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Acoustic lattice resonances and
generalised Rayleigh–Bloch waves
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The intrigue of waves on periodic lattices and gratings has resonated with physicists and
mathematicians alike for decades. In-depth analysis has beendevoted to the seemingly simplest array
system: a one-dimensionally periodic lattice of two-dimensional scatterers embedded in a
dispersionless medium governed by the Helmholtz equation. We investigate such a system and
experimentally confirm the existence of a new class of generalised Rayleigh–Bloch waves that have
been recently theorised to exist in classical wave regimes, without the need for resonant scatterers.
Airborne acoustics serves as such a regime and we experimentally observe the first generalised
Rayleigh–Bloch waves above the first cut-off, i.e., in the radiative regime. We consider radiative
acoustic lattice resonances along a diffraction grating and connect them to generalised
Rayleigh–Bloch waves by considering both short and long arrays of non-resonant 2D cylindrical
Neumann scatterers embedded in air. On short arrays, we observe finite lattice resonances under
continuouswave excitation, andon long arrays,weobserve propagatingRayleigh–Blochwavesunder
pulsed excitation. We interpret their existence by considering multiple wave scattering theory and, in
doing so, unify differing nomenclatures used to describe waves on infinite periodic and finite arrays
and the interpretation of their dispersive properties.

One-dimensionally periodic lattices (with appropriate boundary conditions
on the scatterers1) support surface waves that propagate along and expo-
nentially decay away from the lattice.These exist undermanyguises for both
scalar and vector wave regimes from acoustics and electromagnetism, to
linear water waves and elasticity2–5. Distinct from naturally occurring
interfacial surface waves (e.g., Rayleigh, Stonely, and Scholte waves, or
surface plasmon polaritons), the waves we allude to owe their existence to
the underlying embedded periodic lattice and are thus commonly termed
Rayleigh–Bloch (RB) waves; they exist on infinite lattices, with the criterion
for their existence having been analysed in the context of functional analysis
for some time2,6,7. In particular, they differ from pure Bloch waves that exist
in cells which are bounded (e.g., an infinite 2D phononic crystal), as RB
waves exist in 1D lattices with an unbounded unit cell, resembling a strip or
ribbon8.

The finite width of the periodic cells (or strips) tiling physical space
gives rise to multiple ‘cut-offs’: wavevectors in reciprocal space at the Bril-
louin Zone boundaries (BZBs)9, with associated frequencies determined by
the dispersion relation of the array. Thewavelengths of the associated Bloch
solutions become integer half-multiples of the cell width and standing wave

solutions are formed (the Bragg condition). For a 1D periodic lattice
embedded in a dispersionless medium, RB waves within the first BZ (below
the first cut-off) are constrained to lie below the sound-line (in acoustics),
the gradient of which gives the velocity of free-space acoustic waves. As they
lie below the sound-line, RB waves cannot be excited by plane waves on an
infinite grating, but they can on semi-infinite and finite gratings3,10,11. For
symmetric scatterers, RB waves in the standing-wave limit are equivalent to
so-called Neumann modes2. In a finite array, they are closely related to
localised lattice resonances, which have the form of near-standing-wave
solutions just below the Neumann-mode frequency created by constructive
interference between RB waves after end reflections11; the frequency at
which they exist is often predicted by analysis of the infinite periodic picture.

Notably, there has beenmore recentmathematical consideration of RB
waves that exist above the first cut-off12. They exist in the radiative (leaky)
regime, i.e., above the sound line, and can therefore couple toplanewaves. In
particular, a second kind of RB mode exists above the first cut-off in which
their wavenumbers become complex-valued. They exist both above the cut-
off and on finite arrays. The connection between these “generalised” RB
waves and finite lattice resonances has been explored13. At their discovery,
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they were termed extended RB waves13 due to where they exist in terms of
the position of the cut-off. Here we denote them generalised RBwaves so to
avoid confusion with their extent in decay away from the array. They exist
over a range of parameter intervals that we explore here for the first time
experimentally, viz. in audible acoustics. The modes of open systems are
commonly termed quasi-normalmodes (QNMs) characterised by complex
eigenfrequencies14, that naturally occur above the first cut-off. These have
received much attention in resonant systems, particularly in the field of
plasmonics; QNMs form a complete basis and are thus used to represent
waves spectrally in resonant systems15. Their mathematical intricacies are
still of interest16,17, and are commonly utilised in open electromagnetic
systems, including periodic gratings18–20 (and recently in platonics21). Above
the cut-off, however, not all modes are QNMs; special cases being the
higher-order Neumann and Dirichlet modes (see below) with purely real
point eigenvalues that exist for very particular parameter combinations,
embedded in the continuous spectrum12. As such, they are often termed
bound states in the continuum (BIC)22. The generalised RB waves we
consider here are not BICs, but very close to (sometimes referred to as quasi-
BICs or leaky resonances23,24).

In this article, we seek to investigate the behaviour of lattices for
acousticwaves in the regimeabove thefirst cut-off for short arrayswith a few
tens of scatterers (under continuous wave excitation) and long arrays with
several tens of scatterers (under pulsed excitation), making the connection
to generalised RB waves. We demonstrate that their existence depends on
the aspect ratio between scatterer radius and cell width, as predicted
in ref. 13, and justify this with multiple wave scattering (MWS) theory.

InFig. 1,weprovidemotivation for this studyby showing experimental
observations of acoustic lattice resonances above the first cut-off as pre-
dicted in ref. 13, for a finite array of 11 scatterers. The frequencies of the
resonances are close to the BZBs (marked by dashed vertical lines).

Figure 1a, c compare finite element(FE) models to the theoretical predic-
tions of ref. 13, and FEmodels to experiment respectively (methods detailed
below) for the case of radius to separation r/a = 0.15. In Fig. 1b, d, we show
analogous results, up to the first cut-off, but for the case where r/a = 0.35. By
considering the connection to generalised RB waves, and intuition gained
fromMWStheory,we shall show that thefirst resonance above the cut-off in
this configuration does not exist, as predicted13; in general, higher-order
resonances may cut back on and this requires tracking the complex
eigenvalues25. The FE simulations in Fig. 1c, d include a small amount of
disorder in the centre position of the cylinders to reflect the experimental
limitations (see below), which is known not to localise the RBwave26 i.e., the
resonances observed are not spatially localised to the vicinity of the source
(Anderson localisation27), or dissipation (the FE solutions contain no loss)
and instead originate as predicted in ref. 13.

In Fig. 1e, f, we show (lossless) FE frequency domain simulations of the
normalised acoustic pressure, showing the lattice resonances, for the cases of
r/a = 0.15 and r/a = 0.35, respectively. A point source excitation is to the left
of the array, at the corresponding frequencies marked by the circles in (a,b).
In these examples, the radius is fixed and the spacing is altered, as in the
experiment. In Fig. 1g, h, we showmultiple wave scattering simulations for
the same configurations, but this time with the spacing remaining fixed and
the radius changing. Coupling to radiation of the resonance above the first
cut off is evident in (e,g).

Lattice resonances above the cut-off have been investigated for systems
of resonant scatterers for many years, particularly in the active field of
plasmonics28–32 with leaky antennas serving as an attractive application33,34.
However, the collective electromagnetic oscillations in plasmonics differ
fundamentally from the acoustic lattice oscillations we observe here; in
plasmonics the scatterers have their own individual resonant profiles
described by well-defined dielectric functions, given by for example the

Fig. 1 | Acoustic Lattice Resonances. a, b Normalised load on central cylinder
from the finite element method (FEM) (blue—with point source) and method
in ref. 13 (orange—with plane wave source), for an 11 scatterer array with r/a = 0.15,
0.35. c, d Analogous finite element (FE) curves (blue) on disordered array and
experimental results (orange). The band edges and standing-wave frequencies from

the infinitely periodic analogue are shown in dashed and dotted lines, respectively.
Array schematics shown above panels. e, f Normalised absolute acoustic pressure
field (colorscale) from FE method at frequencies marked with circle in (a, b)
respectively. g, h Analogous multiple wave scattering simulations but with radii
scaled rather than separation. Point source excitation is to the left of each array.
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Drude model35. We consider classical, linear acoustic pressure waves on a
1D periodic lattice of Neumann (impenetrable, sound-hard) cylinders at
audible frequencies in air. We experimentally observe collective acoustic
lattice resonances above the (first) cut-off that arise due to radiative coupling
of scattered waves by the grating. This is also viewed numerically with both
the finite element method and semi-analytical multiple wave scattering
theory, leading to a unification of nomenclature between the methods of
analysis. Finally, we elucidate the physical mechanism driving these reso-
nances, and how this manifests itself in their experimental detection by
considering scatterer polarisability.

Results
Acoustic Rayleigh–Bloch waves
To find acoustic RB waves, we seek solutions, ϕ, of the 2D Helmholtz
equation

ðΔþ k2Þϕ ¼ 0; ð1Þ

in the xy-plane with sound-hard (Neumann) boundary conditions applied
on periodically spaced cylindrical scatterers with boundary Γ, separation a
and radius r, that satisfy both radiation and Bloch conditions, i.e.,

∂ϕ
∂n ¼ 0 on Γ;

ϕ ! 0 as jyj ! 1;

ϕR ¼ expðiRβÞϕ0;
∂xϕR ¼ expðiRβÞ∂xϕ0;

8>>>><
>>>>:

ð2Þ

wheren is the outward surface normal,ϕ0 is the solution in the fundamental
cell and ϕR is the solution in the Rth cell at a distance R = na for n 2 Z.
Solutions to this problem are known as pure Rayleigh–Bloch surface waves7

with the prescribed values of k2 at which they occur being eigenvalues of the
operator −Δ subject to (2). As is often the case, a non-dimensional form is
adopted and, as such, k is a wavenumber that acts as a proxy for a prescribed
angular frequency. With this, β represents the RB wavenumber, i.e., the
component of the wavevector parallel to the array. Given the translational
invariance of the unit strip, we are free to fix either real k or β and solve for

the other. This distinction is not clear-cut in non-Hermitian systems and,
according to generalised Brillouin Zone theory, both k and β should be
treated as complex and solved for simultaneously36,37, which has implica-
tions in acoustics38,39. Here however, in an analogy to optical modes20, we
may define β and compute the complex values as a function of real
frequency k; for guided modes (i.e., RB modes below the cut-off), β is real
and only becomes complex due to absorption and/or leakage20. Alterna-
tively, onemayfix real β and solve for complex k (theQNMs) that exist with
or without invariance; in some cases, it is advantageous to solve instead for
complex material parameters, e.g., permittivity40,41. A useful distinction
between guided modes and QNMs is present in ref. 19 in the context of
surface plasmons (although, in acoustics, there only exists analogues to their
spoof counterparts). The differences in this convention typically arise
between mathematicians and physicists, e.g., the methods in ref. 13
and ref. 42 respectively, and can be influenced by physical experiments, e.g.,
driving with real frequency or spatially separated sources (fixing real β).
Throughout, we shall use a mixture of both and highlight the advantages in
finding and interpreting generalised RB waves.

We are careful to note here that the final two boundary conditions in
(2) represent the Floquet–Bloch conditions across the unit cell, satisfiedonly
in the infinite problem. Near the cut-off frequencies the periodic boundary
conditions are often referred to as the Neumann and Dirichlet conditions
across the cell. The corresponding solutions being Neumann and Dirichlet
modes, respectively (labelled ‘1’ and ‘3’ respectively in Fig. 2). This
nomenclature originates from trapped waves in a channel with such
boundaries on the sidewalls13,43–45 and are also sometimes referred to as the
periodic and anti-periodic conditions across the cell46; these modes have
uses in inferring bandgap frequencies akin to ref. 47.Wemake this point to
avoid confusion; when Neumann (sound-hard) boundary conditions are
referred to, it is on the boundary of the scatterers Γ and not across the unit
cell. Indeed, an infinite array of Dirichlet scatterers does not support RB
waves1.

In Fig. 2, we show two common interpretations of the dispersion
relations for infinite arrays. The parallel component of thewavevector along
the axis (the RB wavenumber β) is related to the free-space wavevector of
magnitude k0 =ω/c, with c the speed of sound through β ¼ k0 sin θ, where θ
prescribes the angle relative to the normal to the array axis. In Fig. 2a, b, the

Fig. 2 | Dispersion curves and Rayleigh–Bloch (RB) modes. a, b Finite element
(FE) dispersion curves for differing aspect ratio (radius to unit cell width) r/a = 0.35,
0.15, respectively. The sound line is shown in dashed blue with non-radiative regime
highlighted; dotted and dashed black lines correspond to standing-wave and band-
edge frequencies, respectively, in Fig. 1b, d. Colourscale indicates localisation to the
array (Finite Element Methods section). Mode-shapes show RB and generalised RB
modes numbered in (b). Neumann and Dirichlet trapped modes (purely real
eigenfrequencies) are labelled 1 & 3, respectively. c–f Representations of dispersion

spectra as complex eigensolutions μ (black points) for r/a = 0.35 (c, e) and 0.15 (d, f).
Coloured arrows show direction around the continuous spectra along the unit circle,
corresponding to a fixed frequency and altering RBwavenumber β in (a, b)—the real
parts of the eigensolutions are highlighted with corresponding colours in (a, b).
Below the cut-off, the eigensolutions lead the unit circle (black arrow), as in (c, d).
The first generalised RBmode above the cut-off appears as complex solutions off the
unit circle for large aspect ratio (f) that are not present in (e). Dashed boxes in (d, f)
show a zoom near the cut-offs.
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dispersion curves for RB waves below and above the cut-off are evaluated
with finite elements. Here, the RB waves below the first cut-off are high-
lighted in the non-radiative regime β > k0 (shown in blue). They exist, with
varying degrees of dispersion, for any aspect ratio r/a. Modes beyond the
non-radiative regime, i.e., above the first cut-off, are shown to exist below
r/a < 0.33 as predictedby ref. 13 andare introducedby theperfectlymatched
layers (PMLs)18. Mode shapes are shown in the unit-strip at four fre-
quencies, labelled in Fig. 2b. Modes 1&3 are the Neumann and Dirichlet
trapped modes respectively, with purely real eigenfrequencies. Modes 2&4
represent generalised RB waves that have complex eigenfrequencies, evi-
denced by the coupling to the far-field.

In Fig. 2c–f, we adopt the representation from13, and show the RB
waves through the introduction of the parameter μ: the eigenvalues of the
transfer operator that describes propagation along the array (method out-
lined in ref. 26). For RB waves, the eigenspectra take the form μ ¼
expð± iRβÞ andRBmodesbelow the cut-off arise as eigenvalues that lead the
unit circle in the complex plane in the non-radiative regime (green points in
Fig. 2c). Those that lie on the unit circle are solutions for propagating
background waves forming the continuous spectra. This corresponds to
following β at a fixed frequency, highlighted by the green arrow in Fig. 2a,
reaching the highlighted eigenvalue in green. At the first cut-off, the unit
circle closes at μ =− 1 (βR = π). Above the first cut-off β > π/a (now in a
higher BZ we see as band folded in Fig. 2b), the continuous spectrum
overlaps itself and generalised RBwaves with complex wavenumber appear
as pairs of eigenvalues off the unit circle, shown in Fig. 2f. When the aspect
ratio becomes large, i.e., the cylinder occupies a larger fraction of the unit
strip, thesemodes above the cut-off cease toexist25; theyarenotpresent in (e)
for the case of r/a = 0.35. In the following sections, we detail this observation
experimentally and explain this phenomenon in terms of multiple wave

scattering theory and the polarisability of the scatterers, in particular,
matching the scattering amplitudes of the radiative wave functions with the
symmetries of the eigenmodes supported by the array.We elucidate this for
thefirst generalisedRBmode above the cut-off that approaches theDirichlet
trapped mode12.

Experimental Results
To observe the generalised RB waves above the cut-off experimentally, we
consider two arrays with aspect ratios r/a = 0.15 and 0.35, fabricated by
fixing acrylic rods (r = 4.5mm) in slotted laser-cut templates mounted
within a timber frame. We design two array lengths: a set of 11 rods, and a
much larger array of 80 rods to approximate the infinite regime and to
achieve the required resolution in reciprocal space. The rods are 1 m in
height and a loudspeaker was mounted within the frame, at the rod mid-
height. Measurements are extracted from the mid-plane to approximate an
open 2D array. A schematic of the array and scanning equipment is shown
in Fig. 3a and detailed experimental procedures are outlined in theMethods
section.

In Fig. 1, we show the results for the case of 11 cylinders under con-
tinuous wave excitation. Figure 1a, b shows the normalised load on the
central cylinder, evaluated through frequency domain FE simulations, and
the method outlined in ref. 13. Clear peaks can be seen that correspond to
collective lattice resonances with frequencies close to the cut-offs (i.e., the
band edges of the infinitely periodic case, shown by the dashed vertical
lines). Also shown are the predicted standing-wave solutions from the
corresponding infinite array (e.g., the frequency ofmodes 1, 3 etc., extracted
from the dispersion curves in Fig. 2b) as dotted vertical lines.

In practice, the rods are nonuniformly bowed in the manufacturing
procedure. To explore the impact of this, in Fig. 1c, d, we show a similar

Fig. 3 | Experimental setup and example scans. a Scanning xyz-stage and long array
of 80 cylindrical acrylic rods in laser-cut stencils that set aspect ratio r/a. Dash-dotted
line shows scan path and arrow shows direction in − x. b Zoom of area scan and
example spatial distribution showing normalised real pressure amplitude at a fre-
quency of 10.9 kHz, for r/a = 0.15. c Normalised real pressure Fourier amplitude at

10.9 kHz evaluated along scan line. d Corresponding time-averaged absolute pres-
sure field area scan, highlighting localisation to the array; the decay due to radiative
loss evident in (c, d) with beating in amplitude occurring due to interference with
source (that decays with distance as expected).
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comparison, but this time between FE and experiments, and in the FE case
disorder has been added to the scatterer positions (in the form of normally
distributed random noise). As expected, RB waves still exist in the case of
disorder26. The pressure amplitude is extracted at positions near the central
rod with and without the array, averaged and normalised. There is good
agreement between the predicted positions of the frequencies of the reso-
nances, and their oscillatory behaviour before the cut-off48. They closely
align to the eigensolutions for the standing waves in the infinitely periodic
case, indicating the nature of their existence through reflections of gen-
eralised RB waves.

The RB waves are clearly observed in the longer array. We perform
pulsed measurements along an array with 80 rods to approximate an
infinite array when excited with an acoustic pulse. To obtain the dis-
persion spectra, the microphone is scanned along the full sample length
in the propagation direction. To visualise the wave-field, small area
pressure fields maps are shown on a plane normal to the rods in the
propagation direction (150 mm × 3 unit cells) in Fig. 3b. A zoom of the
absolute time-averaged pressure field highlights localisation to the array.
In Fig. 3c, we show the normalised real pressure frequency response near
the second cut-off, at 10.9 kHz, showing propagation of a decaying
generalised RB wave. Due to the intrinsic losses of the fluid and the leaky
coupling to radiation, the amplitude decays along the array and as such
reflections from the end are minimal; the resonances observed in Fig. 1
are not observed due to the pulsed excitation as steady state is not
reached.

In Fig. 4, we show the frequency spectra obtained by Fourier analysis
(seeMethods). Dispersion spectra are normalised by themaximum value at
each frequency for each aspect ratio. Figure 4a, c and insets show the
logarithmic spectra to aid visualisation of the dispersion. In the case of high
aspect ratio, as predicted, generalised RB waves do not exist and are only
detected when the spacing between the cylinders is sufficiently large. In
Fig. 4b, d we show the numerical counterpart to the experiment, the results
of similar Fourier analysis of a 2D frequency domain simulation using FE.
The array is excited by a point source at the same distance away from the
array to the loudspeaker. In this case, the zero group velocity mode at the
band edge is detected as viscous losses are not included. Overlaid in both
cases are the corresponding eigenfrequencies from the infinite dispersion
problem (Fig. 2) showing excellent agreement.

Discussion
Here, we outline a physical reasoning for why generalised RB waves do not
exist at highaspect ratios.Todo so,we turn to language that is commonplace
within electromagnetism and plasmonics, and now the metamaterial
community in general, and focus on the polarisability of the scatterers.

Electromagnetic polarisability is a measure of how easily the charge
distribution of a scatterer, be it amolecule ormetallic nano-particle, may be
distorted by an external electric field49 and is thus related to the scattering
strength of the material. In acoustics, an analogous notion of polarisability
exists that relates the dipole and monopole scattering strengths (moments)
to the particle velocity and local pressure50. Measuring the tensor that
governs these interactions has received attention in acoustics where the
scatterers are considered acoustically small (i.e., ka≪ 1)51,52. This is parti-
cularly relevant for sub-wavelengthmetamaterials but is not the case for the
generalised RB waves, where, by definition, they have wavelengths com-
mensurate with (and smaller than) the unit strip width. As such, we turn to
multiple wave scattering (MWS) theory to elucidate the scattering profile of
a single scatterer, then a pair of scatterers, and thereby inductively inferring
the behaviour of the grating composed of many scatterers; this is com-
monplace in plasmonics, where the polarisabilty of a single metallic particle
is used to obtain the scattering cross-section of an array53,54. We do so using
the T-matrix method55, which has had recent attention in metamaterial
applications56, to evaluate the radiatingwavefunction expansion coefficients
of the scattered field.

Recall (1), the Helmholtz equation for a scalar monochromatic field
(assuming expð�iωtÞ time dependence). InMWS theory, the field ϕ is split
into an incidentfieldϕinc that interactswith scatterersΓ, to induce a scattered
fieldϕscat, both satisfying (1) such thatϕ=ϕinc+ϕscat. The scatteredfieldmust
also satisfy, for an unbounded domain as we assume here, the Sommerfeld
radiation condition57

lim
ρ!1

ffiffiffi
ρ

p ∂ϕscat

∂ρ
� ikϕscat

� �
¼ 0; ð3Þ

which, in 2D, has the far field

ϕ1ðθÞ ¼ lim
ρ!1

ffiffiffi
ρ

p
e�ikρϕscatðr; θÞ; ð4Þ

Fig. 4 | Experimental and numerical observation. a, b Normalised experimental
and numerical Fourier spectra respectively from line scans for the configuration of
80 rods with r/a1 = 0.15. The mode above the cut-off is predominant, as predicted in
Figs. 1c and 2b. c, d Show similar spectra but for the ratio r/a2 = 0.35—no mode

above the cut-off is supported. Insets show logarithm of the Fourier spectra in the
regions highlighted by the dashed rectangles, where the peeling of the mode off the
sound-line is more visible. Overlaid points are from the eigenfrequency study
(Fig. 2). Schematics show the unit strips.
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where ρ = ∣r∣. Solving for the field ϕscat then requires suitable boundary
conditions to be imposed on Γ. We turn to expansions in regular and
radiating wavefunctions55

ϕ̂nðr; θÞ ¼ J jnjðkρÞeinθ;
ϕnðr; θÞ ¼ Hð1Þ

jnj ðkρÞeinθ;
ð5Þ

with n 2 N. Jn and Hð1Þ
n are the first-kind Bessel and Hankel functions of

order n respectively, such that

ϕinc ¼ P
n
f nϕ̂n;

ϕscat ¼ P
n
Anϕn;

ð6Þ

where fn and An are expansion coefficients, and fn are typically known, and
are known analytically for common incident waves such as plane waves.
Numerically evaluating these requires truncation in the summation; the
T-matrix method enables numerically stable computation of these
coefficients58, ultimately providing insight into the coupling strength
between scatterers.

In Fig. 5, we plot the radiating wave function expansion coefficients of
(i) the scattered field of a single cylindrical scatterer (solid lines) and (ii) the
coefficients for the first scatterer in a systemof two scatterers separated by a
(dashed lines). In Fig. 5a, we show the evolution of the expansion coefficient
amplitude as we vary ka for fixed radius, corresponding to r/a = 0.15. For
both the single andpair of scatterers, the expansion coefficients ∣An∣ arenon-
zero near the nth cut-offs of the infinite regime (marked by dashed vertical
lines). Considering the first generalised RB wave, the scatterers are suffi-
ciently separated so that the dipole-like field can exist between the scatterers
and they hence couple. Near the second cut-off, the amplitude of ∣A1∣ > ∣A0∣
for the pair of scatterers, which agrees with the observations in Figs. 1c, 2b
and 4a that show this is the predominantmode. Examining the behaviour of
the scattering coefficients, aswe increase thenumberof particles in the array,
is analogous to considering the increased scattering cross section of arrays of
e.g., resonant particles in plasmonics54.

Contrasting this toFig. 5b,where r/a = 0.35,we see thatnear thenth cut-
off frequencies the corresponding ∣An∣ vanishes (marked by black arrows)
for the case of a single scattererand in the case of a pair of scatterers. Thefirst
scatterer cannot couple to the next with these radiating moments. By
extension, consideringmany scatterers, a generalised RBwave cannot exist;

the overlap integral (inner product) of the scattered field and that of the
eigenmodes of the array vanishes and the modes are not supported.

As an example, consider the case of the first generalised RBwave above
the cut-off, which approaches the Dirichlet trapped mode (β≡ 012), i.e.,
mode 3 in Fig. 2. The dominant symmetry requires a dipole-like field
between the scatterers; this is not supported when ∣A1∣ = 0. At higher fre-
quencies, ∣A1∣ is non-zero once more, but the next generalised RB wave
requiresmatching to the quadrupolemoment, but againwe see near the cut-
offA2 = 0. For this reason, at large aspect ratios (e.g., Figs. 1d and 2a) we do
not see generalisedRBwaves.One could also consider asymptotic analysis of
the gap as it becomes narrow for large aspect ratios59,60.

Conclusion
Analysis offinite gratings is awell-troddenpath, and their behaviour is often
inferred from the infinitely periodic case, even with a very low number of
repeat periods.This is commonplace acrossmanywave regimes andhashad
success in antenna engineering61,62,with the validityof theperiodic approach
still receiving attention in the design of metamaterials63,64. Waves on finite
and semi-infinite lattices are often labelled as RB waves, as is the case for
electromagnetic waves on gratings65,66, spoof surface plasmons67,68, water
waveswith depthdependence3, loaded thin elastic plates and in-plane elastic
voids5,8,69, or acoustic surface waves42,70,71.

Here,wehave experimentally observed generalisedRBwaves above the
first cut-off that manifest as acoustic lattice resonances confined to a dif-
fraction grating. We considered 2D arrays of cylindrical Neumann scat-
terers embedded in air, forming both small and large-scale acoustic gratings
for airborne sound in the audible frequency range. The first generalised RB
mode was shown to exist over a range of frequencies for an example aspect
ratio predicted by13. Generalised RB modes do not exist when the aspect
ratio becomes large and the physical justification of thiswas presented in the
context of multiple wave scattering theory; the scatterers do not support the
radiating scattering wavefunctions which couple dipolar (and higher order)
interactions. As we operate above the first cut-off, the supported waves
couple through radiation and are inherently lossy.

In airborne acoustics, we are afforded the luxury of being able to
achieve both continuous wave and pulsed excitations that permit the exci-
tation of collective acoustic lattice resonances on short arrays and propa-
gating generalisedRBwaveson longarrays respectively. Indoing so,wehave
demonstrated that they are one and the same and that their interpretation is
unified through the analogue of polarisability of the scatterers and the gaps
between them.

Methods
Finite Element Methods
Dispersion curves in Fig. 2 are evaluated by an eigenfrequency study using
the Acoustics module in COMSOL Multiphysics72. Floquet–Bloch bound-
aries are added on the left and right sides of the modeshape geometries in
Fig. 2, with perfectly matched layers (PML) top and bottom. The modes
above the cut-off are isolated by evaluating the ratio of the integral of the
absolutemodulus of the pressure field in a region near the scatterer (dashed
boxes in Fig. 2) to the same quantity in the rest of the domain. The con-
tinuous dispersion curves above the cut-off clearly depend on this threshold
parameter,which is tuneduntil no ‘air-box’modes are found; air-boxmodes
can be isolated as their eigenfrequencies shift with the size of the bounding
box73. Alternatively, inspection of the imaginary part of the eigenvalues (and
therefore the quality factor of the associated resonances) can be used to
isolate the QNMs18,20.

Continuous wave measurements
Signal recordedonanoscilloscope (Siglent SDS2352X-E).Acoustic datawas
recorded with a sampling frequency of 500 kSa s−1, for a total time of
0.28 sec, and with 32 averages.

The experimental procedure was as follows: the microphone was
positioned close to the central rod in the 11-cylinder long array. The lattice
was driven to a steady state at discrete frequencies (2 to 20 kHz in 50Hz

Fig. 5 | Radiating wavefunction expansion coefficients. a Coefficients of a single
scatterer (solid lines) and for the first of a pair of scatterers (dashed) for fixed
r/a = 0.15. bCorresponding curves for r/a = 0.35. Cut-offsmarked by vertical dashed
lines (increasing n left to right).

https://doi.org/10.1038/s42005-025-01950-4 Article

Communications Physics |            (2025) 8:37 6

www.nature.com/commsphys


steps) and the signal from the microphone recorded. This was repeated at
three positions around the central rod and the data averaged. Similar
measurements were performed at the same positions without rods for
normalisation.

To determine the frequency response of the finite array, the temporal
acoustic signals were summed, producing a signal (voltage) as a function of
time V(xi, t) at discrete positions xi near the central rod. The data were
processed using temporal Fourier transform.

Pulsed measurements
The 80-rod long samples are excited by a tweeter (Kemo L010 Piezo
Loudspeaker) mounted within the supporting frame at the mid-height of
the rods. The loudspeaker is driven by an arbitrary waveform generator
(Keysight 33500B), producing single-cycle Sine–Gaussian pulses centred
at fc = 16 kHz, and a broadband amplifier (Thurly Thandar Instruments
WA301). The acoustic pressure field is measured with a small aperture
microphone (Brüel & Kjær Probe Type 4182 near-field microphone, with
a preconditioning amplifier) positioned 2 mm normal to the array
direction. Acoustic data are recorded by an oscilloscope (Picoscope
5000a) at sampling frequency fs = 312.5 kHz. The microphone is
mounted on a motorised xyz scanning stage (in-house with Aerotech
controllers), to map the acoustic signal spatially. An average was taken
over 20 measurements at each spatial position to improve the signal-to-
noise ratio. The microphone is scanned along the full sample length with
15 points per unit cell step-size in the propagation direction. Acoustic
data are analysed using Fourier techniques to obtain the
wavenumber–frequency dependence of the propagating waves. The fast-
Fourier Transform (FFT, operator F ) of the measured signal voltage
V(x, t) returns the complex Fourier amplitude in terms of the wave-
number parallel to the surface β and frequency f ;F xðjF tðVðx; tÞÞjÞ. Raw
data are presented in Fig. 4 with no windowing or zero-padding in either
space or time.

Data availability
The data that supports the findings of this study are available from the
corresponding author upon reasonable request.

Code availability
The code that supports the findings of this study are available from the
corresponding author upon reasonable request.
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