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Abstract

Background: Cefazolin is used as a prophylactic antibiotic to reduce surgical site infections (SSIs). Obesity has been
identified as a risk factor for SSIs. Cefazolin dosing recommendations and guidelines are currently inconsistent for obese
patients. As plasma and target-site exposure might differ, pharmacokinetic data from the sites of SSIs are essential to
evaluate treatment efficacy: these data can be obtained via tissue microdialysis. This analysis was designed to evaluate
the need for dosing adaptations in obese patients for surgical prophylaxis.

Methods: Data from 15 obese (BMIpedian = 52.6 kg m’z) and 15 age- and sex-matched nonobese patients (BMImedian = 26.0
kg m~2) who received 2 g cefazolin i.v. infusion for infection prophylaxis were included in the analysis. Pharmacokinetic
data from plasma and interstitial space fluid (ISF) of adipose tissue were obtained and analysed simultaneously using
nonlinear mixed-effects modelling. Dosing regimens were evaluated by calculating the probability of target attainment
(PTA) and the cumulative fraction of response (CFR) for plasma and ISF using unbound cefazolin concentration above
minimum inhibitory concentration 100% of the time as target (fT-mic = 100%). Dosing regimens were considered
adequate when PTA and CFR were >90%.

Results: Evaluation of cefazolin doses of 1 and 2 g with redosing at either 3 or 4 h by PTA and CFR in plasma and ISF found
2 g cefazolin with redosing at 4 h to be the most suitable dosing regimen for both obese and nonobese patients (PTA >90%
and CFR >90% for both).

Conclusions: This model-based analysis, using fT.mic = 100% as a target, showed that cefazolin dosing adaptations are
not required for surgical prophylaxis in obese patients.
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Editor’s key points

Perioperative dosing recommendations for cefazolin,
used as a prophylactic antibiotic to reduce surgical
site infections, are currently inconsistent for obese
patients.

Pharmacokinetic data for cefazolin from plasma and
interstitial space fluid (ISF) of adipose tissue obtained
by microdialysis for obese and nonobese surgical
patients receiving prophylactic cefazolin were ana-
lysed simultaneously using nonlinear mixed-effects
modelling.

In the context of perioperative antibiotic prophylaxis,
administration of 2 g cefazolin i.v. with redosing at 4
h was the most suitable dosing regimen for both
obese and nonobese patients such that no dose
adjustment is necessary.

Surgical site infections (SSIs) pose a significant risk to patient
safety. However, the incidence of SSIs can be reduced by use of
appropriate perioperative antibiotic prophylaxis.>? The inci-
dence of SSI is higher in obese than in nonobese patients.>™
Obesity is associated with atypical anthropometric values
and pathophysiological alterations that can influence drug
pharmacokinetics. These alterations include changes in body
composition, tissue distribution, and renal and hepatic drug
elimination.®™® Consequently, standard dosing regimens of
antibiotics might not provide optimal drug exposure in obese
patients, potentially compromising the effectiveness of peri-
operative antibiotic prophylaxis, highlighting the need for
identifying optimal prophylactic dosing regimens for obese
patients.

Cefazolin is commonly used for perioperative antibiotic
prophylaxis owing to its activity against pathogens frequently
encountered in SSIs, such as Escherichia coli and Staphylococcus
aureus.'%'! Some studies have investigated the need for peri-
operative prophylactic cefazolin dosing adjustments for obese
patients, but the results are contradictory.'? Although the
majority of evidence supports standard dosing for cefazolin (2
g, short-term i.v. infusion), three out of four studies that
applied modelling and simulation frameworks concluded the
opposite.>* In addition, a second antibiotic dose is recom-
mended after twice its half-life,'® '® which would be 3—4 h
after the first dose in the case of cefazolin, but this recom-
mendation has not been investigated conclusively.

For cefazolin, the pharmacokinetic/pharmacodynamic (PK/
PD) target has been set to unbound drug concentration in
plasma above minimum inhibitory concentration (MIC) 100%
of the operation time.'® To evaluate the safety and effective-
ness of perioperative antibiotic prophylaxis, it is also essential
to measure drug concentrations at the site of potential infec-
tion (interstitial space fluid [ISF] of soft tissue),?>?! as drug
exposure in plasma might not reflect exposure in the ISF.
Unbound drug concentrations from the ISF can be obtained by
microdialysis, a minimally invasive sampling technique to
obtain target-site concentrations.’” Pharmacometric models,
which allow simultaneous integration and analysis of data
from different sources (e.g. measurements from plasma and

ISF), can be used to simulate concentration—time profiles to
investigate the influence of obesity on the probability of
achieving a specific PK/PD target.

We aimed to evaluate the adequacy of clinically relevant
cefazolin dosing regimens (i.e. dose and dosing intervals) for
obese patients for perioperative antibiotic prophylaxis and to
derive dosing recommendations by application of modelling
and simulation techniques. We leveraged published PK data
from obese and nonobese patients, integrating observed
cefazolin concentrations in both plasma and ISF.

Methods

This is a post hoc, exploratory analysis of a study that was
approved by the Leipzig University Ethics Committee dated on
July the 12th, 2013 (No. 121-13-28012013) and the Federal
Institute of Drug and Medical Devices dated on May the 10th,
2013 (BfArM No. 4038808). It was registered in the EU Clinical
Trials Register (EudraCT registration No. 2012-004383-22) and
the German Clinical Trials Register dated on August the 27th,
2013 (registration No. DRKS00004776). The study was designed
in accordance with the principles of the Declaration of Hel-
sinki. Written informed consent was obtained from every
enrolled participant.

Study design and patient population

Details about the study design, sample size calculation, and
inclusion and exclusion criteria have been described.?>?*
Briefly, data were obtained from a prospective, controlled,
single-centre, open-label clinical trial. During the trial, 15
obese patients (BMI >35 kg m~?) undergoing bariatric surgery
and 15 nonobese patients (18.5 kg m~2 < BMI < 30 kg m?)
undergoing elective abdominal surgery were enrolled. The
groups were matched according to participant age and sex.

All participants were administered a single dose of 2 g
cefazolin by i.v. infusion over 30 min after induction of general
anaesthesia. Blood samples to obtain plasma samples were
collected at 0.5, 1, 2, 3, 4, 5, 6, and 8 h after the start of cefazolin
infusion. Plasma samples collected at 0.5, 1, 4, and 8 h un-
derwent ultrafiltration to measure unbound cefazolin con-
centration. Microdialysis catheters (CMA 63 microdialysis
probe, cut-off 20 000 Da, membrane length 30 mm; CMA, Kista,
Sweden) were inserted into the ISF of the subcutaneous adi-
pose tissue of both upper arms (right and left) 90 min before
cefazolin administration. Microdialysis samples (flow rate = 2
ul min’l) were collected in intervals of 0—0.5, 0.5—1, 1—-1.5,
1.5—2, 2—3, 3—4, 45, 5—6, 6—7, and 7—8 h after the dose. Ret-
rodialysis was performed after the end of the sampling period,
collecting 3x 15-min samples per participant, and used as the
calibration method for microdialysis by calculation of relative
recovery (RR). RR was used to calculate ISF concentrations
from microdialysate concentrations. Assays and sampling
preparation and storage have been described.?*

Pharmacokinetic model development and evaluation

Data from all sources (plasma, microdialysis, and retrodialysis)
were analysed simultaneously for model development. The
model was parameterised in terms of cefazolin unbound con-
centrations. Based on the PK insights of a published non-
compartmental analysis (NCA) of these plasma and ISF data,?*
for the compartmental nonlinear mixed-effects modelling
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approach, one-, two-, and three-compartment models were
tested. Linear, saturable (nonlinear) and combined (linear plus
saturable) plasma protein binding models were evaluated to
characterise the relationship between total and unbound
cefazolin concentrations. Microdialysis concentrations were
analysed using the integrated dialysate-based approach.?>?

Interindividual variability in PK behaviour was evaluated
on all model PK parameters. Inclusion of microdialysis intra-
catheter and intercatheter variability on RR was also evalu-
ated. Additive, proportional, and combined residual variability
models were tested to account for deviations between pre-
dictions and observed data.

To explain potential differences in cefazolin exposure be-
tween obese and nonobese patients, the impact of different
body size descriptors on PK parameters (volume of distribution
and flow) was evaluated: allometric scaling, with fixed and
estimated exponents, based on total body weight (TBW), lean
body weight (LBW),? ideal body weight (IBW),?® adjusted body
weight (ABW),”’ and the LBW/fat mass (FM)*° and normal fat
mass>! approaches were evaluated. The impact of clinical and
participant characteristics on cefazolin clearance, estimated
glomerular filtration rate, and age, was evaluated. The impact
of obesity on protein binding parameters and RR was evalu-
ated in a categorical way (different parameters for obese and
nonobese patients).

Intermediate PK models were evaluated with standard
goodness-of-fit plots (e.g. observed vs predicted concentra-
tions and residuals vs population prediction and time). Pre-
dictive model performance was evaluated by visual predictive
checks (n=1000), whereas the precision of the estimated pa-
rameters was assessed by sampling importance resampling.

Dosing regimen simulation and evaluation

The developed PK model was leveraged to perform Monte
Carlo simulations (n=1000). Simulations were performed for
three reference patients: nonobese (TBW = 70 kg, FM = 24.8%,
BMI = 24.2 kg m~2), obese (TBW = 95.1 kg, FM = 29.5%, BMI =
33.0 kg m~2), and morbidly obese (TBW = 127 kg, FM = 39.5%,
BMI = 44.0 kg m~?). A minimum inhibitory concentration (MIC)
<4 mg L™! was chosen, which is the clinical breakpoint for
nonresistant Escherichia coli and Staphylococcus aureus
(EUCAST?>?). The PK/PD target used to evaluate the adequacy of
therapy was unbound cefazolin concentration exceeding MIC
100% of the time (fTsyic = 100%) after 8 h.'® Dosing regimens
were considered adequate for a reference patient when 90% of

the simulated concentration—time profiles achieved this PK/
PD target, specifically when the probability of target attain-
ment (PTA) was >90%.>> To evaluate bacterial infection sce-
narios when the MIC is unknown, as for surgical prophylaxis,
cumulative fraction of response (CFR),** a weighted average of
PTA over the MIC distribution of the pathogens of interest, was
calculated. As with PTA analysis, dosing regimens were
considered adequate when CFR was >90%.2> Four different
dosing regimens (of dosing plus redosing) were simulated for
each reference patient (30-min infusion for all administered
doses): 1 g (redosing 1 gat3 h), 1 g (redosing1l gat4h),2g
(redosing 2 g at 3 h), and 2 g (redosing 2 g at 4 h).

Software

Modelling was performed in NONMEM v7.4.3 (Icon Develop-
ment Solutions, Ellicott City, MD, USA). PsN (Perl Speaks
NONMEM,) v4.8.1 was used to access NONMEM through Pirana
v2.9.6 (Certara, Princeton, NJ, USA). R v4.2.1 with RStudio
(Boston, MA, USA) was used for data management, data visu-
alisation, and processing of modelling results. Simulations
were performed using mrgsolve R package v1.0.6.

Results

Data were collected from 15 obese participants with a median
BMI of 52.6 kg m~2 (range 39.5-69.3 kg m~?) and 15 age- and
sex-matched nonobese patients with a median BMI of 26.0 kg
m~2 (range 18.7-29.8 kg m~?). An overview of participant
characteristics can be found in Table 1.

Pharmacokinetic model

The final model was a two-compartment model with linear
elimination (Fig. 1 and Table 2). Cefazolin protein binding was
best characterised by a saturable binding model
(Supplementary Fig. S1) with a maximum binding capacity of
247 mg L™t (95% confidence interval [CI] 207—286 mg L™?%) and a
dissociation constant of 65.3 mg L~ (95% CI 49.9—-80.7 mg L™ Y),
meaning that a maximum of 247 mg L™! of cefazolin can be
bound in plasma and that, at 65.3 mg L™ unbound cefazolin,
half of the binding partner sites are occupied. Microdialysate
concentrations were attributed to the peripheral compartment
and converted to ISF concentrations by estimated RR. A sig-
nificant effect of obesity was found (RRobese = 23.3%, 95% CI
18.6—28.0%; RRponobese = 41.1%, 95% CI 30.4—51.8%). Of note,

Table 1 Summary of participant characteristics. ABW, adjusted body weight; BMI, body mass index; eGFR, estimated glomerular
filtration rate; FM, fat mass; IBW, ideal body weight; LBW, lean body weight; TBW, total body weight.

Participant characteristics Nonobese (n=15) Obese (n=15) All (n=30)
Sex, n (%)
Male 5(33.3) 5 (33.3) 10 (33.3)
Female 10 (66.7) 10 (66.7) 20 (66.7)
Age (yr), median (range) 45 (21-65) 45 (25—65) 45 (21-65)

eGFR (CKDEPI) (ml min '), median (range)
BMI (kg m~?), median (range)

TBW (kg), median (range)

LBW (kg), median (range)

ABW (kg), median (range)

IBW (kg), median (range)

FM (kg), median (range)

103.8 (86.1-121.7)
26.0 (18.7-29.8)
78.0 (50.0—-96.0)
45.6 (34.2-72.4)
59.4 (52.3—85.2)
59.4 (52.3-85.2)
( )

25.0 (15.8—34.2

133 (82.8—269)
52.6 (39.5-69.3)
155 (123—200)
69.3 (54.9-96.1)
102 (80.4—128)
63.9 (48.7—79.0)
84.2 (48.8—122)

119 (82.8—269)

34.7 (18.7-69.3)
109 (50.0—200)

64.3 (34.2—96.1)
81.0 (52.3-128)
61.2 (48.7—85.2)
41.5 (15.8—122)
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Fig 1. Model structure. Black: estimated parameters; blue: observed quantities; green: patient characteristics. Bmax, maximum binding
capacity; Cyotal, total concentration in the central compartment; C; unp, concentration unbound in the central compartment; C,, con-
centration in the peripheral compartment; Cisr, interstitial space fluid concentration; CL, clearance; Crp1», retrodialysate concentration
(catheters 1 and 2); Cgps,, retroperfusate concentration (catheters 1 and 2); Cup1,2, microdialysate concentration (catheters 1 and 2); FM, fat
mass; ISF, interstitial space fluid; Kq, dissociation constant; LBW, lean body weight; OBE, obesity; Q, intercompartmental clearance; RR,
relative recovery; TF, tissue factor; V;, central volume of distribution; V5, peripheral volume of distribution.

Table 2 Summary of model parameter estimates for unbound
cefazolin and precision by sampling importance resampling.
uD, microdialysis; Bmax, maximum binding capacity; CI, con-
fidence interval; CL, clearance; CV, coefficient of variation; FM,
fat mass; Kgq, dissociation constant; LBW, lean body weight; Q,
intercompartmental flow; R, scaling factor in the LBW/FM
approach (fraction scaled with LBW); RD, retrodialysis; RR,
relative recovery; SIR, sampling importance resampling; TF,
tissue factor; V4, central volume of distribution; V,, peripheral
volume of distribution. *Implementation of the LBW/FM
approach. Fixed parameters.

Parameter (unit) Parameter SIR 95%
estimate  CI

Fixed-effects parameters

CL(Lh™} 17.9 16.6—19.2
V4, (L) (LBW = 64.3 kg)* 22.9 19.2-26.5
Exponent V; 1 -
Q(Lh™%) (LBW = 64.3 kg)* 56.8 49.2-66.9
Exponent Q 0.75f —
V, (L) (LBW = 64.3 kg, FM = 41.5)* 34.3 32.4-36.9
R (%) 76.4 64.9-86.0
Bmax (Mg L7} 247 219-289
Kq (mg L™ 65.3 55.8—79.9
TF (%) 65.5 59.4—70.9
RRopese (%) 23.3 19.4-29.1
RRponobese (%) 411 35.3-48.8
Interindividual variability,

CV (%)
CL 21.9 17.9-29.0
Vi 40.1 28.7—-56.4
Q 54.8 42.0-72.9
V, 12.4 6.33—18.6
Bmax 9.20 5.66—12.9
RR 43.3 22.8—63.0
Intercatheter 58.6 42.6—80.7
Intracatheter 90.3 73.8—-110
Residual variability, CV (%)
Plasma proportional error 35.7 33.9-37.7
uD proportional error 52.1 50.4—54.0
RD proportional error 28.9 23.8—36.3

differences in RR are microdialysis technique- and tissue-
related. A tissue scaling factor (TF = 0.655, 95% CI 0.574—0.736)
relating predicted concentrations in the peripheral compart-
ment to ISF concentrations was identified, and was not
different between obese and nonobese patients (Table 2).

Interindividual variability was included on all PK parame-
ters, except K4, and was low to moderate (coefficient of vari-
ation [CV] <54.8%). Furthermore, interindividual variability
was included in RR (CV = 43.3%), as well as intracatheter and
intercatheter variability (CV = 90.3% and 58.6%, respectively).
Both plasma total and unbound microdialysis and retro-
dialysis data were best characterised by a proportional resid-
ual variability model.

Models with fixed exponents and estimated exponents for
allometric scaling performed similarly. Fixed exponents were
preferred because of their mechanistic foundations. Model
performance (based on the Akaike information criterion) was
similar between the LBW/FM®® approach and allometric
scaling based on ABW?° (AICLBw/rM = 2500, AICagw = 2494).
The LBW/FM approach was chosen because of its physiologi-
cally motivated foundations and interpretability. The chosen
model showed good predictive performance and characterised
the data well (Supplementary Figs S2—S4). Based on the LBW/
FM approach, 23.6% of cefazolin peripheral volume of distri-
bution was found to depend on FM, whereas the remaining
fraction (76.4%) depended on LBW. The central volume of
distribution and intercompartmental flow scaled linearly with
LBW. No clinical or participant characteristics were found to
have an impact on cefazolin clearance (17.9 L h™%). No signif-
icant differences between obese and nonobese participants
were found for protein binding.

Dosing regimen simulation and evaluation

To evaluate the need for dosing adjustments in obese patients,
unbound plasma and ISF concentration—time profiles were
simulated for nonobese, obese, and morbidly obese reference
patients (Fig. 2). Probability of target attainment analysis was
performed evaluating up to MIC = 4 mg L7}, the clinical
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1 g (redosing 3 h)
Plasma

1 g (redosing 4 h)
Plasma

2 g (redosing 3 h)
Plasma

Concentration (mg L)

2 g (redosing 4 h)

ISF

ISF

40 1

30 -

20 -

10 -

oF Y S -
0 2 4 6 8

ISF

Plasma ISF
40 A
30
20 -
10
0 -
0 2 4 6 8
Time (h)
— Nonobese — Obese — Morbidly obese

Fig 2. Simulated (n=1000) cefazolin concentration—time profiles for nonobese, obese, and morbidly obese reference patients. Coloured
lines represent the median; shaded areas are 5th—95th percentiles; and the dashed black line represents MIC = 4 mg L. ISF, interstitial

space fluid; MIC, minimum inhibitory concentration.

breakpoint for cefazolin for both E. coli and S. aureus
(EUCAST??). Overall, PTA was found to be similar in nonobese
reference patients compared with obese and morbidly obese
reference patients. When the MIC was <2 mg L7, all four
evaluated dosing regimens were adequate for both unbound
plasma and ISF (Fig. 3) PTA evaluation. However, different

results were obtained when evaluating PTA in plasma
compared with ISF with MIC = 4 mg L™%. In particular, 1 g
(redosing 1 gat3h) and 2 g (redosing 2 g at 4 or 3 h) were found
to be adequate dosing regimens (PTA >90%) for all three
reference patients in plasma, whereas 1 g (redosing 1 gat 4 h)
was found to be inadequate (PTA <90%) (Fig. 3b) (PTA was
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1 g (redosing 1 g at 3 h) 1 g (redosing 1 g at 4 h)

2 g (redosing 1 g at 3 h) 2 g (redosing 1 g at 4 h)

Plasma
b c d
:\;100- o—o—o—\§ 100 A 100 . o—e—o—o— 100 4 0—eo—o—o—9
= 90+ 90 90 90
o
5 751 75 A 75 4 75
2
@
T 50 1 50 50 50
Q
=
g 25 4 L 25 4 L l 25 4
= I I I [
E 04 .— 0 - ._ 0 4 ._ 0 ._
025 . 025 . 025 05 025 05
MIC MIC MIC MIC
e |ISsF f g h
:\?100- 100 ~ 100 4 o—e—eo—o—xy 100 4 o—e—o—oy
= 90+ 90 90 90
o
5 75 75 75 75
2
k]
T 50 50 50 50
Q
=
T 25 - 25 - 25 - l 25 - l
©
<
= I I.l_ N I l_ N I Lo, I L
025 05 025 05 025 05 025 05
MIC MIC MIC MIC

Patient PTA (%) -®- Nonobese -8- Obese -@- Morbidly obese

MIC distribution (%) M E. coli W S. aureus

Fig 3. Probability of target attainment (>90%) of unbound cefazolin in (a—d) plasma and (e—h) interstitial space fluid for four different
dosing regimens: (a, e) 1 g with redosing after 3 h, (b, f) 1 g with redosing after 4 h, (c, g) 2 g with redosing after 3 h, and (d, h) 2 g with
redosing after 4 h. Bars represent MIC distribution of Escherichia coli and Staphylococcus aureus. ISF, interstitial space fluid; MIC, minimum

inhibitory concentration; PTA, probability of target attainment.

60.9% in nonobese, 73.4% in obese, and 74.5% in morbidly
obese). However, when PTA was evaluated in ISF, 1 g (redosing
1 gat3h) (Fig. 3e) was found inadequate for all three reference
patients (PTA was 85.5% in nonobese, 75.1% in obese, and
61.2% in morbidly obese).

Similar to PTA analysis, CFR analysis did not show different
results between nonobese, obese, and morbidly obese reference
patients (Fig. 4). All evaluated dosing regimens reached CFR
>90% for all three reference patients in both plasma and ISF.

No differences in PTA and CFR results between nonobese
and obese patients were observed under any of the evaluated
scenarios. Based on the performed PTA and CFR analyses, 2 g
(redosing 2 g at 4 h) appeared as the most suitable dosing
regimen when MIC is unknown or MIC = 4 mg L~ 1. However, in
the case of known MIC <2 mg L™}, 1 g (redosing 1 g at 4 h) was
also found to be an adequate dosing regimen. Ultimately, no
benefit of redosing at 3 h compared with 4 h was observed
under any of the evaluated dosing regimen scenarios for all
three reference patients.

Discussion

The need for more than 2 g doses of cefazolin in obese patients
for perioperative antibiotic prophylaxis has been studied and

debated with differing results. We evaluated the adequacy of
clinically relevant cefazolin dosing regimens for surgical pro-
phylaxis based on exposure in plasma and ISF of adipose tis-
sue, the usual site of infection. Using fr-mic = 100% as a target,
we did not find any clinically relevant influence of obesity. A
second dose after 4 h was sufficient in the context of periop-
erative antibiotic prophylaxis with an administration of 2 g.
The data presented in this study were previously published
and analysed using noncompartmental analysis (NCA).?* The
NLME approach of this study confirmed the NCA results
revealing no clinically relevant differences in cefazolin con-
centrations between obese and nonobese patients. Based on
the evaluated scenarios, our results agree with the majority of
PK and outcome studies conducted'?*> 3% to investigate the
need for a higher cefazolin dose in obese patients, concluding
itis not needed. Based on these results, the higher incidence of
SSIs observed in obese patients does not appear related to
inadequate cefazolin dosing regimens. The large range in pa-
tient BMI (18.7—69.3 kg m~?) included in this study allowed us
to characterise PK differences between obese and nonobese
patients based on differences in body composition. However,
these PK differences were not considered to be clinically
relevant in terms of dosing regimen adequacy. However,
because a higher incidence of SSIs and lower plasma and ISF
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1 g (redosing 1 g at 3 h) 1 g (redosing 1 g at4h)

2 g (redosing 1 g at 3 h) 2 g (redosing 1 gat4h)
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CFR

Fig 4. Cumulative fraction of response (>90%) of unbound cefazolin in (a—d) plasma and (e—h) interstitial space fluid for different dosing
regimens: (3, €) 1 g with redosing after 3 h, (b, f) 1 g with redosing after 4 h (c, g) 2 g with redosing after 3 h and (d, h) 2 g with redosing after 4
h in nonobese, obese, and morbidly obese reference patients. CFR, cumulative fraction of response; ISF, interstitial space fluid.

concentrations are observed in obese patients early after
dosing, whether time-related targets are not the best efficacy
measure must be considered and could be explored in future
studies.

Although this analysis agrees with previous findings, it
further suggests that doses lower than 2 g could be sufficient.
However, practically, because the MIC cannot be established
in a prophylactic setting, 2 g remains the recommended dose
for obese and nonobese patients. Nonetheless, in a local
setting when the MIC distribution is known, the same alter-
native doses might be considered for both obese and nonobese
patients. One modelling and simulation study that concluded
that obese patients require a dose adaptation did not include a
control group (nonobese) and the majority of samples were
collected only up to 2.5 h after dosing,> whereas the other two
included only pregnant women as obese population'* or
included a low number of patients (n=15).'> These differences
from the present study design and study population might
explain the different conclusions obtained.

For perioperative antibiotic prophylaxis, it is typically rec-
ommended to redose after twice the half-life of the antibiotic.
However, because the reported half-life for cefazolin ranges
between 1.5 and 2 h, redosing at 3 and 4 h was evaluated in this
study. No benefits of redosing after 3 h were observed
compared with redosing at 4 h at a dose of 2 g. Therefore, for
practical reasons, redosing is recommended 4 h after the first
cefazolin administration for longer surgical procedures.

We acknowledge that the sample size of patients included
in the study (n=30) is a limitation. However, it has to be
considered a large sample when compared with other micro-
dialysis studies. Because systemic and target-site exposure
might differ,”?! being able to perform such evaluations at the
probable site of infection is of great value.

Saturable binding of cefazolin was observed and quantified,
consistent with previous studies.'®*%*° However, albumin is
considered the main binding partner for cefazolin, and its
concentration is much higher than the maximum binding
capacity estimated in this study. Nevertheless, the nonlinear
binding behaviour has been observed consistently, suggesting
that the binding mechanisms remain unclear.

No impact of participant or clinical characteristics was
included for cefazolin clearance. As cefazolin is mostly elim-
inated renally, an impact of estimated glomerular filtration
rate (eGFR) on clearance could be expected. All eGFR calcula-
tion methods point towards increased renal function for obese
individuals; however, obesity is a risk factor for chronic kidney
disease.” Therefore, identification of eGFR to explain expected
clearance differences between obese and nonobese patients
might be nontrivial. To overcome this, in future studies,
measurements of GFR should be performed. Lastly, although
use of PK/PD targets is well established to link drug exposure
to efficacy, data on clinically measured outcome endpoints
should, in the future, be collected, at least in observational
settings.
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In conclusion, with the evaluated condition, this study
showed that in the context of perioperative antibiotic pro-
phylaxis with cefazolin, no dose adjustment is necessary in
obese patients. In general, initial administration of 2 g cefa-
zolin i.v. with redosing at 4 h intraoperatively is sufficient.
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