instance.

5.2 Baselines and Upper Bound

The task of part recommendation in assembly modeling as well as our assembly datasets
have not been explored before, neither with machine learning nor classical AI approaches.
In order to better assess the results of our models, we want to investigate our datasets to
estimate the performance from below and above, as well as to apply classical AI techniques
as baseline. The baseline model actually solves the task of part recommendation, whereas
the bounds are only provided for better understanding the task and the results. Intuitively,
the upper bound considers the whole context of the assembly and memorizes the mapping
from input graph to part type, whereas the simple baseline does not take any context into
account to generate predictions.

Frequency-Based Baseline Model The task of recommending parts for assembly mod-
eling is similar to market basket analysis, as both aim to suggest additional candidates for
a given collection of elements. Most market basket analysis methods identify frequent
itemsets and associated rules through counting. However, unlike market basket items,
parts in an assembly are explicitly connected [1]. To our knowledge, there is no established
technique in the literature that considers these connections and thus the graph structure.
Therefore, we developed an instance-based model inspired by market basket analysis as a
baseline. This model stores a relative frequency distribution of assembled part types for
each partial assembly in the training set. During inference, for a given query graph, it
identifies which part types were most frequently attached to it. If the graph has not been
seen in the training data, it searches for previously seen subgraphs that together form the
query graph. These subgraphs should be as large as possible to cover the assembly context
extensively and provide accurate part recommendations. To avoid redundant subgraphs,
the model identifies the minimal set of its largest observed subgraphs that subsume the

76 CHAPTER 5. PART RECOMMENDATION IN ASSEMBLY MODELING

query graph. Then, it aggregates the relative frequency distributions of part types for
these subgraphs into an overall distribution by taking the part-wise maximum. Finally, it
identifies the k most frequent part types from the distribution. The component of graph
subsumption is essential, since in our experiments only a portion of the partial assemblies
of the test sets were included in the training data, cf. Table 5.2. This is basically a kind
of generalization to similar seen graphs like in neural networks.

Table 5.2: Number of test instances whose partial assemblies occur in the training instances
per dataset.

Dataset Number of Filtered Test Instances Proportion of Whole Test Instances

A 33,586 77.35%
B 229,947 46.79%
C 240,857 60.25%

Upper Bound As already discussed, there are typically several target part types for
one partial graph in our recommendation instances. This implies that for a given partial
assembly, if the number of possible recommendations is less than the number of suitable
parts, a model can never list all types, i.e., it cannot achieve 100% performance. Therefore,
for each dataset we determine the upper bound of the top-k rate a perfect, but non-oracle,
model could reach for k suggestions. This is an estimate of the performance that can be
achieved with the best recommendation strategy for the selected test set. To do this, the
test set is analyzed to determine which recommendation order produces the most hits: We
analyze the distribution of the targets on the test set and sort the part types in descending
order based on their occurrence. This is a deterministic procedure in order to be correct
for most single-label instances.

The Evergreen Model There is also the question of the difficulty of the recommenda-
tion task, for example whether the same parts are always requested or whether the target
parts actually depend on the input graph. To answer these questions, we apply a simple
model called Evergreen: This model predicts the k most common labels seen during train-
ing (based on a frequency distribution of the labels from the training set), independent of
the specific input, representing an unconditional model P pT q. The comparison with this
model is to show whether the GNNs are capable of processing contextual information from
the input graph and to prove that the prediction task is indeed non-trivial. The basic idea
of this model is common for highly imbalanced datasets [51] to see if the learned models
are better estimators than a simple model that only outputs the most frequent label.

5.3 Experimental Setup

To test the applicability of our approach, we perform experiments on each of the three
assembly dataset individually. The assemblies divided into training, validation and test
were separately transformed into recommendation instances (cf. Section 5.1). As the task
is modeled as a (graph) classification problem, we apply cross-entropy as loss function
during training.

5.3. EXPERIMENTAL SETUP 77

Representing Part Types In a preliminary study (Section 4.3), we trained low-dimen-
sional, continuous embeddings for the part types to serve as features for the respective
parts of the assembly graphs. Embeddings of dimension 20 and 100 yielded the best re-
sults, whereby the latter consistently outperformed the 20-dimensional embedding. In
the context of part recommendation, we want to investigate if pretraining part type em-
beddings is beneficial over starting from a one-hot encoding. Therefore, we additionally
generated a one-hot encoding for part types. In order to evaluate the conduciveness of
the pretrained part type embedding on the task, we compare the performance of the GNN
models operating on the assembly graphs where the part types are represented by the
one-hot encoding with those processing assembly graphs with one of the embeddings from
the preliminary study serving as node representation, respectively.

GNN Models We investigate the four GNN architectures GAT, GCN, GIN and Graph-
SAGE presented in the foundations (Section 3.3.2) for part recommendation, as they be-
long to the state-of-the-art GNN architectures [103]. Beyond GNNs, we also investigated
Graph Transformer models for part recommendations. However, they did not achieve a
better performance nor could we derive a generic model architecture for all datasets, so this
is presented as a digression in Section 5.5.2. All the GNN architectures have the following
hyperparameters in common: number of hidden layers, dimension of hidden layers, and
activation function. GCN is one of the earlier developed and rather simpler architectures,
nevertheless has achieved competitive results to more advanced architectures, e.g., [70].
With GATs, the neighboring nodes can be individually weighted by an attention mecha-
nism before aggregation, which may prove advantageous for our task as some parts of the
current assembly may be more important for recommending next parts than others. The
number of attention mechanisms (heads) is a hyperparameter. Due to their isomorphism
property, GINs should be able to decide whether the connection possibilities of a part are
already exhausted and therefore if suitable parts for it should be proposed. To exploit
their theoretical advantages, the processing MLP from Equation (3.23) must consist of at
least two processing layers; we have set this hyperparameter to exactly the value 2. The
interesting aspect of the GraphSAGE architecture for our task is above all the learnable
aggregation function, which is to be selected as a hyperparameter. In a preliminary study,
we investigated various sampling strategies for GraphSAGE, but these consistently led to
(slightly) poorer performance values. The reason for this is possibly the very small graph
size of our considered assemblies, so that crucial information is lost through sampling. The
sampling step was originally included to the architecture in order to keep the computa-
tional costs similar and small when processing large graphs with high node degrees. As
the number of neighbors (i.e., node degrees) are ranging from 1 to 18 in the original as-
sembly graphs (cf. Table 4.1), which is absolutely computationally acceptable, we use this
architecture without neighborhood sampling on our data. For the aggregation step, we
investigated mean and pooling as aggregator functions. Furthermore, we employ dropout
as regularization technique in every but the first processing layer, where the dropout rate
is also a hyperparameter.

When implementing the GNN models, a deep learning framework for graphs was
needed, which supports automatic differentiation and thus Backpropagation of errors and
already provides GPU support for training the models on such hardware. At the time
of writing this thesis, three frameworks were available: PyTorch Geometric [36], Py-
Torch3D [116], and Deep Graph Library (DGL) [146]. PyTorch3D deals with the pro-

78 CHAPTER 5. PART RECOMMENDATION IN ASSEMBLY MODELING

cessing of three-dimensional data such as meshes or point clouds, and would therefore be
more suitable for processing the 3D information of the parts in part modeling, but not
for processing our assembly graphs over parts. We chose to take DGL due to their better
benchmarking results [146] over PyTorch Geometric and because the framework was more
mature when addressing our first GNN use cases of this work. The framework supports
implementations for all common GNN layers, including our four architectures, which were
used to implement our GNN models in PyTorch [110].

Each of the four GNN architectures were trained based on the three types of part
type representation: pretrained 20- and 100-dimensional embedding and one-hot encoding.
Including the two baseline models (simple Evergreen model and frequency-based baseline
model) and the upper bound used to frame the part recommendation problem, we examine
a total of 15 models per dataset.

Training and Evaluation Following the standard methodology of training machine
learning models, the models were trained on the training set while monitoring their gen-
eralization on the validation set. After each batch of 1024 instances, the model’s weights
were updated using the optimization algorithm ADAM [77]. We apply the method of early
stopping to determine when to stop training. To rate the models, we calculate the sum of
the training loss and the difference between the training and validation losses, as suggested
in [51, p. 418]. If the summed loss has not decreased over a patience of 20 epochs, training
is stopped and the model with fewest combined loss is selected. The precise hyperpa-
rameters per architecture were determined using automatic hyperparameter search with
the framework Optuna [2]. Different hyperparameter settings and model architectures are
compared based on their achieved validation loss. The final models are evaluated on the
test set. As the task of part recommendation is modeled as a graph classification problem
where each class corresponds to a part type, the top-k rate is used as performance metric
to rate multiple recommendations. The metric incorporated both the correctness of the
recommendations and their order.

5.4 Experimental Results

Table 5.3 presents an overview of the performance of the models as well as the baselines
and upper bound for the top-k rate1. Additionally, Figure 5.5 visualizes the performance
of the best models and bounds per dataset. The bounds span a wide corridor, so that the
Evergreen model is between 28 and 89 percentage points below the upper bound. This
proves that the task of part recommendation is not trivial, as it is not solved satisfactorily
by suggesting the k most frequent target parts of the training set by the Evergreen model.
The Evergreen model illustrates the uneven distribution of the target values: it shows that
the ten most frequent target part types were sought in between 15% and 35% of cases (as
opposed to the range between 0.03% and 0.05% when evenly distributed), depending on
the dataset. For datasets with such few part types, even such a simple model could provide
support. However, the frequent parts are usually known so that they can be found quickly.
Both the baseline and the GNN models are clearly superior to the Evergreen model for each

1The results presented in this thesis of the comparison models Evergreen, frequency-based baseline and
upper bound model differ from the original publication [39], as those have been subject to an off-by-one
error. This thesis presents the corrected values.

5.4. EXPERIMENTAL RESULTS 79

Table 5.3: Summary of results for part recommendation per dataset based on the top-
k rate evaluated on the test set for k “ 1, . . . , 20 recommendations. The performance
of the upper bound, baseline and Evergreen model is given to contextualize the results.
All values are given in percent. The identifier following the GNN model architecture
indicates the employed part type representation: 100-, 20-dimensional embedding or one-
hot encoding (1H). The overall winner per dataset and k is highlighted as bold; the winner
per representation is annotated with a suffix asterisk (*).

Dataset Model \ k 1 2 3 5 10 15 20

A Upper Bound 60.0 88.8 96.2 98.6 99.7 99.9 100.0
Baseline 37.2 59.7 68.6 75.2 80.8 83.0 84.0
Evergreen 2.3 4.5 6.3 9.7 15.0 19.0 22.2

GAT-100 46.7 71.4* 79.7* 85.2* 90.0* 92.2* 93.3*
GCN-100 47.4* 71.0 79.3 84.9 89.6 91.5 92.7
GIN-100 47.0 70.6 78.7 83.8 88.2 90.0 91.3
GraphSAGE-100 46.4 70.6 79.3 85.1 89.8 91.6 92.7

GAT-20 47.9* 72.2* 80.4* 85.5* 89.8* 91.5* 92.5*
GCN-20 46.6 70.9 79.5 84.8 89.4 91.3 92.4
GIN-20 44.3 66.5 75.9 82.4 88.3 90.7 92.1
GraphSAGE-20 44.5 69.2 78.2 84.2 89.0 91.0 92.1

GAT-1H 46.0* 70.3* 79.0* 84.6* 89.6* 91.5* 92.6*
GCN-1H 45.4 69.3 78.1 83.8 88.6 90.7 92.0
GIN-1H 35.7 51.1 60.3 69.3 78.4 82.4 84.7
GraphSAGE-1H 44.4 68.8 78.0 84.0 88.9 91.0 92.2

B Upper Bound 44.3 71.4 88.2 98.0 99.7 99.9 100.0
Baseline 18.1 31.9 42.7 55.5 68.0 72.7 74.7
Evergreen 9.4 13.3 15.5 20.3 28.4 35.3 41.7

GAT-100 30.8* 50.6* 63.1* 73.8* 82.1* 86.1* 88.4*
GCN-100 30.5 49.2 61.2 72.4 81.8 85.9 88.0
GIN-100 30.1 49.2 61.4 72.5 80.8 84.5 86.5
GraphSAGE-100 29.2 48.0 60.8 72.9 82.0 86.0 88.4

GAT-20 30.0* 50.1* 62.6* 73.4* 82.0* 85.9 88.0
GCN-20 28.0 46.4 58.8 71.4 81.3 85.6 88.1
GIN-20 29.1 46.9 58.7 70.5 80.3 84.6 87.3
GraphSAGE-20 26.0 44.4 57.9 72.2 81.8 86.0* 88.4*

GAT-1H 30.2* 49.5* 61.8* 72.5* 80.7* 84.6* 86.6
GCN-1H 27.8 45.1 56.8 69.2 79.8 84.3 86.7*
GIN-1H 28.0 44.8 56.0 67.5 77.1 81.5 84.3
GraphSAGE-1H 29.1 47.7 60.0 71.7 80.6 84.4 86.6

C Upper Bound 36.7 61.5 79.5 96.5 99.9 100.0 100.0
Baseline 17.3 31.4 43.3 59.5 71.0 73.0 73.8
Evergreen 7.8 14.4 19.9 25.5 35.7 43.7 48.1

GAT-100 28.5* 49.3* 65.0* 81.8* 92.8* 95.8* 96.9
GCN-100 27.9 48.3 63.8 80.5 92.0 95.5 97.1
GIN-100 25.3 44.7 59.8 77.7 91.5 95.6 97.3*
GraphSAGE-100 27.8 48.6 64.4 81.0 91.5 94.9 96.1

GAT-20 27.9* 48.5* 64.0 80.7 91.9 95.1 96.3
GCN-20 27.5 48.4 64.2* 81.2* 92.5* 95.8* 97.1
GIN-20 27.2 47.3 62.5 79.9 91.9 95.9 97.3*
GraphSAGE-20 24.3 43.7 59.4 80.0 90.8 95.2 97.0

GAT-1H 27.5* 48.4* 64.0* 80.6* 91.2* 94.0 95.2
GCN-1H 27.0 47.1 62.4 79.2 90.8 94.2* 95.7
GIN-1H 22.5 39.5 52.6 70.7 86.9 91.2 93.5
GraphSAGE-1H 25.2 45.2 61.1 79.5 90.7 94.2* 96.0*

80 CHAPTER 5. PART RECOMMENDATION IN ASSEMBLY MODELING

1 2 3 5 10 15 20
0

20

40

60

80

100

number of recommendations pkq

to
p-
k

ra
te

Upper Bound GAT GCN GIN GraphSAGE Baseline Evergreen

(a) Dataset A

1 2 3 5 10 15 20
0

20

40

60

80

100

number of recommendations pkq

to
p-
k

ra
te

(b) Dataset B

1 2 3 5 10 15 20
0

20

40

60

80

100

number of recommendations pkq

to
p-
k

ra
te

(c) Dataset C

Figure 5.5: Visual comparison of part prediction models: For all GNN architectures, the
best models (embedding size 100) were used for each dataset.

5.4. EXPERIMENTAL RESULTS 81

dataset, with the latter performing considerably better. For every number of recommen-
dations, the GNN models outperform the baseline by a large margin, demonstrating that
they are capable of generalizing beyond exact subgraph pattern-matching. When assessing
the baseline model, a direct lookup of the input graph could only be performed for some
of the instances. Consequently, subgraphs typically had to be identified and combined to
form the input graph. Unlike GNNs, the baseline model does not scale well with the size
of the datasets or assemblies, making GNN models better suited for larger datasets.

Influence of the Part Type Representation

In our experiments, we used three different variants to represent part types: two embed-
dings of different size and one-hot encoding for the part types. On the one hand, we want
to investigate whether the assumption of correlating supervised and unsupervised task for
the selection of the two embeddings holds in our setting and, on the other hand, whether
pretraining of part type embeddings is advantageous compared to one-hot encoding. As
already discussed, finding representations is an unsupervised learning problem that cannot
be evaluated directly due to the lack of labels. In accordance with our goal of automatic
learning, we use extrinsic evaluation with the help of a downstream task, namely the part
recommendation: Given a good data representation, the part recommendation models can
achieve good performance.

The respective embeddings of dimension 20 and 100 stem from a preliminary study of
part2vec (cf. Section 4.3.1) in which these dimensions achieved the lowest error values from
a range of embedding sizes. Part2vec is a generalization of word2vec to graph structures and
is therefore also based on the assumption that the unsupervised task of getting embeddings
is well solved if the corresponding supervised task (mapping center nodes to context nodes)
is well solved. For this reason, we evaluated the quality of the learned embedding by the loss
of the supervised model. The preliminary study showed that embeddings of 100 dimensions
or more resulted in lower loss values compared to those with only 20 dimensions.

We now want to investigate whether this assumption actually holds, i.e., whether mod-
els based on the higher dimensional embedding perform better than those using the lower
dimensional embedding. Figure 5.6 visualizes the performance of the various GNN ar-
chitectures depending on the part type representation for dataset B. GNNs using 100-
dimensional embeddings slightly outperform those with 20-dimensional embeddings. This
improvement with increasing embedding dimensions is consistent for all model architec-
tures, whereby there is an outlier with GINs for k “ 20 recommendations. This suggests
that using even higher embedding dimensions might further enhance performance, but
probably only marginally. However, our preliminary study did not show any improvement
in the pretraining task with higher embedding dimensions. Therefore, we chose not to
investigate them further for the part prediction task as bigger embeddings would result in
more computational costs.

Both preliminary study and extrinsic evaluation showed the superiority of the higher
dimensional embedding, thus indicating that the assumption of correlation between the
supervised and unsupervised tasks in part2vec holds. The comparison with one-hot en-
coding shows clearer differences in performance: Models based on embeddings consistently
outperform those starting with one-hot encoding for the part types, however, only by few
percentage points. In conclusion, pretraining proved to be advantageous for the recom-
mendation task, although one-hot-based GNNs also performed well by consistently out-
performing the baseline. This could be relevant for practical purposes, such as when there

82 CHAPTER 5. PART RECOMMENDATION IN ASSEMBLY MODELING

is insufficient time to set up a pretraining pipeline. Given the superior results of the 100-
dimensional embeddings, we use them as default part type representation for the remainder
of the thesis.

3 5 10 15 20

60

70

80

90

number of recommendations pkq

to
p-
k

ra
te

100-dim. Embedding 20-dim. Embedding One-hot Encoding

(a) GAT Model

3 5 10 15 20

60

70

80

90

number of recommendations pkq

to
p-
k

ra
te

(b) GCN Model

3 5 10 15 20

60

70

80

90

number of recommendations pkq

to
p-
k

ra
te

100-dim. Embedding 20-dim. Embedding One-hot Encoding

(c) GIN Model

3 5 10 15 20

60

70

80

90

number of recommendations pkq

to
p-
k

ra
te

(d) GraphSAGE Model

Figure 5.6: Effects of the three part representations on the performance (top-k rate) of the
four GNN models for dataset B. k “ 1, 2 omitted due to scaling.

5.4. EXPERIMENTAL RESULTS 83

Performance of GNN Models

The performance of the GNN models increases significantly as the number of recommenda-
tions k increases. In terms of top-10 rate, the best performing model (GAT-100) achieved
over 90% for datasets A and C and still 82.1% for dataset B, although this dataset is
more ambiguous than the other two as it includes more parts – which is also reflected in
the Evergreen and upper bound models. This shows that the GNN models can reliably
reduce the candidates for required parts from 1,930 (dataset A), 3,099 (dataset B) and
1,924 (dataset C) to 10, which is a useful preselection for designers.

The upper bound indicates the maximum performance that can be achieved by a non-
oracle model for a certain number of part type recommendations for the respective test
set. For example, with k “ 1 recommendations on dataset B, GAT-100 achieved 30.8% of
a maximum of 44.3%, i.e., almost 70% of the maximum performance. For k “ 10 recom-
mendations, the upper bound for each dataset is almost 100%, such that the performance
values of the recommendation models are basically already normalized to the maximum
value.

In a direct comparison of the GNN architectures, the GAT models achieve slightly
better results with the same embedding consistently on all datasets, as illustrated in Fig-
ure 5.7 as an example for dataset A. This makes the GAT with an embedding size of 100
the overall winner. Interestingly, GCNs outperform GINs in the vast majority of cases,
although the latter architecture should be superior by design as it can distinguish more
graph structures than GCN (cf. Section 3.3.2). This shows that theoretical superiority
does not always translate into practice. There is no discernible pattern for the other ar-
chitectures; all models yield quite similar performance values. However, it is noticeable
that the performance of the GIN model drops significantly when using one-hot encoding
for datasets A and C.

3 5 10 15 20

80

85

90

number of recommendations pkq

to
p-
k

ra
te

GAT GCN GraphSAGE GIN

(a) 20-dim. Embedding

3 5 10 15 20

80

85

90

number of recommendations pkq

to
p-
k

ra
te

(b) 100-dim. Embedding

3 5 10 15 20

80

85

90

number of recommendations pkq

to
p-
k

ra
te

(c) One-hot Encoding

Figure 5.7: Comparison of the performance of GNN models trained on the same part
representation for dataset A. Visualization of k “ 1, 2 omitted due to scaling.

The update rule of GAT and GCN is quite similar, the key difference between them
lies in how the models weight the neighbor nodes: in GCN, all neighbors are weighted
with the same constant factor based on the graph structure (cf. Equation (3.13)), whereas
in GAT, an individual weight for each neighbor node is determined based on the node
features, specifically the attention scores (cf. Equation (3.17)). The ability to individually

84 CHAPTER 5. PART RECOMMENDATION IN ASSEMBLY MODELING

weight neighbor nodes must be a decisive factor for our problem, as GATs consistently
achieve better results. To investigate whether a GAT indeed weights certain neighbor nodes
higher (utilizing the attention mechanism), one can compare the attention distribution to
the uniform distribution, as suggested in [165]. For each graph instance and each of its
nodes, the attention distribution over the neighbor nodes and the corresponding uniform
distribution are determined. Then, in order to compare the respective distributions, we
determine the Shannon entropy of each distribution, a scalar value that describes the
disorder of a distribution (cf. Section 3.1). Figure 5.8 shows a histogram of the calculated
entropy values (attention distribution and uniform distribution), excluding nodes with
exactly one neighbor (i.e., leaf nodes), as for these nodes the learned attention distribution
always matches the uniform distribution. Since the characteristics were similar for all GAT
models, the figure only visualizes one particular model (GAT-100 for dataset B). The high
prevalence of entropy 0 scores indicates that in many neighborhoods within the assemblies,
the attention scores focus almost entirely on a single (or very few) neighbors, resulting in
a distribution that is very different from the uniform one.

0 0.5 1 1.5 2 2.5 3
0

0.5 ¨ 106

1 ¨ 106

entropy bins

nu
m

be
r

of
no

de
s uniform

attention

Figure 5.8: Histogram of calculated Shannon entropy of the attention distribution and
the corresponding uniform distribution evaluated on the test set. The attention values
originate from an arbitrarily selected head of the last GAT layer from GAT-100 trained
for dataset B. For visual differentiation, the bars for the uniform distribution are slightly
shifted. Nodes with only one neighbor were excluded, since their attention distribution
equals the uniform distribution.

Finally, we would like to discuss the training and evaluation time of the GNN models.
All models were trained with an Nvidia DGX-1 station2 composed of eight Tesla V100
GPUs, where one GPU was sufficient for training. We consider the execution times for
dataset B because it contains both the most instances and those with the largest partial
graphs, confer Tables 4.1 and 5.1. The times barely differ for the different GNN architec-
tures. The GAT-100 model took on average 6.4 minutes for one training epoch (including
the calculation of the training and validation loss), with all models being trained in less
than 10 epochs. This means that the training of a model was completed in under an hour.
When evaluating the trained model on the test data, about 1000 instances could be evalu-
ated within one minute. The inference time is therefore negligible. For the other datasets,
both training and evaluation times are lower due to the fewer instances to process.

2The station features 40 CPUs, in particular dual-socket Intel Xeon CPUs E5-2698 v4 with 2.20GHz.
The GPUs are interconnected through Nvidia NVLink.

5.4. EXPERIMENTAL RESULTS 85

Difference in Training and Test Labels

The assembly graphs examined in this thesis originate from real-world orders by customers.
They thus show which parts were combined in order to create the respective required
assembly. However, they do not provide a list of all possible assemblies over the part types.
Since we extract the recommendation instances from these sample assemblies, the instances
(represented as multi-label) also contain only a subset of all possible matching parts for a
given partial assembly. In short, we do not know the exhaustive list of parts that would
really fit to a partial assembly, i.e., the exhaustive list of labels for an input. Creating the
list of all possible part connections would require intensive manual effort by design experts.
It can therefore happen that a model suggests a suitable part by generalizing from similar
assemblies, but we do not count it as correct in the evaluation because it is not among the
added parts in the evaluation set. Consequently, the displayed performance hit rates are a
lower estimate and could be even higher in application.

Furthermore, it is therefore also possible that the labels for a particular partial graph
in the training data differ from the corresponding in the test data and during inference.
While a model has been trained to output certain part types in training, these might not
be counted anymore as correct in the evaluation. Also, a new part type could be required
that was not among the labels for this partial graph in the training. Let’s consider this
situation in a simple example: assume that for a particular partial assembly Ai, part
type τ1 appears twice and part type τ2 once as targets in the training instances. We would
expect the model to output τ1 first and τ2 second when performing predictions for Ai, i.e.,
the output is ranked according to relevance. Assume that in the test instances, however, for
the same partial assembly Ai, the corresponding test targets consist of twice part type τ1
and once part type τ3, because these part types have been added to the partial assembly
in the test assemblies. Consequently, predicting τ2 for Ai is not counted as correct in test,
and the model is moreover expected to predict part type τ3 as well – GNNs could achieve
this through generalization. For k “ 2 recommendations (τ1 and τ2), the model would
yield 66.6% hit rate on these test instances.

Table 5.4: Estimate of the impact of the difference in training and test labels for part
recommendation on all datasets. The data set used to learn the upper bound model is
indicated in the second column. Both models were evaluated on test instances, whose
partial graph also occurred in the training instances, noted as “filtered test” set. Top-k
rate is given in percent.

Dataset “Train” Set \ k 1 2 3 5 10 15 20

A Train 54.10 79.93 87.62 91.38 93.48 94.04 94.22
Filtered Test 58.63 87.25 95.15 98.18 99.62 99.91 99.96

B Train 38.33 61.36 75.55 85.17 88.40 89.26 89.53
Filtered Test 42.25 68.33 84.86 96.10 99.25 99.75 99.89

C Train 32.24 54.43 70.74 86.43 90.61 90.88 90.91
Filtered Test 35.81 60.21 78.10 95.77 99.87 99.99 100.00

While we cannot approach the first problem automatically without domain knowledge
to compile the complete list of suitable part for a partial assembly, it is possible to estimate
the impact of the difference between the labels in training and test for the part recommen-
dation task: To do this, we first filter all test instances to those whose partial assembly also

86 CHAPTER 5. PART RECOMMENDATION IN ASSEMBLY MODELING

occurs in training, since we can only measure the difference for such instances. This results
in 33,586 instances (77%) for dataset A, 229,947 (47%) for dataset B, and 240,857 (60%)
filtered test instances for dataset C, respectively. Then we can use two instantiations of
the upper bound model to memorize the training data in the first model, and the test data
in the second one. In particular, this model represents a mapping from partial assembly to
list of part types, which are sorted according to their occurrence as label. Both models are
evaluated on the reduced test set for part recommendation based on the top-k rate; their
performance is displayed in Table 5.4. As expected, the second model, which has learned
the test data, performs better. However, the difference to the model based on the training
data is acceptable, it is in a similar range for all datasets: about four percentage points
difference with only one prediction; nine percentage points difference with ten predictions
for datasets B and C and six percentage points for dataset A. The effect of the label differ-
ence is noticeable, but remains within acceptable limits. However, this may be responsible
for the gap between the GNN models and the upper bound in the part recommendation
(cf. Table 5.3).

Are the recommendations indeed reasonable?

Part recommendation is motivated by the tedious, time-consuming search for the right
parts during assembly modeling. Due to the heuristic instance creation, some instances
are created where the target part type (the suggestion) is already present in the input
graph. For these instances, the task is not very challenging as the model only needs to
“look up” the part type in the input graph. From a designer’s perspective, a part type
that is already included in the design does not require further searching as the designer
can simply copy the existing part. We want to investigate whether the recommendation
models can come up with parts that are not yet included in the current assembly graph.
Therefore, we filtered the (test) instances so that we only consider those where the target
is not yet included in the input graph, in order to assess if the recommendation model
is indeed capable to predict parts not already included and thus if its predictions are
reasonable. As for these instances, the set of all part types of the assembly tT ppq | p P VAu

and the (single-element set of) target part types is disjoint, we also denote these filtered
instances as disjoint.

Table 5.5: Number of recommendation instances before and after filtering for disjoint
instances per data set of dataset C.

Data Set Original Disjoint Reduction by Filtering

Training 1,050,993 704,712 32.9%
Validation 378,712 251,113 33.7%
Test 399,763 270,385 32.4%

Table 5.5 exemplifies the reduction of each data set through filtering for disjoint in-
stances for dataset C, where filtering reduces each data set by about one-third. For datasets
A and B, the reduction was about 20% and 40%, respectively, and the observations were
analogous. The best models trained for recommending ten parts (GAT-100 and GCN-100)
were evaluated on the disjoint test set, with the results shown in Table 5.6. Evaluation of
the original models on the disjoint test instances naturally delivers poorer results, as the
models have been trained to also suggest parts that are already included. When evaluating

5.4. EXPERIMENTAL RESULTS 87

on the disjoint test set, these are no longer counted as correct, so the models’ performance
is lower than on the original test set. However, this effect averages out for an increasing
number of recommendations, reaching a similar performance level latest at k “ 10. If the
filtering is also applied to the training and validation set in order to train new models
on them, these models are trained to suggest only parts that are not already included in
the partial assembly, which is why they perform better on the disjoint test set and thus
outperform the original models for small values of k.

Table 5.6: Performance of trained part recommendation models given as top-k rate in
percent evaluated on original and filtered test set for dataset C. Includes performance
values of original GNNs from Table 5.3 for comparison.

Train/Val. Set Test Set Model \ k 1 2 3 5 10 15 20

Original Disjoint GAT-100 21.9 42.7 59.9 79.2 92.0 95.4 96.6
GCN-100 21.4 41.6 58.2 76.9 89.8 94.1 96.2

Disjoint Disjoint GAT-100 31.6 54.4 69.5 83.7 93.3 95.8 96.8
GCN-100 31.1 53.3 68.3 83.0 93.0 95.7 96.8

Original Original GAT-100 28.5 49.3 65.0 81.8 92.8 95.8 96.9
GCN-100 27.9 48.3 63.8 80.5 92.0 95.5 97.1

We would like to make clear, that a performance comparison is only proper, when the
models are evaluated on the same data set (and ideally also trained on the same training
set). Consequently, the performance evaluations on the original and disjoint test set cannot
be directly compared with each other. However, these analyses demonstrate that the part
recommendations not only reflect parts that are already included in the partial assembly,
but actually support the design process by reducing the search for new required parts.

Are the recommendations indeed beneficial?

In addition to the quantitative analyses of the trained recommendation models on the test
instances presented above, we were also able to evaluate the benefits of the recommen-
dations as part of a user study in the project KOGNIA. For this purpose, the project
partner CADENAS GmbH integrated a recommendation model prototypically into the
CAD system Autodesk Inventor [64].

The study was carried out on a smaller assembly dataset, which only included 27
training assemblies consisting of parts from a vocabulary of over 2,000 part types. However,
the assemblies were noticeably larger with an average of 428 parts. These assemblies were
transformed into recommendation instances according to Algorithm 1 and used to train a
GAT recommendation model.

In the study, six engineers assessed the quality of all ten part recommendations in
the system using a star rating scheme: The full number of five stars was assigned to
recommendations that corresponded to the desired target part; if the recommendation
could not yet be directly attached to the assembly, but was needed in a subsequent step, four
stars were awarded. If a part of the correct part family (cf. Section 2.1) was recommended,
but the specific recommended variant was unsuitable for the current assembly, it resulted
in another point deduction. Finally, unsuitable variants of parts that could only be used
later were given two stars, and unusable recommendations were given one star.

88 CHAPTER 5. PART RECOMMENDATION IN ASSEMBLY MODELING

Table 5.7 shows how often part type recommendations were rated with four or five stars
in the user study. These two ratings are of particular interest to us, as they effectively
support the designer in assembly modeling by providing suitable parts in the current or
a subsequent step. With k “ 10 part recommendations, the study participants received
effective support in 76.3% of the recommendations. This means that in over three quarters
of the cases, they did not have to search for the required part in the catalogs themselves,
as it was suggested to them by our recommendation system.

Table 5.7: Results of the user study on part recommendation: Proportion of four and five
star ratings across all ratings of k “ 1, 3, 5, 10 part recommendations, respectively. Five
stars corresponds to the highest possible ranking.

Rating 1 3 5 10

‹ ‹ ‹ ‹ ‹ 11.0% 24.5% 39.7% 55.6%
‹ ‹ ‹ ‹ 7.7% 12.6% 16.8% 22.7%

Furthermore, the feedback from the design engineers was consistently positive, describ-
ing the system as both convenient to use and an effective aid to reducing the time required
for assembly modeling. The user study further revealed that some of the suggestions also
involved parts that were previously unknown to the designers. When searching for parts
manually, the fact that the envision part is not even known to the designer places a huge
hurdle. By suggesting these parts, our system enabled the designers to integrate these
parts into their assemblies. In summary, the user study proved the effectiveness of our
approach and that the experimental results are reliable.

5.5 Digressions

In addition to the methodology and examinations presented so far, we also investigated
other established improvement techniques for the use case of part recommendation, but
these did not lead to any significant changes. Our approach and findings for the pretraining
of the recommendation models and the use of Graph Transformer models are outlined
below. Furthermore, we have considered the necessary modifications to our approach
for recommending a context-specific number of parts instead of a fixed recommendation
number. This subsection ends with the models investigated for this task and their results.

5.5.1 Pretraining of Part Recommendation Models

Experience has shown that deep, regularized neural networks achieve better results than
more shallow unregularized ones [51]. These models often have millions of parameters
and therefore require a vast amount of data for training. However, obtaining labels for
this data is usually time-consuming and expensive. In the fields of image and natural
language processing, pretraining models has proven to be an effective strategy to address
this issue [51], leading to its establishment in other areas as well. In this approach, models
are initially trained either on unlabeled data using an unsupervised method or via an
auxiliary task where labels are easier to obtain e.g., by self-supervision. After pretraining
the final layers for the auxiliary task, they are replaced by layers for the actual task – similar
to transfer learning. The whole model (pretrained first layers and added new prediction

5.5. DIGRESSIONS 89

layers) are afterward fine-tuned for the actual task. The idea is to use the auxiliary task
to gain a better understanding of the data and thus improve task performance.

Since our datasets contain only 12,000 assemblies, we investigated the usefulness of pre-
training for the recommendation models. We chose a pretraining strategy that is applicable
for all GNN architectures and operates on the graph structure itself, as we have no further
information on the assembly graphs: generative pretraining of GNNs (GPT-GNN) [62].
This technique involves two self-supervised tasks which are assessed by two separate loss
terms: predicting node attributes and reconstructing masked edges.

We examined the effect of pretraining based on the number of available assemblies
(500, 1,000, 2,000, 4,000, all training assemblies). As expected, pretrained models started
with higher performance and reached their peak performance faster. However, the more
assemblies were available, the quicker the non-pretrained model caught up, reducing the
overall training time required. Unfortunately, in terms of performance, pretraining was
not found to be beneficial: pretraining showed only minimal improvements (less than one
percentage point) and sometimes even resulted in worse final performance. In summary,
pretraining could be useful when there are very few assemblies or limited computational
resources; otherwise, it is not particularly beneficial.

5.5.2 Graph Transformers for Part Recommendation

In the fields of computer vision and NLP, central application fields of machine learning,
Transformers [141] have established themselves as state-of-the-art technology in almost all
applications. As outlined in the foundations, Transformers can be seen as GNNs applying
an attention mechanism and operating on fully connected graphs. This naturally led to
the development of architectural variants, designed for processing general graph structures,
known as Graph Transformers. They generally utilize the attention mechanism introduced
by Vaswani et al. [141], but differ in how they integrate graph information. For a de-
tailed overview of existing architectural designs, we refer the reader to the comprehensive
surveys [98, 102].

Due to the great success of the Transformer architecture, we investigated Graph Trans-
formers as alternative models for part recommendation. Specifically, we investigated the
two architectures GT [34] and GPS [115]. Dwivedi and Bresson presented GT as a natural
and simple generalization of the Transformer for graphs. In their experiments on a graph
regression and two node classification tasks, they outperformed GCNs and GATs. However,
GPS is a highly modular framework presented by Rampášek et al., capable of incorporat-
ing various positional or structural encodings, which combines message-passing GNNs with
global attention mechanisms. The second architecture was particularly interesting because
of its modularity to incorporate structural information of the graph.

In his master thesis [123], Ludwig Schneider experimentally compared the Graph Trans-
formers to the best GNN architecture for part recommendation, namely GATs. All variants
of Graph Transformers achieved very similar results per dataset for part recommendation,
despite using different attention mechanisms and taking various structural information into
account. For each of the three assembly datasets examined, a different Graph Transformer
architecture variant emerged as the best model, respectively. Compared to GATs, Graph
Transformers were occasionally able to outperform GATs for a large number of recommen-
dations, but only by 1-2 percentage points. We were able to find some tendencies that
GAT models performed better on smaller graphs, whereas Graph Transformers excelled on
larger graphs.

90 CHAPTER 5. PART RECOMMENDATION IN ASSEMBLY MODELING

Interestingly, the Graph Transformer models have significantly fewer parameters than
the GAT models, while achieving comparable hit rates. Models with significantly more
parameters performed worse, as they showed poorer generalization ability. These results
suggest that the available assembly datasets were not large enough to train complex Graph
Transformer models with many parameters. We hypothesize that these models would
perform significantly better on larger and more complex datasets, as it is the case for
their basis architecture Transformers. However, since we do not have any further assembly
graphs, this remains to be investigated in future work on larger assembly datasets.

5.5.3 Context-Specific Number of Recommendations

For the part recommendation system, we decided to present the user with a fixed number of
recommendations for every assembly, for example ten suggestions. As a result, for certain
assemblies there may be considerably more suitable parts so that only a subset of them is
listed as recommendations due to the fixed number. Therefore, more recommendations can
be requested from the system at any time. However, for other assemblies, fewer suggestions
than the fixed number may be indeed suitable, so that unsuitable parts were added in order
to fill up to the desired number of suggestions. Since we are aiming for an assistance system
under the control of the designer instead of automatic completion of assemblies, imperfect
suggestions are acceptable. However, recommending unsuitable parts could diminish the
designers’ confidence in the assistance system. For this reason, we aimed for adopting
the recommendation system to output a self-determined number of part recommendations
specific for the context of the current assembly, in short a context-specific number of part
recommendations. This means that the recommendation model should decide both how
many and which directly attachable parts should be suggested for the current assembly.
The suggestions should again be sorted by relevance so that frequently used parts in this
context are ranked higher. However, this implementation has its own advantages and
disadvantages: If only in fact suitable parts are displayed, this reduces the number of
parts that a designer has to look through when searching for a suitable one. A major
disadvantage, however, is that requesting further parts is typically difficult to realize with
such systems. So if the desired part is not listed, the designer will probably have to search
through the variety of catalogs again.

Providing a context-specific number of recommendations can already be achieved by
slightly modifying our existing approach based on a fixed number of recommendations, even
without having to train new models. To do this, we simply modify the way of determining
recommendations based on the part type scores of the recommendation model’s output
layer. We refer to the resulting models as baselines in the following. The first possibility is
to determine an experimental threshold (based on the validation data) for the normalized
part type scores after applying Softmax, i.e., only part types with normalized scores above
the threshold are suggested. As before, the part types can be sorted according to their
scores to build ranked suggestions. In this modeling, all part scores are correlated, so that
scores of unsuitable parts influence the normalized values of suitable parts, which makes
the search for a universal threshold difficult. The second possibility is to consider the
problem as a multi-class classification, meaning that a set of part types can be assigned to
an assembly. This corresponds to problem transformation method PT4 given in [137], as
discussed in Section 5.1. Architecturally, this can be achieved by using Sigmoid instead of
Softmax as activation function in the output layer. In this way, the model uses a binary
classification to decide individually for each part type whether it should be predicted. In

5.5. DIGRESSIONS 91

principle, the same sorting approach can also be carried out here, but the assumption that
parts with higher scores are more relevant does not necessarily apply: In fact, a perfectly
trained model would predict 100% probability for each matching part, so the parts could not
be sorted appropriately. Therefore, this approach provides a set of part recommendations
rather than a ranking of them. Due to the weaknesses of the simple modifications of
the previous approach, we also investigated new architectures independent of the original
system.

Basically, a ranked list can be considered as a sequence, i.e., a collection of elements
with spatial order. Hence, the desired recommendation output can be understood as a
sequence of part types of a context-specific length. Sequential outputs often occur in the
field of natural language processing, for instance, when a suitable caption, i.e., a sequence
of words, is to be generated for an image. Adhering to typically employed models for
sequence generation [118], we investigated RNNs and Transformers [141] for our task. Since
the standard architecture of RNNs exhibits gradient problems [51], we used LSTMs [122],
a variant that solves this problem. In detail, the sequential-based recommendation models
are based on an encoder-decoder architecture, with GNNs processing the assembly graphs
as encoders. The two sequential models serve as subsequent decoders to produce a sequence
of suitable part types. In order to achieve a context-specific output length, we follow
the standard approach of extending the vocabulary by a so-called end of sequence token
(EOS) [51]. As soon as the model predicts this token, no further part type predictions are
retrieved. To train these two sequential model variants, the recommendation instances had
to consist of partial assembly and target sequence of matching part types. Within each
data set, all recommendation instances with the same partial graphs are first grouped so
that a multiset of part types is available. The multiset is then converted into duplicate-free
sequences: The part types are sorted in descending order based on their frequency in the
respective multiset.

In his thesis, Michael Huber investigated and compared the four presented approaches.
Here, we provide a brief overview of the results and findings, for a detailed overview of
the results and findings, we refer the interested reader to [63]. The performance measures
precision and recall are used to evaluate the task, as well as the F-score as a combination
of both values. The hyperparameter selection was based on the F-score. In contrast to
classic sequence generation such as with texts, the generated part type sequence should
contain each type at most once. To address this particularity, we have applied a small
model adjustment for inference to ensure duplicate avoidance: Inspired by the concept of
masking employed in the Transformer architecture, we are setting the logits in the output
layer of part types already predicted to minus infinity. Since the Transformer architecture
is designed to process large amounts of data, the experiments are limited to dataset B,
which comprises the largest and most complex assemblies and thus produced the most
instances, see Table 5.1.

In the experiments, all models except the first baseline achieved a very similar F-score
of about 70%. The first baseline scored almost ten percentage points lower, which is mainly
due to its very low precision. For the second baseline and the sequential architecture based
on a Transformer, both precision and recall are around 70%. This means that on average
across all test instances, 70% of all predicted part types were correct and 70% of all targets
were indeed predicted. The sequential architecture based on LSTMs achieves slightly better
precision, but at the same time slightly poorer recall.

92 CHAPTER 5. PART RECOMMENDATION IN ASSEMBLY MODELING

With regard to correct ordering the predicted part types according to their relevance,
the sequential models emerged as the winners. This finding is in line with expectations, as
these models – in contrast to the baselines – were explicitly trained for a suitable order.
Interestingly, both baselines perform equally well in terms of order, with the second even
performing slightly better for few number of recommendations. This is surprising, as the
second baseline should be less suitable for ordering the suggestions by design.

5.6 Related Work

Supporting CAD Designers The cognitive demands placed on design engineers using
a complex CAD system have already been recognized [87]. The authors employ collabora-
tive filtering to recommend relevant software commands to streamline the workflow. Our
method shares this motivation but shifts the focus towards identifying parts that are likely
to be added to the current assembly rather than suggesting commands.

Utilizing search engine and information retrieval concepts to assist CAD design en-
gineers is referred to as assembly retrieval [91]. The search can be performed based on
keywords, shape similarity [38] or a combination of search criteria [25]. Assembly retrieval
involves various similarity criteria (e.g., usage patterns and part overlaps) to facilitate
searches for similar designs, whereas our method emphasizes suggesting potential exten-
sions for the assembly while a designer does not have to specify any requirements or queries.

Other search methods focus on the geometry of parts, allowing users to search for
similar-shaped parts by using a reference part [13] or by providing a 2D or 3D sketch of
the desired part [45]. However, these approaches require the engineer to already have a
specific part in mind in order to successfully end up with the correct part.

GNNs in Recommendation Systems The use of graph neural networks (GNNs) in
recommendation systems has also been recognized [154], essentially because many recom-
mendation tasks (such as recommending movies to users or products to customers) can
be represented as a (hyper)graph, where users and items are nodes of different types, and
edges connect users to the items they like or have purchased. Such classical recommen-
dation tasks aim at predicting new connections, i.e., recommending items to users, rather
than introducing new nodes to the graph. GNNs are well-suited for these task because they
can directly process the graph composed of users, items, and their associated information
to generate accurate recommendations. Notable examples of GNN-based recommendation
systems have been developed for big social media platforms like Twitter [3], Pinterest [159],
or for the e-commerce platform Alibaba [171].

Liang et al. [89] have built upon our approach for part recommendation by investi-
gating a new neural architecture search framework named CusGNN to automatically cus-
tomize data-specific GNN models on our datasets. Each layer within the recommendation
model can have a different architecture, aggregation function and possibly readout func-
tion, among others. Through extensive dataset-specific hyperparameter search, specialized
models could be developed, which mostly achieve similar performance as the models pre-
sented in this thesis, but are up to 1.5 percentage points ahead in some cases. In contrast,
we pursue a generic approach in order to find a modeling and model architecture that
is adequate for any kind of assembly dataset instead of fine-tuning individually for each
dataset. It remains to be evaluated whether the difference in performance measured on
the test data has a noticeable impact on the design experience for users of the application.

5.6. RELATED WORK 93

Generative Tasks on Graphs The task of predicting the next part in an assembly can
be seen as a step-by-step generative model for graphs. However, existing approaches to
generative deep graph models aim to learn the probability distribution of the entire graph
at once, a process referred to as “one-shot generating” in [56]. These methods commonly use
techniques such as variational autoencoders [78], generative adversarial networks [145], or
normalizing flows. Furthermore, the authors of [88] propose learning a sequence of node and
edge insertions, which they termed structure building actions. Their approach, particularly
the neural network architecture used to map an intermediate graph to the next insertion
action, shares some similarities with our method. However, in their approach, edges can be
added in any order, potentially resulting in disconnected graphs – something we explicitly
avoid. Our method focuses on inserting individual parts at each step, eliminating the need
for the recurrent structures employed in [88]. Additionally, training general generative
graph models is reported to be more challenging in terms of balance, which is why we
focus on the discriminative task of predicting the probability P pT | Aq. We handle the
generation of suitable data through self-supervision outside the training loop.

Alternatively, graph generation can also be performed using autoregressive models,
which predict single or multiple nodes or edges step by step, based on the current state of
the graph. Given our goal of assisting design engineers by offering suggestions rather than
automating the entire process, we opt for this second approach. During CAD modeling, we
aim to allow designers to make changes to the partial assembly as needed. Consequently,
our model must be able to generate graphs of arbitrary size, which is often not feasible
with non-incremental models.

Other methods generate graphs with similar structural characteristics as the training
data [90, 161]. These approaches assess only the final graph structure, focusing on aggre-
gated graph statistics like degree distributions, without considering intermediate states.
This allows for canonical node numbering (through breadth-first or depth-first traversals)
during the generation of training instances, keeping the number of instances manageable
since node permutations don’t need to be considered. However, in assembly modeling,
engineers may begin with any part or subgraph, and the sequence of part additions can
vary according to their preferences. Therefore, we generate training instances for every
possible creation sequence of an assembly by iteratively removing nodes which then serve
as labels for the resulting partial assemblies. Both [90] and [161] employ RNNs and thus
do not incorporate permutation invariance by design, placing them at a disadvantage com-
pared to GNNs. Unlike [88], where nodes can be added without necessarily connecting
to the existing graph structure, our approach ensures that newly added parts are always
connected to the prior structure, which is essential for maintaining coherence during the
design process.

In the context of molecule graph generation, valid molecules are to be generated ac-
cording to given desired chemical properties. Methods typically incorporate different types
of nodes and even of edges, corresponding to different atoms and bond types. Ensuring the
validity of the generated graph, e.g., verifying the chemical structure of molecules [129],
may seem important for assembly modeling as well. Unfortunately, this validation process
is less straightforward for assemblies, as the designer does not have to exhaust all con-
nection points a part offers. However, especially in terms of a recommendation system,
designers decide themselves anyway which recommended parts are indeed valid for the
current design.

94 CHAPTER 5. PART RECOMMENDATION IN ASSEMBLY MODELING

In [153], Transformer-based generative models have been applied to CAD models by
generating sequences of CAD-typical geometrical operations such as “sketching”, “extrud-
ing”, “boolean subtracting”. While this work addresses part modeling tasks, our method
focuses on usage similarity of parts reoccurring in assemblies, abstracts away from geomet-
rical features, and – most notably – does not require a linear order of operations. Instead
of geometric operations, we focus on predicting the next required parts in the assembly.

Chapter 6
Localized Recommendation By Targeted
Part Placement

Summary This chapter focuses on the problem of localized part recommendation in
assembly modeling, presenting two primary variants of this use case. The first variant in-
volves recommending appropriate part types for a designer-selected extension point within
an existing design. The second variant aims at recommending both an extension point and
a corresponding part type for the current assembly. The chapter details the adjustments
needed for instance generation to incorporate information about the extension points ef-
fectively. Various modeling strategies are explored and compared to baseline models to
evaluate their performance in both variants. For the localized part recommendations for
a designer-selected extension node, the system was able to provide the expected part in
87.5% to 97.5% of the cases when suggesting ten parts. In the case of the more complex
localization task, both components (a next part and its localization) were still correct in
67.2% to 84.9% of cases for ten recommendations. Thus, in both cases, our approaches
could significantly reduce the search time for designers.

Contents
6.1 Generating Instances From Assemblies 98
6.2 Variant I: Recommending Part Types for User-Given Extension Point 100

6.2.1 Experimental Setup . 101
6.2.2 Experimental Results . 102

6.3 Variant II: Recommending Extension Point and Part Type 105
6.3.1 Modeling Approach (1): First Predicting Part Type, After-

ward Extension Point . 106
6.3.2 Modeling Approach (2): First Predicting Extension Point,

Afterward Part Type . 109
6.3.3 Experimental Setup . 110
6.3.4 Experimental Results . 112

6.4 Related Work . 116

Publications The use case of localized part recommendation has initially been pub-
lished in [86]; the specifics on instance generation and the two localization variants in-
cluding methodology and experiments are published in [85].

95

96 CHAPTER 6. LOCALIZED PART RECOMMENDATION

For the use case addressed in Chapter 5, part types are recommended on a global level
for the whole assembly, i.e., without locating which part of the current assembly they should
(or could) be connected to. Thus, the part placement must be fully carried out by the user.
The focus of the previous use case was on what to directly connect to the current assembly,
without considering where. We will therefore refer to the first use case as global or “non-
localized” part recommendation in the following. Global part recommendation was the
central use case investigated within the research project KOGNIA. After its completion,
we concentrated on more targeted part recommendation during the design process in order
to support designers even more effectively: Generating global recommendations may be
acceptable for small assemblies, but becomes unwieldy for large assemblies with plenty of
possible connection options. We therefore also want to provide support for determining
where to connect a new part. In addition, localization can also be seen as a kind of filtering
of the suggestions, as non-localized suggestions apply to the whole graph: If some suggested
parts would fit to several existing parts, they would appear higher up in the ranking and
thus displace suitable parts for fewer locations. If a designer wants to continue building on a
specific part, the current suggestions may not be suitable for connecting to it. Clearly, they
can request more recommendations until the desired part is listed, but this is not efficient.

This use case is not only aimed at reducing the time needed to search for required parts,
but also at providing support for the whole designing task, i.e., selecting and connecting
parts. However, we want to explicitly point out that localization in our use case refers to an
existing part of the current assembly, as opposed to the specific geometric relation in a CAD
system. This means that only parts suitable for the selected existing part are proposed,
but the designer still has to align and rotate the proposed part to be attachable to the
selected part of the assembly. The existing part of an assembly to which a recommended
part is to be attached is in the following referred to as the extension point or extension
node1 of the assembly. An inexperienced designer could use this recommendation system
to view suitable parts for the extension node and thus indirectly learn design rules. This
system can be the foundation for developing a training system for novice designers.

The localized part recommendation addressed in this chapter aims to support designers
not only in the selection but also in the placement of the selected parts. This leads to an
extended operator A n◁ τ for adding a part of type τ P T to the extension node n P VA of
assembly A. However, the exact geometric positioning and alignment of the recommended
part at the extension point in a CAD system is not part of this approach. This aspect is
dealt with by works such as [68] and [150], that position chosen pairs of pre-selected parts,
which can basically follow on from our work. Due to the two shortcomings of non-localized
part recommendation mentioned above, we investigate two distinct variants of localized
part recommendation:

Variant I: Recommending a New Part for a Designer-Selected Extension Point
In a CAD system, this can be envisioned as follows: a designer selects (e.g., clicks on) an
existing part of the assembly to receive recommendations for new parts to attach to it.
By default, the most recently added part could be pre-selected as desired extension point.
This variant corresponds to “filtering” part recommendations to a specified extension point.
Both the current partial assembly and its extension node are provided as input to the
conditional recommendation model learning P pT | A, n P VAq.

1Since several instances of the same part type can occur in an assembly, we try to avoid using the term
“extension part” in order to create clarity regarding the localization.

97

Variant II: Recommending Both a New Part and Its Extension Point The sec-
ond localization variant extends the former recommendation by additionally recommending
the extension point. For a given partial assembly, both a new part type and its extension
point are recommended, given by P pT , VA | Aq. In a CAD system, when a designer
hovers over a recommendation, the extension nodes could be highlighted. In addition to
the selection of the part type, this would also reduce the cognitive burden on designers of
selecting the extension point.

The requirements for this use case essentially correspond to the previous one and are
therefore briefly summarized: We again assume that the designer incrementally adds to the
assembly, ensuring it remains connected throughout the process. Therefore, the extension
point – whether as input in variant I or as additional target value in variant II – always
equals to a part of the existing assembly A, i.e., n P VA. We likewise want to pursue
an automated, data-driven approach and develop an interactive recommendation system
where designers can either accept automated suggestions (in whole or in part) or input
their own choices, enhancing flexibility and user control. This form of recommendation
is similar to the word suggestions on a smartphone when typing a text: The user always
gets suggestions for next words (i.e., the previous word serves as extension point). The
suggestions can speed up the design process for experienced designers and also indirectly
reveal implicit design knowledge to young designers.

The problem of localized part recommendation differs from traditional graph machine
learning tasks such as link prediction and purely generative tasks. Compared to the former,
that deals with predicting whether two existing nodes should be connected by an edge, we
here need to predict a new node in addition to an edge. Graph generation mainly focuses
on macro-level statistical properties such as connectivity. In our variants, however, the
focus is on the individual intermediate steps in the creation of an assembly rather than on
a similar graph structure. Consequently, a novel approach is required that integrates the
prediction of part types along with their connection to the existing graph structure – at a
specific node. Distinction from other graph learning problems will be discussed in section
Section 6.4.

Both localization variants are novel, therefore we frame the problem by adaptions
of upper bound and Evergreen model from Section 5.2. However, we do not consider
the frequency-based baseline model further because of its consistent underperformance in
comparison to all GNNs and computational complexity due to the graph comparisons and
subsumption.

The attentive reader may have noticed that both variants of localized part recommen-
dation subsume global part recommendation, which was discussed in Chapter 5. In order
to receive part recommendations for an entire assembly (P pT | Aq), one could determine
localized recommendations according to P pT | A, n P VAq for each part n of the as-
sembly and finally aggregate them into recommendations on a global level. To do so, a
suitable aggregation strategy is needed which combines node-wise scores for each part type
of the vocabulary into graph-wise scores for each part type. Several options are available
for aggregation, from simple element-wise operations such as mean or maximum to pa-
rameterized aggregation functions as employed in GraphSAGE. The best strategy can be
determined experimentally. Similarly, global part recommendation could also be solved by
the second variant of localized recommendation: the recommendation tuples consisting of
next part and extension node are predicted, whereby the localization information is simply

98 CHAPTER 6. LOCALIZED PART RECOMMENDATION

neglected. However, these investigations are beyond the scope of this thesis, and we will
evaluate the models designed for both localization variants on the respective localization
task only.

6.1 Generating Instances From Assemblies

For both localization variants, we stick to instances with single-label targets, meaning that
the target is a single possible target (part type or tuple consisting of extension point and
part type) instead of a set or list of all possible targets to a query input. In contrast,
the predictions of the models are ranked lists. This representation meets the requirement
of ranked recommendations according to which more frequently seen combinations should
appear higher up due to higher scores. In an initial step, triple-instances consisting of par-
tial assembly, extension point and part type are created, which are transformed depending
on the use case variant: for the first variant, the assembly and extension point form the
input, while in the second variant, the extension point and part type are grouped together
for the target.

The triple-instances can be obtained by slightly adapting the generation procedure of
Algorithm 1: An assembly A˚ is recursively decomposed into triple-instances consisting of
a partial graph, an extension point, and an expected part type, i.e., xA, n P VA, τ P T y.
When a non-cohesive node m is removed from the graph, extension points originate from
its connected nodes N pmq “ tn P VA | pn,mq P EAu. As all assemblies in our datasets are
acyclic (cf. Section 4.2), all non-cohesive nodes are leaf nodes. These nodes have exactly
one neighbor, so we get exactly one triple-instance for each removed node m. In cyclic
graphs, however, a removed non-cohesive node can have multiple neighbors which results
in multiple instances being created when removing m, one for each neighboring node. The
target part type τ is always the part type of the cut-off node m, i.e., τ “ T pmq. Duplicates
of the triple instances that originate from the same assembly are discarded. The adopted
instance generation algorithm is described by Algorithm 2, while Figure 6.1 illustrates
the resulting localization triple-instances resulting from an example assembly. In order to
obtain triple-instances for an entire assembly dataset tA˚

i uni“1 consisting of n assemblies,
the multiset D “

Ţn
i“1Di represents the union of all assembly-specific datasets Di, while

allowing for duplicates.

Algorithm 2 Assembly Decomposition for Localized Recommendation Instances
1: procedure DecomposeGraphLoc(A “ pV, E , T q, D)
2: seenGraphs Ð tAu

3: if |V| ą min_size then Ź domain-specific hyperparameter
4: for every non-cohesive node m P V do
5: for every neighbor n P N pmq do
6: D Ð D Y

␣

xAztmu, n, T pmqy
(

Ź localization included in instance
7: if Aztmu R seenGraphs then Ź isomorphism test
8: DecomposeGraphLoc(Aztmu, D)
9: seenGraphs Ð seenGraphs Y

␣

Aztmu
(

10: return D

6.1. GENERATING INSTANCES FROM ASSEMBLIES 99

a

a

d

b c

Assembly A˚

Instances from
1st iteration

a

a d b c

a

a

d

b

c

Instances from
2nd iteration

a

d b c

a d b

c

a

a d b

a ad

b

Instances from
3rd iteration

d b

c d

b c

a

d b ad

b

a

ad

Figure 6.1: Visualization of resulting localized recommendation instances for deconstruc-
tion of example assembly graph until graph min_size 2. Duplicate instances are already
discarded. The instances are composed of partial assembly graph, extension node (high-
lighted in green with thick border) and part type (illustrated as blue rhombus).

The assemblies per dataset divided into fixed training, validation and test sets (cf. Sec-
tion 4.2) were converted into localization instances according to the procedure explained
above. Since only additional information was added to the localization instances in com-
parison to the former recommendation instances, the number of instances per data set
remained almost the same as for global part recommendation displayed in Table 5.1 and
are therefore not explicitly listed once again.

Analogous to global part recommendation (cf. Section 5.4), the performance values of
the localization models in the quantitative evaluation on the test instances may be below
their actual performance in practice since the knowledge of suitable part types for a given
assembly (and extension node) is incomplete and the labels of the same inputs can differ
from training to test instances. Since we specifically replay the assemblies from the test
data, it can happen that part types for which the model was trained and actually suitable
part types that are suggested due to generalization, are not counted as correct in the test.
These are common issues with a real-world dataset. The effects of this are not attempted
to be estimated in the experiments.

100 CHAPTER 6. LOCALIZED PART RECOMMENDATION

6.2 Variant I: Recommending Part Types for User-Given
Extension Point

First, we will address the first localization variant, in which we want to receive part recom-
mendations for a given assembly and extension point, which can be added directly to the
extension point. Compared to the former recommendation problem addressed in Chap-
ter 5, the extension point is now additionally included in the input. Thus, we aim to train
a joint discriminative model P pT | A, n P VAq. Since the predictions should refer to a spe-
cific node instead of the entire graph, we approach the learning task as a node classification
problem, where the objective is to predict next part types for each node, with each part
type representing a distinct class. To get recommendations for a specified extension point
during inference, we extract the scores of the part types associated with the corresponding
graph node, as depicted in Figure 6.2. In other words, we filter the node-wise part type
predictions on the given extension node. The corresponding part types are then ranked
based on their scores, from which we choose the desired number of suggestions.

a

a

d

b c

Graph with
Part Type Embedding

GNN Layers

. . . a

a

d

b c

r´0.2, . . . ,´2.9s
r´1.2, . . . , 2.7s

r1.1, . . . , 0.4s r´3.3, . . . , 2.5s

r0.8, . . . ,´1.8s

Node-Wise
Part Type Scores

Figure 6.2: Model architecture for localized part prediction, variant I: The task is modelled
as a node classification task where the input consists of an assembly and desired extension
point (highlighted in green with thick border). The prediction model performs node-wise
predictions of suitable part types by assigning a score to each part type τ P T (as displayed
in gray). The unnormalized distribution for the given extension node is selected, from
which the desired number k of part type recommendations according to the highest scores
is retrieved. For the given extension node, for example, type a is assigned a score of ´1.2
while type d is assigned a higher score of 2.7 for the next part. As a result, d would be
suggested in the first position. Regularization techniques applied are not illustrated.

Both localization variants are novel, therefore we frame the problems by adaptions of
upper bound and Evergreen (Section 5.2).

Upper Bound The purpose of this model is to give an estimate from above of the pos-
sible performance of a deterministic model for a given test set. Since the input-target
mapping is not unique, a model that provides fewer recommendations than the number of
different target part types for a graph and extension point can never achieve 100% accu-
racy. The upper bound model outputs the best possible ranking of part type suggestions
for the given input based on their frequency as targets of the input in the evaluation data
– the most frequently occurring target type for an input tuple becomes the first sugges-
tion, followed by the second most frequently occurring type, and so on. The sequence is
deterministic for an input, i.e., the model does not behave like an oracle that always puts
the true target type first.

6.2. LOCALIZATION VARIANT I 101

Evergreen4EP The simple model should give insight in the difficulty of the learning
problem as well as help to assess whether the target part types indeed depend on the
current assembly. Therefore, we consider a tailored variant of the Evergreen model from
Section 5.2 called “Evergreen4EP”, which also ignores the graph structure, but additionally
takes the extension point n P VA into account. Formally, it represents the conditional model
P pT | n P VAq “ P

`

T | T pnq
˘

, predicting the most frequent part types assembled to the
part corresponding to the extension node.

6.2.1 Experimental Setup

For the experiment setup, we mainly stick to that of the previous use case. To test the
applicability of our approach, we evaluate it on the three assembly datasets. The assem-
blies separated in training, validation and test assemblies were recursively decomposed
into localization instances following Algorithm 2, resulting in training, validation and test
instances. We adhere to findings of the previous experiments and use the pretrained 100-
dimensional part type embedding as this greatly reduces the features and thus number
of parameters of the neural networks. Consequently, we omit the designation of the em-
bedding in the model name. Cross-entropy was again used as loss function for multi-class
classification.

GNN Architectures We again use the four flavors of GNNs (GAT, GCN, GIN and
GraphSAGE) with same hyperparameters, although the latter three were inferior to GAT
in the global part recommendation use case for all datasets. The current task is markedly
different, so we want to examine all architectures. The GIN architecture is designed to
better distinguish certain graph structures from each other, which is all the more important
for localized part recommendation: Consider the introductory assembly example from
Figure 4.1: A total of two insert holders can be attached to the boring tool. If only one is
attached so far, a second one should be suggested; however, if both are already attached,
the predictions should rather focus on other parts, such as useful extensions. GINs can
by design distinguish the case of one and two insert holders in the assembly. Again, we
skip the neighborhood sampling step of the GraphSAGE architecture due to our small
assembly graphs. Preliminary experiments for global part recommendation revealed that
sampling leads to poorer performance, probably because crucial information is lost through
sampling.

Early Stopping in Training For training, we utilized early stopping as the criterion to
halt training. By monitoring the loss values and performance metrics for both the training
and validation sets over time, we observed a notable phenomenon: even as the validation
loss began to increase (indicating overfitting), the performance on both the validation and
training sets continued to improve. This discrepancy appears to stem from the imperfect
correlation between the loss and the performance measure. Specifically, while cross-entropy
measures the difference between the real-valued softmaxed score ŷ P r0, 1s and the binary
target value y P t0, 1u, the hit rate compares the binarized prediction ỹ P t0, 1u with
the binary target value y. Furthermore, the logarithmic nature of cross-entropy results in
heavier weighting of incorrect “probability values” for classes. Consequently, we decided
to apply early stopping based on the hit rates to get a more exact stopping criterion.
The evaluation of performance metrics typically is more computationally intensive, as

102 CHAPTER 6. LOCALIZED PART RECOMMENDATION

they are computed for single instances instead of instance batches. Thus, this decision
increased training time, specifically, evaluation time of training and validation error for
early stopping. However, this was still entirely acceptable for this variant.

Performance Metrics The primary evaluation metric remains the top-k hit rate, which
measures the percentage of instances the target appears within a model’s top-k predictions,
to evaluate the part recommendations for given assembly and extension nodes. It assesses
the accuracy of the prediction as well as the effectiveness of the ranking. Continuing
with the idea of predicting a context-specific number of recommendations as explored in
Section 5.5.3, we measure as a second evaluation metric the overlap of the target parts for a
partial assembly graph with the same number of recommendations of the respective model.
To do this, we aggregate our instances into multi-label instances, i.e., a partial assembly is
mapped to all labels in the respective data set. As we have discussed in that section, the
calculation of precision is equivalent to that of recall, since the size of labels and outputs
is equal. We therefore limit our discussion to precision. It is only for the Evergreen4P
model that equality of size cannot be guaranteed, as there may be fewer labels for a partial
assembly in the training data than the number of labels in the test data. However, the
values between precision and recall differ only minimally, so we will limit ourselves to
precision. The aggregation of the precision values is carried out per instance.

6.2.2 Experimental Results

Compared to the initial graph classification problem addressed in Chapter 5, we have half
as many instances with the same input, resulting in fewer correct target part types. This
implies that higher hit rates can be expected for a smaller number of recommendations.
We compare the proposed GNN-based approach with the upper bound of the best achiev-
able performance and our simple model, Evergreen4EP. Table 6.1 presents an overview
of the models’ performance as well as the comparison models for the top-k rate, which
are also visualized in Figure 6.3. In addition, the simple Evergreen model is listed, which
disregards the entire input (both graph and extension nodes) and thus represents a fre-
quency distribution of the target part types. The very strong performance difference to
the Evergreen4EP model – which maps the given the extension point to a distribution over
the part types – across all datasets clearly shows that the connection of parts in assemblies
is subject to certain rules and that not all parts can be meaningfully connected to each
other.

Datasets A and B show a different picture than dataset C in several aspects: While
the bound models for the first two datasets open up a fairly wide corridor that gradually
narrows as the number of recommendations increases, this corridor is significantly nar-
rower for the third dataset, with a margin of 8 to 28 percentage points. For this reason,
the GNNs and lower bound are also closer to each other. The high performance values
of Evergreen4EP (almost 70% with k “ 3 recommendations) suggest that only a few
meaningful part combinations are possible with the third dataset. Furthermore, for the
first two datasets, there is a significant performance disparity between GATs and GCNs.
Specifically, the top-k rate for a single suggestion (k “ 1) shows an eight percentage point
difference, respectively, which diminishes progressively with larger numbers of recommen-
dations. This substantial performance difference is likely attributable to the attention
mechanism in GATs, which allows for more precise weighting of individual existing parts

6.2. LOCALIZATION VARIANT I 103

Table 6.1: Summary of results for localization variant I: part recommendation for given
assembly graph and extension point. Evaluation of the top-k rate for k “ 1, . . . , 15 rec-
ommendations and the recommendation precision on the test set. All values are given in
percent. Best model per dataset and number of recommendations (k) is highlighted.

Dataset Model \ k 1 2 3 5 10 15 Precision

A Upper Bound 89.5 97.3 98.8 99.6 99.9 100.0 100.0
GraphSAGE 70.1 82.1 86.3 90.2 93.8 95.1 75.7
GIN 68.2 79.7 83.6 87.3 90.7 92.2 73.8
GAT 58.0 74.0 80.2 85.7 90.9 93.2 63.4
GCN 50.3 67.9 75.0 82.0 88.2 90.5 54.3
Evergreen4EP 36.2 49.9 58.7 69.3 83.2 87.7 37.2
Evergreen 2.3 4.5 6.3 9.7 15.0 19.0 4.6

B Upper Bound 77.8 95.4 98.3 99.4 99.9 100.0 100.0
GraphSAGE 53.2 69.6 75.6 81.6 87.5 90.1 64.2
GIN 52.2 68.1 73.8 79.4 85.6 88.4 62.4
GAT 50.7 66.7 72.9 79.4 86.2 89.2 61.0
GCN 42.0 61.1 68.4 75.8 83.5 86.7 49.4
Evergreen4EP 33.1 48.9 56.9 66.0 77.1 81.4 38.4
Evergreen 9.4 13.3 15.5 20.3 28.4 35.3 15.7

C Upper Bound 64.0 84.9 94.2 99.3 99.9 100.0 100.0
GraphSAGE 50.0 70.5 82.4 92.0 97.5 98.4 79.0
GIN 54.5 73.8 83.3 90.9 96.2 97.6 82.0
GAT 42.0 63.5 75.5 86.6 94.8 96.9 62.0
GCN 41.3 63.3 75.1 85.5 94.3 96.6 59.1
Evergreen4EP 36.7 56.9 69.4 81.7 90.9 92.3 54.2
Evergreen 7.8 14.4 19.9 25.5 35.7 43.7 18.4

in the assembly relevant to predicting subsequent parts at the extension point. In contrast,
for global contextual predictions, all nodes must be considered to generate suggestions for
the entire graph. Notably, only in the case of dataset C do the two models exhibit similar
performance levels.

As our investigated GNN models outperform the Evergreen4EP for all numbers of
recommendations and datasets, they demonstrate that they are capable of incorporating
the whole graph context and that this is beneficial for the task. The most notable difference
compared to the non-localized part recommendation is the clear dominance of the GIN and
GraphSAGE models over GAT and GCN. For datasets A and B, GraphSAGE consistently
outperforms all other GNN models across all selected recommendation counts, while for
the third dataset, the GIN is ahead by up to 3 recommendations. The best architecture
(GraphSAGE) achieves 81–92% accuracy when suggesting five recommendations for part
types, depending on the chosen dataset.

Comparing these results with the achieved performance for the first use case shows that
they are at the same level: As already mentioned, we have half as many targets for a specific
input for this task as for the first use case. If we now compare the performance achieved
in the first use case of between 82% and 92% for k “ 10 predictions with the hit rates
achieved in this task with half as many recommendations (i.e., k “ 5 recommendations),
which is the range of 81% to 92%, we can see that we were able to solve both problems
with (almost) the same accuracy. Consequently, the inclusion of localization information
did not lead to any loss in performance.

104 CHAPTER 6. LOCALIZED PART RECOMMENDATION

1 2 3 5 10 15

40

60

80

100

number of recommendations pkq

to
p-
k

ra
te

Upper Bound GraphSAGE GIN GAT GCN Evergreen4EP

(a) Dataset A

1 2 3 5 10 15

40

60

80

100

number of recommendations pkq

to
p-
k

ra
te

(b) Dataset B

1 2 3 5 10 15

40

60

80

100

number of recommendations pkq

to
p-
k

ra
te

(c) Dataset C

Figure 6.3: Visual comparison of the part prediction models for given localization infor-
mation (variant I). Evergreen is omitted due to scaling.

The results of our second performance metric, precision, show a similar picture: Graph-
SAGE is ahead for the first two datasets, while GIN performs best for dataset C. The
precision of the best models is 75% for dataset A and 82% for dataset C. The slightly
lower precision of the second dataset of 64% is attributable to its higher ambiguity due to
the larger number of part types (3099 as opposed to 1930 (A) and 1924 (C)).

A main difference in the experimental setup compared to global part recommendation
is that the termination condition of early stopping is based on the performance measure
instead of the loss values. Since the evaluation of the top-k rate is more computationally
expensive than the cross-entropy loss, the training time for one epoch on dataset B in-
creased to about 22 minutes on an Nvidia DGX-1. The majority of this time was needed
to calculate the performance on the training and validation time. Furthermore, almost all

6.3. VARIANT II: RECOMMENDING EXTENSION POINT AND PART TYPE 105

models could be trained in a maximum of 20 epochs. The best GraphSAGE model for
dataset B reached the optimal parameters after only four epochs, hence the training was
completed after one and a half hours. The inference time is identical to the global recom-
mendation models on the same dataset; more than 1000 test instances could be evaluated
on the top-k rate within one second, the pure inference time is therefore even lower.

6.3 Variant II: Recommending Extension Point and Part Type

The second variant of localized part recommendation for assembly modeling aims at giving
recommendations of part types next needed together with their placement in the current
assembly. Therefore, we need a multi-task model. However, the two tasks must be modeled
differently: While the part type prediction can be modeled as a classification of a fixed
size depending on the number of part types in the vocabulary and completely independent
of the graph structure, the prediction of the extension point depends on the assembly
graph, precisely on the number of its nodes. Consequently, part type prediction is a graph
classification task, while extension point prediction is a node-based task.

For modeling the prediction of the extension node, it may also seem natural to carry
out a graph-based classification of fixed dimension, with the possible classes arising from
the graph sizes that occur. Then the prediction of class i would mean that the ith node of
the graph is the predicted extension node. However, this modeling has some disadvantages
and causes problems in handling:

1. The class for the first extension node occurs most frequently, since every non-empty
graph has at least one node. Accordingly, higher node indices occur less frequently,
as there are fewer graphs with this minimum size. The larger the minimum size of
the graphs, the fewer matching instances there are. This causes bias to small node
indices and keeps the model from predicting higher indices.

2. It could be the case that the predicted node index is higher than the assembly graph’s
size which needs to be treated as a specific issue.

3. One would need a fixed, deterministic numbering of the nodes so that the same graph
(isomorphic) and the same extension point are always represented in the same way,
i.e., the target is then the same. However, the problem is that there is no canonical
order of nodes and edges in graphs, especially when multiple instances of the same
type may occur. The model would then also have to learn this numbering.

For these reasons, we instead predict a real-valued “extension score” per node where
the node with the highest score is chosen as extension node. As our considered assemblies
are acyclic graphs, every cut-off non-cohesive node has exactly one neighbor and thus one
extension node. We investigate two opposing two-step modeling approaches to address this
variant which differ in the order of subtasks dealt with:

(1) In the first modeling approach of variant II, a first model predicts part types for the
given assembly representing P pT | Aq, then a second model suggests a placement
conditioned on this part type following P pVA | A, τ P T q.

(2) The second modeling approach follows the opposite approach: Initially, a promising
extension point is predicted based on P pVA | Aq. Then, specific part types are
suggested for the extension point, modeled by P pT | A, n P VAq.

106 CHAPTER 6. LOCALIZED PART RECOMMENDATION

For each modeling approach, we combine two separate GNNs in different ways, each
of which takes care of one aspect of the recommendation. When comparing these two
approaches, we are going to investigate the overall model predicting a new part along with
its extension point as well as the two submodels individually. The first models process the
actual input and can thus be evaluated independently of previous models, i.e., in isolation.
To independently assess the subsequent models, we use the target values instead of the
outputs of the previous models as inputs for the subsequent models. This means that
the subsequent models’ predictions are determined under the condition that the preceding
model’s prediction is correct.

Adaptions of Upper Bound and Simple Baseline

Again we aim to frame the performance of the overall models as well as the respective
submodels for the second localization variant. Therefore, we adjust the upper bound and
simple baseline Evergreen originally introduced in Section 5.2. The models only need to
be adapted slightly for the overall task: Instead of outputting one part type at a time, the
target tuple consisting of part type and extension node must now be returned. The basic
procedure however remains the same for each model.

In the case of the submodels predicting the part types, however, we must differentiate
based on the specific task of the respective modeling approach: In the first approach, a
prediction for part types is generated from the assembly only (P pT | Aq). The attentive
reader may already have noticed, that this is essentially the setting of global part recom-
mendation. Consequently, we employ the original Evergreen model as simple baseline and
the original upper bound model of Section 5.2 for this subtask. For the second approach,
however, the part type prediction model is given both an assembly and an extension point.
Since this task is essentially the problem addressed in the first localization variant, we apply
the modified framing models, Evergreen4EP and the adjusted upper bound incorporating
the extension node that were presented in Section 6.2.

In the following, we are going into the specific modeling of the two approaches in detail.

6.3.1 Modeling Approach (1): First Predicting Part Type, Afterward
Extension Point

In this modeling approach, at first a part type is predicted for a partial assembly, which
is then located on the assembly in a second step. The first task essentially is global
part recommendation addressed in Chapter 5. Consequently, we employ the same model
architecture for the first submodel. The second submodel, on the other side, handles the
placement of the predicted part. As the information of the specific type is relevant for
the placement of the part on the graph, we need to include it into the graph somehow.
Instead of predicting new connections within the existing graph, as in conventional link
prediction, the goal is to predict the connection of the new part to the existing graph. To
achieve this, a new node representing the previously predicted part is inserted, along with
edges from this node to all existing nodes in the graph. For each newly inserted edge, a
shared GNN-based model called edge score predictor is trained to predict a scalar score
based on the features of the two corresponding nodes. This allows us to determine the
most promising edge from the new node to the existing graph and thus the most promising
extension node.

6.3. LOCALIZATION VARIANT II 107

a

a

d

b c

Graph with
Part Type Embedding

GNN Layers

. . .

Readout and
Linear Layers

. . . r´3.5, 0.2, ´1.9, 0.3, 2.7s

Graph-Wise
Part Type Scores

(Scheduled) Sampling

a

a

d

b c

z

INIT(z)

..

Extension Node
Prediction

. . .
a

a

d

b c

z

r4.7s

r4.5s

r2.5s r´0.9s

r1.3s

Scalar Extension
Node Scores

Figure 6.4: High-level view of the model architecture for modeling approach (1): An
assembly graph over part types T “ ta, b, c, d, zu is initially enriched with part type
embeddings. A first model processes the graph context and predicts next parts to add to
the assembly (represented by the blue model). In the example shown, part type z achieves
the highest score with a value of 2.7. A second model (green) suggests the placement
conditioned on the predicted part type. It operates on the shared hidden representation
of the first model (depicted in gray) for the pre-existing parts and a suitable initialization
as representation for the sampled part type based on its embedding. The initialization
model (INIT) is also a trainable MLP. Overall, the new part of type z is connected to the
highlighted node with the highest extension score of 4.7.

In our setting, both the individual parts and their combination within the assembly
(i.e., the overall context) are relevant for determining the extension point. Therefore,
the overall context should be considered in the edge scoring of the second model. The
graph classification model used to predict the part type for a partial assembly, a GNN, has
already captured the context of the assembly through message passing. It seems that both
task models share common ground in processing the assembly context, so it is reasonable
that they could profit from each other’s insights by sharing an initial feature extractor.
Consequently, the edge scores are computed based on the nodes’ hidden states in the GNN
prior to the readout and classification layers, rather than the initial node features, i.e.,
the embeddings. In other words, we have an initial shared GNN for processing the graph
context, like a shared feature extractor. Its resulting hidden representations are then fed
into the two subsequent task-specific models.

However, since the new part was not included in the graph in the first step, it lacks
a hidden representation. Therefore, an initialization MLP learns a corresponding repre-
sentation from the given part type embedding. Together, the edge score predictor and
the initialization model form the second submodel. The overall model architecture for
modeling approach (1) is depicted in Figure 6.4.

Training Adjustments

The two submodels work together, with the second model processing the part proposed by
the first model as input and both using a shared hidden representation. Initially, during

108 CHAPTER 6. LOCALIZED PART RECOMMENDATION

training, the first model may perform poorly, resulting in the subsequent model receiving
incorrect predictions for the part types. Thus, the second model must initially process
incorrect or highly fluctuating inputs. This problem is similar to those encountered in
sequence processing models, such as RNNs, where the prediction of a token is used as
input for the next token. A well-known solution is teacher forcing, a training technique
where the output of the previous model is replaced with the actual target value during
training before it is given to the next model [51]. However, if the model is always given the
teacher-provided inputs during training, it may struggle during inference without access to
the true inputs as it must fully rely on the outputs of the previous model – a phenomenon
called exposure bias [51]. Scheduled sampling [11] was developed to mitigate the exposure
bias introduced by teacher forcing: The model is gradually given more and more predictions
of the previous model during training, in order to make it more robust to imperfect inputs.
We employ this technique for the second model, where the actual part type is fed into
the second model instead of the prediction of the first model with a decreasing probability
over time. We want to point out that scheduled sampling is only used during the training
aiming to make the second submodel more robust, but not during the inference for the
evaluation or in later use.

Alternatively, the submodels can be trained independently. In this case, they cannot
share the initial feature extractor model, as only one model could adapt its weights during
training. Thus, each model must first process the graph context before predicting part
types or calculating edge scores, respectively, which requires more parameters to learn.
This approach makes training more manageable, but the overall model often suffers from
exposure bias during inference: if the second model was always fed with correct inputs
during training, it has not learned to deal with any imperfect predictions made by the
previous model. Both approaches are examined in the experiments.

Recommendations during Inference

The generation of recommendations during inference for the second localization variant is
more complex due to the two subtasks. We aim to determine a probability distribution over
tuples of part type and extension node by multiplying the probabilities of the individual
elements from the two submodels based on the definition of conditional probability [51]:

P pT , VA | Aq “ P pT | Aq ¨ P pVA | A, τ P T q (6.1)

In the case of the first modeling approach, part types are first proposed for a given assembly
and their scores are transformed into a probability distribution P pT | Aq over all part
types using Softmax. The top part types are selected based on this distribution. For
each part type, its corresponding embedding is converted into a suitable representation
for the extension node predictor using the initialization MLP. An extension score is then
determined for each part type and existing part in the assembly graph. The extension
scores of all nodes for a part type τ are also converted into a probability distribution
P pVA | A, τ P T q across all nodes. By multiplying the two probability distributions, we
obtain a joint distribution over the desired tuples of part type and extension nodes, from
which the desired number k of top tuples can finally be selected. In particular, as the
prediction of the extension node is computationally intensive when performed for all part
types of the vocabulary, we restrict the prediction to only the top 2k part types of the part
type recommendation model, when k recommendation tuples (consisting of part type and
extension node) are desired.

6.3. LOCALIZATION VARIANT II 109

6.3.2 Modeling Approach (2): First Predicting Extension Point, After-
ward Part Type

The second modeling approach proceeds in the opposite way: The first model predicts
promising extension points according to P pVA | Aq before specific part types are proposed
for it in the second step, following P pT | A, n P VAq. The second task aligns with the
first localization variant, so we build on that model: the graph structure is processed with
message passing, afterward a score for each part type τ P T is determined for each node
(cf. Figure 6.2). The prediction of an extension score per node is achieved by predicting
a real-valued scalar in the last GNN layer. As discussed for the first modeling approach,
predicting new parts also depends on the combination of existing parts rather than con-
sidering them in isolation, so we again use an initial shared feature extractor and feed its
common hidden representations into the subsequent task-specific submodels, as depicted in
Figure 6.5. The overall model consists of shared GNN layers and two distinct output com-
ponents responsible for node scoring and part prediction (which is analogous to variant I),
respectively.

a

a

d

b c

Graph with
Part Type Embedding Shared

GNN Layers

. . .

Part Type Prediction
GNN Layers

. . . a

a

d

b c

r´0.2, . . . ,´2.9s
r´1.2, . . . , 2.7s

r1.1, . . . , 0.4s r´3.3, . . . , 2.5s

r0.8, . . . ,´1.8s

Node-Wise
Part Type Scores

Extension Node Prediction
GNN Layers

. . . a

a

d

b c
r4.7s

r4.5s

r2.5s r´0.9s

r1.3s

Scalar Extension
Node Scores

Figure 6.5: High-level view of the model architecture for the second modeling approach:
An assembly graph over part types T “ ta, b, c, d, zu is initially enriched with part
type embeddings. A shared model processes the graph context before two output models
(colored in green and blue, respectively) predict extension scores and part type score for
each node, respectively. In the example shown, the leftmost node achieves the highest
extension score of 4.7; for the same node, the first part type (a) achieves the highest score
of ´0.2 for the part type recommendation. The combination of both outputs forms the
recommendation.

We want to point out that the second submodel outputs part type predictions for all
nodes of the assembly graph and that we select the part type scores for the extension node
predicted by the first submodel in order to get a ranking of part types. Consequently,
the second submodel does not process the information of the extension node predicted
by the first submodel. In other words, the choice of the extension node does not affect

110 CHAPTER 6. LOCALIZED PART RECOMMENDATION

the node-wise part type predictions. Therefore, there is no need to make this submodel
robust against incorrect inputs from the previous submodel, which we addressed in the first
modeling approach with scheduled sampling. Thus, we only examine training the overall
model as a whole.

Recommendations during Inference Analogous to the first modeling approach, we
determine recommendations for tuples consisting of part type and extension nodes for
the second modeling approach by taking the top k elements from a joint probability dis-
tribution. According to the definition of conditional probability, the joint probability
distribution is the product of the distributions of the subtasks:

P pT , VA | Aq “ P pVA | Aq ¨ P pT | A, n P VAq (6.2)

The first submodel provides extension scores per node, which can be converted into a
probability distribution over all nodes using Softmax, i.e., P pVA | Aq. Then, the second
submodel provides a distribution over all part types per node, which is normalized to a
probability distribution P pT | A, n P VAq.

6.3.3 Experimental Setup

The experiment setup is mainly identical to the first localization variant described in Sec-
tion 6.2.1. In terms of GNN architectures, we do no longer investigate GCNs for the
experiments of this variant due to their inferiority for the simpler localization variant
(cf. Table 6.1). Although GATs were also consistently inferior to the other two archi-
tectures, they achieved the best results for the global part predictions, which is the first
submodel in modeling approach (1) of the current localization variant. For simplicity, we
use the same GNN architecture for both submodels for every modeling approach, respec-
tively. We search for the standard hyperparameters of a neural network (number of layers,
dimension of the layers, activation function) separately for the respective submodels.

Loss Function The prediction of part types is, as known, a classification task, where
the number of part types corresponds to the number of classes. For the extension node
prediction, all scalar node scores can be summarized to a list of scores, which corresponds
to a node-wise classification problem. Here, the number of classes is graph-specific, as
it corresponds to the number of nodes. Summarizing, both subtasks are treated as clas-
sification problems. Therefore, we again use categorical (i.e., multi-class) cross-entropy
as loss function for both subtasks. However, in order to be able to train both subtasks
together, as we aim to do in the first modeling approach with teacher forcing and also the
second modeling approach, we have to combine the loss functions into one for the overall
task. The common solution strategy for this is a combined loss function as weighted sum
L “ LPT ` λ ¨ LEP of both loss components (LPT for part type prediction and LEP for
extension node prediction), similar to adding regularization terms to a loss function [51].
The loss weight λ is a hyperparameter that needs to be set in advance. Depending on
which subtask is to be assigned more weight, this weight can be selected accordingly. We
decided to weight both tasks equally, so that we chose λ as a multiple of 10, so that both
loss components were in a similar value range. In the experiments, this value was set to
10´3 or 10´4, depending on the dataset.

6.3. LOCALIZATION VARIANT II 111

Performance Metrics In the second localization variant, we are addressing a multi-task
problem, so we are examining the performance of the overall model (predicting a tuple of
part type and extension node) as well as the respective submodels individually. The top-k
hit rate remains the main evaluation metric, used to assess the performance of the part
type prediction submodels as well as the overall model. It evaluates both the correctness
and ranking of the prediction. Assessing the performance of extension node prediction is
more complex due to its dependence on the graph size. Identifying the correct extension
point in a large graph is significantly more challenging than in a small graph, as there
are more options to choose from. Therefore, successfully predicting the correct node in a
larger graph is more impactful and should be rewarded more. Our goal is to evaluate the
ranking relatively: the first position with three nodes should be rated the same as the first
five position with 15 nodes. To achieve this, we include the graph size in the reciprocal
rank metric [38], which leads to the mean weighted reciprocal rank (MWRR) averaged over
all triple-instances in a data set D as:

MWRR “
1

|D|

ÿ

xA, nPVA, τPT y P D

|VA|

rankpnq
(6.3)

Due to the adjustment of the numerator, the maximum value of this metric is no longer 1,
but the graph size |VA|.

Due to the discrepancy between loss function (cross-entropy) and performance measure
(top-k rate) observed in the first localization variant, we apply early stopping on the
performance measures. In this variant, the resulting increase in training time is much
more noticeable. The reason for this is the sequential nature of the modeling so that, for
example, the first modeling approach requires extension node predictions to be generated
for several initially proposed part types. In order to keep the training time manageable,
the metrics were only evaluated on 20% of the instances (both training and validation)
during training. Furthermore, we decreased the early stopping patience to 3 epochs, as the
learning curves were very smooth.

Modeling Approach (1) In the first modeling approach, which initially predicts a
part type and subsequently its placement, we examine the performance of the models
with both independently trained submodels and jointly trained models using scheduled
sampling. Exponential decay [11] was implemented as the decay schedule for the teacher-
forced sampling: Starting from an initial probability 0 ă p ă 1, the teacher forcing
probability ϵi in a training epoch i is given as ϵi “ pi. Over the epochs, the extension
node predictor is thus exposed to more and more predictions of the part type predictor
instead of the actual target values. The initial probability is selected so that the teacher
forcing probability is close to zero when training of the overall model is stopped by early
stopping, which was achieved by p “ 0.95 and p “ 0.97 in our case. Note that scheduled
sampling was only employed during training, but not when evaluating.

Since the first subtask corresponds to the global part recommendation and the asso-
ciated training instances differed only slightly, we used the corresponding trained model
of the first use case as the first submodel. The second submodel for the extension node
prediction was then trained in isolation. When using scheduled sampling, however, both
models were trained from scratch.

112 CHAPTER 6. LOCALIZED PART RECOMMENDATION

Modeling Approach (2) The second modeling approach simultaneously predicts a suit-
able extension point and the suitable part types for each existing part of the assembly. Both
predictions are combined to form the overall prediction via a tuple of part type and ex-
tension point. The two task models share a common feature extractor, on whose hidden
representation the two prediction models are then based. In contrast to the first modeling
approach, there are no further hyperparameters with regard to the training process. In
order to train the model as a whole, a loss weight controls the weighting of the two models
during training.

6.3.4 Experimental Results

Table 6.2 presents the evaluation results for the overall task of the second localization
variant for all three datasets. Additionally, Figure 6.6 displays the upper bound and simple
baseline as well as GraphSAGE and GIN models for the first modeling approach; other
models have been omitted for reasons of clarity. We compare the proposed GNN-based
approaches with the upper bound of the optimal achievable performance on the test set
and our adapted baseline model, Evergreen. The upper bound and baseline span a corridor
in which most of the GNN models lie in the middle or in the upper half. As with the first
localization variant, there is a clear difference in performance between the trained models
and the Evergreen baseline. This means that these models are again able to process the
context of the assembly appropriately in order to generate suitable extension node and
part type suggestions, also on this more complex multi-task.

Using scheduled sampling to train the first modeling approach did not pay off: It usually
only makes a small difference on performance, but the models trained with scheduled
sampling are less successful on the overall task, consistently on all datasets. The training
process was made more complex by handling two models simultaneously and harder to
manage by this method, but this did not result in improvement. Nonetheless, a reduction in
the required training time could be observed when applying scheduled sampling. Table 6.3
shows the performance of the individual submodels in isolation exemplary for dataset A.
The second sub-model of modeling approach (1), i.e., the prediction of the extension node
for a given part type, was also unable to achieve any improvement through the training
adaptation. Compared to the part recommendation problem addressed in Chapter 5,
which models the same problem P pT | Aq, the respective submodel trained independently
achieves a similar performance level, confer Table 5.3. Furthermore, independently training
the two submodels also outperforms the second proposed modeling approach.

The loss factor in the second modeling approach was optimized with regard to the
performance of the overall task. Unfortunately, the results of this modeling approach lie
behind the first modeling approach for all datasets. For the isolated evaluation given in
Table 6.3, the respective second submodel was given the respective target value as input
instead of the prediction of the previous submodel. The same task was addressed in the
first localization variant, of which the results are given in Table 6.1. Compared to that
models, the part recommendation of the second modeling approach performs worse, about
3 percentage points for every number of recommendations. Shifting the emphasis more to
that prediction task by adjusting the loss weight led to a significant performance reduction
in the other submodel, so that also the overall performance decreased. When comparing
the two options for training both prediction models together, i.e., modeling approach (1)
with scheduled sampling and modeling approach (2), the latter usually emerges as the
winner. This could be attributable to the representation to be learned by the initialization

6.3. LOCALIZATION VARIANT II 113

Table 6.2: Evaluation results for recommending new parts along with their placement for
given assembly graph (variant II): Evaluation of the top-k rate for k “ 1, . . . , 10 recom-
mendations given in percent. Best model is highlighted per dataset. The same GNN
architecture is used for both submodels for every modeling approach, respectively.

Dataset Modeling Approach Model \ k 1 2 3 5 10

A Upper Bound 59.4 88.4 96.1 98.3 99.3
Evergreen 12.7 20.7 27.0 37.3 52.9

(1), Independent Training GraphSAGE 44.9 69.5 78.8 84.9 90.0
GIN 44.5 68.4 77.2 82.6 87.1
GAT 37.5 59.4 70.1 79.8 86.6

(1), Scheduled Sampling GraphSAGE 42.1 62.0 71.0 79.3 86.2
GIN 40.2 58.3 68.4 77.4 85.1
GAT 35.4 49.7 60.2 72.6 82.8

(2) GraphSAGE 42.0 65.9 75.5 82.0 87.6
GIN 37.6 58.0 67.9 76.3 84.0
GAT 14.1 29.0 38.5 53.8 71.1

B Upper Bound 42.6 69.4 86.8 97.7 99.2
Evergreen 12.7 21.7 29.4 40.1 54.9

(1), Independent Training GraphSAGE 23.5 41.1 53.9 67.2 76.9
GIN 25.2 42.7 54.6 66.6 75.8
GAT 24.4 40.6 51.5 63.4 73.8

(1), Scheduled Sampling GraphSAGE 24.2 40.5 51.6 63.4 73.3
GIN 24.3 40.0 50.5 61.7 72.0
GAT 21.7 36.3 46.3 58.1 70.0

(2) GraphSAGE 24.9 42.2 53.9 66.3 75.7
GIN 24.9 41.9 53.3 64.9 74.0
GAT 19.4 32.9 43.2 55.7 68.4

C Upper Bound 35.6 60.1 78.0 95.6 99.5
Evergreen 7.6 13.8 20.5 36.4 70.0

(1), Independent Training GraphSAGE 27.3 47.0 62.3 80.1 92.0
GIN 27.1 46.8 62.1 79.9 91.8
GAT 25.4 42.6 54.7 69.4 84.8

(1), Scheduled Sampling GraphSAGE 25.5 45.0 60.2 77.3 87.3
GIN 24.3 42.7 56.7 73.7 85.6
GAT 24.6 41.6 53.8 68.2 82.4

(2) GraphSAGE 18.4 33.4 46.2 65.2 85.9
GIN 24.8 42.9 57.7 76.2 89.4
GAT 23.5 39.3 50.4 63.9 79.4

114 CHAPTER 6. LOCALIZED PART RECOMMENDATION

1 2 3 5 10
0

20

40

60

80

100

number of recommendations pkq

to
p-
k

ra
te

Upper Bound GraphSAGE Independent Training GraphSAGE Scheduled Sampling
Evergreen GIN Independent Training GIN Scheduled Sampling

(a) Dataset A

1 2 3 5 10
0

20

40

60

80

100

number of recommendations pkq

to
p-
k

ra
te

(b) Dataset B

1 2 3 5 10
0

20

40

60

80

100

number of recommendations pkq

to
p-
k

ra
te

(c) Dataset C

Figure 6.6: Visual comparison of the results for localized part recommendation where both
a new part type and its localization to the current assembly is to be predicted (variant II).
Only GraphSAGE and GIN models according to the first modeling approach are displayed.

MLP for the newly inserted part type, which has to adapt to the constantly changing
hidden representations of the previous shared GNN during the training process.

For all extension node prediction models, the GIN and GraphSAGE models achieve
very similar MWRR performance values, which are significantly better than those of the
GATs. This phenomenon can be observed across all modeling approaches. However, the
pattern is not so clear for the part recommendation as the GINs fall behind the GATs
for both training types of modeling approach (1). Nevertheless, the localization submodel
can compensate for this for the overall task, so that overall GIN is ahead of GAT again
(see Table 6.2). For both subtasks, GraphSAGE models perform best, which supports the
choice of the same GNN architecture for both submodels.

6.3. LOCALIZATION VARIANT II 115

Table 6.3: Evaluation of prediction submodels of second localization variant in isolation for
dataset A. The part type prediction submodels are evaluated based on the top-k rate given
in percent for k “ 1, . . . , 10 recommendations, whereas the performance of the extension
node predictors is assessed my the mean weighted reciprocal rank (MWRR). As the two
tasks are approached in a different order in the modeling approaches, the corresponding
discriminative model is specified.

Part Type Extension

Modeling Approach Model \ k 1 2 3 5 10 MWRR

P pT | Aq P pVA | A, τ P T q

(1), Independent Training GraphSAGE 47.4 71.6 80.2 86.1 90.8 4.31
GIN 47.0 70.6 78.6 83.8 88.2 4.30
GAT 46.7 71.4 79.7 85.2 90.0 3.97

(1), Scheduled Sampling GraphSAGE 44.6 67.7 77.3 84.1 90.1 4.29
GIN 43.2 66.2 76.0 83.4 89.2 4.23
GAT 45.7 69.5 78.2 84.2 89.3 3.79

P pT | A, n P VAq P pVA | Aq

(2) GraphSAGE 67.6 79.5 83.9 87.9 91.6 3.48
GIN 59.3 72.7 78.1 84.0 89.1 3.48
GAT 47.0 65.4 73.4 81.8 89.1 2.22

In summary, GraphSAGE emerges as the most successful architecture for the second
localization variant, which is only slightly outperformed by other models in individual
cases. This finding is consistent to the first localization variant. Furthermore, training
the submodels independently for both subtasks of modeling approach (1) turned out to
be the best modeling strategy across all datasets. The best models were able to achieve
the multi-task prediction of both an extension node in the assembly and a matching new
part type at k “ 5 predictions for dataset A with an accuracy of 84.9%, for dataset B with
67.2% and for dataset C with 80.1%. For k “ 10 predictions, the performance increases to
90.0%, 76.9% and 92.0%, respectively. The lower performance for dataset B is attributable
to the larger number of part types (3,000 instead of 2,000) and the more complex graph
structures, confer Table 4.1.

The higher complexity of the multi-task model in comparison to the first variant of
localized part recommendation also affects the training and inference time of the models:
For the combined trained models (i.e., modeling approach (1) with scheduled sampling
and approach (2)), a training epoch for GraphSAGE increases to one and a half in the
first case and even three hours in the second case. This is caused by the more complex
model structure and more complex evaluation strategy of the submodels with the respective
performance measures top-k rate and MWRR. However, the overall models can still be
trained on a single GPU of an Nvidia DGX-1 station and optimal parameter settings
were consistently found in under 15 training epochs; the GraphSAGE model for dataset
B achieved this after only 9 epochs. Of course, the complexity of the task also affects
the evaluation time on the test set. Nevertheless, depending on the modeling approach,
between 50 and 100 instances can still be evaluated within one second. This means that
the pure inference of recommendation tuples can still be carried out in a negligible amount
of time.

116 CHAPTER 6. LOCALIZED PART RECOMMENDATION

6.4 Related Work

For the use case of localized part recommendation, we address two problems: the addition
of new parts to an assembly and their connection to existing parts. Classical approaches
for supporting a designer in searching parts during modeling (i.e., assembly retrieval)
as well as the similarity of recommending parts in order to extend an assembly to graph
generation have already been discussed in the related work for global part recommendation,
confer Section 5.6.

The most similar approach to localized part recommendation in literature is [88], which
presents a generative model that learns a sequence of node and edge insertions based on
recurrent models. Sequencing graphs introduces the challenge of assigning node orders,
which is not necessary in our GNN-based approach. In fact, it contradicts our under-
standing that many different creation sequences can lead to the same assembly, and all are
equally valid. Additionally, while their work evaluates only the final graph, our approach
emphasizes meaningful extensions at each step of the graph-building process.

Link Prediction Opposed to classical link or relation prediction, where a given set of
nodes and an incomplete set of edges is given in order to predict missing or new promising
edges for these nodes, we aim for connecting a new part to the assembly, i.e., adding a
new node and a new edge to a graph. We adapt the idea of determining scores for pairs
of unconnected nodes and calculate scores for potential edges that would connect the new
part to the existing parts in order to find the most promising connection. This procedure
is similar to determining the link nodes of the existing graph in [90].

Predicting Part Locations and Relations Assembly-based modeling represents a
similar problem domain to ours: rather than assembling individual parts to form an as-
sembly, this approach involves amalgamating multiple geometric 3D models to generate a
novel entity [38]. For instance, consider the scenario where two distinct chairs serve as the
basis: the leg of the first chair is paired with the seat and backrest of the second chair,
resulting in a unique chair design. While localization in this setting refers to the geometric
alignment of the individual models to each other, we extend an assembly with a new part
at a specific existing part (referred to as extension node in our approach).

In addition to our work, other research also deals with the positioning of parts within an
assembly, albeit for different use cases: For instance, in AutoMate [68], Jones et al. focus on
predicting one of eight possible mate types (e.g., Fastened or Revolute) for the connection
between two parts. Their approach assumes that the complete set of parts to be connected
to an assembly is already available, with the emphasis placed on solving the interconnection
between these parts. Instead of recommending parts to be connected, AutoMate relies on
the designer selecting two parts for mating, as well as specifying the faces of the parts
that the mate will constrain. In our use case, by contrast, a designer can voluntarily select
a single part of an assembly to receive targeted part recommendations. In the second
variant of the use case, the designer does not have to pre-select any parts at all, as we
additionally predict the most suitable extension node. Similar to our approach, their
interactive recommendation system uses GNNs, but it centers on the geometric features
of parts. The graphs they process are based on the geometric faces and edges of 3D parts,
rather than treating assemblies as a graph of connected parts.

Similarly, JoinABLe [150] predicts the relative geometric positions of two parts in a

6.4. RELATED WORK 117

CAD system (referred to as “joints” rather than “mates”) also employing GNNs. However,
this approach is fully automated and does not involve user interaction. While it can
predict the position between two parts without additional geometric input from the user,
it is limited to two parts at a time and does not involve a retrieval processes. Our use case,
by contrast, primarily deals with part recommendations, either for a given localization or
the models additionally predict the location.

Neither of these approaches fully aligns with the specific needs of our use case, but
they could be integrated with our system as complementary steps to determine mate types
or precise positioning after localized part recommendations are made in order to further
support a designer.

118 CHAPTER 6. LOCALIZED PART RECOMMENDATION

Chapter 7
Handling Anomalies in Assemblies

Summary This chapter addresses the task of detecting anomalous parts within assem-
blies to identify where and how it is deviating from standard design practices. It presents
an algorithm for generating synthetic anomalous assemblies by extracting regular part
combinations from a dataset of regular assemblies. The chapter also explores the recom-
mendation of alternative parts to replace identified anomalies, ensuring that assemblies
meet quality standards. Experiments show that our models correctly classify over 97% of
all parts as regular and anomalous and that alternative suggestions consisting of ten part
type suggestions successfully correct the anomaly in between 89.7% and 93.8% of cases.
This shows that a designer can rely completely on the detection of anomalous parts, and
in nine out of ten cases a suitable alternative part is suggested that can be applied directly
to correct the anomaly.

Contents
7.1 Generating Synthetic Anomalous Assemblies 121
7.2 Detecting Anomalous Parts in Assemblies 126

7.2.1 Experimental Setup . 127
7.2.2 Experimental Results . 128

7.3 Recommending Alternative Parts 130
7.3.1 Experimental Setup . 133
7.3.2 Experimental Results . 133

7.4 Related Work . 136

Publications The use case on detecting anomalies within assemblies has initially been
outlined in [86]. The specifics on the generation of anomalous assemblies as well as the
methodology of the two tasks of anomaly detection and alternative suggestions together
with their experimental evaluation are published in [84].

Instead of recommending parts next needed during the design, the third use case pri-
marily focuses on the quality assessment of an assembly by identifying unusual parts or
combinations of parts that suggest an unconventional solution to a design problem. The
large selection of parts from various part catalogs can easily lead to unfavorable part se-
lections. There are a number of reasons why this can occur in assembly modeling. Let us
consider the example where a robust variant of a control cabinet consisting of robust side
panels and heavy doors is to be designed. In this case, the designer may only be familiar

119

120 CHAPTER 7. HANDLING ANOMALIES IN ASSEMBLIES

with lightweight parts, so that they use fragile hinges instead of robust ones to stabilize a
heavy door. The combination of robust, heavy doors with fragile hinges should be iden-
tified as unusual, but is not necessarily wrong or faulty. In fact, this could be intentional
when fragile hinges are cheaper than robust ones, even when they need to be replaced more
frequently due to excessive stress. This makes it apparent that the definition and therefore
the detection of anomalies is difficult, as the boundary between regular and anomalous
data is not always clear. A second cause for anomalous assemblies is when a designer, due
to a lack of experience, would insert a robust hinge from a manufacturer outside from the
desired pool of parts. From a business perspective, companies might limit their procure-
ment to a set of well-known part types (due to better contracts with manufacturers, higher
reliability during the product lifecycle, etc.) within their strategic part management. As
a third case, when customizing a product in contract manufacturing or special machine
construction, for example, a designer does not necessarily start from scratch, but typically
takes an existing assembly as a basis and replaces parts. It is conceivable that the initial
assembly stems from a much earlier product with some part types having become obsolete
since then.

Completely new part combinations within a similar group of designs indicate that cer-
tain parts have not been used in accordance with the guidelines, which is why these parts
should be marked as an anomaly. In these cases, we want to make knowledge implicitly
anchored in newer designs (such as the omission of certain parts) explicit. While in the lat-
ter two cases described above, a part is anomalous solely from the use of the corresponding
part type alone, the parts in the first scenario deviate due to their unusual combination
with other parts, in other words due to their unusual use in a certain context. Anomalies
corresponding to the second and third cases can be easily identified by tracking the part
types used over time and therefore neither require a learning component nor the incorpora-
tion of the graph structure. Therefore, in this use case, we focus on the first case described
above, namely the identification of anomalous parts based on their unusual usage within
an assembly. Our aim is to identify anomalous parts of assemblies, in the sense of them
being different from standard or unusual – but not necessarily in a negative way (referred
to as abnormal). Indeed, a certain part combination can represent a new, sensible way
that just has not been used or needed before. The designer can then check these parts once
again and replace them with more suitable parts if necessary. Assemblies with recurring
patterns of parts and connections, on the other hand, are more likely to be classified as
fully regular.

Anomaly detection problems on graphs are categorized according to whether the ano-
maly relates to a graph element (node, edge or subgraph) or the entire graph [92]. To
effectively support a designer, we want to analyze not only whether an assembly deviates
in any way (i.e., graph detection), but also where and how. When employing edge detection,
we would assume that the part itself belongs to the assembly, but has been connected to the
wrong parts. In addition, if an anomalous edge has been detected, it is still undecided which
of the two parts was used incorrectly. Instead, we address the scenario where the cause of
the anomaly is that an unsuitable part was selected for the current assembly, so that there
would have been a more suitable variant. We therefore assume that, in principle, a part
can be connected to the current neighboring nodes, but that an unusual part type was
selected. This problem therefore relates to anomalous node detection as opposed to edge
detection. In subgraph detection, scenarios are investigated in which subgraphs exhibit
irregularities due to their internal structure or size, as is the case, for example, with a

7.1. GENERATING SYNTHETIC ANOMALOUS ASSEMBLIES 121

botnet within a social network [92]. This means that the individual nodes of the subgraph
would not be anomalous in themselves. Our focus, by contrast, is on unusual node types
rather than unusual numbers of connections as we do not want to mark connected parts as
anomalous because they have an unusually large number of connections with other parts,
for instance.

Analogous to the first two use cases, we aim for an interactive support system that
highlights unusual parts in the current assembly to the designers. A cause for using unusual
parts is that inexperienced designers did not know or find the parts they actually needed.
It therefore seems natural to additionally provide the designers with alternative suggestions
for the anomalous parts on request, which is the second goal of the current use case. This
has some similarities to the first variant of localized part recommendation addressed in
Section 6.2 in the sense that we aim to recommend suitable part types for a specific node
of an assembly graph, i.e., P pT | A, n P VAq. For localized recommendations, this involved
adding a new part of the predicted type to the existing assembly graph at a specific node.
However, with alternative suggestions, we intend to suggest part types for an existing node
as we want to replace the corresponding part. Section 7.3 illustrates how the procedure
for part type recommendation must be adapted in this respect.

In contrast to anomaly detection, alternative suggestions for anomalous parts should
be explicitly requested by the user; we are explicitly not pursuing an automatic correction
model for anomalous parts as we want to support design engineers in creating high-quality
assemblies instead of making automated adjustments without consent. Again, we initially
provide a fixed number of part types, although more recommendations can be requested.
The designer can select an alternative part from the suggestions if desired or can search
the catalogs themselves for a different part type. In principle, this system can also be used
for alternative suggestions for regular parts.

From a graph machine learning perspective, both anomalous node detection and rec-
ommending alternative parts are node classification problems. For the first task, a binary
decision must be made per node between the two classes regular and anomalous. For the
second task, alternative part types are to be suggested for a specific existing node of the
assembly. Analogous to part type recommendation in previous use cases, we predict a
score for each part type in the vocabulary which serve as classes of this classification task.

We want to point out that the graph structure plays a central role also in this use
case: Considering the design of heavily loaded machines, so-called predetermined breaking
points are often integrated, which are intended to break in case of overload for safety
reasons. These parts are only useful at specific locations within an assembly. If the graph
structure was neglected and only the set of parts is considered, the localization information
would be lost, and the anomalous use of such parts in incorrect locations could not be
detected. Therefore, we operate on assemblies represented as undirected graphs over parts
and process them with GNNs that follow the message passing paradigm – according to our
approach for the previous use cases.

7.1 Generating Synthetic Anomalous Assemblies

A known challenge in anomaly detection problems is the lack of labeled data [23]. This
is also the case for our assembly datasets as they originate from orders through assembly
configurators. Since they were indeed purchased in this configuration, we assume their
quality to be good enough to be considered as regular. Therefore, we need to artificially

122 CHAPTER 7. HANDLING ANOMALIES IN ASSEMBLIES

create anomalous assemblies which is a typical first step in many anomaly detection prob-
lems [23]. We again want to follow our goal of an automated approach which does not
involve design engineers having to manually create and label anomalous assemblies. Since
anomalies rarely occur in many application areas, researchers have developed techniques
to create synthetic anomalies. In the context of graphs, they can be roughly categorized
as follows according to [92]:

(i) Creating synthetic graphs with injected anomalies: new graphs are created (mainly
manually) into which anomalies are planted afterward.

(ii) Injecting anomalies in real-world instances: existing real-world graphs are modified
in structure or attributes in order to form a transformed, anomalous graph.

(iii) Downsampling of graph classification datasets: one particular class is chosen to rep-
resent regular graphs while all graphs of other categories form the anomalies. To
obtain class balance, excess anomalous graphs are discarded (downsampling).

The last category is not suitable as we have no class assignment to our assemblies and
all our assemblies are fully regular. Following the requirement of an automated approach
for creating anomalous assemblies, only strategies of the second category are applicable.
We therefore augment the existing assemblies in order to get synthetic anomalous assem-
blies. In the following, an anomalous assembly is denoted as sA. The difficulty with the
augmentation is to ensure that the anomalies are genuine as we do not have information
on all allowed part combinations, only about those present in our existing assemblies.

We consider the connections in the dataset as regular and make modifications to the
assemblies that do not comply with them. To do so, we represent all regular connections
between two part types in a relation R Ď T ˆ T . The pairs of the relation are obtained
from the assemblies of all data sets (training, validation and test) in order to avoid creating
inconsistent instances. If they were only extracted from the training (and possibly also
validation) assemblies, it could happen that a modified and therefore anomalous graph
according to the training set would also appear as a regular assembly in the test set.
In this case, the trained model would predict the supposedly anomalous node as such
during the evaluation, but this prediction would be assessed as incorrect, as the whole
assembly is considered as fully regular in the test set. Moreover, the model could even learn
incorrect correlations from the training data due to this instance, which would impair its
generalization ability. Consequently, such inconsistent targets must be avoided in any case.

In order to create synthetic anomalous assemblies, we first need to extract all regular, al-
lowed connections from the existing assemblies so that we can replace parts with unsuitable
ones which do not comply with them. For a given set of assemblies

␣

Ai “ pVi, Ei, T q
(n

i“1
,

the regular connections are given as R “
␣`

T puq, T pvq
˘

| D Ai : pu, vq P Ei
(

. Since they
are extracted from undirected graphs (i.e., pu, vq P Ei ùñ pv, uq P Ei), the relation is
symmetric1. For a specific part type τ P T , Rpτq “ tτ 1 P T | pτ, τ 1q P Ru gives the set of
all connected part types to τ . Figure 7.1 shows the extracted pairs of regular connections
for an example assembly.

1A relation R Ď S ˆ S is called symmetric if: @a, b P S : pa, bq P R ùñ pb, aq P R

7.1. GENERATING SYNTHETIC ANOMALOUS ASSEMBLIES 123

a

a

d

b c

Assembly Graph Extracted Regular Connections

pa, dq, pb, cq, pb, dq,

pc, bq, pd, aq, pd, bq
(

R “
␣

Figure 7.1: Extracted regular connections between part types for a given assembly graph
represented in a symmetric relation R.

Afterward, we can create anomalous assembly instances, which will be used for both
anomaly detection and alternative part type recommendation. Due to the small size of the
assemblies (on average six parts for datasets A and C) and small number of neighbors (on
average less than two neighbors on all datasets), confer Table 4.1, we limit ourselves to a
single anomalous part per assembly. The higher the proportion of anomalous parts in an
assembly, the more difficult it is to distinguish which of them are anomalous. At the latest
when the anomalous nodes make up the majority, even the few remaining regular nodes
would be recognized as anomalous. From a domain perspective, it can also be assumed
that inappropriately selected parts occur rather rarely, so that a ratio of one anomalous
part out of six appears to be sufficient.

Consequently, for a given regular assembly A, one arbitrary selected part is replaced
by an unsuitable part and thus marked as anomalous; all unchanged parts are accordingly
marked as regular. Unsuitable parts are selected to be irregular to all neighboring nodes
according to R. The original type of the replaced part serves as the correct part type lτ P T
for the proposal of a more suitable alternative part. Algorithm 3 summarizes the procedure
of generating synthetic anomalous assemblies in pseudocode. For anomaly detection, we
derive a binary vector lV P B|V| as the target, which indicates anomaly or regularity for
each node. As there is exactly one anomalous part per assembly, this is a one-hot vector.

Algorithm 3 Augmenting Assemblies to Anomalies
1: procedure AugmentGraph(A “ pV, E , T q, R)
2: select arbitrary node v P V
3: lτ Ð T pvq Ź save original part type
4: RN pvq Ð

Ť

nPN pvq R
`

T pnq
˘

Ź regular part types for neighbors
5: select arbitrary part type τ 1 P T zRN pvq

6: T pvq Ð τ 1 Ź update part type of v
7: return xA, v, lτ y

When selecting the anomalous type, it must necessarily be irregular to all neighboring
nodes as the detection of the anomalous part becomes ambiguous if the connection to
some of the neighbors remains regular, as illustrated by an example in Figure 7.2: In the
middle assembly, the new part type c was chosen to be irregular to all neighboring nodes,
while the new type a in the right assembly is only irregular to the right neighbor node.
Since the connection between types a and d (which is the type of the other neighbor of the
modified node) is regular (cf. Figure 7.1), the last assembly could also have been created
by anomalizing the rightmost node resulting in type c. To avoid ambiguity, the new part
type is chosen irregularly to all neighboring nodes in our approach.

124 CHAPTER 7. HANDLING ANOMALIES IN ASSEMBLIES

a

a

d

b c

Regular Assembly

a

a

d

c c

Anomalous Part Type
Regarding All Neighbors

a

a

d

a c

Anomalous Part Type
Regarding Only Some Neighbors

Figure 7.2: Comparison of two strategies for creating a synthetic anomalous assembly.
A regular assembly (depicted on the left) is anomalized at a randomly selected node v
(highlighted with a thick border) based on the regular connections R in Figure 7.1. Anoma-
lous parts and edges (i.e., the corresponding connection is not conforming to the relation of
regular connections) are highlighted in red. We assume a given part type set T “ ta, b, c,
du. In the middle assembly, the new part type is irregular to all its neighbors (i.e., chosen
from T zRN pvq “ {c, d}), whereas for the right assembly, the new part type is irregular
only to the right neighbor node, i.e., chosen from T zRpcq “ {a, c, d}.

The described procedure for selecting an anomalous part type may result in obvious
anomalies by choosing inappropriate types, such as a new type τ 1 that significantly differs
in its purpose from the original regular type τ . In the introductory example of the control
cabinet, a hinge could be replaced by, e.g., a drawer pull-out. To create more realistic
anomalies, we restrict the possible replacement type τ 1 (selected in line 5 of Algorithm 3)
to the same part family [124] as the original type. As introduced in Section 2.1, slight
variations of a part (for example regarding dimensions or position of holes) are handled by
parameterization of the part model instead of creating a separate model for each specific
part. These variations are summarized in a part family. This would be equivalent to the
designer having selected a part that is in principle compatible, but the exact specification
is unsuitable for the specific assembly – e.g., a fragile hinge instead of the needed robust
hinge. The limitation to the same part family greatly reduces the number of remaining
part types: Without restriction, T zRN pvq still includes at least 1,727 out of 1,930 types
for dataset A, at least 2,087 out of 3,099 for dataset B and at least 1,202 out of 1,924 for
dataset C over all nodes. If the restriction is applied, on average 39.3 types remain for
dataset A, 24.5 for dataset B and 51.9 for dataset C. However, it also happened that there
were no remaining part types from the same family as the original part. On the three
assembly datasets, this was the case in 4.7% of all partial assemblies created for A, 13.3%
for B and 3.8% for C, respectively. In these cases, we repeal the restriction to the same
family and select an arbitrary remaining type instead.

As previously discussed in this thesis, we do not know the exhaustive list of parts
that would fit to each other (cf. Section 5.4). We are only provided with a limited set of
assemblies from which we extract regular part connections. Consequently, the extracted
set of regular connections is also not exhaustive. This means that if we draw a part type
outside the regular connections as an anomalous part, there is a chance that we will select a
part type that can actually be used regularly in this position. We would then have created
a regular assembly (not mirrored in our dataset), but marked it as an anomaly. To avoid
this situation as much as possible, we created the regular connections from instances of
all data sets as discussed above. The restriction to the same part family even increases
this risk. We expect that only certain part types can be meaningfully connected to each
other, i.e., only a small fraction of the two to three thousand part types will fit together.

7.1. GENERATING SYNTHETIC ANOMALOUS ASSEMBLIES 125

The numbers of remaining alternative types indicates that there are still enough types left
to choose from, so that the probability of selecting an unknown matching type is quite
low. However, how many of the remaining part types would actually be regular cannot
be assessed without domain experts. We consider the risk also to be low when restricting
to the same part family: Given that a part type represents a key specification of its part
family, we can reasonably assume that these specifications are essential when using it in
a particular context, and there are no arbitrary “matches” when selecting a different type
outside R from the same family. For example, drill holes specify the required length and
thickness of screws very precisely such that a screw of the same family with different
specifications is therefore obviously not suitable.

To maintain balance between regular and anomalous assemblies, we create an anoma-
lous assembly for each regular assembly. This would give us a total of about 24,000 assem-
blies per dataset (that need to be split in training, validation, and test sets), which is a very
small number of instances. Therefore, we apply the common trick of data augmentation to
get more instances [42]. In the previous use cases, we generated all possible subgraphs of
an assembly by iteratively truncating non-cohesive nodes (cf. Algorithm 1 and 2) in order
to create self-supervised recommendation instances. Here, we follow the same procedure to
generate all unique subgraphs of an assembly, but discard the cut-off target part and add
the resulting regular partial graph only to our instances. To be specific, we generate these
subgraphs for all assemblies within a data set, i.e., individually for the initially separated
training, validation and test assemblies. An additional reason for using partial assemblies
to create anomalous assemblies is that we aim to recognize anomalies not only in final as-
semblies but primarily during the design process. Therefore, our instances should contain
partial assemblies with anomalies.

The required set of regular connections does not change by this augmentation step
and can thus initially be extracted on the original assemblies. As they represent regular
partial assemblies, we set the binary vector lV P B|V| to regular for every node. Finally, we
create an anomalous assembly for each partial assembly following Algorithm 3. Table 7.1
shows the number of resulting partial assemblies per data set and dataset. Due to the
varying graph structures, particularly in terms of graph order and node degrees across
the datasets, decomposition of the about 12 thousand assemblies results in between 123
thousand and 740 thousand subgraphs and thus both anomalous and regular instances.
Table 7.2 provides an overview of the distribution of anomalous and regular nodes in the
anomalized assemblies.

Table 7.1: Number of regular subgraph assemblies used for anomaly detection for all three
datasets. As each regular assembly is converted into an anomalous one, this results in the
same number of anomalous assemblies per data set.

Dataset # Part Types Size Training Set Size Validation Set Size Test Set Total

A 1,930 74,638 24,151 24,587 123,376
B 3,099 453,477 140,906 145,288 739,671
C 1,924 247,575 85,512 90,060 423,147

126 CHAPTER 7. HANDLING ANOMALIES IN ASSEMBLIES

Table 7.2: Distribution of regular and anomalous nodes in anomalous assemblies for each
dataset. Since exactly one part per assembly is replaced by an anomalous type, the number
of anomalous nodes corresponds to the number of original partial assemblies in Table 7.1.

Training Validation Test

Dataset Regular Anomalous Regular Anomalous Regular Anomalous

A 271,308 74,638 86,937 24,151 88,368 24,587
B 2,889,401 45,347 892,232 140,906 933,117 145,288
C 1,287,238 247,575 457,283 85,512 483,826 90,060

Depending on the specific task, the respective instances consist of the required assem-
blies as well as the relevant constituents from Algorithm 3: Both regular and anomalous
assemblies are used for the anomaly detection task. By processing both types of assem-
blies, the model can develop an understanding of both concepts and thus better distinguish
between them. The goal of anomaly detection is to predict for each node whether it is used
regularly or anomalously in the assembly. Therefore, we need the information about which
node belongs to which class as target values, which is given in the vector lV . An instance
for anomaly detection thus consists of an (anomalous) assembly as input and the stacked
binary vector indicating anomaly for each node of the assembly as target. For the rec-
ommendation of alternative parts, however, we only use instances composed of anomalous
assemblies together with the corresponding original part types lτ as targets. Since we only
present alternative suggestions for anomalous parts, regular assemblies are not considered.
Consequently, we have twice as many instances for the detection task. The vector lV is
used as input to indicate the anomalous node in the assembly and thus for which of the
nodes we aim to get suggestions of alternative part types.

7.2 Detecting Anomalous Parts in Assemblies

Our first goal in this use case is to detect anomalous parts within an assembly. Specifically,
for a connected assembly, we want to decide for each part whether it is regular or anomalous,
i.e., determining P pB | A, v P VAq for each part v. Since we focus on anomalies that have
emerged due to inexperience or an unsuccessful search for the right part types, the anomaly
arises due to the use of an unusual part type in a certain context, i.e., it was combined with
improper part types. Consequently, the graph structure, especially the (direct) neighbors,
is crucial to decide on anomaly. GNNs are therefore particularly suitable for this problem.
From a graph machine learning perspective, we model this problem as a binary node
classification problem on assembly graphs. The model architecture therefore corresponds
to the node classification task for the first variant of localized part recommendation shown
in Figure 6.2, whereby binary instead of multi-class classification is performed.

In our synthetically generated anomalous assemblies, we limited ourselves to one anoma-
lous part; however, the same procedure of anomaly detection could be applied to assemblies
with multiple anomalous parts – basically even when anomalous parts are adjacent and
thus form a connected subgraph of anomalous parts. Note that detecting anomalous sub-
graphs is more challenging, as the anomalous parts could be regular to each other, but the
subgraph as a whole does not fit the rest of the assembly [75]. This situation could occur
when incompatible subassemblies from different previous products are combined.

7.2. DETECTING ANOMALOUS PARTS IN ASSEMBLIES 127

Baseline Model Our anomaly detectors are trained on an equal number of regular and
anomalous graphs. However, since only one node of an anomalous assembly is anomalous,
there is a strong imbalance between regular and anomalous nodes at node level. The
majority of all nodes belongs to the class of regular nodes. Obviously, the minority class
is harder to predict by machine learning algorithms because there are few examples of this
class and the dataset encodes a bias towards the majority class. This problem occurs in
many anomaly applications because anomalies are naturally rare and often overshadowed
by the majority of regular instances. To assess the quality of an anomaly detector in
such imbalanced settings, its performance is typically compared with that of a model that
predicts the majority class (in our case, regular) for each node as this model is very often
correct. This allows us to evaluate whether the anomaly detection model goes beyond
the prediction of the majority class and actually makes node-specific decisions between
anomalous and regular. We also use such a model as a baseline model. Since our main class
is regular, we call the associated model regular predictor. This model basically corresponds
to the Evergreen model (Section 5.2), which we have used as a simple baseline for part
recommendation, if it is restricted to output exactly one class, thus the majority class of
the targets. In this thesis, however, we confine ourselves to a single anomalous part.

7.2.1 Experimental Setup

We performed experiments for anomalous node detection on each of the three assembly
datasets individually. Initially, the assemblies divided into training, validation and test
sets were separately decomposed into subgraphs following Algorithm 1. Afterward, each
regular partial assembly was transformed into an anomalous assembly by replacing an
arbitrarily selected part according to Algorithm 3 as described in Section 7.1. Both the
regular and anomalous partial assemblies form the instances for this anomaly detection
task, where the binary node-wise indication of anomaly, i.e., the vector lV , serves as label.
Therefore, we still have the same number of anomalous nodes among all instances as given
in Table 7.2, but additionally the number of regular and anomalous nodes as regular nodes
due to the additional regular assemblies of the same structure. For example, the partial
assemblies in the test set of dataset A still have 24,587 anomalous nodes and a total of
201,323 regular nodes. We adhere to the findings of the first use case and employ the
pretrained 100-dimensional part type embedding as representational vectors for the parts.
It was trained such that parts with similar usage or purpose are close to each other in the
embedding space, cf. Section 4.3.

Investigated Models In the experiments on the previous two use cases, the GIN and
GraphSAGE architectures achieved the best results, which is why we now employ these
two for anomaly detection and neglect the other two GNN architectures. The particular
model architecture is given by specifying the usual hyperparameters: number of layers,
dimension of the layers and activation function. For GraphSAGE, we again examine the
most suitable aggregation function. Binary classification can be implemented using both a
one-dimensional output with a sigmoid activation function and a two-dimensional output
with a Softmax activation function [51]. Both options are very similar: While in the first
variant, only one score is calculated for the first class and it is compared with the score of
the second class, which is fixed to the value 0 by definition, in the second modeling, scores
are calculated for both classes. In both cases, the higher score determines which class was
predicted. Controlled by an additional hyperparameter, we try out both variants in the

128 CHAPTER 7. HANDLING ANOMALIES IN ASSEMBLIES

experiments. The GNNs are regularized by dropout from the second layer onwards so that
no information from the input assembly is dropped. Due to the problem of class imbalance
(the majority of nodes is regular) we also apply the regular predictor as baseline model.
This allows us to evaluate whether the detector actually decides contextually with respect
to anomaly instead of just outputting the majority class.

Training The training details are basically the same as for the first use case: As the
task is modeled as (binary) node classification task, we again apply cross-entropy as loss
function for training the detector models. Furthermore, the end of training is determined
by early stopping based on the sum of the training loss and the difference between the
training and validation losses. We apply automatic hyperparameter search supported by
the framework Optuna [2].

Performance Metrics As performance metrics we use the standard metrics for bi-
nary classification, namely precision and recall. While precision measures the fraction of
correctly predicted among all positively predicted instances, recall states the fraction of
positively predicted instances among all positive instances. In this task, there is no pref-
erence to which type of misclassification (anomalous parts are recognized as regular or
regular parts are recognized as anomalous) should be avoided. Consequently, we measure
precision and recall with respect to both classes, i.e., in one case regular is chosen as the
positive class, in the other case anomalous is the positive class. Both metrics are basically
designed for single instances, so there are different ways to aggregate their values for a set
of instances, namely the whole test set [130]. First, the respective metric is determined in-
dividually for each class. Macro-averaging then takes the arithmetic mean across all classes
which weights each class equally, regardless of the number of instances. However, weighted
averaging takes the balance of the classes into account by weighting the class-based metrics
by the number of instances for each class – referred to as class size.

7.2.2 Experimental Results

Table 7.3 displays the performance of the GIN and GraphSAGE detectors as well as of the
regular predictor for as baseline detecting anomalous nodes on the test set for every dataset.
The performance metrics, precision and recall, are shown for each class individually as well
as macro-averaged and weighted by the respective class size.

First, we would like to briefly discuss certain performance values of the regular predictor
that result by its definition: The model achieves 100% recall for the regular class, since all
actual regular nodes are predicted as such. Since it never predicts a node to be anomalous,
both precision and recall for the anomalous class have the value 0. The arithmetic mean
for macro-averaging of recall is therefore 50%.

Except for recall for the regular class, both GNN models consistently outperform the
baseline in all performance tests across all datasets. This shows that they are indeed able
to contextually decide whether a part is used in an unusual way within an assembly. With
regard to the regular class, the GNN models achieve both precision and recall of at least
98% for all datasets. In general, the values for recall are slightly below precision for the
regular class, but only 0.3–1.5 percentage points. This is consistent with the fact that
recall achieves higher values than precision for the anomalous class. That shows that more
regular nodes were detected as anomalous than the other way round, which can also be

7.2. DETECTING ANOMALOUS PARTS IN ASSEMBLIES 129

Table 7.3: Summary of experimental results for anomalous node detection on the test set
for all three assembly datasets. The performance of the GNN models is compared with
the regular predictor as baseline in terms of precision and recall, determined individually
for each class as well as macro-averaged and weighted by class size. All values are given in
percent.

Regular Anomalous Macro Weighted

Dataset Model Precision Recall Precision Recall Precision Recall Precision Recall

A GraphSAGE 99.6 98.1 86.2 96.6 92.9 97.3 98.1 98.0
GIN 99.2 98.1 85.5 93.4 92.4 95.8 97.7 97.6
Baseline 89.1 100.0 0.0 0.0 44.6 50.0 79.4 89.1

B GraphSAGE 99.8 98.9 86.9 97.9 93.4 98.4 99.0 98.9
GIN 99.7 99.1 88.0 95.9 93.9 97.5 98.9 98.8
Baseline 93.3 100.0 0.0 0.0 46.6 50.0 87.0 93.3

C GraphSAGE 99.8 99.5 94.6 98.1 97.2 98.8 99.4 99.4
GIN 99.8 99.3 92.3 97.4 96.0 98.4 99.2 99.2
Baseline 92.2 100.0 0.0 0.0 46.1 50.0 84.9 92.2

Table 7.4: Experimental results for anomalous node detection of the GraphSAGE models
of all datasets in a binary confusion matrix, respectively. Each row represents the fraction
of instances in a target class, while each column represents the fraction of instances in a
predicted class. The diagonal entries represent the instances that are correctly predicted.
All values are given in percent.

Dataset A Predictions

Regular Anomalous

Targets Regular 87.44 1.68
Anomalous 0.37 10.51

Dataset B Predictions

Regular Anomalous

Targets Regular 92.27 0.99
Anomalous 0.14 6.60

Dataset C Predictions

Regular Anomalous

Targets Regular 91.72 0.44
Anomalous 0.15 7.69

seen in Table 7.4 showing the actual and predicted classes of all nodes for the GraphSAGE
models. The reason for this could be that some part connections appear very rarely or
even not at all in the training data, so that these connections of similar parts are marked
as irregular: Since the datasets contain real-world assemblies, the distribution of parts and
connections is not uniform, i.e., some parts occur extremely rarely. Thus, this corresponds
to acceptable behavior of an anomaly detector, since rare connections are unusual.

The performance of the GNN detectors drops significantly from the regular to the
anomalous class, which was to be expected due to the clear class imbalance. For datasets
A and C, the GraphSAGE architecture outperforms the GIN models on nearly all metrics,
while performing equally well for the recall of the regular class. Dataset B, by contrast,
shows that the GIN model focuses on the anomalous class, which is reflected by higher
precision on this class and lower recall for regular nodes. This means that this model
flags regular nodes more often as anomalies, thus increasing the effort for designers as they

130 CHAPTER 7. HANDLING ANOMALIES IN ASSEMBLIES

would have to check all predicted anomalies. Nevertheless, we would opt for the GIN for
this dataset, as we would accept increased effort for the sake of quality of the assemblies
if necessary. It achieves a precision of 93.9% and recall of 97.5% at macro level. The best
models achieve a recall of between 96.6% (dataset A) and 98.1% (dataset C) for anomalous
parts; for precision, the values are only range from 86.2% to 94.6% for the same datasets.

The aggregated values after weighted-averaging best reflect the performance of the
detector in application, as anomalies also occur less frequently there. Due to the weighting
based on the class sizes, the values of both metrics are almost identical. Overall, anomalous
parts can be detected with a precision (and recall) of 98.0% to 99.4%, which is a very good
performance. Surprisingly, the results for the first dataset are the poorest, whereas this
was always the easiest to master throughout all experiments of the previous use cases. As
outlined above, we assume that certain combinations from the test set barely occurred in
the training data. Therefore, the model classified them as anomalous, even though they
were regular in the test assemblies.

Table 7.4 shows the percentages for comparing the prediction with the actual classes for
the GraphSAGE models. Misclassifications were made on dataset A in 2.05%, on dataset
B in 1.13% and dataset C in only 0.59% of cases. Accordingly, for at least 97.9% of the
nodes, it was possible to correctly predicted whether it was an anomalous or regular part
in the assembly, which is an outstanding result of the anomaly detectors.

Finally, we would like to discuss the training and evaluation time of the GNN models
for anomaly detection on our Nvidia DGX-1 station. Once more, we consider dataset B
to do so, as it consists of the largest assemblies and therefore the most instances across all
datasets. However, compared to the previous two use cases of global and localized part
recommendation, each data set for anomaly detection contains about 40% less instances,
respectively, which is reflected in the training and evaluation time. Further, in contrast to
the experiments for localized recommendations, early stopping monitors the loss values of
the training and validation sets in this task, which can be determined faster than perfor-
mance measures. This resulted in an average epoch training time of 5.5 minutes for the
GraphSAGE model. In general, the training completed within 25 epochs for all models.
The evaluation time is even lower than for global part recommendation as around 1100
instances per second can be evaluated by the performance measures precision and recall.

7.3 Recommending Alternative Parts

Subsequent to the detection of anomalous parts within an assembly, we want to propose
alternative types for the detected anomalous parts of a given assembly. Specifically, for a
given anomalous assembly sA and anomalous part n̄ P V

sA, we aim for a fixed number of part
types τ1, . . . , τk P T as suggestions alternative to the anomalous part in order to correct the
anomaly. Formally speaking, we have examined a very similar problem in the first variant of
localized part recommendation, since both can be modeled by P pT | A, n P VAq. However,
both problems are fundamentally different: In the localized part recommendation, we follow
a constructive approach as we add a new part to the assembly at the extension point whose
type corresponds to the recommended part type. After the operation A n◁ τ , the assembly
therefore contains a new part of type τ connected to part n. In the case of recommending
alternative part types, however, we want to replace the anomalous part by an alternative,
better suitable type that was recommended by our model. The number of parts therefore

7.3. RECOMMENDING ALTERNATIVE PARTS 131

a

a

d

c c
sA n̄è τ

a

a

d

τ c

Recommending Alternative Part Type
for Anomalous Part in Assembly

a

a

d

b c
A n◁ τ

a

a

d

b c

τ

Recommending Part Type for
Assembly at Extension Node

Figure 7.3: Comparison of recommending alternative part types in the context of anomaly
detection (left) with recommending new part types for the first localization variant (right).
Both tasks can be modeled similarly as conditional models P pT | A, n P VAq. For the
alternative suggestion, we use the notations sA and n̄ for the anomalous assembly and node,
respectively. The respective operator is given on the arrow, with the resulting assembly
after its application displayed on the right. The selected part type τ P T is highlighted in
blue, respectively.

remains the same when applying the operator sA n̄è τ , only the type of the anomalous
part n̄ has been replaced by the recommended type τ . Both approaches are shown in
Figure 7.3.

We assume that the recommendations for alternative parts are independent of the
specific anomalous type. For instance, in the introductory cabinet example, it should not
matter which variant of lightweight hinges were used, the more suitable robust hinges
should be selected due to the heavy doors and robust side panels used. Consequently, the
alternative recommendations should be based on all parts except the anomalous one, so
it appears reasonable to remove the anomalous part from the assembly to exclude that
information. If we additionally select its direct neighbor(s) as extension node(s), it seems
that we can use the constructive operator and thus the same procedure as for the first
localization variant for the alternative suggestions, too. The example in Figure 7.3 clearly
shows the problem here: The anomalous part can be a cohesive node, so that the assembly
would break down into several connected components after removal. However, all of our
approaches are designed for connected assemblies, as message passing only propagates
information along the edges, meaning that in the case of multiple connected components,
information is only processed within the individual components, but not across them. As a
result, the context of the entire assembly could not be captured, but only of the individual
isolated connected components, which would lead to a poor recommendation performance.

This issue did not occur in localization because the instance generation procedure
Algorithm 2 only removes non-cohesive nodes. There are several possible solutions for
this issue: If we continued the approach of node removal, we could ensure the information
flow in the entire assembly by, e.g., rewiring the graph [136] by adapting its edges, or
inserting an artificial node connected to all existing parts, referred to as global node in
literature [158], to get a connected graph in both cases. However, graph rewiring is a
computationally intensive solution and thus discarded. Therefore, instead of removing the
entire node, we follow an approach that disregards the information of the anomalous part
type represented as node features and leave the graph structure the same. Indeed, this
strategy is similar to using a global node, but we do not add edges to all other nodes
of the graph, but stick to the existing connections of the anomalous node. We examine
two variants for handling anomalous parts for alternative type recommendation, which are
explained in detail hereinafter.

132 CHAPTER 7. HANDLING ANOMALIES IN ASSEMBLIES

Learning a Default Representation for Anomalous Parts If we delete the type
information of the anomalous node from the assembly, we need an alternative vector of
suitable dimension as node features. This could be done manually by selecting a vec-
tor, but again we follow an automated learning approach. We intend to learn a shared
default representation for anomalous parts to replace their original embedding with. In-
tuitively, the representation should not distinguish different types of anomalous parts but
only express that it is anomalous – hence, one representation for all anomalous parts. The
recommendation model itself should find a suitable representation in the embedding space
in order to best recommend alternative parts. At the beginning of the training of the
recommendation models, this vector is initialized randomly just like the parameters of the
GNN layers. The error gradient is backpropagated to the vector and its entries adjusted
accordingly during the parameter update. After training is completed, this fixed default
representation is used for inference to represent anomalous parts.

Adoption of Message Passing by Masking of the Anomalous Part Instead of
replacing the node features of all anomalous parts with a learned representation, the second
variant adapts the functionality of message passing in the first layer to not incorporate the
anomalous part’s features. In other words, the corresponding node is masked in the first
layer; a similar idea was introduced by [99] with the aim of improving the generalizability
of GNNs. Many GNN architectures include both the neighboring nodes and the respective
node itself when updating the node features (Equation (3.9)), as described in Section 3.3.2.
Masking leads to the following changes for message passing: When the anomalous node
is updated, its own information is masked so that its representation for the subsequent
layer is only calculated from its neighboring nodes (unless these are also anomalous). Its
information is also not taken into account when updating the anomalous node’s neighbors.
However, the update rule remains the same for all other nodes. From the second GNN
layer onwards, standard message passing is performed.

To summarize, the problem of recommending alternative parts for anomalous assem-
blies is modeled as a multi-class node classification P pT | sA, n̄ P VAq so that the model
architecture basically corresponds to that of the first localization variant shown in Fig-
ure 6.2, whereby in the first layer one of the described anomaly handling strategies is used
and lV indicates the anomalous node for which alternative part type suggestions are desired
(which corresponds to the extension node in the localization variant).

Framing the Task by Simple Baseline and Upper Bound As usual, we want to
be able to assess the results of our proposed methodology and use comparative models for
this purpose. Since the alternative suggestion model basically outputs suggestions of part
types, we can build on the simple baseline and the estimation of the upper bound from
Section 5.2. The simple baseline Evergreen does not require any modification, as it only
creates a frequency distribution of all labels of the training data and outputs the desired
k most frequent part types, thus representing P pT q.

The upper bound model memorizes the entire test set, i.e., the mapping from anomalous
graph and anomalous node to original part type for all test instances, in order to give
an estimate from above of the best performance to be achieved by a non-oracle model.
As the recommendation of alternative suitable types for the anomalous node should be
independent of the actual anomalous type, the information of the anomalous type must

7.3. RECOMMENDING ALTERNATIVE PARTS 133

first be removed from the assembly. We therefore replace the anomalous part at node n̄
with a dummy part of a type τ0 R T that is not included in the part type vocabulary,
resulting in an adjusted assembly Ã “ sA n̄èτ0. As our anomalous assemblies only contain
one anomalous node and thus after the replacement only one part of the dummy type, the
adjusted assembly automatically includes the localization for which node in the assembly
alternative types are to be suggested. This means that, for our anomalous assemblies,
it is sufficient for the upper bound model to remember the mapping from the adapted
assembly Ã to the original part type.

However, if there were several anomalous nodes within an assembly, the input must
be expanded to a tuple of adopted assembly and specific node – analogous to the first
localization variant (cf. Section 6.2). Nevertheless, all anomalous parts first need to be
replaced by a dummy part.

7.3.1 Experimental Setup

Finally, we conduct experiments to recommend alternative types for anomalous parts in an
assembly. Anomalies were created from the regular partial assemblies by replacing one part
with an anomalous one, as already described for anomaly detection in Section 7.2.1. In
contrast to anomaly detection, we only use the anomalous assembly instances to reconstruct
the original part type of the anomalous part from the remaining assembly. As with the
previous recommendation models for global and localized part recommendation (Chapters 5
and 6), the instances have single-label targets.

The overall experimental setup is the same as for the first variant of localized part rec-
ommendation described in Section 6.2.1. With regard to the GNN architectures examined
for the recommendation models, we restricted ourselves to GIN and GraphSAGE, as these
consistently delivered the best results in the second use case, which this task is most similar
to. We employ early stopping that monitors the top-5 rate on training and validation sets
to determine when to stop the training in order to prevent overfitting and ensure good
generalization on the test set. Furthermore, the best fitting hyperparameters are deter-
mined using automatic hyperparameter search with the framework Optuna [2]. We frame
the results of the GNNs by the simple baseline Evergreen, which outputs a frequency dis-
tribution over the target part types, and the upper bound. Since several alternative parts
could be suitable for an anomalous part of a certain assembly, the upper bound indicates
the best possible performance on the respective test set.

In order not to consider the information of the anomalous part type for the recommen-
dation, we investigate two strategies: Simultaneous to the training of the recommendation
models, a shared default representation for anomalous parts is learned. The second strat-
egy masks the associated node in the assembly graph, so that its features are not considered
for updating either its own representation or that of its neighboring nodes in the first layer.

7.3.2 Experimental Results

Table 7.5 summarizes the results of the GNN architectures using both anomaly handling
strategies and the comparison models for all three assembly datasets. Additionally, Fig-
ure 7.4 visualizes the performance of all GNN models and the upper bound per dataset.
The Evergreen model and the upper bound define a broad corridor, similar to the first
examined use case in Chapter 5.

134 CHAPTER 7. HANDLING ANOMALIES IN ASSEMBLIES

Table 7.5: Summary of results for recommending alternative types for anomalous parts
in assemblies on the test set for all three assembly datasets. Displayed is the top-k rate
in percent for k “ 1, . . . 15 part type recommendations for the GNN models as well as
the upper bound and simple baseline Evergreen, in order to contextualize the GNNs’
performance. Best model is highlighted per dataset.

Dataset Model Strategy \ k 1 2 3 5 10 15

A Upper Bound 91.4 97.4 98.8 99.6 100.0 100.0

GraphSAGE Default Rep. 64.6 78.0 83.1 87.8 92.5 94.3
Masking 64.1 77.2 82.6 87.2 92.0 93.8

GIN Default Rep. 62.7 75.2 80.1 85.4 90.2 92.2
Masking 60.5 74.0 79.5 85.2 90.7 92.7

Evergreen 3.2 5.2 7.2 9.2 13.2 16.8

B Upper Bound 92.2 97.3 98.5 99.3 99.8 99.9

GraphSAGE Default Rep. 60.6 74.5 79.8 84.8 89.7 91.7
Masking 61.1 74.8 79.8 84.8 89.7 91.9

GIN Default Rep. 60.2 73.7 78.8 83.8 88.6 90.8
Masking 57.3 70.8 76.1 81.8 87.9 90.5

Evergreen 4.2 8.2 11.0 18.0 30.1 37.0

C Upper Bound 84.3 95.0 97.8 99.2 99.8 99.9

GraphSAGE Default Rep. 53.8 71.0 79.8 87.9 93.8 95.5
Masking 53.1 70.2 79.3 87.7 93.7 95.5

GIN Default Rep. 53.2 70.5 79.4 87.5 93.3 95.0
Masking 53.0 70.1 78.9 86.8 93.1 95.0

Evergreen 5.8 11.2 15.8 21.0 27.9 34.2

Across all datasets, the GraphSAGE architecture consistently outperforms GIN. How-
ever, when it comes to the anomaly handling strategy, the results are less clear-cut. For
datasets A and C, regardless of the GNN architecture, learning a default representation
proves to be more successful than masking. Only for dataset B does masking emerge as the
more promising strategy, although the default representation achieves very similar, if not
identical, performance levels for the majority of recommendation numbers. Notably, on
dataset C, all four model variants perform very closely, with a maximum difference of only
1.3 percentage points. The difference in performance between the two anomaly handling
strategies is possibly caused by the small size of the assemblies and number of neighbors,
which is given in Table 4.1 for the original assemblies. With masking, the representation of
the anomalous part is determined from the neighboring nodes in the first layer; if there are
few neighbors, the determined representation is not expressive. The reason for the compa-
rable performance of the masking strategy on datasets B and C could be that they contain
the largest graphs with the largest node degrees so that there is a sufficient number of
neighboring nodes to determine an expressive representation for the anomalous node with
masking. For k “ 5 recommendations, the best modeling variant on each dataset is using
the GraphSAGE architecture with default representation strategy. The model correctly
identifies the appropriate part in 84.8% of cases for dataset A and 87.9% for datasets B
and C, respectively.

7.3. RECOMMENDING ALTERNATIVE PARTS 135

1 2 3 5 10 15

60

80

100

number of recommendations pkq

to
p-
k

ra
te

Upper Bound GraphSAGE Default Rep. GraphSAGE Masking
GIN Default Rep. GIN Masking

(a) Dataset A

1 2 3 5 10 15

60

80

100

number of recommendations pkq

to
p-
k

ra
te

(b) Dataset B

1 2 3 5 10 15

60

80

100

number of recommendations pkq

to
p-
k

ra
te

(c) Dataset C

Figure 7.4: Visual comparison of alternative recommendation models on top-k rate. Ever-
green omitted due to scaling.

136 CHAPTER 7. HANDLING ANOMALIES IN ASSEMBLIES

In the setup for this task, the termination of the training is determined by monitoring
the performance measure top-5 rate through early stopping. However, since we only have
corrected part types for anomalous assemblies, each data set for this task contains about
30% of instances compared to global and localized part recommendation. Training of
the GraphSAGE models took about 8.6 minutes per epoch on dataset B and an Nvidia
DGX-1. The training mostly had to run between 20 and 30 epochs before the optimal
parameters were found, however, it was still completed in under five hours. No significant
time difference was found for the two anomaly handling strategies investigated (default
representation and masking). The reason for this is that the small number of additional
parameters to be learned for the default embedding is negligible compared to the number
of parameters of the overall model and therefore has no time impact. The evaluation time
of the fully trained model on the training data is very similar to anomaly detection: over
1000 instances could be evaluated per second.

7.4 Related Work

Anomaly detection is a well-established and widely studied problem, although it has rarely
been explored in the context of CAD assemblies. In graph-based anomaly detection,
anomalies can either refer to the graph as a whole or to specific graph elements such
as nodes, edges, or subgraphs [92]. To effectively assist a designer in a targeted manner,
we not only aim to assess whether an entire assembly is anomalous (i.e., graph-level detec-
tion) but also pinpoint the specific location of the anomaly, in particular, by identifying
the anomalous part (i.e., node-level detection).

Early approaches to graph anomaly detection have mainly relied on domain knowledge
and statistical methods, where features for detecting anomalies have been manually crafted,
which is very time-consuming and labor-intensive. To overcome the limitations of the early
work, considerable attention has recently been paid to deep learning approaches when
detecting anomalies in graphs. Graph neural networks (GNNs) have also been used for
anomaly detection for some time, for example [168, 33]. The surveys [92, 75] provide an
overview of anomaly detection techniques with deep learning and GNNs. In deep learning
approaches, nodes are considered anomalous if their features differ strongly from those of
their neighbors or if they have different connection patterns – or a combination of both [92].
However, anomaly of parts in assemblies goes beyond this definition in our use case as parts
are anomalous if they do not fit to their connected parts. Therefore, it is crucial for our
use case to capture the interaction of the parts, which is why we employ GNNs. Existing
node classification methods are often specialized for a specific GNN architecture, however,
we want to provide a generic approach based on an arbitrary GNN architecture.

In addition, most techniques rely on a combination of GNNs and autoencoders, e.g.,
[8, 164]. In particular, autoencoders reconstruct an anomalous graph and compare the
output with the original input. Deviations in node information or edges indicate anoma-
lies. However, for our domain, this method can lead to not only anomalous parts being
reconstructed differently but also regular parts being replaced by other suitable alterna-
tives. This makes it difficult to distinguish the detection of actual anomalies from parts
for which there would be several suitable alternatives. Therefore, our approach is purely
based on GNNs.

7.4. RELATED WORK 137

Since anomalies are rare in many real-world applications, multiple methods have been
developed to generate synthetic anomalies. According to the categorization provided
in [23], our approach involves modifying real-world graphs to create anomalous ones.

When generating anomalous assemblies, we have opted for strictly relying on valid
part type combinations observed in assemblies in order to allow precise control over the
anomalies produced. Alternatively, the anomalous assemblies could also be generated using
a learning-based method such as the automated approach presented in [109], which uses
diffusion models to generate anomalous data. While this method can produce a broader
and more realistic range of anomalies beyond replacing a single node within the graph, the
resulting anomalies are harder to control and their evaluation (i.e., determining whether
they truly represent anomalies in assemblies) is more difficult. Before these instances are
used to learn an anomaly detector, they should be validated by domain experts to avoid
learning a wrong concept of anomalous assemblies. As no domain experts were available
for this thesis (and we even aim for no involvement of experts in our solutions), we chose
to employ an automatic approach only depending on existing assemblies instead.

The field of recommending solutions for detected anomalies in graphs with the intent to
correct them has received little attention so far, and the same also applies to the combined
task of detecting and correcting anomalies which we refer to as anomaly handling. To the
best of our knowledge, this problem has only been addressed by Srinivas et al. in the context
of time-series data on hypergraphs from large-scale industrial units [132]. They leverage
genetic algorithms to recommend causes of action to remedy the anomalies. Modeling
the recommendation of alternative parts as node classification as in our approach is not
unusual in the field of GNN-based recommendation systems [41], although link prediction
is generally more prevalent. However, we are interested in recognizing an unsuitable part
which was added to the assembly, rather than detecting that a part that is actually suit-
able has just been incorrectly connected. In combining an anomaly detection task with a
generic recommendation task, the GraphRfi study [166] comes close to our overall anomaly
handling system. However, their recommendation system is not aimed at mitigating the
anomaly itself. Instead, the authors use the product recommendations for a user to deter-
mine whether the user is a fraudster who is deliberately submitting false reviews to affect
the product recommendation model. Similar to our approach, they employ GCNs for the
recommendation, however on an edge-level task (i.e., assigning a score to each edge from
the user to a product) instead of on node-level.

138 CHAPTER 7. HANDLING ANOMALIES IN ASSEMBLIES

Chapter 8
Summary and Outlook

Summary This chapter summarizes the key contributions of this dissertation, followed
by lessons learned that could help in transferring the developed methodologies to other
application areas. Finally, it concludes with the major avenues that future work could
pursue.

Contents
8.1 Summary . 139
8.2 Lessons Learned . 143
8.3 Outlook . 144

8.1 Summary

This thesis contributes to the field of artificial intelligence-aided design (AIAD) and is
the first to provide methodologies leveraging machine learning techniques to support in-
experienced design engineers in assembly modeling based on expert knowledge extracted
from previous assemblies. Given the assumption that knowledge about how to solve an
application problem is implicitly included in the form of used parts and their combina-
tions, such expert knowledge is encoded as recurring patterns of part combinations over
multiple assemblies. On this basis, we presented a generic, data-driven approach which
does not require the involvement of any domain experts: We successfully applied graph
neural network (GNN) architectures from the field of graph machine learning in order to
extract recurring patterns from assemblies and to support engineers in three different use
cases while they design an assembly:

1. Global part recommendation of suitable next parts attachable to the current assembly

2. Localized part recommendation of next parts for the current assembly, either for a
location selected by the engineer or together with the part of the assembly it can be
attached to

3. Handling anomalies in assemblies such that anomalous parts are identified and suit-
able alternative parts are suggested

139

140 CHAPTER 8. SUMMARY AND OUTLOOK

Representing Assemblies as Graphs over Part Types In order to process het-
erogeneous assemblies from different part catalogs in a uniform manner, we defined a
representation of assemblies as undirected graphs based on the only information available
across those catalogs (Chapter 4): We assume a set T of part types, and define each part
in an assembly as instantiation of a given type. Consequently, each part of the assembly
becomes a node n P V of type τ P T in the resulting graph A “ pV, Eq. For each two
connected parts in the assembly, we add an undirected edge between the corresponding
nodes to E .

We applied the translation to three real-world datasets provided within the project
KOGNIA. Each dataset contains around 12,000 mechanical assemblies consisting of parts
from a part catalog used exclusively in this dataset (each catalog comprises around 2,000
to 3,000 part types). The assemblies were designed by customers of the part manufacturers
providing those part catalogs.

Training Embeddings of Part Types To grasp the knowledge behind recurring pat-
terns of part combinations, it is not sufficient to only memorize previously connected parts,
even when considering neighborhoods beyond direct neighbors: If an inexperienced designer
needs to connect a valid part to their assembly which has never occurred in this specific
combination before (e.g., to design a new product variant), we would never suggest this
part and even mark it as anomalous. We rather want to capture the similarity of parts
(and thus their adequacy) in terms of their intended functional usage.

Consequently, we developed an embedding technique termed part2vec which calculates
low-dimensional embeddings encoding the similarity of part types (Section 4.3). As a
generalization of the embedding technique word2vec [96] from the domain of natural lan-
guage processing (NLP), part2vec is capable of processing graphs of parts instead of only
sequential data (such as sentences in the case of word2vec).

Intuitively, if multiple parts of different types have been combined with the same set
of parts in previous assemblies, these differing part types are considered to be similar to
each other as they have been used in similar contexts. As a result, they obtain a similar
embedding by part2vec.

Refining Part Type Embeddings The fact that some part types may appear infre-
quently across the assemblies leads to poor embeddings for these types. To improve their
representation, we built an interactive editor to define further similarity constraints for
particular part types (Section 4.3.2). These constraints are incorporated into the training
routine of part2vec to enforce similarity between the part type embeddings. Although
this seemingly contradicts the idea of an automated approach, our methodology does not
require this manual refinement step. However, in case of poor performance of downstream
models, the editor offers a user-friendly way to effectively improve part type representations
and thus to increase the prediction quality.

Decomposition of Assemblies for Self-Supervised Learning Training of machine
learning models requires training instances representing input and expected target values
of the model. However, as our datasets comprise final assemblies, we had to generate such
instances ourselves. To avoid manual labeling by design experts, we developed a data aug-
mentation algorithm to decompose an assembly graph into single-label instances for the

8.1. SUMMARY 141

respective use cases (Algorithms 1 and 2). We also leveraged the same algorithm for gen-
erating synthetic anomalous assemblies (Algorithm 3), as it not only increases the number
of instances, but also allows detecting anomalies during the design process instead of only
in the final assembly. Applying the data augmentation algorithm resulted in between 123
thousand and 2.5 million instances, depending on the dataset and use case.

Baseline and Upper Bound Models As recommending parts for and handling anoma-
lies in assemblies pose new challenges in the domain of ML, we established baseline and
upper bound models to assess the experimental results per use case (Section 5.2).

The baseline for each recommendation use case is a deterministic algorithm which
approximates the unconditional probability distribution over all part types P pT q for a given
dataset. Intuitively, it computes a usage ranking of part types over all training assemblies.
Thus, the model ignores the entire context given by the current partial assembly and always
returns the part types occurring most frequently as targets in the training instances.

In contrast, the upper bound is determined by a deterministic algorithm simulating the
conditional probability distribution over all part types given a partial assembly P pT | Aq,
i.e., it computes the best possible recommendations for a given assembly A from a specific
dataset. However, since multiple parts of different type could be attached to the same
assembly, the number of recommendations is crucial for the maximum achievable perfor-
mance: If we recommend fewer parts than those which are attached to A in the test set, we
can obviously never achieve 100% performance during evaluation. Consequently, the algo-
rithm memorizes the test instances and returns the k part types occurring most frequently
in them for the given assembly A, where k denotes the number of recommendations.

Although designed for the evaluation of global part recommendation, both the baseline
and upper bound models also served as a realistic frame for the other use cases while
requiring only minor, if any, adjustments.

Modeling of Recommendation Tasks In general, we modeled all tasks arising from
the three use cases as multi-class classification problems, except for anomaly detection
(which is a binary classification problem). However, the subject to be classified varies across
the different tasks: While global part recommendation is modeled as a graph classification
problem, we modeled the other tasks as node classification problems. We employ graph
neural networks (GNN) to solve these problems, as GNNs learn representations of each
graph node by aggregating the representations of its direct neighbors and of the node itself.

Global Part Recommendation We understand global part recommendation (Chap-
ter 5) as the task to compute a conditional probability distribution P pT | Aq over all part
types T for a given assembly A, where most suitable part types receive the highest probabil-
ities. We modeled this task as a graph classification problem, since we want to recommend
parts for the assembly A as a whole rather than for only a particular extension node.

Localized Part Recommendation In contrast to global part recommendation, lo-
calized part recommendation for a location selected by the engineer (Section 6.2) is modeled
as a node classification problem: It refers to the task of computing a conditional proba-
bility distribution P pT | A, n P VAq over all part types T for a given assembly A and a
given extension node n out of all nodes VA in the assembly, where the most suitable part
types receive the highest probabilities.

142 CHAPTER 8. SUMMARY AND OUTLOOK

Recommending both a suitable part and a corresponding extension node (Section 6.3)
describes the task of computing a conditional probability distribution P pT , VA | Aq over
all part types T as well as nodes VA of a given assembly A, where the most suitable part
types for the nodes most frequently extended receive the highest probability. Intuitively,
a model should recommend the most suitable parts for the extension points it is most
certain about first. We modeled the task as a two-task classification problem: One model
predicts the most suitable part type, and the other computes extension scores for each node.
Both subtasks can be chained in any order, however, the subsequent one must consume
the output of the first task as input. We therefore presented modeling approaches for
both possible permutations. Depending on the order, the split into two tasks allowed us
to leverage the task modelings for global part recommendation or for the first variant of
localized part recommendation, respectively, to solve the part recommendation subtask.

Handling Anomalies in Assemblies Handling of anomalies consists of two tasks:
Detecting anomalies in assemblies (Section 7.2) refers to computing the conditional proba-
bility distribution P pB | A, n P VAq over the decision if a node n in the given assembly A
is anomalous or regular. As this is obviously a binary classification problem on node-
level, we applied the multi-class node classification model developed for the localized part
recommendation given an extension node selected by an engineer for two classes.

Suggesting alternatives for anomalous parts (Section 7.3) can be understood as the
task of computing a conditional probability distribution P pT | sA, n̄ P V

sAq over all part
types T given an anomalous node n̄ from an anomalous assembly sA, where the part types
most suitable for replacing the anomalous node receive the highest probabilities. As this
formulation is similar to the task of localized part recommendation for given extension
node, we modeled it as a multi-class node classification problem in the same way as the
localization task. However, instead of predicting part types to extend a given assembly at
the given node, the model predicts an alternative type for the given existing node within
the anomalous assembly.

Experimental Evaluation on Different GNN Architectures We instantiated four
state-of-the-art graph neural network (GNN) architectures for our use cases in order to
investigate the applicability of our modeling across different architectures. Further, we
evaluated their performance on the three assembly datasets provided as part of the project
KOGNIA to prove the generic nature of our approach. The experiments are reproducible,
as the datasets have been published.

In all three use cases, the GNN models consistently outperformed the respective rule-
based baseline models. While the latter were only capable of exactly memorizing existing
assemblies, the graph neural networks successfully generalized knowledge about suitable
part combinations to unseen yet similar situations. However, the choice of the specific
GNN architecture usually had little influence on the prediction accuracy. In summary, all
tasks were solved successfully by GNNs, and our experiments indicate that our approach
can drastically reduce the search time spent by designers: As the wanted part was always
one of ten recommended parts in more than 76% of the cases, the designer would not
have to peruse the part catalogs for at least three out of four needed parts. Depending on
the use case and dataset, our models even recommended the correct part in 97.5%, and
detected anomalies correctly in 97.3% of the cases.

8.2. LESSONS LEARNED 143

Tool Support Besides the interactive editor to define similarity constraints mentioned
above as a standalone tool, we implemented a prototypical demonstrator for global part
recommendation (Chapter 5) in the Festo Design Tool 3D [73] within the research project
KOGNIA. Moreover, we integrated a similar model into the CAD system Autodesk In-
ventor [64] to conduct a user study as part of KOGNIA: Although trained on very few
assemblies which were based on a similar number of part types, the top ten recommenda-
tions were still rated as beneficial in 78.3% of the cases. The design engineers described the
system as convenient and effective, since the time-consuming search for needed parts is no
longer necessary. Further, they noted that even suitable parts not previously known to the
engineer were recommended, enabling the designer to integrate them into the assembly.
The user study proves the effectiveness of our approach and that the experimental results
can be trusted.

8.2 Lessons Learned

In this section, we aim to share our lessons learned and findings on good practices in
the application of the presented methodology gained throughout this thesis as they could
benefit other assembly use cases and datasets.

First, we would like to emphasize the necessary prerequisites and requirements for the
application of the developed methods to custom datasets: The foundation of all approaches
relies on the assumption that the assemblies are composed of a consistent set of part types.
This means that the same types of parts must be identifiable across different assemblies.
When applying our methodology to a custom assembly dataset, the set of part types will
usually differ from ours, so they will not be represented by our embeddings. Consequently,
the embeddings as well as the models have to be trained from scratch for differing assembly
data. Furthermore, we operate on assemblies represented as undirected graphs, where
nodes represent parts and edges represent connections between these parts as introduced
in Section 4.1. Although assemblies can be naturally represented as graphs, the extraction
into this format has to be implemented explicitly, as there is no matching standardized
CAD format.

Superiority of ML Models In our first addressed use case, we compared our proposed
ML-based approach with a frequency-based model leveraging classical AI techniques, which
fell significantly short of the ML approach. Due to their ability of generalizing beyond exact
subgraph pattern-matching, we recommend the use of ML models over classical approaches.

Part Embeddings Serve Multiple Purposes Any task in the context of assembly
modeling needs an adequate representation for the different part types. Although there
are various possibilities, we chose to solely rely on the part type itself since the provided
information about parts is often varying across multiple part catalogs. In this setting,
the part types can either be represented by a simple one-hot encoding or an embedding
that can be learned based on their use in the assemblies, as presented in Section 4.3. Our
approach learns the intended purpose of a part from its combinations with other parts in
the assemblies. Pretraining low-dimensional embedding vectors has been beneficial for the
actual tasks in our experiments, and they may offer further advantages: they can provide
insights into the assembly data and can be used as a basis for a part taxonomy in order
to improve a company’s part management. From an ML perspective, the reduced number

144 CHAPTER 8. SUMMARY AND OUTLOOK

of model parameters is also desirable. Insofar it is feasible in terms of computational
effort and time, we therefore advise pretraining of the part type embeddings. If features
representing certain metadata or geometry are consistently available for the part types,
they can be used in addition to part embeddings.

Additional Instances through Subgraphs In cases of a limited number of assemblies
(potentially with numerous parts), it can be beneficial to augment the dataset in order to
create more instances. All instance generation methods of the three use cases discussed
have this data augmentation aspect in common: We extract all connected subgraphs of
a given assembly graph (e.g., in Algorithm 1), which increased the number of partial
assemblies by a factor between 10 and 200. As this proved to be an effective method to
increase the performance of ML models, we recommend its application.

Start with the GraphSAGE Architecture Across all considered use cases, the four
different GNN architectures achieved quite similar results, with GAT performing best for
global part recommendation and GraphSAGE for localized recommendation and handling
anomalies. Therefore, we would recommend to start experimenting with GraphSAGE, and
afterward perform task-specific methodology adaptions. In case the results are not promis-
ing, other GNN architectures can be evaluated instead. Based on our data representation,
other tasks in the context of assembly modeling can also be addressed using our method-
ology. We presented a modeling approach for learning tasks on graph-, node- as well as on
edge-level, confer Chapter 5, Section 6.2 and Section 6.3, respectively, which can be used
as a starting point for other tasks.

8.3 Outlook

Although we built a demonstrator for illustrating global part recommendation in the con-
text of the project KOGNIA, the full integration including other use cases into existing
CAD systems is still to be realized. For this reason, user studies to evaluate the usefulness
of localized part recommendation as well as handling anomalies have yet to be carried
out. As the experimental results for both of these use cases were similar or even better
than for global part recommendation, we expect even better user feedback for those more
specialized (because localized) tasks. However, the integration into a CAD system places
further requirements on the recommendation and detection systems.

One aspect is that the part catalogs change over time, e.g., new parts are added. Part
types are represented by embeddings pretrained according to their occurrence in assem-
blies. Consequently, no representation exists if a new part appears for the first time in an
assembly, as it was not known during pretraining. In order to keep up part recommenda-
tions or anomaly detection, unknown part types included in the current assembly must be
handled separately, e.g., by employing a (learned) default embedding for them.

Furthermore, the models in use must be kept up-to-date. In order to further improve
recommendation performance, newly created assemblies as well as recent part catalog up-
dates should be taken into account. This poses the need to retrain the models with the
new data in the sense of online learning. Updating ML models is not trivial and therefore
addressed by a whole research area: Practices for continuous software development (such
as DevOps [29]) have been expanded by actions specific to machine learning which are
generally referred to as machine learning operations (MLOps) [93].

8.3. OUTLOOK 145

To minimize additional workload on design experts, we focused on developing auto-
mated approaches without the need for human interaction like data labeling. However,
involving experts can be very beneficial: First, data can be recorded when the systems
are used by domain experts, which can then be used to further fine-tune the system. For
instance, in the case of anomaly detection, a designer could mark parts recognized as
anomalous as false positives. Furthermore, domain experts could improve the instance
generation both for the recommendation and anomaly detection problems. They could
create more realistic anomalies in assemblies – even going beyond single anomalous part
types – and label them accordingly, resulting in potentially more accurate and useful de-
tectors. Lastly, expert feedback can be used for training in a human-in-the-loop fashion
which was also used for the currently very popular chatbot ChatGPT [108]: Two ML mod-
els were trained in an interplay, the actual chatbot and a model assessing the quality of
the chatbot’s answers to a given prompt. In order to build the assessment model, humans
ranked multiple answers to the same prompt, which served as training instances. Trans-
ferred to our setting, designers could evaluate part suggestions, i.e., specifically rank the
individual suggestions. An assessment model trained on this data can then be used to con-
tinuously improve the recommendation system. In contrast to natural language, however,
the number of experts for assembly modeling is significantly smaller, and realization would
presumably be more difficult.

In the context of this thesis, only a limited number of assemblies were available, so that
the trained part type embeddings can only represent a portion of their usage. However,
if the embeddings were trained on a large number of designs, perhaps stemming from
several companies, standard part manufacturers could even extend their catalogs with
embeddings of their parts. In natural language processing, it is already common to share
(word) embeddings trained by language models on a large corpus [51].

Finally, in terms of employing our assistance system to educate inexperienced design-
ers, the recommendations should be taken with a grain of salt. An inherent property of
machine learning is that one cannot rely on predictions being always correct – neither for
training instances nor for unseen inputs. As this lowers trust in the validity of learned
lessons, further steps have to be taken to address this problem: For example, the neural
networks could be extended by a policy layer, i.e., a new final layer to restrict the outputs
to a predefined rule set. The hard-coded rules in turn have to frame what validity of a
part recommendation for a given assembly should mean in the application domain. Alter-
natively, one could integrate means from the research area for explainable AI (XAI) [118],
which focuses on making decisions and behavior of AI models transparent and understand-
able to humans. In the context of part recommendations, this would allow explaining why
a certain part type was predicted given the current assembly. Unfortunately, GNNs have
received little attention from the XAI community so far. Nevertheless, there is promising
work which could be applied to our models: For instance, SubgraphX [162] tries to explain
which subgraph influenced the overall prediction the most. In our case, this maps directly
to determining which existing parts (and combinations) from the current assembly led to
a specific part type recommendation. This would increase comprehensibility of the recom-
mendation and therefore the trust in the system, and would further support designers in
understanding the correlation between parts.

146 CHAPTER 8. SUMMARY AND OUTLOOK

Bibliography

[1] Charu Aggarwal. Recommender Systems: The Textbook. Springer Cham, 2016.

[2] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, et al. Optuna: A
Next-generation Hyperparameter Optimization Framework. In Proceedings of the
25th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, 2019.

[3] Marco Arazzi, Marco Cotogni, Antonino Nocera, and Luca Virgili. Predicting Tweet
Engagement with Graph Neural Networks. In Proceedings of the 2023 ACM Inter-
national Conference on Multimedia Retrieval (ICMR), pages 172–180, 2023.

[4] Volker Arnold, Hendrik Dettmering, Torsten Engel, and Andreas Karcher. Prod-
uct Lifecycle Management beherrschen: Ein Anwenderhandbuch für den Mittelstand.
Springer Berlin, Heidelberg, 2005.

[5] László Babai and Ludik Kučera. Canonical Labelling of Graphs in Linear Average
Time. In 20th Annual Symposium on Foundations of Computer Science (SFCS),
pages 39–46, 1979.

[6] Dzmitry Bahdanau. Neural Machine Translation by Jointly Learning to Align and
Translate. 2014. arXiv preprint. arXiv:1409.0473.

[7] Amir Bakarov. A Survey of Word Embeddings Evaluation Methods. 2018. arXiv
preprint. arXiv:1801.09536v1.

[8] Sambaran Bandyopadhyay, Lokesh Nagalapatti, Saley Vishal Vivek, and Narasimha
Murty. Outlier Resistant Unsupervised Deep Architectures for Attributed Network
Embedding. In Proceedings of the 13th International Conference on Web Search and
Data Mining (WSDM), pages 25–33, 2020.

[9] Stefan Bartsch. Konzepte und Strategien zur Erweiterung eines bestehenden
Normteil- und Bauteilkataloges mit Wissensbasierten Werkzeugen zur Unterstützung
des Konstrukteurs. Bachelor’s thesis, University of Applied Sciences Augsburg, Ger-
many, 2017.

[10] CADENAS GmbH: Adam Beck. 60 Years of CAD Infographic: The History of
CAD since 1957. https://partsolutions.com/60-years-of-cad-infographic-
the-history-of-cad-since-1957/, 2017. Accesed: 09/02/2024.

147

https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1801.09536v1
https://partsolutions.com/60-years-of-cad-infographic-the-history-of-cad-since-1957/
https://partsolutions.com/60-years-of-cad-infographic-the-history-of-cad-since-1957/

148 BIBLIOGRAPHY

[11] Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam Shazeer. Scheduled Sampling
for Sequence Prediction with Recurrent Neural Networks. In Advances in Neural
Information Processing Systems (NeurIPS), volume 28, 2015.

[12] Yoshua Bengio, Réjean Ducharme, and Pascal Vincent. A Neural Probabilistic Lan-
guage Model. In Advances in Neural Information Processing Systems (NeurIPS),
volume 13, 2000.

[13] Ruslan Bernijazov. KI-Marktplatz: Die digitale Plattform für KI im Engineering.
https://its-owl.de/projekte/ki-marktplatz/. Accessed: 08/29/2024.

[14] Jeff Bilmes, Krste Asanovic, Chee-Whye Chin, and Jim Demmel. Using PHiPAC to
Peed Error Back-propagation Learning. In 1997 IEEE International Conference on
Acoustics, Speech, and Signal Processing, volume 5, pages 4153–4156, 1997.

[15] Christopher Bishop. Pattern Recognition and Machine Learning. Springer, 2009.

[16] Béla Bollobás. Modern Graph Theory. Graduate Texts in Mathematics 184. Springer-
Verlag New York, 1 edition, 1998.

[17] Michael Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković. Geometric Deep
Learning: Grids, Groups, Graphs, Geodesics, and Gauges. 2021. arXiv preprint.
arXiv:2104.13478.

[18] Michael Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, et al. Geometric
Deep Learning: Going beyond Euclidean data. IEEE Signal Processing Magazine,
34(4):18–42, 2017.

[19] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann Lecun. Spectral Networks
and Locally Connected Networks on Graphs. In Proceedings of the 2nd International
Conference on Learning Representations (ICLR), 2014.

[20] Hongyun Cai, Vincent Zheng, and Kevin Chen-chuan Chang. A Comprehensive
Survey of Graph Embedding : Problems, Techniques and Applications. IEEE trans-
actions on knowledge and data engineering, 30(9):1616–1637, 2018.

[21] Ricardo Campello, Davoud Moulavi, and Joerg Sander. Density-Based Clustering
Based on Hierarchical Density Estimates. In Advances in Knowledge Discovery and
Data Mining, pages 160–172, 2013.

[22] Augustin Cauchy. Méthode générale pour la résolution des systèmes d’équations
simultanées. Comptes rendus de l’Académie des Sciences, 25(1847):536–538, 1847.

[23] Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly Detection: A
Survey. ACM computing surveys (CSUR), 41(3), 2009.

[24] Angel Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, et al. ShapeNet:
An Information-Rich 3D Model Repository. 2015. arXiv preprint. arXiv:1512.03012.

[25] Xiang Chen, Shuming Gao, Song Guo, and Jing Bai. A Flexible Assembly Retrieval
Approach for Model Reuse. Computer-Aided Design, 44(6):554–574, 2012.

https://its-owl.de/projekte/ki-marktplatz/
https://arxiv.org/abs/2104.13478
https://arxiv.org/abs/1512.03012

BIBLIOGRAPHY 149

[26] Kathy Cheng and Alison Olechowski. Some (Team) Assembly Required: An Anal-
ysis of Collaborative Computer-Aided Design Assembly. In International Design
Engineering Technical Conferences and Computers and Information in Engineering
Conference, 2021.

[27] Parker Hannifin Corporation. Industrial Tube Fittings, Adapters and Equipment:
Catalog 4300 PDF Version. Issue 2023/09, 2023.

[28] James Cunningham, Timothy Simpson, and Conrad Tucker. An Investigation of
Surrogate Models for Efficient Performance-Based Decoding of 3D Point Clouds.
Journal of Mechanical Design, 141(12), 2019.

[29] Patrick Debois, Jez Humble, Joanne Molesky, Eric Shamow, et al. Devops: A Soft-
ware Revolution in the Making. Journal of Information Technology Management,
24(8):3–39, 2011.

[30] Jonathan Dekhtiar, Alexandre Durupt, Matthieu Bricogne, Benoit Eynard, et al.
Deep learning for big data applications in cad and plm – research review, opportu-
nities and case study. Computers in Industry, 100:227 – 243, 2018.

[31] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-
training of Deep Bidirectional Transformers for Language Understanding. 2019.

[32] Genevieve Diesing. How to Attract the Next Generation of Engineers.
https://www.qualitymag.com/articles/96163-how-to-attract-the-next-
generation-of-engineers, 2020. Accessed: 11/01/2020.

[33] Yingtong Dou, Kai Shu, Congying Xia, Philip Yu, et al. User Preference-Aware Fake
News Detection. In Proceedings of the 44th international ACM SIGIR Conference
on Research and Development in Information Retrieval, pages 2051–2055, 2021.

[34] Vijay Prakash Dwivedi and Xavier Bresson. A Generalization of Transformer Net-
works to Graphs. 2020. arXiv preprint. arXiv:2012.09699.

[35] Ann-Christine Falck and Mikael Rosenqvist. What are the obstacles and needs of
proactive ergonomics measures at early product development stages? – An interview
study in five Swedish companies. International Journal of Industrial Ergonomics,
42(5):406–415, 2012.

[36] Matthias Fey and Jan Eric Lenssen. Fast Graph Representation Learning with Py-
Torch Geometric. 2019. arXiv preprint. arXiv:1903.02428.

[37] Paolo Frasconi, Marco Gori, and Alessandro Sperduti. A General Framework for
Adaptive Processing of Data Structures. IEEE Transactions on Neural Networks,
9(5):768–786, 1998.

[38] Thomas Funkhouser, Michael Kazhdan, Philip Shilane, Patrick Min, et al. Modeling
by Example. ACM Transactions on Graphics (TOG), 23(3):652–663, 2004.

[39] Carola Gajek, Alexander Schiendorfer, and Wolfgang Reif. A Recommendation Sys-
tem for CAD Assembly Modeling based on Graph Neural Networks. In European
Conference on Machine Learning and Principles and Practice of Knowledge Discov-
ery in Databases (ECML PKDD), 2022.

https://www.qualitymag.com/articles/96163-how-to-attract-the-next-generation-of-engineers
https://www.qualitymag.com/articles/96163-how-to-attract-the-next-generation-of-engineers
https://arxiv.org/abs/2012.09699
https://arxiv.org/abs/1903.02428

150 BIBLIOGRAPHY

[40] Yaroslav Ganin, Sergey Bartunov, Yujia Li, Ethan Keller, et al. Computer-Aided De-
sign as Language. In Advances in Neural Information Processing Systems (NeurIPS),
volume 34, pages 5885–5897, 2021.

[41] Chen Gao, Yu Zheng, Nian Li, Yinfeng Li, et al. A Survey of Graph Neural Networks
for Recommender Systems: Challenges, Methods, and Directions. ACM Transactions
on Recommender Systems, 1(1), 2023.

[42] Aurélien Géron. Hands-On Machine Learning with Scikit-Learn, Keras, and Tensor-
Flow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media,
Inc., 2nd edition, 2019.

[43] Justin Gilmer, Samuel Schoenholz, Patrick Riley, Oriol Vinyals, et al. Neural Message
Passing for Quantum Chemistry. In Proceedings of the 34th International Conference
on Machine Learning (ICML), pages 1263–1272, 2017.

[44] CADENAS GmbH. 3D Supplier Parts: Each Engineer Wastes 59 work-
ing Days Per Year Searching for and Recreating Supplier Parts. https:
//partsolutions.com/3d-supplier-parts-each-engineer-wastes-59-working-
days-per-year-searching-for-and-recreating-supplier-parts/. Accesed:
02/07/2020.

[45] CADENAS GmbH. GeoSearch: Finding Instead of Searching. https:
//www.cadenas.de/tl_files/cadenas/Downloads/PDF/Produktflyer/EN/
CADENAS_GEOsearch_Brochure_EN.pdf, 2013.

[46] CADENAS GmbH. Research Project KOGNIA: Design Aided by AI. https://
www.cadenas.de/en/news/kognia-design-ai, 2023. Accessed: 04/20/2023.

[47] CADENAS GmbH. 3Dfindit: A Comparison of the Visual Search Op-
tions. https://www.3dfindit.com/en/engiclopedia/the-possibilities-of-
visual-search-in-comparison, 2024. Accessed: 06/03/2024.

[48] CADENAS GmbH. 3Dfindit: Find with a Combination of Search Meth-
ods. https://www.3dfindit.com/en/enterprise/find-with-a-combination-of-
search-methods, 2024. Accessed: 08/26/2024.

[49] CADENAS GmbH. 3Dfindit: The Central Platform for Engineers, Architects, Buyers
& Creative Minds. https://www.3dfindit.com/en/, 2024. Accessed: 06/03/2024.

[50] CADENAS GmbH. Manufacturer certified catalogs with Intelligent Engineer-
ing Data. https://www.cadenas.de/en/products/partsolutions/intelligent-
standards-supplier-part-catalog/available-manufacturer-catalogs, 2024.
Accessed: 08/21/2024.

[51] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,
2016.

[52] Marco Gori, Gabriele Monfardini, and Franco Scarselli. A New Model for Learning
in Graph Domains. In Proceedings of the IEEE International Joint Conference on
Neural Networks, pages 729–734, 2005.

https://partsolutions.com/3d-supplier-parts-each-engineer-wastes-59-working-days-per-year-searching-for-and-recreating-supplier-parts/
https://partsolutions.com/3d-supplier-parts-each-engineer-wastes-59-working-days-per-year-searching-for-and-recreating-supplier-parts/
https://partsolutions.com/3d-supplier-parts-each-engineer-wastes-59-working-days-per-year-searching-for-and-recreating-supplier-parts/
https://www.cadenas.de/tl_files/cadenas/Downloads/PDF/Produktflyer/EN/CADENAS_GEOsearch_Brochure_EN.pdf
https://www.cadenas.de/tl_files/cadenas/Downloads/PDF/Produktflyer/EN/CADENAS_GEOsearch_Brochure_EN.pdf
https://www.cadenas.de/tl_files/cadenas/Downloads/PDF/Produktflyer/EN/CADENAS_GEOsearch_Brochure_EN.pdf
https://www.cadenas.de/en/news/kognia-design-ai
https://www.cadenas.de/en/news/kognia-design-ai
https://www.3dfindit.com/en/engiclopedia/the-possibilities-of-visual-search-in-comparison
https://www.3dfindit.com/en/engiclopedia/the-possibilities-of-visual-search-in-comparison
https://www.3dfindit.com/en/enterprise/find-with-a-combination-of-search-methods
https://www.3dfindit.com/en/enterprise/find-with-a-combination-of-search-methods
https://www.3dfindit.com/en/
https://www.cadenas.de/en/products/partsolutions/intelligent-standards-supplier-part-catalog/available-manufacturer-catalogs
https://www.cadenas.de/en/products/partsolutions/intelligent-standards-supplier-part-catalog/available-manufacturer-catalogs

BIBLIOGRAPHY 151

[53] Mihajlo Grbovic and Haibin Cheng. Real-time Personalization using Embeddings for
Search Ranking at Airbnb. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 311–320, 2018.

[54] Mihajlo Grbovic, Vladan Radosavljevic, Nemanja Djuric, Narayan Bhamidipati,
et al. E-commerce in Your Inbox: Product Recommendations at Scale. In Proceed-
ings of the 21th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 1809–1818, 2015.

[55] Aditya Grover and Jure Leskovec. node2vec: Scalable Feature Learning for Networks.
In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 855–864, 2016.

[56] Xiaojie Guo and Liang Zhao. A Systematic Survey on Deep Generative Models for
Graph Generation. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 45(5):5370–5390, 2022.

[57] Xiaoxiao Guo, Wei Li, and Francesco Iorio. Convolutional Neural Networks for
Steady Flow Approximation. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 481–490, 2016.

[58] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive Representation Learning
on Large Graphs. In Advances in Neural Information Processing Systems (NeurIPS),
volume 30, 2017.

[59] William Hamilton. Graph Representation Learning. Synthesis Lectures on Artificial
Intelligence and Machine Learning. Springer Cham, 2020.

[60] Mark Harris. The top-5 error rate in the ImageNet Large Scale Visual Recognition
Challenge has been rapidly reducing since the introduction of deep neural networks
in 2012. https://developer.nvidia.com/blog/mocha-jl-deep-learning-julia/
image1/, 2015. Accessed: 11/01/2020.

[61] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer Feedforward
Networks are Universal Approximators. Neural networks, 2(5):359–366, 1989.

[62] Ziniu Hu, Yuxiao Dong, Kuansan Wang, Kai-Wei Chang, et al. GPT-GNN: Gen-
erative Pre-Training of Graph Neural Networks. In Proceedings of the 26th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pages
1857–1867, 2020.

[63] Michael Huber. Erweiterung eines Bauteilempfehlungssystems für CAD-
Konstruktionen: kontextbasierte Anpassung der Empfehlungsanzahl mit RNNs und
Transformer Modellen. Bachelor’s thesis, University of Augsburg, Germany, 2024.

[64] Autodesk Incorporation. Autodesk Inventor: 3D Modeling Software for Designers
and Engineers. https://www.autodesk.com/products/inventor/overview, 2024.
Accessed: 06/01/2022.

[65] Fortune Business Insights. 3D-Druck-Marktgröße, Wachstum, Anteil | Globaler
Bericht. https://www.fortunebusinessinsights.com/de/industrie-berichte/
markt-f-r-3d-druck-101902, 2024. Accessed: 08/20/2024.

https://developer.nvidia.com/blog/mocha-jl-deep-learning-julia/image1/
https://developer.nvidia.com/blog/mocha-jl-deep-learning-julia/image1/
https://www.autodesk.com/products/inventor/overview
https://www.fortunebusinessinsights.com/de/industrie-berichte/markt-f-r-3d-druck-101902
https://www.fortunebusinessinsights.com/de/industrie-berichte/markt-f-r-3d-druck-101902

152 BIBLIOGRAPHY

[66] Institute for Software & Systems Engineering, University of Augsburg. KOG-
NIA: Machine-learning-based Recommender System for Mechanical Design. https:
//www.uni-augsburg.de/en/fakultaet/fai/isse/projects/kognia/, 2019. Ac-
cessed: 06/30/2022.

[67] Giuseppe Italiano, Luigi Laura, and Federico Santaroni. Finding Strong Bridges and
Strong Articulation Points in Linear Time. Theoretical Computer Science, 447:74–84,
2012.

[68] Benjamin Jones, Dalton Hildreth, Duowen Chen, Ilya Baran, et al. AutoMate: A
Dataset and Learning Approach for Automatic Mating of CAD Assemblies. ACM
Transactions on Graphics (TOG), 40(6), 2021.

[69] Sergios Karagiannakos. Graph Neural Networks - An overview. https://
theaisummer.com/Graph_Neural_Networks/, 2020. Accessed: 05/07/2022.

[70] Andrea Karnyoto, Chengjie Sun, Bingquan Liu, and Xiaolong Wang. Augmentation
and Heterogeneous Graph Neural Network for AAAI2021-COVID-19 Fake News De-
tection. International Journal of Machine Learning and Cybernetics, 13, 2022.

[71] David Kasik, William Buxton, and David Ferguson. Ten CAD Challenges. IEEE
Computer Graphics and Applications, 25(2):81–92, 2005.

[72] Festo SE & Co. KG. Product Overview 2023. Issue 2023/07, 2023.

[73] Festo Vertrieb GmbH & Co. KG. CAD configuration software Festo Design
Tool 3D. https://www.festo.com/de/en/e/solutions/digital-transformation/
digital-engineering-tools/festo-design-tool-3d-id_330026/, 2024. Ac-
cessed: 06/01/2022.

[74] Schneider Technologies GmbH + Co. KG. Special Machine Construc-
tion. https://www.schneider-technologies.eu/en/mechanical-engineering/
special-machine-construction/, 2024. Accessed: 09/01/2022.

[75] Hwan Kim, Byung Suk Lee, Won-Yong Shin, and Sungsu Lim. Graph Anomaly De-
tection with Graph Neural Networks: Current Status and Challenges. IEEE Access,
10:111820–111829, 2022.

[76] Hyeonwoo Kim, Hyungjoon Kim, Bumyeon Ko, Jonghwa Shim, et al. Two-stage
Person Re-identification Scheme Using Cross-Input Neighborhood Differences. The
Journal of Supercomputing, 78, 2022.

[77] Diederik Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization.
2014. arXiv preprint. arXiv:1412.6980.

[78] Thomas Kipf and Max Welling. Variational Graph Auto-Encoders. 2016.

[79] Thomas Kipf and Max Welling. Semi-Supervised Classification with Graph Convo-
lutional Networks. In Proceedings of the 5th International Conference on Learning
Representations (ICLR), 2017.

[80] Thomas Norbert Kipf. Deep Learning with Graph-Structured Representations. PhD
thesis, University of Amsterdam, Netherlands, 2020.

https://www.uni-augsburg.de/en/fakultaet/fai/isse/projects/kognia/
https://www.uni-augsburg.de/en/fakultaet/fai/isse/projects/kognia/
https://theaisummer.com/Graph_Neural_Networks/
https://theaisummer.com/Graph_Neural_Networks/
https://www.festo.com/de/en/e/solutions/digital-transformation/digital-engineering-tools/festo-design-tool-3d-id_330026/
https://www.festo.com/de/en/e/solutions/digital-transformation/digital-engineering-tools/festo-design-tool-3d-id_330026/
https://www.schneider-technologies.eu/en/mechanical-engineering/special-machine-construction/
https://www.schneider-technologies.eu/en/mechanical-engineering/special-machine-construction/
https://arxiv.org/abs/1412.6980

BIBLIOGRAPHY 153

[81] Jenny Knowdell. The Benefits and Disadvantages of Contract Manufacturing. IQS
Newsroom. Industrial Quick Search, Inc, 2010.

[82] Sebastian Koch, Albert Matveev, Zhongshi Jiang, Francis Williams, et al. ABC:
A Big CAD Model Dataset For Geometric Deep Learning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages
9601–9611, 2019.

[83] Yann LeCun. Generalization and Network Design Strategies. Connections in Per-
spective, 1989.

[84] Carola Lenzen, Vinzenz Löffel, and Wolfgang Reif. Handling Anomalies in CAD
Assemblies: Detecting Anomalous and Suggesting Alternative Parts. In International
Conference on Computational Science and Computational Intelligence (CSCI), 2024.

[85] Carola Lenzen and Wolfgang Reif. Localized Recommendation in Assembly Model-
ing: Employing GNNs for Targeted Part Placement. In International Conference on
Machine Learning and Applications (ICMLA), 2024.

[86] Carola Lenzen, Alexander Schiendorfer, and Wolfgang Reif. Graph Machine Learning
for Assembly Modeling. In Learning on Graphs Conference (LoG), 2022.

[87] Wei Li, Justin Matejka, Tovi Grossman, Joseph Konstan, et al. Design and Eval-
uation of a Command Recommendation System for Software Applications. ACM
Transactions on Computer-Human Interaction (TOCHI), 18(2), 2011.

[88] Yujia Li, Oriol Vinyals, Chris Dyer, Razvan Pascanu, et al. Learning Deep Generative
Models of Graphs. 2018. arXiv preprint. arXiv:1803.03324.

[89] Fengqi Liang, Huan Zhao, Yuhan Quan, Wei Fang, et al. Customizing Graph Neural
Network for CAD Assembly Recommendation. In Proceedings of the 30th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining (KDD), pages 1746–
1757, 2024.

[90] Renjie Liao, Yujia Li, Yang Song, Shenlong Wang, et al. Efficient Graph Genera-
tion with Graph Recurrent Attention Networks. In Advances in Neural Information
Processing Systems (NeurIPS), volume 32, 2019.

[91] Katia Lupinetti, Jean-Philippe Pernot, Marina Monti, and Franca Giannini. Content-
based CAD Assembly Model Retrieval: Survey and Future Challenges. Computer-
Aided Design, 113:62–81, 2019.

[92] Xiaoxiao Ma, Jia Wu, Shan Xue, Jian Yang, et al. A Comprehensive Survey on
Graph Anomaly Detection With Deep Learning. IEEE Transactions on Knowledge
and Data Engineering, 35(12):12012–12038, 2021.

[93] Sasu Mäkinen, Henrik Skogström, Eero Laaksonen, and Tommi Mikkonen. Who
Needs MLOps: What Data Scientists Seek to Accomplish and How Can MLOps
Help? In IEEE/ACM 1st Workshop on AI Engineering - Software Engineering for
AI (WAIN), pages 109–112, 2021.

https://arxiv.org/abs/1803.03324

154 BIBLIOGRAPHY

[94] Julian McAuley, Christopher Targett, Qinfeng Shi, and Anton Van Den Hengel.
Image-Based Recommendations on Styles and Substitutes. In Proceedings of the 38th
International ACM SIGIR Conference on Research and Development in Information
Retrieval, pages 43–52, 2015.

[95] Leland McInnes, John Healy, and James Melville. UMAP: Uniform Manifold
Approximation and Projection for Dimension Reduction. 2020. arXiv preprint.
arXiv:1802.03426.

[96] Tomáš Mikolov, Greg Corrado, Kai Chen, and Jeffrey Dean. Efficient Estimation of
Word Representations in Vector Space. 2013. arXiv preprint. arXiv:1301.3781v3.

[97] Tomáš Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, et al. Distributed Repre-
sentations of Words and Phrases and their Compositionality. In Advances in Neural
Information Processing Systems (NeurIPS), volume 26, 2013.

[98] Erxue Min, Runfa Chen, Yatao Bian, Tingyang Xu, et al. Transformer for Graphs:
An Overview from Architecture Perspective. 2022. arXiv preprint. arXiv:
2202.08455.

[99] Pushkar Mishra, Aleksandra Piktus, Gerard Goossen, and Fabrizio Silvestri. Node
Masking: Making Graph Neural Networks Generalize and Scale Better. 2020. arXiv
preprint. arXiv:2001.07524.

[100] Kaichun Mo, Shilin Zhu, Angel Chang, Li Yi, et al. PartNet: A Large-scale Bench-
mark for Fine-grained and Hierarchical Part-level 3D Object Understanding. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pages 909–918, 2019.

[101] Christopher Morris, Martin Ritzert, Matthias Fey, William Hamilton, et al. Weisfeiler
and Leman Go Neural: Higher-order Graph Neural Networks. In Proceedings of the
33rd Conference on Artificial Intelligence (AAAI), pages 4602–4609, 2019.

[102] Luis Müller, Mikhail Galkin, Christopher Morris, and Ladislav Rampášek. Attending
to Graph Transformers. 2023. arXiv preprint. arXiv:2302.04181.

[103] Nicola Müller, Pablo Sánchez, Jörg Hoffmann, Verena Wolf, et al. Comparing State-
of-the-art Graph Neural Networks and Transformers for General Policy Learning.
2024.

[104] Kevin Murphy. Probabilistic Machine Learning: An introduction. MIT Press, 2022.

[105] Lalit Narayan, Mallikarjuna Rao, and Mohammed Sarcar. Computer Aided Design
and Manufacturing. PHI Learning Pvt. Ltd., 2008.

[106] Maximilian Nickel, Kevin Murphy, Volker Tresp, and Evgeniy Gabrilovich. A Review
of Relational Machine Learning for Knowledge Graphs. Proceedings of the IEEE,
104(1):11–33, 2015.

[107] Wilson Nyemba. Computer Aided Design: Engineering Design and Modeling using
AutoCAD. CRC Press, 2022.

https://arxiv.org/abs/1802.03426
https://arxiv.org/abs/1301.3781v3
https://arxiv.org/abs/2202.08455
https://arxiv.org/abs/2202.08455
https://arxiv.org/abs/2001.07524
https://arxiv.org/abs/2302.04181

BIBLIOGRAPHY 155

[108] OpenAI. Introducing ChatGPT. https://openai.com/index/chatgpt/, 2022. Ac-
cesed: 04/28/2023.

[109] Shikang Pang, Chunjing Xiao, Wenxin Tai, Zhangtao Cheng, et al. Graph Anomaly
Detection with Diffusion Model-Based Graph Enhancement. Proceedings of the AAAI
Conference on Artificial Intelligence, 38(21):23610–23612, 2024.

[110] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, et al. PyTorch: An Im-
perative Style, High-Performance Deep Learning Library. In Advances in Neural
Information Processing Systems (NeurIPS), volume 32, 2019.

[111] Jeffrey Pennington, Richard Socher, and Christopher Manning. Glove: Global Vec-
tors for Word Representation. In Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP), pages 1532–1543, 2014.

[112] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. DeepWalk: Online Learning of
Social Representations. In Proceedings of the 20th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 701–710, 2014.

[113] Jiantao Pu, Yagnanarayanan Kalyanaraman, Subramaniam Jayanti, Karthik Ra-
mani, et al. Navigation and Discovery in 3D CAD Repositories. IEEE Computer
Graphics and Applications, 27(4):38–47, 2007.

[114] Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving
Language Understanding by Generative Pre-Training, 2018.

[115] Ladislav Rampášek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, et al.
Recipe for a General, Powerful, Scalable Graph Transformer. In Advances in Neural
Information Processing Systems (NeurIPS), volume 35, pages 14501–14515, 2022.

[116] Nikhila Ravi, Jeremy Reizenstein, David Novotný, Taylor Gordon, et al. Accelerating
3D Deep Learning with PyTorch3D. 2020. arXiv preprint. arXiv:2007.08501.

[117] Frank Rosenblatt. Perceptions and the Theory of Brain Mechanisms. Spartan Books,
1961.

[118] Stuart Russel and Peter Norvig. Artificial Intelligence: A Modern Approach. Pearson,
4th edition, 2022.

[119] Ideen Sadrehaghighi. Computer Aided Design (CAD), 2022.

[120] Fathi Salem. Recurrent Neural Networks: From Simple to Gated Architectures.
Springer Cham, 2022.

[121] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, et al. The
Graph Neural Network Model. IEEE Transactions on Neural Networks, 20(1):61–80,
2009.

[122] Jürgen Schmidhuber and Sepp Hochreiter. Long Short-Term Memory. Neural Com-
putation, 9(8):1735–1780, 1997.

[123] Ludwig Schneider. A Recommendation System for CAD Assembly Modeling Based
on Graph Transformers. Master’s thesis, University of Augsburg, Germany, 2024.

https://openai.com/index/chatgpt/
https://arxiv.org/abs/2007.08501

156 BIBLIOGRAPHY

[124] Stephen Schoonmaker. The CAD Guidebook: A Basic Manual for Understanding
and Improving Computer-Aided Design. CRC Press, 2002.

[125] Dominik Schott. Intelligente Ähnlichkeitsanalyse von CAD Modellen. Master’s the-
sis, University of Augsburg, Germany, 2020.

[126] Florian Schroff, Dmitry Kalenichenko, and James Philbin. FaceNet: A Unified Em-
bedding for Face Recognition and Clustering. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pages 815–823,
2015.

[127] Matthew Schultz and Thorsten Joachims. Learning a Distance Metric from Relative
Comparisons. In Advances in Neural Information Processing Systems (NeurIPS),
volume 16, 2003.

[128] Nino Shervashidze, Pascal Schweitzer, Erik Jan Van Leeuwen, Kurt Mehlhorn,
et al. Weisfeiler-Lehman Graph Kernels. Journal of Machine Learning Research,
12(9):2539–2561, 2011.

[129] Chence Shi, Minkai Xu, Zhaocheng Zhu, Weinan Zhang, et al. GraphAF: A Flow-
based Autoregressive Model for Molecular Graph Generation. 2020. arXiv preprint.
arXiv:2001.09382.

[130] Marina Sokolova and Guy Lapalme. A Systematic Analysis of Performance Measures
for Classification Tasks. Information Processing & Management, 45(4):427–437, 2009.

[131] Alessandro Sperduti and Antonina Starita. Supervised Neural Networks for the
Classification of Structures. IEEE Transactions on Neural Networks, 8(3):714–735,
1997.

[132] Sakhinana Sagar Srinivas, Rajat Kumar Sarkar, and Venkataramana Runkana. Hy-
pergraph Learning Based Recommender System for Anomaly Detection, Control and
Optimization. In IEEE International Conference on Big Data, 2022.

[133] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, et al. Dropout:
A Simple Way to Prevent Neural Networks from Overfitting. Journal of Machine
Learning Research, 15(1):1929–1958, 2014.

[134] Yunlei Sun, Kangping Liu, Yucong Li, and Dalin Zhang. Towards an Open-
Source Industry CAD: A Review of System Development Methods. Tehnički vjesnik,
29(6):2127–2136, 2022.

[135] University of Augsburg Teresa Grunwald. Mit KI schneller zum fertigen Pro-
dukt. https://www.uni-augsburg.de/de/campusleben/neuigkeiten/2023/01/31/
mit-ki-schneller-zum-fertigen-produkt/, 2023. Accessed: 02/01/2023.

[136] Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong,
et al. Understanding Over-Squashing and Bottlenecks on Graphs via Curvature.
2021. arXiv preprint. arXiv:2111.14522.

[137] Grigorios Tsoumakas and Ioannis Katakis. Multi-label classification: An overview.
International Journal of Data Warehousing and Mining (IJDWM), 3(3), 2007.

https://arxiv.org/abs/2001.09382
https://www.uni-augsburg.de/de/campusleben/neuigkeiten/2023/01/31/mit-ki-schneller-zum-fertigen-produkt/
https://www.uni-augsburg.de/de/campusleben/neuigkeiten/2023/01/31/mit-ki-schneller-zum-fertigen-produkt/
https://arxiv.org/abs/2111.14522

BIBLIOGRAPHY 157

[138] André Krischke und Helge Röpcke. Graphen und Netzwerktheorie. Hanser Fach-
buchverlag, 2015.

[139] Laurens Van der Maaten and Geoffrey Hinton. Visualizing Data using t-SNE. Journal
of Machine Learning Research, 9(11), 2008.

[140] Flavian Vasile, Elena Smirnova, and Alexis Conneau. Meta-Prod2Vec - Product
Embeddings Using Side-Information for Recommendation. In Proceedings of the
10th ACM Conference on Recommender Systems, pages 225–232, 2016.

[141] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, et al. Attention is
All you Need. In Advances in Neural Information Processing Systems (NeurIPS),
volume 30, 2017.

[142] Verein Deutscher Ingenieure (VDI). Knowledge Management for Engineering - Fun-
damentals, Concepts, Approach. Engl. VDI-Gesellschaft Produkt- und Prozessgestal-
tung, 2009.

[143] Petar Veličković. The Resurgence of Structure in Deep Neural Networks. PhD thesis,
University of Cambridge, England, 2019.

[144] Petar Veličković, Arantxa Casanova, Pietro Liò, Guillem Cucurull, et al. Graph
Attention Networks. In Proceedings of the 6th International Conference on Learning
Representations (ICLR), 2018.

[145] Hongwei Wang, Jia Wang, Jialin Wang, Miao Zhao, et al. GraphGAN: Graph Rep-
resentation Learning With Generative Adversarial Nets. Proceedings of the AAAI
Conference on Artificial Intelligence, 32(1), 2018.

[146] Minjie Wang, Lingfan Yu, Da Zheng, Quan Gan, et al. Deep Graph Library: Towards
Efficient and Scalable Deep Learning on Graphs. In ICLR Workshop on Represen-
tation Learning on Graphs and Manifolds, 2019.

[147] Boris Weisfeiler and Andrei Leman. The Reduction of a Graph to Canonical Form
and the Algebra Which Appears Therein. nti, Series, 2(9):12–16, 1968.

[148] Paul Werbos. Applications of Advances in Nonlinear Sensitivity Analysis. In System
Modeling and Optimization. Springer, 1982.

[149] Sigurd Wichter. Wissenstransfer zwischen Experten und Laien: Umriss einer Trans-
ferwissenschaft. Lang, 2001.

[150] Karl Willis, Yewen Pu, Jieliang Luo, Hang Chu, et al. Fusion 360 Gallery: A
Dataset and Environment for Programmatic CAD Construction from Human De-
sign Sequences. ACM Transactions on Graphics (TOG), 40(4), 2021.

[151] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, et al. Transformers:
State-of-the-Art Natural Language Processing. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Processing (EMNLP), pages 38–45, 2020.

[152] David Wolpert. The Lack of A Priori Distinctions Between Learning Algorithms.
Neural Computation, 8(7):1341–1390, 1996.

158 BIBLIOGRAPHY

[153] Rundi Wu, Chang Xiao, and Changxi Zheng. DeepCAD: A Deep Generative Network
for Computer-Aided Design Models. In Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), pages 6772–6782, 2021.

[154] Shiwen Wu, Fei Sun, Wentao Zhang, Xu Xie, et al. Graph Neural Networks in
Recommender Systems: A Survey. ACM Computing Surveys, 55(5), 2022.

[155] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, et al. A Comprehen-
sive Survey on Graph Neural Networks. IEEE transactions on neural networks and
learning systems, 32(1):4–24, 2020.

[156] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, et al. Show, Attend and Tell:
Neural Image Caption Generation with Visual Attention. In Proceedings of the 32nd
International Conference on Machine Learning (ICML), pages 2048–2057, 2015.

[157] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How Powerful are
Graph Neural Networks? 2018. arXiv preprint. arXiv:1810.00826.

[158] Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, et al. Do Transformers
Really Perform Badly for Graph Representation? In Advances in Neural Information
Processing Systems (NeurIPS), volume 34, pages 28877–28888, 2021.

[159] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, et al. Graph Convo-
lutional Neural Networks for Web-Scale Recommender Systems. In Proceedings of
the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pages 974–983, 2018.

[160] Soyoung Yoo, Sunghee Lee, Seongsin Kim, Kwang Hyeon Hwang, et al. Integrating
Deep Learning into CAD/CAE System: Generative Design and Evaluation of 3D
Conceptual Wheel. Structural and Multidisciplinary Optimization, 64(4):2725–2747,
2021.

[161] Jiaxuan You, Rex Ying, Xiang Ren, William Hamilton, et al. GraphRNN : Generat-
ing Realistic Graphs with Deep Auto-regressive Models. In Proceedings of the 35th
International Conference on Machine Learning (ICML), pages 5708–5717. PMLR,
2018.

[162] Hao Yuan, Haiyang Yu, Jie Wang, Kang Li, et al. On Explainability of Graph
Neural Networks via Subgraph Explorations. In Proceedings of the 38th International
Conference on Machine Learning (ICML), pages 12241–12252, 2021.

[163] Manzil Zaheer, Satwik Kottur, Siamak Ravanbhakhsh, Barnabás Póczos, et al. Deep
Sets. In Advances in Neural Information Processing Systems (NeurIPS), volume 30,
2017.

[164] Fengbin Zhang, Haoyi Fan, Ruidong Wang, Zuoyong Li, et al. Deep Dual Support
Vector Data Description for Anomaly Detection on Attributed Networks. Interna-
tional Journal of Intelligent Systems, 37(2):1509–1528, 2022.

[165] Hao Zhang, Mufei Li, Minjie Wang, and Zheng Zhang. Understand Graph Atten-
tion Network. https://www.dgl.ai/blog/2019/02/17/gat.html, 2022. Accessed:
04/06/2022.

https://arxiv.org/abs/1810.00826
https://www.dgl.ai/blog/2019/02/17/gat.html

BIBLIOGRAPHY 159

[166] Shijie Zhang, Hongzhi Yin, Tong Chen, Quoc Viet Nguyen Hung, et al. GCN-Based
User Representation Learning for Unifying Robust Recommendation and Fraudster
Detection. In Proceedings of the 43rd international ACM SIGIR Conference on Re-
search and Development in Information Retrieval, pages 689–698, 2020.

[167] Zhibo Zhang, Prakhar Jaiswal, and Rahul Rai. FeatureNet: Machining Feature
Recognition based on 3D Convolution Neural Network. Computer-Aided Design,
101:12–22, 2018.

[168] Lingxiao Zhao and Leman Akoglu. On Using Classification Datasets to Evalu-
ate Graph Outlier Detection: Peculiar Observations and New Insights. Big Data,
11(3):151–180, 2023.

[169] Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang, et al. Graph Neural Networks:
A Review of Methods and Applications. AI open, 1:57–81, 2020.

[170] Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, and othersi. Beyond Ho-
mophily in Graph Neural Networks: Current Limitations and Effective Designs. In
Advances in Neural Information Processing Systems (NeurIPS), volume 33, pages
28877–28888, 2020.

[171] Rong Zhu, Kun Zhao, Hongxia Yang, Wei Lin, et al. AliGraph: A Comprehensive
Graph Neural Network Platform. Proceedings of the VLDB Endowment, 12(12):2094–
2105, 2019.

	Introduction
	Challenges in Assembly Modeling
	Goals of this Thesis
	Research Project KOGNIA
	Scientific Contribution
	Thesis Outline

	Computer-Aided Design Foundations
	Part Modeling
	Assembly Modeling
	Enhancing Reusability in Assembly Modeling via Part Catalogs

	Data and Machine Learning Foundations
	Basic Concepts of Machine Learning
	Artificial Neural Networks
	Deep Learning

	The Graph Data Structure
	Graph Machine Learning
	Categorization of Learning Tasks on Graphs
	Graph Neural Networks

	Embedding Discrete Objects
	Learning Embeddings
	Word2Vec

	Assembly Data
	Representing CAD Assemblies as Graphs
	Assembly Datasets
	Unsupervised Pretraining of Part Embeddings
	Experimental Results
	Further Uses for Trained Embeddings
	Related Work

	Part Recommendation in Assembly Modeling
	Generating Recommendation Instances from Assemblies
	Baselines and Upper Bound
	Experimental Setup
	Experimental Results
	Digressions
	Pretraining of Part Recommendation Models
	Graph Transformers for Part Recommendation
	Context-Specific Number of Recommendations

	Related Work

	Localized Recommendation By Targeted Part Placement
	Generating Instances From Assemblies
	Variant I: Recommending Part Types for User-Given Extension Point
	Experimental Setup
	Experimental Results

	Variant II: Recommending Extension Point and Part Type
	Modeling Approach (1): First Predicting Part Type, Afterward Extension Point
	Modeling Approach (2): First Predicting Extension Point, Afterward Part Type
	Experimental Setup
	Experimental Results

	Related Work

	Handling Anomalies in Assemblies
	Generating Synthetic Anomalous Assemblies
	Detecting Anomalous Parts in Assemblies
	Experimental Setup
	Experimental Results

	Recommending Alternative Parts
	Experimental Setup
	Experimental Results

	Related Work

	Summary and Outlook
	Summary
	Lessons Learned
	Outlook

	Bibliography

