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Neuromodulation therapy comprises a range of non-destructive and adjustable methods for
modulating neural activity using electrical stimulations, chemical agents, or mechanical interventions.
Here, we discuss how electrophysiological brain recording and imaging at multiple scales, from cells
to large-scale brain networks, contribute to defining the target location and stimulation parameters of
neuromodulation, with an emphasis on deep brain stimulation (DBS).

Electrophysiological brain mapping to enhance neu-
romodulation targeting
Please see Section 4 for an overview of fundamental concepts in signal
processing for electrophysiology.

Non-invasive brain recordings
Electroencephalography (EEG) and magnetoencephalography (MEG) are
non-invasive methods for recording neurophysiological activity at the sub-
millisecond time scale. Their unique temporal resolution enables the direct
measurement of brain rhythms and other complex features of brain activity
in relation to behaviour and symptoms.With high-density scalp recordings,
EEG and MEG have substantial source mapping capabilities, especially
when the recordings are geometrically co-registered with the individual’s
brain anatomy obtained from structural magnetic resonance imaging
(MRI). A range of inter-regional functional connectivity measures can also
be derived from EEG and MEG source maps, which temporal resolution
enables functional explorations across a wide frequency spectrum (from
below 1Hz to 300Hz and above)1. Combined, these benefits enable the
definition of neurophysiological traits for a diversity of neurological con-
ditions. Symmetrically, they can also specify neuromodulation therapies,
both for targeting in terms of anatomical location and stimulation para-
meters. In the next two subsections, we summarize the respective assets of
EEG and MEG, with a focus on applications to movement disorders,
including Parkinson’s disease (PD), essential tremor (ET), and dystonia.

Electroencephalography (EEG) and Magnetoencephalography
(MEG). Electroencephalography (EEG) and magnetoencephalography

(MEG) are widely used neuroimaging techniques for studying brain
activity. While EEG captures electrical signals through scalp electrodes,
MEG detects the magnetic fields generated by neural activity using
external sensors. Both techniques provide high temporal resolution,
making them essential for understanding neurophysiological processes
in real time.

EEG measures the summation of electrochemical signals as they pro-
pagate between neurons. These signals are generated by the synchronized
activity of large populations of pyramidal neurons aligned geometrically2.
While EEG offers high temporal precision and is relatively low-cost and
non-invasive3,4, its spatial resolution is limited to detecting signals on the
scale of centimeters5,6. Despite this, EEG has become a fundamental tool in
cognitive neuroscience research and clinical applications, particularly for
studying movement disorders.

Conversely, MEG7 measures the magnetic fields induced by neural
activity and offers greater spatial resolution than EEG due to minimal
interference from scalp and skull tissues. MEG signals originate from the
same neural assemblies that generate EEG signals, primarily cortical pyr-
amidal cells8. However, MEG is also sensitive to subcortical structures such
as the amygdala and brainstem9–11, as well as action potential volleys12,13.
With potentially millimetre-scale spatial resolution14 and the ability to
capture bothoscillatory and aperiodic signals15,16,MEG is highly effective for
studying brain activations across time and space.

EEG andMEG have both been employed to investigate the alterations
in neurophysiological activity associated with movement disorders. For
example, in PD, EEG has detected abnormal beta-band oscillations at rest17,
which are normalized by deep brain stimulation (DBS), leading to improved

1Neural Engineering with Signal Analytics and Artificial Intelligence, Department of Neurology, University Clinic Würzburg, Würzburg, Germany. 2Department of
Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada. 3MRC Brain Network Dynamics Unit, Nuffield
Department of Clinical Neurosciences, University of Oxford, Oxford, UK. 4Montreal Neurological Institute, McGill University,
Montreal, Canada. 5Informatics for Medical Technology, Institute of Computer Science, University Augsburg, Augsburg, Germany.

e-mail: atefeh.asadi.neu@gmail.com

npj Parkinson’s Disease |           (2025) 11:20 1

12
34

56
78

90
():
,;

12
34

56
78

90
():
,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41531-024-00847-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41531-024-00847-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41531-024-00847-3&domain=pdf
http://orcid.org/0000-0002-0951-3369
http://orcid.org/0000-0002-0951-3369
http://orcid.org/0000-0002-0951-3369
http://orcid.org/0000-0002-0951-3369
http://orcid.org/0000-0002-0951-3369
http://orcid.org/0000-0001-5728-3951
http://orcid.org/0000-0001-5728-3951
http://orcid.org/0000-0001-5728-3951
http://orcid.org/0000-0001-5728-3951
http://orcid.org/0000-0001-5728-3951
http://orcid.org/0000-0002-6762-5713
http://orcid.org/0000-0002-6762-5713
http://orcid.org/0000-0002-6762-5713
http://orcid.org/0000-0002-6762-5713
http://orcid.org/0000-0002-6762-5713
http://orcid.org/0000-0001-8038-3029
http://orcid.org/0000-0001-8038-3029
http://orcid.org/0000-0001-8038-3029
http://orcid.org/0000-0001-8038-3029
http://orcid.org/0000-0001-8038-3029
http://orcid.org/0000-0001-6158-2663
http://orcid.org/0000-0001-6158-2663
http://orcid.org/0000-0001-6158-2663
http://orcid.org/0000-0001-6158-2663
http://orcid.org/0000-0001-6158-2663
mailto:atefeh.asadi.neu@gmail.com
www.nature.com/npjparkd


motor symptoms18,19. MEG, with its superior spatial resolution, has further
refined these findings by showing how alterations in beta oscillations affect
movement planning in PD patients20. MEG has also demonstrated the
involvement of oscillatory activity across multiple frequency bands, which
are crucial for motor control and cognitive functions in PD21,22. These
frequency-specific neural markers are critical for refining neuromodulation
therapies, including transcranial alternating current stimulation (tACS) and
transcranial direct current stimulation (tDCS), which show promise in
modulating motor and cognitive functions in PD patients23–28.

Both EEG and MEG are valuable for studying inter-regional brain
connectivity. EEG studies have revealed altered directional coherence
between the cerebellum and premotor cortex in patients with ET and PD,
suggesting that the normal flow of information between these regions is
disrupted inmovement disorders1,29.MEG,with its ability to detect cortical-
subcortical interactions, has further demonstrated how these disruptions
extend to deeper brain structures, implicating cortico-thalamo-cerebellar
circuits in the pathophysiology of tremors30.

In the case of ET, both techniques have provided critical insights into
the neurophysiological basis of tremor. EEG has detected event-related
potentials in peri-motor cortical regions at latencies of 0.9–13.9ms after
DBS onset31, aligning closely with findings from invasive recordings32.
Similarly, MEG has been used to trace rhythmic activity in the tremor
frequency range, offering detailed spatial mapping of the neural oscillations
underlying ET33,34. For dystonia, EEG and MEG have uncovered abnormal
synchronizations within cortico-striato-pallido-thalamo-cortical circuits
and cerebello-thalamo-cortical pathways35,36, highlighting the complex
network dysfunctions driving dystonic movements.

Although EEG and MEG have traditionally been regarded as mea-
suring cortical activity due to their sensitivity to large-scale synchronized
neural activity near the brain’s surface, both techniques can detect deeper
brain signals with the right experimental designs. MEG, in particular, has
been shown to pick up signals from subcortical structures, such as the
amygdala and brainstem, with greater signal-to-noise ratio when using
advanced source localization strategies30. The integration of MEG with
invasive electrophysiological methods has further linked subcortical dys-
functions to cortical activity patterns, deepening our understanding of brain
networks involved in movement disorders37,38.

Together, EEG andMEG continue to provide complementary insights
into the spatiotemporal dynamics of brain activity, and their combined use
has proven instrumental in advancing both our theoretical understanding
and therapeutic interventions for movement disorders like PD, ET, and
dystonia.

Invasive brain recordings
The spatial resolution of existing non-invasive recording methods is not
sufficient to examine single neuron activity or local field potentials. Invasive
recordings such as local field potentials (LFP) and micro-electrode
recordings (MER) fill this gap and provide essential information about
neural activity at smaller spatial scales in patientswithmovement disorders.

Local field potential (LFP). Local field potentials (LFP) are the electrical
potential in the extracellular space surrounding neurons and can be
recorded in human participants using invasive electrodes. This is done
most commonly in patients with movement disorders in the context of
surgery, e.g., during implantation or battery replacement of DBS. These
recordingsmeasure the combined local neurophysiological activity of the
implanted nucleus and surrounding tissues, and often capture oscillatory
patterns relevant for treatment of movement disorders39,40.

Themajority ofDBS-LFP research has focused on the STN, as it is the
most prominent DBS target for in treating motor symptoms in PD
patients. LFP recordings were used to first demonstrate alterations of
oscillatory activity in the basal ganglia of patients with PD39,41, which was
once contentious but is now considered a pathophysiological hallmark of
the disease. These alterations are normalized by dopamine therapy and
related to the severity of motor impairments40,42. Further research using

LFP recordings has demonstrated that the STN, in collaboration with the
globus pallidus externus, serves as the originator of pathological somato-
motor cortical beta activity in PD43. LFP recordings from the STN have
also revealed neurophysiological alterations relevant to non-motor
functions in PD, particularly involving lower frequencies ranging from
5 to 13 Hz44. Frequency-defined functional connectivity can also be
assessed between deep-brain nuclei with LFP recordings. For instance,
3–10 Hz coherence between LFP recordings of the GPi and STN, the GPi
and thalamus, and the thalamus and cortex are all related to the severity of
parkinsonian tremor45–47.

LFP recordings have also revealed that heightened low-frequency
(4–12Hz) oscillatory activity of globuspallidus internus (GPi) neurons are a
promising modifiable marker of dystonia48. The severity of dystonic
symptoms correlates with the magnitude of these low-frequency GPi
oscillations49,50, and they are suppressed by therapeutic DBS with propor-
tional clinical improvement50–53. Consequently, the GPi has emerged as the
main target for implanting DBS electrodes in dystonic patients.

Microelectrode recording (MER). Microelectrode recording (MER)
involves the insertion of a finemicro-electrode into brain tissue to record
focal electrophysiology. This electrode measures the activity of multiple
cells simultaneously and the resulting data need to be post-processed to
sort between the contributions of individual neurons. While studies
utilizing MER in patients with PD are limited, those that have been
conducted primarily focus on localizing, identifying, and confirming
target structures for neuromodulation. As the main target for DBS pla-
cement in PD patients, the STN is the focus of most MER studies. Uti-
lizing MER enables the identification of more accurate electrode
placement54–57. Sensorimotor regions and other sub-territories of the STN
can also be demarcated during DBS surgery based on MER55, as can the
borders of the GPi for DBS in patients with dystonia and PD58.

MER has also proven valuable in targeting the ventral intermediate
nucleus (VIM) of the thalamus for DBS in patients with ET59. By providing
real-time electrophysiological feedback, MER enhances the precision of
electrode placement during surgery. This technique helps surgeons to dif-
ferentiate the VIM from adjacent structures, which is crucial for optimizing
tremor suppression while minimizing side effects. Studies have demon-
strated that the use of MER improves clinical outcomes for DBS in ET
patients59,60, allowing for more accurate targeting and potentially reducing
post-operative complications.

Multimodal brain recordings
Recording electrophysiology simultaneously using multiple of the afore-
mentioned tools can provide benefits that the methods do not possess in
isolation. Most notable among these are improved spatial accuracy (EEG-
MEG) and the ability to associate whole-cortex neurophysiological activity
to that of deep-brain nuclei in real time (M/EEG-LFP).

Combined EEG-MEG recording. Despite their identical temporal
resolutions, the combination of simultaneously-collected MEG and EEG
for source imaging consistently demonstrates superior spatial accuracy
compared to either modality alone61. This enhanced localization stems
from the distinct signals detectable with each modality, rather than from
a mere increase in the total channel number. MEG’s capability for more
accurate source imaging, owing to low magnetic interference from
intervening tissues7, complements EEG’s sensitivity in detecting activity
of deeper subcortical areas7,61–63. The activity of the thalamus and cere-
bellum can also be identified more robustly with combined EEG-MEG
compared to when only EEG is used63. Therefore, the integration ofMEG
and EEGdata proves crucial for conducting spatiotemporal studies of the
whole human brain with maximal resolution64.

Despite this potential, relatively few studies have employed combined
EEG-MEG to investigate the effects of movement disorders and DBS
therapy. Future research should leverage these benefits towards the study of
patients with movement disorders.
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Combined EEG-LFP recording. Concurrent EEG and striatal LFP
recordings have suggested that beta activity in the striatum is influenced
in a task-dependent manner following dopamine depletion in PD65–67.
These results indicate that the absence of dopamine in the sensorimotor
striatum does not eliminate typical oscillatory patterns or introduce new
frequencies of oscillations, and instead selectively reinforces inherent
ones. This reinforcement primarily affects oscillations below 55 Hz, with
the frequency band implicated dependent on the task being performed.
Notably, this enhancement emerges only after extensive training.

Regarding the effects of STN-DBSon cortical activity, patientswith PD
exhibit peak frequency enhancement and power reduction in the alpha
band68, and cortical alpha power has been positively correlated with clinical
improvement following stimulation69. Suppressionof beta oscillations in the
temporal cortex70 and enhanced high gamma oscillatory activity in the right
frontal cortex70 during DBS are also associated with motor
improvement in PD.

EEG-LFP recordings have been employed to investigate connectivity
between deep brain structures and the cortex in patients with movement
disorders. For instance, in patients with PD and dystonia, movement-
related coherence with the motor cortex is reduced to the STN and GPi,
respectively46,71,72. This research has also distinguished between high
(13–20Hz) and low (20–30Hz) beta oscillations in their relevance to PD
symptoms73–76, with the effect of DBS on cortico-pallidal coherence in PD
patients manifesting as a decrease in the high-beta range. Coherence ana-
lysis between cortical EEG and LFP signals in the GPi of patients with
dystonia has identified two distinct types of dystonic symptoms77: alpha
bandpowerandcoherence are associatedwithphasic symptoms,while delta
power is linked to tonic symptoms.

Combined MEG-LFP recording. The most common combination of
concurrentMEGwith deep-brain neurophysiological recordings is in the
context of deep brain stimulation (DBS) of the subthalamic nucleus
(STN) to treat movement impairments in patients with PD. Despite its
efficacy across a range of disorders78, the mechanisms underlying the
multifaceted effects ofDBS remain unclear37,79.MEG is particularly useful
in the study of these mechanisms, as it is not as susceptible as EEG to the
electromagnetic artifact caused by active DBS37 and to the changes in
tissue electrical conductance resulting from the burr holes required for
DBS electrode implantation38. Current artefact removal and attenuation
techniques enable advanced analyses ofMEG-DBS concurrent recording,
including during active DBS stimulation37,38.

Brain network analyses have come at the forefront of current
approaches to understanding DBS mechanisms80, with MEG contributing
valuable insights37. Here too, the frequency-signature of these networks is
considered as a key parameter of their clinical significance. For example,
beta-frequency signalling between the STN and (pre-)motor regions are
distinct from those between STN and temporal cortices in the alpha
band81,82.Dysfunctionof cortical beta-frequencynetworks is linked tomotor
impairments via deficient dopaminergic signalling from the substantia nigra
(SN)83, indicating the potential role of STN-DBS in compensating for loss of
SN integrity by restoring balanced levels of beta-network connectivity along
the hyper-direct pathway. Indeed, although both local STNbeta activity and
STN-cortical beta coherence are reduced by the application of DBS73,84, the
amount of beta-band coherence between STN and cortical regions better
predicts DBS efficacy than local STN measures of spectral power85.

Non-invasive measures of cortico-STN beta coherence may help per-
sonalize neuromodulation parameters. Potentially, the timing, amplitude,
and frequency parameters of DBS may be adapted for each individual to
optimally reduce pathological beta synchrony while limiting secondary
tissue scarring and desensitization. In a similar vein, brain-computer
interfaces have been used to optimize DBS in patients with PD, but have
only considered local STN beta synchrony measures to adjust DBS
parameterss86. Further research combining DBS-LFP recordings withMEG
is required to better understand the cognitive and affective impacts of DBS
in patients with PD and other disorders. For example, recent work has

shown that DBS applied during specific phases of decision making impacts
the delay to decision87, an effect related to howDBS interacts with local STN
beta oscillations. Using a similar paradigm during MEG would help
understand how this effect may be mediated by network-level interactions
across the entire cortex.

To summarize this section and provide a visual insight, a schematic
representation of single and combinedelectrophysiological methods, along
with a comparative analysis of electrophysiological recording methods,
isdepicted in Figs. 1 and 2, respectively.

DBS-induced spectral changes in the subthalamic LFP
One way of studying mechanisms underlying DBS and personalising sti-
mulation is to investigate DBS-induced or evoked LFP changes in the
subthalamic nucleus such as beta/gamma power suppression, evoked
resonant neural activity (ERNA), finely-tuned gamma (FTG) oscillations
and the aperiodic exponent of the power spectrum.

DBS-induced power suppression in the STN has been reported in
multiple studies, with a focus on the beta range given the correlation with
bradykinesia and rigidity in PD patients19,84,88,89. Notably, this power sup-
pression is not specific to the beta range and extends into the low gamma
range5. Beta and low gamma oscillations are almost instantaneously sup-
pressed when stimulation is switched on and remain low throughout con-
tinuous DBS90. Once stimulation is switched off, both activities return to
baseline more slowly, with low gamma recovering faster than beta
activity19,84,88–90. DBS-induced power suppression has been suggested as an
indicator of good lead placement and may help explain the mechanism
underlying DBS: high-frequency stimulation desynchronises excessive beta
activity which allows for relay of physiological activity through STN91. The
link between beta activity and Parkinsonian symptoms, as well as its rapid
suppression by classical DBS, has made beta activity a salient marker for
aDBS. However, beta activity is limited by its sensitivity to noise con-
tamination during movement. Furthermore, beta activity decreases at
night92,93, which would result in an undesired proportional reduction of
stimulation intensity and could be counterproductive in patients that profit
from DBS during sleep93–95.

ERNA presents as a high-frequency, under-damped oscillation that
can be observed in the STN and GPe/i of PD patients after DBS to STN or
GPi96,97. ERNA is believed to arise from rhythmic inhibitory input from
prototypic GPe neurons to STN98,99, however, simpler models utilising a
single population of glutamatergic neurons can also model ERNA mod-
ulation during continuous STN-DBS by assuming synaptic failure as an
underlying mechanism100. ERNA responses comprise fast and slow
dynamics90,98: high-frequency DBS modulates its amplitudes and latencies
over the first ten pulses, and skipping a single pulse affects subsequent
ERNA pulse-responses98. Responses of ERNA dynamics to DBS reach a
steady state after about 70 seconds90, and once DBS is stopped they slowly
return to baseline levels on a timescale reminiscent of beta power recovery98.

Within STN, ERNA is highly focal and localises to a similar hot spot as
the optimal one for clinical DBS benefit101,102. Several groups have also
reported correlations between ERNA and clinical scores or beta
activity90,97,103–105, and ERNA is modulated by dopaminergic medication98.
Therefore, ERNA has been suggested as a marker for DBS contact selection
and outcome prediction106. In addition, ERNA has been recorded during
general anaesthesia whichmakes it a suitable intraoperativemarker for lead
placement107, and scales with increasing stimulation frequency and
intensity98. ERNA can also be recorded from the STN of patients with
cervical dystonia, which lacks the widespread neurodegeneration observed
in PD101, suggesting that ERNA may be present in the healthy STN.

FTG is narrowband activity between 60–90Hz that can be induced by
levodopa orDBS, and less often canbe recorded in the absence of either108. It
is modulated by movement and both cortical FTG108,109 and cortical-
subcortical FTG coherence108,110 have been suggested as potential markers
for dyskinesia in PD patients. However, FTG is observed in only a subset of
patients and ismoreprevalent in the superiormarginof theSTN,whichmay
limit its clinical use108. In light of spurious horizontal line artefacts at sub-
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harmonics of stimulation, FTG entrainment has to be interpretedwith care.
DBS-induced subthalamic FTG is not locked at a sub-harmonic of stimu-
lation and decreases with continuous DBS, this activity is unlikely to be
artefactual111. Inversely, cortical FTG is entrained at a subharmonic of sti-
mulation, but is affected by levodopa administration and disappears as DBS
intensity is increased, which again makes this activity unlikely to be
artefactual112.

Long considered noise, the aperiodic exponent of the power spectrum
has now been shown to be modulated by several physiological changes and
affected by excitation-inhibition balance in several studies of animalmodels
and humans113–115. Aperiodic exponents of high-frequency (30–100Hz)
subthalamic LFPs increase with levodopa and high-frequency DBS, in
keeping with increased STN inhibition effects116. As these exponents must
be calculated over relatively long periods to reduce noise, they may only be
useful in conjunction with slow beta-triggered aDBS117.

Electrophysiological biomarkers which can foster
closed-loop deep brain stimulation
In this section, we aim to elucidate the electrophysiological biomarkers that
could facilitate the optimization of closed-loop adaptive DBS (aDBS).
ClassicDBS employs an open-loop stimulation approach, wherein electrical
impulses are continuously delivered to the target tissue without any feed-
backmechanism. In contrast, emerging closed-loop approaches administer
electrical stimulation based on the ongoing electrophysiological activities of
the target (or connected) regions110. These cortical and/or subcortical elec-
trophysiological feedback signals must be recorded and analysed in real-
time alongsidedelivery of the stimulationpulses,with a specific emphasis on
the control policies employed to adjust stimulation delivery118.

As mentioned above, PD is characterized by exaggerated beta oscilla-
tions in the LFP recordings of STN in patients, which are closely associated
withmotor symptoms46,72. The consistency andmagnitude of these findings

have positioned themas a potential biomarker forDBS feedback in PD119,120.
The optimal DBS biomarker should vary meaningfully from patient to
patient in a way that is representative of each individual’s symptom profile.
Studies have revealed that beta oscillations can be divided into two func-
tionally distinct sub-ranges: low-beta (13–20Hz) and high-beta (20–30Hz)
oscillations, which seem to signal pathological and healthy motor function,
respectively73,121,122. Consequently, it has been proposed to use low-beta
frequency activity instead of canonical beta oscillatory power as a biomarker
in aDBS123. A combinationof several frequency ranges has been suggested to
result in a more accurate detection of tremor in PD patients124,125. For
instance, low-frequency (3–14Hz) oscillatory activities in the basal ganglia
have been proposed as a biomarker for tremor and non-motor symptom
severity (e.g. impulsivity and depression) in PD patients126,127. Slowing of
cortical neurophysiology across various frequency bands in PD has been
linked toboth cognitive andmotor impairments.Moreover, this slowinghas
been shown to be sensitive to individual patient profiles and can be mea-
sured non-invasively, making it another emerging target for biomarker
development21,22.

In dystonia, there is an enhancement ofGPi activity from4–12Hz that
is closely linked to the severity of symptoms49,52,making this frequency range
a promising biomarker for aDBS in dystonic patients53,128. One study50

showed that in the dystonic and parkinsonian GPi, low-frequency and beta
alterations, respectively, manifest as increases in phasic bursts characterized
by episodes of relatively fast synchrony followed by intervals of quiescence.
Further, the applicationof aDBS in theGPiwas feasible andwell-tolerated in
both diseases. This indicates that heightened low-frequency burst ampli-
tudes could serve as valuable feedback for guiding GPi-aDBS interventions
in dystonia.

Unlike in PD and dystonia, robust neurophysiological biomarkers
directly correlated with symptoms are lacking in ET, representing a chal-
lenge for aDBS in this patient group. Current candidate biomarkers instead

Fig. 1 | Schematic representation of single and
combined electrophysiology methods.
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include the assessment of tremor activity using external sensors such as
accelerometers or electromyography (EMG)128, which measure inertial
acceleration andmuscular electrical impulses, respectively.CombinedEEG-
EMG recordings can be used to evaluate cortico-muscular interactions and
show great promise in identifying biomarkers during clinical rehabilitation
for neuromotor diseases129. Two primary approaches have been suggested
towards this goal. Tremor amplitude may be utilized, where the onset of a
tremor episode triggers stimulation based on predetermined amplitude
thresholds, thus reducing tremor severity130,131. It has also been suggested
consider tremor phase: stimulating themotor cortex out-of-phase to disrupt
synchrony may modulate tremor severity132,133. Though both approaches
have only been demonstrated through proof-of-concept studies, these
results suggest that adaptive stimulation based on tremor amplitude and
phase could be beneficial in reducing symptoms in ET. Further validation
with chronic stimulation in real-world settings and direct comparisons with
conventional stimulation therapies are essential.

Fundamental concepts in signal processing for
electrophysiology
Understanding signal processing concepts is critical for interpreting elec-
trophysiological findings and their implications for therapeutic interven-
tions. This section outlines key terms and principles related to signal
processing that are essential for comprehending the methodologies
employed in electrophysiology.

Power bands: Refers to specific frequency ranges of brain oscillations
(e.g., delta: 2–4Hz, theta: 5–7Hz, alpha: 8–12Hz, beta: 15–30Hz, gamma: >
30Hz). Each band is associated with different computational processes and
cognitive and motor functions in the brain.

Frequency resolution: The ability to distinguish between different
frequencies of brain activity in an electrophysiological recording. Higher

resolution allows for more precise identification of activity in faster
frequencies.

Temporal resolution: Refers to the precision of timing in capturing
changes in neural activity and is directly related to frequency resolution.
Different modalities (e.g., EEG, MEG) have varying temporal resolutions,
affecting how quickly each can detect changes in brain activity.

Signal-to-Noise Ratio (SNR): A measure that compares the level of a
desired signal to the level of background noise. High SNR is essential for
electrophysiological recordings, especiallywhen trying todiscernpatternsof
brain activity that are subtle or highly variable.

Spatial resolution: The ability to localize the origins of brain activity
accurately. Different modalities offer different spatial resolutions, affecting
the understanding of where in the brain specific electrophysiological
changes occur.

Filtering techniques:Methods used to isolate specific frequency bands
from raw “broadband” data, which can include low-pass, high-pass, band-
pass, or notch filters.

Event-related potentials/Fields (ERPs/ERFs): Measured electro-
physiological responses in the brain that follow sensory, cognitive, or motor
events. These are typically quantified after averaging across multiple sti-
mulus presentations, and understanding their amplitude, latency, and other
characteristics can help refine therapeutic interventions.

Functional connectivity: A class of analytical approaches that are used
to assess the statistical interactions between electrophysiological signals
from different brain areas. These measures are used to examine functional
networks between regions, and how these networks may be influenced by
disease states and therapeutic interventions.

Spectral analysis: Techniques such as the Fast Fourier Transform
(FFT) that decompose electrophysiological time series into their constituent
frequencies, allowing for the examination of different frequency bands.

EEG
R

ec
or

di
ng

C
ha

ra
ct

er
is

tic
s

Measurement: 
Electrical potentials
from localized brain

areas
Coverage: 

Whole scalp, can
detect signals from
most cortical areas

Invasiveness: 
Non-invasive

C
ap

ab
ili

tie
s 

an
d

C
on

st
ra

in
ts

 Strengths: 
Excellent temporal

resolution,
 Cost-effective
Limitations: 
Poor spatial
resolution, 

Difficulty in localizing
deep brain activity

Sp
at

ia
l C

ov
er

ag
e

Sc
al

e
MEG

Measurement: 
Magnetic fields
generated by

neuronal currents
Coverage: 

Whole brain, but
better for superficial
cortical structures
Invasiveness: 
Non-invasive

Strengths: 
High spatial resolution

combined with
excellent temporal

resolution
Limitations: 

Very expensive,
Requires magnetically

shielded
environments, 

Less sensitive to deep
brain structures

LFP
Measurement: 

Electrical potentials
from localized brain

areas
Coverage: 

Limited to the specific
brain region where

the electrode is
placed

Invasiveness: 
Invasive

Strengths: 
Excellent spatial and
temporal resolution
for localized brain

areas
Limitations: 

Highly invasive,
Limited coverage,
Used in animals or

during neurosurgical
procedures

MER

Measurement: 
Spiking activity from
individual neurons

Coverage: 
Very limited, focused

on specific brain
regions

Invasiveness: 
Invasive

Strengths: 
Provides single-

neuron level details

Limitations: 
Highly invasive,

Requires surgery,
Limited to small areas

EEG-MEG

Measurement: 
Combines electrical
and magnetic field

measurements

Invasiveness: 
Non-invasive

Strengths: 
 Better source

localization (EEG's
poor spatial resolution

compensated by
MEG)

Limitations: 
Expensive and
complex setup, 

Still limited in
detecting deep brain

signals

EEG-LFP

Measurement: 
Combines scalp EEG 

(whole-brain) with
localized LFP

recordings

Invasiveness: 
Semi-invasive

(EEG is non-invasive,
but LFP requires

implanted electrodes)

Strengths: 
Allows tracking both

whole-brain and
localized brain activity

with high temporal
resolution

Limitations: 
LFP's invasiveness

limits the application,
Combining both

requires complex
setups

MEG-LFP

Measurement: 
Combines MEG

(whole-brain) with
LFP (local)

Invasiveness: 
Semi-invasive 

(LFP is invasive, but
MEG is non-invasive)

Strengths: 
Excellent temporal

and spatial resolution
when combined,

allowing multi-scale
brain dynamics

analysis
Limitations: 

Complex setup and
LFP's invasiveness

limits use cases

Single Methods Combined Methods

m
ic

ro
m

et
er

m
ili

m
et

er
ce

nt
i

m
et

er

Fig. 2 | Characteristics andComparativeAnalysis of Electrophysiological RecordingMethods.This figure presents the strengths, limitations, and spatial resolution of the
single and combined electrophysiological techniques discussed in the paper.
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Aperiodic activity: Non-oscillatory/arrhythmic signals that can pro-
vide insights into the underlying biophysical and computational features of
an electrophysiological signal, such as the relative excitability of a brain
region.
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