
Universität Augsburg

KABCROMUNGSHO0

Embedding CTL∗ in an Extension to

Interval Temporal Logic (ITL)

F. Ortmeier, M. Balser, A. Dunets, S. Bäumler

Report 2008-16 2008

Institut für Informatik

D-86135 Augsburg

Copyright c© F. Ortmeier, M. Balser, A. Dunets, S. Bäumler
Institut für Informatik
Universität Augsburg
D–86135 Augsburg, Germany
http://www.Informatik.Uni-Augsburg.DE
— all rights reserved —

Embedding CTL∗ in an Extension to Interval
Temporal Logic (ITL)

Frank Ortmeier, Michael Balser, Andriy Dunets, and Simon Bäumler

Lehrstuhl für Softwaretechnik und Programmiersprachen,
Universität Augsburg, D-86135 Augsburg

{ortmeier, balser, dunets}@informatik.uni-augsburg.de

Abstract. In this paper we present an embedding of the most common
branching time logics (CTL/CTL∗) in an extension of interval temporal
logic (ITL+). The significance of this result is threefold: first the theo-
retical aspect is, that branching time and linear time are not so much
different. A more practical aspect is that the intuitive interactive proof
method of symbolic execution of ITL+ can be used for branching time
logics as well. The opposite direction is interesting as well, for a subset
of finite state systems, interactive verification of ITL+ formulas can be
translated into a model checking problem.
The proof presented in this paper has been done with the interactive
theorem prover KIV. So this contribution can also be seen as a case
study on reasoning about temporal logics in an interactive verification
environment.

Key words: temporal logics, CTL, ITL+, interactive verification, model
checking

1 Introduction

One important domain of application of formal verification techniques is the
analysis of safety critical systems. During the last years several well-known tech-
niques of safety analysis have been formalized and have been applied to numer-
ous domains like railways, avionics, space systems or automation control. A lot
of these techniques base their formal semantics on Computational Tree Logic
(CTL) and use state charts for system description. In most cases the system
models are finite state abstractions of the real world. This allows to use model
checking techniques and get automatic verification results. This is a great help
for many problems.

On the other hand finite state abstraction (as any other kind of abstraction
does) often raises the question of soundness of an abstraction. This becomes
most clearly visible, if continuous variables of the physical world are abstracted

to discrete values. Consider for example an autonomous railroad crossing system.
The idea of this system is that the train and the crossing autonomously control
the lowering and raising of the bars (of the crossing) without the supervision of
a central control in the station. An obvious hazard is, that the train passes the
crossing, while the bars are open. A trivial formalization would be:

Train.Pos = Crossing.Pos∧ ¬Crossing.Bars = Open

Closer examination shows, that the formalization of this property is adequate
only, if the position (and speed) of the train has not been discretized. If a finite
state abstraction (i.e. the position of the train is represented by integer values)
is used as system model, the hazard must be formalized as follows:

Train.Pos ≤ Crossing.Pos∧ (Train.Pos+ Train.Speed) > Crossing.Pos∧

∧ ¬Crossing.Bars = Open

An elaborate description and analysis of this example with formal methods
may be found in [10]. But even this short glance shows the problems that finite
state abstractions can bring. At the same time model checking is a great help
in industrial praxis and should be possible as well. Because of this it will be
very useful if the proof obligations, which have been proven correct for finite
state systems can be proven correct for a refined infinite state system. So in
short words: We would like to apply model checking if possible and interactive
verification if necessary.

For an efficient combination switching between formalism must be easy with
respect to transforming a) the system model and b) the proof obligation. If this
can be achieved, then this combined strategy gives the best tradeoff between
effort, time and significance of the analysis.

For interactive verification, our method of choice is symbolic execution. Sym-
bolic execution is a well known approach for the verification of sequential pro-
grams [5, 6] and gives intuitive proofs which can be automated to a large extent.
In [1], we have proposed a calculus to also apply symbolic execution to verify
temporal properties of concurrent systems. The properties are expressed in in-
terval temporal logic (ITL), systems can be described using parallel programs
or state charts [11]. A implementation of the calculus for ITL+ is part of the
KIV system [6]. For model checking, we use SMV [8] as we have obtained the
best results in terms of system size with this model checker. For this model
checker temporal properties are expressed in concurrent tree logic (CTL) and
system specifications are written as finite automata. State charts with Statem-
ate semantics [2] can be directly used as ITL+ specifications for the interactive
theorem prover KIV [12]. This – and the in this paper presented theorem to
translate CTL into ITL+ and vice versa – allows to efficiently combine model
checking and interactive verification.

Assume you want to prove an ITL+ property ϕ for a state chart system
SC . In the practice of interactive verification many attempts fail because ϕ

does not describe the intended property or because the system SC has not

been modeled correctly. The central theorem of this paper allows to evaluate a
translation ϕ̃ (in CTL) of an ITL+-formula ϕ for a finite abstraction S̃C of the
system SC by model checking. The abstraction may in many case be found very
easily, because many state chart models can be translated canonically into finite
automata models (like those known from SMV [8] for example). It is then only
a “push-the-button” effort to evaluate different ϕ̃. This helps a lot for finding
the intended property ϕ, which can then be verified for SC.

The opposite approach benefits as well. If a finite state system SYS has been
model checked for a CTL property ϕ. Then this system can be directly described
by a state chart model SC (if the system is given in finite automata language –
like i.e. SMV input language – only syntactical conversion are necessary). The
model SC can then be extended to more adequately describe reality. In particular
SC may become infinite state. The property ϕ may then be verified interactively
for the infinite state system by translating ϕ into ITL+. This approach may be
used to either verify correctness of an abstraction or to increase significance of
the verification. It is our experience, that both directions are frequently used in
the practice of verification.

Our goal is a combination of interactive verification with symbolic execu-
tion and model checking. Model checking is most efficient for CTL which is a
branching time logic. On the other hand, symbolic execution is currently only
applicable to a linear time logic (in our case ITL), and there seems to be a fun-
damental problem to apply symbolic execution for CTL in general. However, we
have been able to enrich ITL with two operators

〈ϕ〉 ψ and [ϕ] ψ

in order to express branching time problems. The first operator states that there
is a path satisfying ϕ which also satisfies ψ. The second operator states that all
paths satisfying ϕ also satisfy ψ. These operators are inspired by dynamic logic
(DL) and we have been able to define a calculus for symbolic execution of these
operators. We here refer to the extended logic as ITL+. An overview of the logic
and the calculus may be found in [1].

There is, however, a subtle – but significant – difference between these oper-
ators and the branching time operators E ϕ and A ϕ of CTL. In this paper, we
focus on this difference and show how to translate model based CTL properties
to ITL+. As a consequence, we will be able to apply symbolic execution to the
interactive verification of CTL properties. This novel approach is – in our opin-
ion – by far easier and more flexible than the use of CTL tableau calculi such
as [7, 13]. Thus, the theoretical result of this paper is of practical significance.

All presented proofs have been done in the interactive verification environ-
ment KIV. for this we had to build an algebraic specification of i) the logic
ITL+, the logic CTL, Kripke-structures and linear-time structures. As a result
we could prove, that our embedding is correct with respect to the semantics of
CTL and ITL+. So the here presented work can also be seen as an interesting
case study on reasoning about temporal logics and equivalence between logics in
general. An HTML-export of the proofs can be downloaded from the web-site of
the authors.

In Sect. 2 and 3 we give brief introductions to the logics CTL and ITL+.
Section 4 describes how to translate CTL properties to ITL+, while in Sect. 5
an outline of the proof is presented and our experiences with KIV are shown in
Sect. 6. Sect. 7 comprises some future work and limitations. The results of this
paper are summarized in Section 8.

2 CTL∗

We will briefly define syntax and semantics of CTL∗. These definitions are stan-
dard in computer science. In particular we use the notations of [3] and [4].

Kripke structure

Let AP be a finite set of atomic propositions. We define the semantics of CTL∗

on a Kripke structure K. A Kripke structure K = (S,R,L) is a 3-tuple of a set of
states S, a total transition relation R ⊆ S × S and a labeling function L : S →
2AP which labels states with atomic propositions. We also define the infinite
paths of a Kripke structure: p = (s0, s1, ...) ∈ K, where ∀i ≥ 0 : (si, si+1) ∈ R

and |p| = ∞. We write p[i] to denote the ith state si of path p and pi for the
suffix-path starting with the ith state.

Syntax

To define the syntax of CTL∗ it is convenient to introduce the notion of state for-
mulas Φ and path formulas θ. We define these two inductively with the following
BNF grammar.

Φ ::= α | Φ∧ Φ | ¬ Φ | A θ with α ∈ AP

θ ::= Φ | θ∧ θ | ¬ θ | θ U θ | X θ

The set of all state formulas forms the logic CTL∗. Other operators are
derived like G (globally), F (eventually) or E (there exists a path). The logic
CTL is a true subset of CTL∗. In CTL, every temporal operator (U, X) must
be combined with a path operator (A or E).

Semantics

Definition 1. (Semantics of CTL∗) Given a Kripke structure K, a state s ∈ S

and a path p ∈ K. A state formula Φ evaluates to K, s |=C Φ and a path formulas
θ evaluates to K, p |=C θ according to the definitions of Table 1.

3 ITL+

ITL+ is an extension of interval temporal logic (ITL) [9]. This logic and a corre-
sponding proof calculus is implemented in the interactive theorem prover KIV.

atom K, s |=C α iff α ∈ L(s)
neg-state K, s |=C ¬ Φ iff K, s 6|=C Φ

con-state K, s |=C Φ1∧ Φ2 iff K, s |=C Φ1 and K, s |=C Φ2

allpath K, s |=C A θ iff forall p = (s, s1, ...) ∈ K : K, p |=C θ

pathstate K, p |=C Φ iff K, p[0] |=C Φ

neg-path K, p |=C ¬ θ iff K, p 6|=C θ

con-path K, p |=C θ1∧ θ2 iff K, p |=C θ1 and K, p |=C θ2
until K, p |=C θ1 U θ2 iff exists i : K, pi |=C θ2 and forall j < i : K, pj |=C θ1
next K, p |=C X θ iff K, p1 |=C θ

Table 1. Semantics of CTL∗

As an important addition to ITL, ITL+ also contains modal operators 〈ϕ〉 ψ
and [ϕ] ψ which are similar to the quantifiers of CTL∗. In this paper, we present
only a subset of the logic. For the full definition of ITL+ including quantification
of dynamic variables, parallel programs with interleaving and nondeterministic
choice, we refer to [1].

Intervals

In ITL+, temporal formulas are evaluated on linear sequences of states – often
called traces. States σ are defined as valuations of variables of an underlying
predicate logic PL. σ(var) selects the value of variable var in state σ. Similar
to Interval Temporal Logic, we explicitly consider finite and infinite traces and
therefore also refer to a sequence of states as an interval.

A selection of additional functions concerning intervals are helpful in the
following. Consider a finite or infinite interval I := (σ0, . . .). Then I[i] := σi
selects the ith state. I|i := (σi, . . .) is a postfix, I|i := (σ0, . . . , σi) a prefix, and
I|ji := (σi, . . . , σj) an infix of I.

Syntax

Let ϕPL be a first order formula. Formulas ϕ of ITL+ are defined by the following
BNF grammar:

ϕ ::= ϕPL | ¬ ϕ | ϕ → ϕ | ϕ; ϕ | step | ϕ until ϕ | [ϕ] ϕ

Semantics

Definition 2. (Semantics of ITL+) Given an interval I, a formula ϕ evaluates
to I |=I ϕ. The semantics of the operators are defined as in Table 2.

A formula ϕ is called valid (abbreviated by |=I ϕ), if I |=I ϕ for all I.

The chop operator ϕ;ψ is a special operator of Interval Temporal Logics. It
corresponds to sequential composition of programs and is the key to semantically
treat programs (and also state charts) as temporal formulas as proposed in [1, 12].

atom I |=I ϕPL iff I[0] |=PL ϕPL

neg I |=I ¬ ϕ iff I 6|=I ϕ

con I |=I ϕ∧ ψ iff I |=I ϕ and I |=I ψ

chop I |=I ϕ; ψ iff there exists n ≤ |I| with I|n |=I ϕ and I|n |=I ψ

or |I| = ∞ and I |=I ϕ

step I |=I step iff |I| = 1
until I |=I ϕ until ψ iff there exists n ≤ |I|

with I|n |=I ψ

and I|m |=I ϕ forall 0 ≤ m < n

box I |=I [ϕ] ψ iff forall I0 with I0[0] = I[0]
holds I0 |=I ϕ ⇒ I0 |=I ψ

Table 2. Semantics of a selection of ITL+ operators

Most of the LTL operators can be derived in ITL+ with the exception of
until, which is defined as a basic operator. Further LTL operators are defined as
abbreviations. The eventually operator 3 ϕ :≡ true until ϕ, the always operator
2 ϕ :≡ ¬ 3 ¬ ϕ. Because intervals can also be finite, the next operator comes
in two flavors: the strong next ◦ ϕ :≡ step; ϕ requires that there is a next step
satisfying ϕ, the weak next • ϕ :≡ ¬ ◦ ¬ ϕ only states that if there is a next
step, it must satisfy ϕ.

The modal operators [.] . and 〈.〉 . can be used to quantify intervals; while
[ϕ] ψ states that all intervals satisfying ϕ also satisfy ψ, the dual operator
〈ϕ〉 ψ :≡ ¬ [ϕ] ¬ ψ requires that there exists an interval satisfying both for-
mulas.

Example 1. ITL+ modal operators
Consider a trivial nondeterministic state transition system depicted on the left
hand side of Figure 1. This system can be canonically described by the ITL+

formula ψ on the right hand side of Figure 1.

1 2

safe
ψ ≡ 2

0

B

B

B

B

@

0

@

state = 1∧ ◦ state = 1
∨ state = 1∧ ◦ state = 2
∨ state = 2∧ ◦ state = 2

1

A

∧ (state = 1 → ¬ safe)
∧ (state = 2 → safe)

1

C

C

C

C

A

Fig. 1. Example state transition system

A typical universal verification problem is:

|=I [ψ] ◦ 2 safe

This property reads: “Every execution of system ψ satisfies that starting with
the next state, safe is always satisfied.” This property does not hold for the given

system. However the existential property

|=I 〈ψ〉 ◦ 2 safe

does hold. Because there always exists a path, such that starting with the next
state always safe is satisfied. Note, that in this example no initial state is defined.
So the formula is true only if it is true for all intervals and thus for all initial
states.

4 Embedding CTL∗ in ITL+

In order to define an embedding of CTL∗ into ITL+, we must achieve the follow-
ing: (i) the model which is used to evaluate CTL∗ formulas must be translated
into an equivalent ITL+ formula and (ii) the temporal CTL∗ operators must be
replaced by equivalent ITL+ operators and finally (iii) CTL∗ path quantifiers
(A and E) must be expressed by the means of ITL+ modal operators.

4.1 Modeling the Kripke structure

We first construct an ITL+ formula ψK to represent a Kripke structure K =
(S,R,L). We call the set of atomic propositions AP, which are used in the
labeling function L. We define one (dynamic) variable state for the set of states
S.

dom(state) = S

For every atomic proposition α ∈ AP we define a (dynamic) boolean variable
vα. This allows to encode a Kripke structure K = (S,R,L) in the following ITL+

formula ψK:

ψK :≡ 2

∨

(s,t)∈R

state = s∧ ◦ state = t

∧
∧

s∈S

(state = s →
∧

α∈L(s)

vα = true∧
∧

α/∈L(s)

vα = false)

The first line of the above formula assures, that traces of ψK are only made
of transitions in R. The second line preserves the labeling (of function L) in the
ITL+ formula.

Only for this paper we construct an ITL+-formula for a Kripke structure
directly. In practical applications, models are not described by Kripke structures
explicitly, but rather as finite automata (e.g. the SMV specification language).
These specifications can canonically be modeled by state charts (only syntactical
conversions are necessary), which are part of the ITL+ logic [12]. So in practical
applications it is easy to construct formula ψK for a given SMV specification.

4.2 Embedding CTL∗

We now define a function ctl2itl which takes a CTL∗ formula ϕ and a system
description ψK as inputs and generates an equivalent ITL+ formula. Atomic
propositions are identified with the corresponding boolean variable:

ctl2itl(α,ψK) :≡ vα = true, for all α ∈ AP

Boolean connectives are canonically transferred:

ctl2itl(θ1∧ θ2, ψK) :≡ ctl2itl(θ1, ψK)∧ ctl2itl(θ2, ψK)

ctl2itl(¬ θ, ψK) :≡ ¬ ctl2itl(θ, ψK)

Temporal operators are also easy to embed. The basic CTL∗ temporal operator
X and U are replaced with ITL+ operators ◦ and until.

ctl2itl(X θ, ψK) :≡ ◦ ctl2itl(θ, ψK)

ctl2itl(θ1 U θ2, ψK) :≡ ctl2itl(θ1, ψK) until ctl2itl(θ2, ψK)

Path quantifiers are more difficult to embed. In CTL∗ the system is only implic-
itly referred. It is not part of a sequent. As ITL+ is a linear time logic, there is
no system outside the sequent which we can use to define path quantifiers. To
solve this problem, we use ITL+ system operators and the characterization of
the Kripke structure K as an ITL+ formula ψK.

ctl2itl(A θ, ψK) :≡ [ψK] ctl2itl(θ, ψK)

5 Soundness of embedding

In this section, we only present the basic idea and excerpts of the proof. The
formal specification and proofs are described in Section 6.

The theorem presented here states that every CTL∗ formula Φ can be ex-
pressed in ITL+ as validity problem.

K, s |=C Φ ⇔ |=I state = s → ctl2itl(Φ,ψK) (1)

However it is easier to prove the more general statement that not only state
formulas but all path formulas can be embedded in ITL+. This is justified,
because every state formula is also a path formula. The soundness of embedding
path formulas θ in ITL+ is formalized as a predicate, called “embeddable”. This
property is useful to structure the inductive proof of Theorem 1.

Definition 3. (Embeddability) Given a Kripke structure K and a corresponding
ITL+ system (description) formula ψK. A CTL∗ (path) formula θ is embeddable
in ITL+ (denoted as embeddable(θ)K,ψK), if and only if for all paths p ∈ K

K, p |=C θ ⇔ forall I ∈ trans(p,K) : I |=I ctl2itl(θ, ψK)

This property states, that a Kripke structure K and a CTL-path p satisfy
a formula θ if and only if the translated formula ctl2itl(θ, ψK) is satisfied for
all ITL-intervals I which are isomorphic to p. The set of isomorphic intervals is
defined by function trans.

I ∈ trans(p,K) :⇔ (1) ∀ i ∈ N0 : I[i](state) = p[i]

(2) ∀ i ∈ N0 : ∀ α ∈ AP : I[i](vα) = true ⇔ α ∈ L(p[i])

Statement 1 follows from the more general statement of Definition 3. The
proof idea is as follows:

K, s |=C Φ ⇔ |=I state = s → ctl2itl(Φ,ψK)

m (A) m (C)

K, p |=C θ
(B)
⇔ forall I ∈ trans(p,K) : I |=I ctl2itl(θ, ψK)

In the following, a proof for the most interesting equivalence (B) is presented.
This proof contains the structural induction on the basic operators of both logics.
The other two equivalences (A) and (C) can be shown with simple meta logic
reasoning.

5.1 Useful lemmas

This section contains some important properties, which will be used later. First
of all three properties of trans are listed:

Lemma 1. (Properties of trans)

1. if I |=I ψK then ∃ p ∈ K : I ∈ trans(p,K)
2. if p ∈ K and I ∈ trans(p,K) then I |=I ψK

3. if I ∈ trans(p,K) and I ′ ∈ trans(p′,K) then

p[i] = p′[i] ⇔ I[i] =free(ψK) I
′[i]

Proof. (Lemma 1.1) Let I be arbitrary with I |=I ψK. We have to show that
∃ p ∈ K : I ∈ trans(p,K) holds. For this, we construct p = (s0, s1, . . .) such that
I[i](state) = p[i]. Now we have to show that p ∈ K and I ∈ trans(p,K).

I |=I ψK

⇔ I |=I 2(
∨

(s,t)∈R

(state = s∧ ◦ state = t)∧ . . .)

⇒ ∀ i ∈ N0 : (I[i](state), I[i+ 1](state)) ∈ R

⇔ ∀ i ∈ N0 : (p[i], p[i+ 1]) ∈ R

⇔ p ∈ K.

I ∈ trans(p,K) as (1) of the definition of trans holds by construction of p and
(2) follows directly from I |=I ψK. Since I was arbitrary the proof is complete.

2

Proof. (Lemma 1.2) Let p, I be arbitrary with p ∈ K and I ∈ trans(p,K). We
have to show that I |=I ψK holds. The proof is similar to the proof for Lemma 1.1.

2

Proof. (Lemma 1.3) Let p, p′, I, I ′, i ∈ N0 be arbitrary with I ∈ trans(p,K) and
I ′ ∈ trans(p′,K).

“⇒”: p[i] = p′[i] ⇒ I[i] =free(ψK) I
′[i]

Evidently free(ψK) = {state} ∪ {vα | α ∈ AP}.

I ∈ trans(p,K) and I ′ ∈ trans(p′,K)

⇒ I[i](state) = p[i] and I ′[i](state) = p′[i]
and (I[i](vα) = true ⇔ α ∈ L(p[i]))
and (I ′[i](vα) = true ⇔ α ∈ L(p′[i]))

⇒ I[i](state) = I ′[i](state) and I[i](vα) = I ′[i](vα)

“⇐”: p[i] = p′[i] ⇐ I[i] =free(ψK) I
′[i]

I[i] =free(ψK) I
′[i]

⇒ I[i](state) = I ′[i](state)

⇒ p[i] = p′[i]

2

An important lemma of ITL+ is the coincidence lemma. This lemma states
that the evaluation of a formula only depends on the valuation of its free vari-
ables.

Lemma 2. (Coincidence) Given an ITL+ formula ϕ. For arbitrary intervals
I1, I2 with |I1| = |I2|, if

∀ i ∈ 0..|I1| : ∀ v ∈ free(ϕ) : I1[i](v) = I2[i](v)

then
I1 |=I ϕ ⇔ I2 |=I ϕ

The proof of this lemma is too large to present here.

5.2 Central theorem

The following theorem states, that every CTL∗ path formula θ (for a Kripke
structure K) can be embedded into ITL+.

Theorem 1. For all Kripke-structures K and all CTL∗ path formulas θ,

embeddable(θ)K,ψK

holds (for property embeddable see Definition 3).

This theorem shows, that CTL∗ formulas may be verified using the ITL+

calculus. It also states, that certain ITL+ formulas (i.e. those formulas which
can be described as translations of CTL formulas) can be verified with CTL
verification methods. This result is of high practical significance. It allows to use
model checking techniques for finite state abstractions of interactive verification
problems.

In the following we will give a draft of the proof. The basic concept is to use
structural induction over the formula θ. The induction step is to show that every
CTL∗-constructor is embeddable:

embeddable(θ)K,ψK ⇒ embeddable(ctlOperator(θ))K,ψK

for all basic CTL∗-operators. We only present some interesting parts of the proof,
namely the operators ∧ (and), U (until) and A (allpath).

5.3 Embeddability of A

With the induction hypothesis

embeddable(θ)K,ψK

show
embeddable(A θ)K,ψK

embeddable(A θ)K,ψK
⇔ (Def. embeddable)

K, p |=C A θ ⇔ ∀ I : I ∈ trans(p,K) : I |=I ctl2itl(A θ, ψK)

⇔ (Sem. A, Def. ctl2itl)

(∀ p′ = (p[0], s1, s2, . . .) ∈ K : K, p′ |=C θ) ⇔

∀ I ∈ trans(p,K) : I |=I [ψK] ctl2itl(θ, ψK)

⇔ (Sem. [.] .)

(∀ p′ : p′ = (p[0], s1, s2, . . .) ∈ K : K, p′ |=C θ) ⇔∗

∀ I ∈ trans(p,K) : ∀ I ′ : I ′[0] = I[0] and I ′ |=I ψK ⇒

I |=I ctl2itl(θ, ψK)

We separately show the two directions of ⇔∗.
“⇒”: Let I and I ′ be arbitrary with I ∈ trans(p,K), I ′[0] = I[0], and I ′ |=I

ψK. We have to show that I |=I ctl2itl(θ, ψK).
I ′ |=I ψK implies ∃ p′ ∈ K : I ′ ∈ trans(p′,K) (because of Lemma 1.1). With

I ′ ∈ trans(p′,K) and I ′[0] = I[0] follows p[0] = p′[0] (Lemma 1.3). Because of the
universal quantifier in the precondition (∀ p′ : p′ = (p[0], . . .) follows K, p′ |=C θ.

Because of the induction hypothesis, formula θ is embeddable. Since I ′ ∈
trans(p′,K) holds, I ′ |=I ctl2itl(θ, ψK) is fulfilled. Since I and I ′ were arbitrary
this direction of the proof is complete.

“⇐”: Let p′ be an arbitrary CTL-path with p′ = (p[0], s1, s2, . . .) ∈ K. We
have to show that K, p′ |=C θ holds. Take an ITL-interval I ∈ trans(p,K). Let
I ′ be an arbitrary ITL-interval with I ′ ∈ trans(p′,K). Such intervals exist by
definition of trans for all p and all K.

Because of Lemma 1.2, I ′ |=I ψK. Take I ′′ with I ′′ = (I[0], I ′[1], I ′[2], . . .).
Instantiate ∀ I and ∀ I ′ in the precondition with I and I ′′ respectively to receive

I ∈ trans(p,K) and I ′′[0] = I[0] and I ′′ |=I ψK ⇒ I ′′ |=I ctl2itl(θ, ψK) .

I ∈ trans(p,K) and I ′′[0] = I[0] are apparently true.
I ∈ trans(p,K), I ′ ∈ trans(p′,K) and p[0] = p′[0] with Lemma 1.3 im-

plies I ′[0] =free(ψK) I[0]. This implies I ′′[0] =free(ψK) I
′[0] (transitivity of “=”).

For all other states, I ′′ and I ′ are by construction equal. Together this means:
I ′′ =free(ψK) I

′. With the coincidence lemma I ′′ |=I ψK follows, because I ′ |=I

ψK.
Consequently, I ′′ |=I ctl2itl(θ, ψK). The definition of ψK apparently implies

that free(θ) ⊆ free(ψK) and therefore free(ctl2itl(θ, ψK)) ⊆ free(ψK). In that
case we know that

I ′ =free(ctl2itl(θ,ψK)) I
′′

because I ′ =free(ψK) I
′′. The coincidence lemma is applied a second time to

receive I ′ |=I ctl2itl(θ, ψK).
The induction hypothesis embeddable(θ)K,ψK states that

K, p′ |=C θ ⇔ ∀ I ′ ∈ trans(p′,K) : I ′ |=I ctl2itl(θ, ψK) .

The right part of the equivalence is true since I ′ ∈ trans(p′,K) was arbitrary
and I ′ |=I ctl2itl(θ, ψK) holds. Thus, K, p′ |=C θ. Since p′ = (p[0], s1, s2, ..) was
arbitrary the proof is complete. 2

6 Formal specification and proof in KIV

All of the proofs were constructed with the interactive theorem prover KIV. For
this purpose, both logics were formalized as structured algebraic specifications
using higher order logic. The complete specification contains over 100 modules.
During this project the soundness of the ITL+ calculus has also been verified.

Formal specifications in KIV are represented as directed acyclic graphs called
development graphs where nodes correspond to specification components and
edges form the specification structure. A single specification component specifies
a signature, a generation principle and a set of axiom. The signature defines
sorts, constants, functions, predicates and variables. The generation principle
restricts models to term-generated models and provides structural induction.
The semantics is loose, i.e., the set of all term-generated algebras that satisfy
axioms.

For example, in Fig. 2, we specify the semantics of the CTL operator A ϕ

(compare to Tab. 1) and define the translation to ITL+. In Figure 3, we introduce

sem-allpath: (sys× I) × val |= AllPath ϕ

↔ ∀ I0. I0 ∈ sys∧ I0[0] = I[0] → (sys× I0) × val |= ϕ;

ctl2itl-allpath: ctl2itl(AllPath ϕ, ψ) = box(true, ψ → ctl2itl(ϕ, ψ))

Fig. 2. Formal specification of CTL operator A ϕ and its translation into ITL+.

enrich next with

functions box: xpr × xpr → xpr;

...

axioms

...

sem-box: (sys× I) × val |= box(ϕ,ψ)
↔ ∀ sys0, I0, val0. val0[I0[0]] = val[I[0]]∧ I0 ∈ sys0

∧ (sys0× I0) × val0 |= ϕ

→ (sys0× I0) × val0 |= ψ;
...

dia: dia(ϕ,ψ) = ¬ box(ϕ, ¬ ψ);

end enrich

Fig. 3. Formal specification of ITL+ operators [ϕ] ψ and 〈ϕ〉 ψ.

the modal operators box and diamond of ITL+ (compare to Table 2). Note that
the ITL+ formula ψ is evaluated by (sys × I) × val |= ψ. The triple on the left
represents the model, where the sys component is important only for branching
time operators. It would be sufficient to evaluate ITL+ formulas over the interval
represented by the tuple I × val. If we reason about ITL+ formulas ψ the sys
component in the triple can be automatically eliminated and we need not bother
about it. Also note that we separate the transition relation I on states σ from
the valuation val of variables in a state.

Figure 4 shows the formalization of the embeddable property. Informally,
this property describes the semantic equivalence of the CTL∗ formula ϕ and its
translation ctl2itl(ϕ,ψ) into ITL+. The important assumption on ITL+ formula

axioms

embeddable:

embeddable(ϕ)
↔ ∀ ψ, sys, I, val.

is-fo-itl+(ψ) ∧ injective(val)
∧ (∀ I0, val0.

I0× val0 |= ψ

↔ (∃ I1. I1 ∈ sys∧ int2vint(I0, val0) = int2vint(I1, val)))
∧ (is-foctl*(ϕ) ∨ is-path-formula-foctl*(ϕ))

→ ((sys× I) × val |= ϕ ↔ (sys× I) × val |= ctl2itl(ϕ,ψ))

Fig. 4. Formalization of embeddable.

7

11

14

20

24

27

32

33

6

4

2

1

3

5

8 9

10

12

13

16 17

15

18

19

41

42

43

44

46

4847

45

22

26

28
25

23

21

29

30

31

34

38

39

40

373635

Fig. 5. Formal proof tree for the theorem embeddable-allpath.

ψ is its semantic equivalence to the model represented by the Kripke structure.
Also, some further assumption injective(val) on valuation val is needed. It states
that equal valuation of states implies equality of states.

We also formalized the central theorem which states that all CTL formula
can be embedded in ITL+. This theorem is proven by structural induction. The
corresponding formal proof for the case of the AllPath operator is shown in
Figure 5 (compare to the sketch of the proof in Section 5.3). In the first steps
1-10, we unfold the terms on the sequent using definitions of embeddable and
ctl2itl. Also, we apply the axioms sem − box and sem − allpath defining the
semantics of box and AllPath. Then, in the node 11, we apply the case distinction
proof rule in order to prove separately both directions of the equivalence in the
theorem. The proof of the right hand side (nodes 41-48) is easily accomplished
by several quantifier instantiations and simplification. The left hand side (nodes
12-40) requires a bit more effort but is also not very complicated. The general
idea of the formal proof directly corresponds to the informal one of Section 5.3.

The whole case study in KIV is available online1. Due to the very good tool
support of the KIV theorem prover, it has been easier to do the proofs in KIV
than on paper. We have corrected the semantics of the box operator several
times before the equivalence was finally verified.

7 Outlook

We have shown how a given verification problem K, s |=C θ can be translated
into an equivalent proof obligation in ITL+. However, only model based verifi-
cation problems can be translated, i.e. the translation requires a fixed model K.
Furthermore, we did not consider fair Kripke structures. Support for fair Kripke
structures should be straightforward: fairness conditions can be added to the
temporal formula ψK of Section 4.

An approach to verify validity of CTL∗ formulas in ITL+ remains for future
investigation. Verifying the validity of CTL∗ formulas (i.e. |=C θ) is known as
proof based verification. In this context, there is an important difference between
the modal operators of ITL+ and the path operators of CTL∗: while formulas
in ITL+ are valid, if they are satisfied by all intervals I, formulas in CTL∗ are
valid only, if they are satisfied by all paths p ∈ K for all models K. The idea
of translating CTL formulas to ITL+ for a given model has been to construct a
suitable formula ψK. A naive approach to embed

|=C θ

in ITL+ would be to prove

|=I ∀ ψ. ctl2itl(θ, ψ)

This, however, requires variables for system description formulas as part of the
logic. We would like to investigate, whether the strategy of symbolic execution
is still applicable for variable system descriptions.

8 Conclusion

We presented a possibility to embed model based verification problems in branch-
ing time logic in a linear time logic (with modal operators). We think, that this
result is of high theoretical relevance as it basically states that for a given model
branching time is linear time extended with modal operators known from dy-
namic logic. In particular the proof calculus of a linear time logic (ITL+) can be
used for interactive verification.

For the praxis of verification, there is another useful consequence: the intu-
itive, interactive proof strategy of symbolic execution in ITL+ can be combined
with fully automatic model checking in CTL. In particular we were able to
combine the interactive verifier KIV and the model checking tool SMV. The

1 http://www.informatik.uni-augsburg.de/swt/projects

translation of the system model is straightforward, as finite automata (of SMVs
input language) can be directly mapped to state charts which are directly sup-
ported by KIV. The opposite translation (from ITL+ to CTL) is possible for an
important subset of ITL+ formulas.

Together, this is in our opinion a big step forward towards bringing together
model checking and interactive verification approaches. We also see the possibil-
ity of transferring this approach to other interactive verification tools and model
checkers.

References

[1] M. Balser. Verifying Concurrent System with Symbolic Execution – Temporal
Reasoning is Symbolic Execution with a Little Induction. PhD thesis, University
of Augsburg, Augsburg, Germany, 2005.

[2] W. Damm, B. Josko, H. Hungar, and A. Pnueli. A compositional real-time seman-
tics of STATEMATE designs. In W.-P. de Roever, H. Langmaack, and A. Pnueli,
editors, COMPOS’ 97, volume 1536 of LNCS, pages 186–238. Springer, 1998.

[3] D. A. Peled E. M. Clarke Jr., O. Grumberg. Model Checking. The MIT Press,
1999.

[4] E. A. Emerson. Temporal and modal logic. In J. van Leeuwen, editor, Handbook of
Theoretical Computer Science, pages 996–1072. Elsevier Science Publishers B.V.:
Amsterdam, The Netherlands, 1990.

[5] David Harel, Dexter Kozen, and Jerzy Tiuryn. Dynamic Logic. MIT Press, 2000.
[6] KIV homepage. http://www.informatik.uni-augsburg.de/swt/kiv.
[7] Wolfgang May. A tableau calculus for a temporal logic with temporal connec-

tives. In International Conference on Analytic Tableaux and Related Methods
(TABLEAUX’99), volume LNCS. Springer, 1999.

[8] K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1990.
[9] B. Moszkowski. A temporal logic for multilevel reasoning about hardware. IEEE

Computer, 18(2):10–19, 1985.
[10] F. Ortmeier, W. Reif, and G. Schellhorn. Formal safety analysis of a radio-

based railroad crossing using deductive cause-consequence analysis (DCCA). In
Proceedings of 5th European Dependable Computing Conference EDCC, volume
3463 of LNCS. Springer, 2005.

[11] A. Thums, F. Ortmeier, W.Reif, and G. Schellhorn. Interactive verification of
statecharts. In H. Ehrig, editor, Integration of Software Specification Techniques
for Applications in Engineering, pages 355 – 373. Springer LNCS 3147, 2004.

[12] Andreas Thums. Formale Fehlerbaumanalyse. PhD thesis, Universität Augsburg,
Augsburg, Germany, 2004. (in German).

[13] Peter H. Schmitt Wolfgang May. A tableau calculus for first-order branching time
logic. In International Conference on Formal and Applied Practical Reasoning
(FAPR’96), volume LNCS. Springer, 1996.

