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Boreal tree species diversity increases with 
global warming but is reversed by extremes

Yanbiao Xi1,2, Wenmin Zhang    2  , Fangli Wei3, Zhongxiang Fang4 & 
Rasmus Fensholt    2

Tree species diversity is essential to sustaining stable forest ecosystem 
functioning. However, it remains unclear how boreal tree species diversity 
has changed in response to climate change and how it is associated with 
productivity and the temporal stability of boreal forest ecosystems. By 
combining 5,312 field observations and 55,560 Landsat images, here we 
develop a framework to estimate boreal tree species diversity (represented 
by the Shannon diversity index, H′) for the years 2000, 2010 and 2020. 
We document an average increase in H′ by 12% from 2000 to 2020 across 
the boreal forests. This increase accounts for 53% of all boreal forest areas 
and mainly occurs in the eastern forest–boreal transition region, the 
Okhotsk–Manchurian taiga and the Scandinavian–Russian taiga. Tree 
species diversity responds positively to increasing temperatures, but the 
relationship is weakened for higher temperature changes, and in areas 
of extreme warming (>0.065 °C yr−1), a negative impact on tree species 
diversity is found. We further show that the observed spatiotemporal 
increase in diversity is significantly associated with increased productivity 
and temporal stability of boreal forest biomass. Our results highlight 
climate-warming-driven increases in boreal tree species diversity that 
positively affect boreal ecosystem functioning but are countered in areas of 
extreme warming.

Global forests have been documented to represent a consistent carbon 
sink1 that is essential to mitigating climate warming2. The diversity of 
tree species in forests has been found to play a pivotal role in maintain-
ing the functionality of forest ecosystems as a vital carbon sink on the 
basis of plot observations3, further sustaining ecosystem stability4,5. 
The global forest extent has experienced gains and losses over the past 
three decades6, owing primarily to forestry, agriculture and wildfires7, 
while climate change and rising CO2 have caused continental-specific 
trade-offs in forest dynamics (for example, growth or mortality)8 and 
have been reported to cause shifts in trees species at the plot level9,10. 
Yet, the response of tree species diversity to changes in forests over the 
past few decades remains unknown at a large spatial scale. Furthermore, 

the responses of forest diversity to ecosystem productivity and sta-
bility have been documented on the basis of plot measurements4,11. 
These relationships established at the plot level may vary depend-
ing on regional climate and soil conditions12,13, and therefore cannot 
easily be used to generalize across a range of diverse environmental 
conditions. The lack of large-scale spatial continuous mapping of tree 
species diversity, and the temporal dynamics thereof, impedes further 
exploration of how tree species diversity contributes to various aspects 
of forest ecosystem functioning.

Existing studies have attempted to estimate global forest tree 
species diversity14 and vascular plant diversity on the basis of statistical 
relationships between species diversity metrics and environmental 
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tree species diversity quantified by a Shannon diversity index (H′)34,35 
accounting for both species richness and evenness across the boreal 
forest ecosystems (Supplementary Fig. 1). This is achieved by deploy-
ing machine learning based on a combination of field and Landsat 
satellite observations for the years 2000, 2010 and 2020. We used 
5,312 field observations including observations of 190,516 trees and a 
deep learning approach based on the InceptionTime architecture to 
train a predictive model. Subsequently, 55,560 Landsat scenes were 
subjected to the model to upscale tree species diversity across boreal 
forest ecosystems. Next, we analysed the spatiotemporal dynamics of 
boreal tree species diversity in relation to a comprehensive set of envi-
ronmental factors potentially impacting diversity (including climate, 
population density, fire activity and soil conditions). Finally, we analysed 
the spatiotemporal changes in boreal tree species diversity associated 
with the productivity and temporal stability of boreal forest biomass. 
This analysis is particularly timely in the boreal areas given the observed 
distinct climate warming and increase in wildfire activity in this region, 
and it further contributes to generalizing our current understanding 
of the associations between tree diversity and ecosystem functions.

Results
Spatiotemporal changes in tree species diversity
The boreal biome has experienced a dramatic increase in air tempera-
ture over the past few decades, compared with other regions across 
the globe, with continuous warming by 2100 being projected in future 
climate scenarios (Fig. 1a and Supplementary Fig. 2). This warming is 
expected to profoundly alter the structure and functioning of boreal 
forest ecosystems. We used Landsat satellite data, trained by plot-based 
measurements of tree species and a deep learning approach based on 
the InceptionTime architecture (Methods, Extended Data Fig. 1 and Sup-
plementary Figs. 3 and 4), to predict tree species diversity as described 
by H′34,35, with a high accuracy (coefficient of determination (R2), 0.77; 
root mean square error, 0.12) for the entire boreal forest area (Extended 
Data Fig. 2). We observed a 12% increase in boreal tree species diversity 
by H′ values from 2000 to 2020, with average H′ values increasing from 
0.41 ± 0.14 (mean ± standard deviation) to 0.46 ± 0.16 (Fig. 1b), repre-
senting a 5% ± 2% increase during 2000–2010 and a 7% ± 3% increase 
during 2010–2020.

Large spatial variations in tree species diversity were observed 
across boreal forest ecosystems (Fig. 2a–c; zoomed-in figures are 
provided in Extended Data Fig. 3 for improved visual interpretation). 

variables15, but these diversity maps represent static maps provided 
in coarse spatial resolution defined by the environmental input data. 
Satellite-based tree species diversity estimates have been conducted 
on the basis of spectral heterogeneity16–19 and have produced reason-
able predictions of tree species diversity, thereby offering improved 
spatial resolution and adding a temporal dimension to the mapping. 
Long-term satellite-based species diversity estimation would fur-
ther make it possible to identify temporal changes in diversity across 
large spatial scales, which currently represents a major unknown. 
The combined impacts of climate change and human appropriation 
have profoundly transformed global forest ecosystems in recent 
decades20, highlighting the urgent need for continuous, time-varying 
observations.

Boreal forests represent 30% of the Earth’s total forested area21, 
enduring harsh winters with freezing temperatures for approximately 
six to eight months and snow cover persisting for several months10,22. 
Boreal forests are further characterized by a much lower diversity 
of tree species than tropical forests21,23, and even minor positive or 
negative changes in species diversity may have substantial effects on 
the boreal ecosystems’ carbon uptake and stability24. For example, 
Larix spp. (the dominant species across Eurasian boreal forests) are 
approaching a thermal tipping point at their southern margin, which 
is expected to cause an abrupt ecological collapse of ecosystem func-
tioning (for example, the capacity of carbon uptake) of Larix spp. 
under continued climate warming25. These unique characteristics 
of boreal forest ecosystems make them particularly susceptible to 
climate change, and boreal forests have therefore been identified as 
a critical ‘tipping element’ of the Earth’s climate system26. Profound 
climate warming and increasing frequency of fire activity have been 
observed in boreal ecosystems27,28, and the associated droughts have 
been documented to trigger widespread increases in tree mortality and 
decreases in the biomass carbon sink29–31. Yet, the extent to which boreal 
forest tree species diversity has undergone changes and the potential 
impact on ecosystem functioning remain largely unexplored to date. 
This knowledge would make a notable contribution to the assessment 
of carbon sequestration sustainability in boreal forests32 and boreal 
forest ecosystem transitions9,33.

In this study, we aim to quantify changes in boreal tree species diver-
sity with climate change over recent decades and the impacts of species 
diversity change on the boreal ecosystem carbon cycle. We developed 
a framework to produce spatially continuous representations of forest 
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Fig. 1 | Temporal changes in tree species diversity in relation to climate 
warming across the boreal forest ecosystems. a, Observed and simulated 
changes in air temperature during the growing season (May–October, °C) are 
averaged for boreal forests during 1960–2020 and 2015–2100, on the basis of 
CRU TS v.4.07 data86 and the outputs of the Coupled Model Intercomparison 

Project Phase 6 (ref. 87). The shaded areas represent 95% confidence intervals.  
b, Tree species diversity, represented by H′, estimated using Landsat satellite 
data in 2000, 2010 and 2020. The boxes and whiskers show the 5th, 25th, median, 
75th and 95th percentiles of the H′ values, while the black dots show the mean of 
the H′ values for each year (n = 128,715,043).
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In Eurasia, relatively high tree species diversity was observed over the 
Okhotsk–Manchurian taiga and Scandinavian–Russian taiga, located 
in northern Scandinavia as well as the northwestern and central 
regions of Russia, with average H′ values of 0.56 ± 0.16 and 0.55 ± 0.18, 
respectively, whereas a lower diversity (0.28 ± 0.07) was observed in 
the Northeast Siberian taiga located at the northern edge of Eurasia 
(Fig. 2a–c and Supplementary Table 1). In North America, the eastern 
forest–boreal transition region, characterized by boreal and temperate 
tree species, had the highest diversity (0.77 ± 0.20), followed by Central 
Rockies forests (0.49 ± 0.16) and Mid-Continental Canadian forests 
(0.44 ± 0.12). The Alaska–Yukon lowland taiga and Northern Canadian 
Shield taiga, dominated by spruce species, had the lowest diversity, 
with average H′ values of 0.33 ± 0.09 and 0.31 ± 0.08, respectively.

The extent of tree species diversity gains (calculated from the dif-
ferences in H′ values between 2020 and 2001; Methods) accounts for 
53% of boreal forest areas (approximately 8,165,000 km2), and losses 
accounted for 17% (approximately 2,684,000 km2), while areas of no 
distinct change (determined by changes in H′ values ranging from −0.01 
to 0.01) were observed for 20% of all boreal forest areas (Supplementary 
Table 2). Diversity gains in boreal forest were primarily observed in 
the Scandinavian–Russian taiga (Fig. 2d and Supplementary Table 3), 
with H′ values increasing by 35% ± 16% (0.18 ± 0.08); the Okhotsk–Man-
churian taiga (33% ± 17%, 0.17 ± 0.09); and the eastern forest–boreal 
transition region (27% ± 11%, 0.19 ± 0.08). Diversity losses occurred 
mainly in the Kamchatka Mountain forest and the West Siberian taiga, 
with H′ values decreasing by 25% ± 16% (−0.13 ± 0.08) and 26% ± 10% 

(−0.13 ± 0.05), respectively. Areas of gains in diversity were mainly 
observed in warmer regions, while losses tended to occur in colder 
regions (Fig. 2d). Moreover, a clear reduction in the proportions of 
relatively low diversity values (approximately H′ < 0.4) was observed, 
accompanied by an increase in the proportions of relatively high diver-
sity values (H′ > 0.4) at the pixel level for the three epochs from 2000 to 
2020 (Fig. 2e); also, a higher frequency of pixels of diversity gains than 
losses was observed (a gain-to-loss ratio of 3:1) (Fig. 2f).

We further assessed the relative contributions of changes in spe-
cies richness and evenness to diversity dynamics using a multiple linear 
regression model, on the basis of forest inventory data with repeated 
measurements (n = 648; most of the plots are located in North America) 
(Extended Data Fig. 4). The results show that in the eastern forest–
boreal transition region and Canadian Shield forests, species richness 
and evenness contribute almost equally to the changes in tree species 
diversity (H′ values), while the contribution of evenness (β = 0.47;  
β represents the sensitivity of change in diversity against changes in the 
explanatory variable) significantly exceeds that of richness (β = 0.21) 
in the Northern Canadian Shield taiga and the Central Rockies forests 
(0.56 versus 0.28).

Determinants of tree species diversity changes
We quantified the spatial variability in boreal tree species diversity for 
the three epochs driven by a range of potential environmental variables 
accounting for geographic variations in climate, soil properties and dis-
turbances (fire activity and human population density) (Supplementary 
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Fig. 2 | Spatiotemporal changes in boreal tree species diversity. a–c, Spatial 
patterns of tree species diversity by H′ values across boreal forests in 2000 (a), 
2010 (b) and 2020 (c). d, Changes in H′ between 2000 and 2020 superimposed 
on mean seasonal air temperature. H′ is aggregated at a spatial resolution of 
1.5° × 1.5° and is shown by dots, with larger dots indicating higher diversity  
gains (blue) or losses (purple). Basemap in a–d from Natural Earth  

(https://www.naturalearthdata.com/). e, Frequency plot of boreal tree species 
diversity in 2000, 2010 and 2020; the vertical lines denote the mean H′ values of 
0.41 in 2000, 0.43 in 2010 and 0.46 in 2020. f, Frequency plot of gains and losses 
in tree species diversity during 2000–2020; the vertical dashed line represents 
no change in the H′ value.

http://www.nature.com/natureplants
https://www.naturalearthdata.com/


Nature Plants | Volume 10 | October 2024 | 1473–1483 1476

Article https://doi.org/10.1038/s41477-024-01794-w

Fig. 5) using a boosted regression tree (BRT) algorithm (Methods). We 
show that BRT can explain, on average, 62% of the spatial variability in 
boreal tree species diversity (Fig. 3a). We found mean seasonal tem-
perature to be the most important predictor (53%), followed by mean 
seasonal precipitation (21%), while each of the remaining individual 
variables contributed less than 10% to the variability in diversity, includ-
ing elevation (9%), human population density (6%), fire activity (4%), 
cation exchange capacity (3%), topsoil organic carbon (2%) and topsoil 
sand fraction (2%). When investigating the diversity response to an 
individual variable independent of other variables (partial dependency 
plots; Methods), we found that temperature shows a strong positive 
impact on diversity when mean seasonal temperature is below 12 °C 
(Supplementary Fig. 6), while the impact appears to reach a plateau 
for values above this threshold (Fig. 3b). Precipitation shows a clear 
positive effect with mean seasonal precipitation above 100 mm that 
tends to saturate after reaching 400 mm (Fig. 3c). Elevation generally 
shows a weak positive impact on diversity until approximately 700 m, 
beyond which elevation shows a weak negative impact (Fig. 3d). Human 
population density shows a weak positive effect on diversity with popu-
lation density increasing to 1.5 people per km2, from where population 
density exerts a slightly negative effect on diversity (Fig. 3e). Similar 
patterns of the partial responses were observed for each individual 
period (Extended Data Fig. 5 and Supplementary Figs. 7–9).

Mean seasonal temperature and precipitation exerted strong 
positive effects on the spatial variation of boreal tree species diver-
sity, whereas temporal changes in diversity were observed to show a 
negative response to increasing temperature over the past 20 years 
(ρ = −0.51, P < 0.01) (Fig. 4a,d). While lower rates of increasing tempera-
ture are associated with increasing trends in diversity, this relationship 

gradually changes towards higher rates of increasing temperature 
(exceeding 0.065 °C yr−1) associated with decreasing trends in diversity. 
These areas of decreasing trends are primarily observed to be located 
in northeastern Siberia (Fig. 4a). Similarly, the trends in diversity show 
a negative response to increasing fire activity frequency (Fig. 4b,e). The 
diversity trend generally shows a positive response to precipitation 
in cases of minor positive and negative precipitation trends, whereas 
for more extreme precipitation trends, the positive diversity trends 
approach zero (Fig. 4c,f). Furthermore, a negative relationship between 
diversity and stand age was observed across boreal forests (Extended 
Data Fig. 6), with higher gains in diversity in young forests than in 
mature forests. Accounting for these variables together, our analysis 
reveals that temperature trends and stand age exert a greater relative 
influence on regulating changes in diversity than precipitation trends 
and the frequency of fire activity (Supplementary Table 4). When the 
effect of stand age is removed, temperature trends play a predominant 
role in controlling changes in diversity (Supplementary Table 4).

Association with carbon fluxes, stocks and stability
We quantified the associations between boreal tree species diversity 
(and spatiotemporal changes therein) and six independent indica-
tors (and spatiotemporal changes therein) characterizing forest car-
bon, including carbon fluxes (net primary production (NPP), kernel 
normalized difference vegetation index (kNDVI) and vegetation opti-
cal depth climate archive Ku-band (VOD Ku-band)), carbon stocks 
(aboveground-biomass-based LiDAR and optical satellite data, and 
L-band passive microwave data (AGB_1 and AGB_2)) and the temporal sta-
bility of boreal forest biomass (Methods). Our results, based on a multi-
ple linear regression, show significantly (P < 0.05) positive associations 
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between diversity and forest carbon fluxes and stocks across spatial and 
temporal scales (Fig. 5 and Supplementary Figs. 10–12).

The spatial variability of all carbon indicators was significantly 
associated with tree species diversity and stand age, as well as with cli-
mate, disturbances, soil properties and topography; climate variables 
had the highest impact on forest carbon, followed by diversity, distur-
bances and stand age (Fig. 5 and Supplementary Fig. 10). In the spatial 
domain, diversity generally showed a positive relationship with forest 
carbon stock and fluxes, while stand age showed a negative relationship 
with carbon fluxes and a positive relationship with carbon stock (Fig. 5). 
Trends in NPP, kNDVI and AGB_2 were significantly positively correlated 
with diversity trends, while stand age showed significant negative 
relationships with trends for most carbon indicators (Fig. 5 and Sup-
plementary Fig. 11). Temperature and precipitation changes showed 
significant positive relationships with trends in NPP and AGB_1, whereas 
temperature and precipitation had varying relationships with other 
carbon indicators (Fig. 5 and Supplementary Fig. 11). Disturbances 
were generally negatively correlated with most carbon indicators, with 
the impact of fire activity being larger than that of human population 

density. Elevation showed a positive correlation with most carbon 
indicator trends, whereas soil characteristics were both positively and 
negatively correlated (Fig. 5 and Supplementary Fig. 12). The temporal 
stability of boreal forest biomass was also found to be significantly 
associated with diversity at both spatial and temporal scales, while 
being co-regulated by climate, fire activity and topography.

Discussion
We developed a data-driven tree species diversity assessment frame-
work that utilized remote sensing data in combination with in situ 
observations to generate spatially continuous boreal tree species 
diversity maps with a high level of spatial detail (30 m × 30 m), but 
also with a temporal dimension covering three different epochs around 
2000, 2010 and 2020. This approach thus provides distinct advan-
tages over other global mapping methods for diversity assessment15,23 
and offers an unparalleled evaluation of the nature of spatiotemporal 
changes in boreal tree species diversity in response to global environ-
mental changes at different scales of time and space. The success of 
the satellite-remote-sensing-based estimates of tree species diversity 
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was mainly attributed to spectral heterogeneity (for example, plant 
chemical properties of the tissue related to photosynthetic pigments 
and water, branching structure, leaf size and colour, leaf clumping and 
leaf angle distribution) being sufficiently characterized by information 
from the visible, near-infrared and short-wave infrared regions16,36, 
while the InceptionTime deep learning approach used here captured 
well the complex relationships under the varying phases. Uncertainties 
in the prediction of diversity may still exist owing to data quality, envi-
ronmental conditions (for example, lighting conditions and shadows) 
and the reflectance influenced by understory vegetation (that is, shrubs 
and grasses) in sparse forests18,37. However, our approach, including 
the use of segmentation and multiple vegetation indices in the model 
building, has largely reduced the direct effects of changes in greenness 
and tree cover on changes in H′ (indicated by the smaller R2; Extended 
Data Fig. 7). Future work could nonetheless consider techniques such as 
spectral unmixing, radiative transfer model inversion and data fusion 
to further reduce these uncertainties38.

Not surprisingly, the spatial patterns of forest tree species diver-
sity show signs of latitudinal dependency, with decreasing species 
diversity towards the tundra biome, largely related to the temperature 
gradient from higher to lower temperatures23. However, supported by 
the high spatial resolution of the satellite data, the H′ maps (account-
ing for tree species richness and evenness) present distinctly spatial 
variations in diversity across areas at the same latitude, unlike previous 
studies of tree species richness generally displaying monotonic and 
homogeneous changes in diversity across boreal forest ecosystems15,23. 
This satellite-based spatial pattern of diversity may thus better reflect 
natural diversity changes in boreal forests.

We documented an overall increase in boreal tree species diver-
sity during the period of analysis linked to climate warming, which is 
consistent with predictions and observations of other studies9,10,39. 
Warming of the climate fosters conditions conducive to the expansion 

of boreal forests and to the proliferation of species, achieved through 
mechanisms such as earlier snowmelt providing more time for seed 
germination40, sapling growth41, altered disturbance regimes42 and 
the augmentation of soil nutrient availability9,10. Particularly, moder-
ate disturbances could catalyse tree community responses to climate 
change42, potentially shifting forest composition (both species rich-
ness and evenness) towards warm-adapted species (Extended Data 
Fig. 4)—for example, a transition from coniferous species to mixed 
species (temperate and boreal), as documented in southern boreal 
forest areas43,44. However, we observe that the diversity increase is 
negatively responding to increasing temperatures, suggesting that 
warming only to a certain extent can promote boreal tree diversity. 
A rapid increase in temperature is possibly detrimental to boreal tree 
diversity, because these species cannot adapt to such abrupt changes 
in temperature8, whereas pioneer species may adapt to the changes 
more quickly, thereby encroaching on the habitat of other species and 
potentially limiting their space and resources43,45. Moreover, extreme 
warming is likely to surpass the thermal tolerance of trees and triggers 
wildfires, resulting in tree mortality and thereby a reduction in tree 
diversity46,47. Such effects could particularly be occurring in northern 
regions with lower tree species diversity and scarce environmental 
resources (for example, low soil nutrients and seed availability)12,40, 
hindering the recovery of tree species. Here we observe a warming 
rate exceeding 0.065 °C yr−1 to have a negative impact on temporal 
changes in diversity. Such negative effects can also be enhanced 
due to the increased frequency of fire occurrences induced by rising 
temperatures48,49, as well as the co-occurrence with warming droughts50 
and an increasing vapour pressure deficit exerting a higher demand 
for water availability51.

Increasing boreal tree species diversity is further found to be asso-
ciated with high carbon stocks and the stability of boreal ecosystems, 
and thus there is no potential conflict of interest between preserving 

Soil and topographyDisturbancesClimate

–0.2

0

0.2

>0.4

Tr
en

ds
Sp

at
ia

l

MODIS NPP

kNDVI

VOD Ku-band

AGB_1

AGB_2

Stability

∆MODIS NPP

∆kNDVI

∆VOD Ku-band

∆AGB_1

∆AGB_2

∆Stability

∆H’ in
dex

TM
P_m

PR_m
∆TM

P
∆PR

FIR
E_m

POP_m
∆FIR

E
∆POP

DEM
CEC OC

SAND

H’ in
dex AGE

Diversity and age

Standardized coe�icients

<–0.4

Fig. 5 | Spatiotemporal changes in boreal tree species diversity associated 
with the forest carbon cycle. The colour scale indicates the strength of the 
relationship (standardized coefficients β) between each predictor (bottom) and 
each response variable (left) (NPP, kNDVI, AGB and temporal stability of AGB) in 
a multiple linear regression model. The black dots indicate significant impacts at 
a 95% confidence level, and the hashed areas indicate no statistical relationships. 

Diversity, climate and disturbances have mean values and temporal trends, with 
Δ indicating temporal trends of variables from 2000 to 2020. MODIS NPP, NPP 
from the MODIS MOD17A3HGF v.6.1 product; AGB_1, L-VOD-based AGB from 
the Soil Moisture and Ocean Salinity (SMOS) satellite; AGB_2, AGB from ref. 64; 
Stability, temporal stability of boreal forest biomass (calculated from AGB_2 from 
2000 to 2019); AGE, stand age.
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boreal tree species diversity and emphasising the role of boreal forest 
ecosystems as an essential global source of carbon sequestration3. 
Additionally, changes in tree species diversity and the stability of for-
est ecosystems can also be largely regulated by tree stand age. Our 
results suggest that young forests have higher increases in diversity 
and carbon cycling dynamics than mature forests, which is probably 
because young forests are undergoing rapid compositional/structural 
transitions. Finally, we note that some uncertainty may exist regarding 
the observed relationships introduced by the different data sources on 
carbon fluxes, carbon stocks and diversity, despite the efforts made (for 
example, the use of different data sources) to reduce such potential 
bias or uncertainty.

Our results indicate that increasing temperatures across the boreal 
zone overall corresponded to an increase in tree species diversity over 
the past two decades, but these increasing trends of diversity were 
reversed in areas of extreme warming, providing new insights into the 
long-term temporal changes in diversity in response to climate change 
across boreal forest ecosystems. However, here we did not account 
for the response of possible changes in dominant tree species due to 
climate warming, which may contribute to the change in productivity 
and stability of boreal ecosystems52,53. Further studies are also needed 
on the responses of forest structural diversity54 and functional trait 
diversity55 to climate change and their associated impacts on ecosystem 
functions. Incorporating these variables would enhance our under-
standing of the underlying mechanisms governing the associations 
between forest tree diversity, productivity and the temporal stability 
of ecosystems. Additionally, increasing diversity is probably associ-
ated with the emergence of a biome shift52,56, with trees and shrubs 
expanding towards tundra regions56,57, reshaping the structure and 
functioning of boreal ecosystems. Taken together, such an expanded 
knowledge base would provide a stronger foundation for promoting 
solutions for sustainable ecosystem functioning and mitigating the 
risk of destabilizing the terrestrial carbon sink under climate warming.

Methods
National forest inventory data
In this study, we collected boreal tree species diversity datasets from 
six countries (Supplementary Table 5). The datasets include 5,312 field 
observations of a total of 190,516 trees divided into 254 tree species. 
Most of the datasets come from national forest inventory databases, 
including Canada and China, while the remaining data come from 
publicly available datasets covering the United States (Alaska)58, north-
eastern Siberia59 and Northern Europe3,60. H′ was calculated on the basis 
of the number and species of trees in each sample plot35,61. Consider-
ing differences in plot size across datasets, we normalized forest tree 
species diversity to a common basis of 900 m2 in area and 10 cm in 
threshold diameter at breast height using plot area and diameter at 
breast height as predictor variables, following the approach adopted 
by ref. 23.

Landsat data
The Landsat surface reflectance data, with a spatial resolution of 
30 m × 30 m, from the US Geological Survey Earth Resources Obser-
vation and Science archive were used to upscale boreal tree spe-
cies diversity. We obtained three sets of Landsat data covering the 
growing season (May to October) for three time periods: 1999–2001, 
2009–2011 and 2019–2021. We applied a three-year time interval 
for data compositions to increase the number of clear-sky satellite 
observations of the different time epochs. These data were obtained 
from Landsat-5 Thematic Mapper, Landsat-7 Enhanced Thematic 
Mapper Plus and Landsat-8 Operational Land Imager, and they were 
synthesized into monthly composites for the best-quality collection 
(that is, minimal cloud, fog and snow cover) of each period using 
published cross-calibration coefficients for surface reflectance 
(Supplementary Fig. 3).

Carbon indicator data
Multiple and independent long-term datasets related to carbon flux and 
stock were obtained to assess the association of tree species diversity 
with boreal forest carbon indicators. Two datasets were used to cal-
culate the mean and changes of boreal forest carbon fluxes: the latest 
optimized annual NPP from the MODIS MOD17A3HGF v.6.1 product and 
the kNDVI introduced by ref. 62. The MOD17A3HGF is generated on the 
basis of the radiation use efficiency model that takes photosynthetically 
active radiation, leaf area index, climate factor and biome parameter as 
input. The kNDVI has high correlations with plot-level measurements 
of primary productivity and satellite retrievals of solar-induced fluo-
rescence, and has thus been proposed as a robust proxy for terrestrial 
carbon sink dynamics51. We calculated the kNDVI for boreal forests 
from 2000 to 2020 using MODIS reflectance bands, on the basis of a 
method proposed by ref. 62 (equation (1)). The formula is as follows:

kNDVI = tanh ((NIR − red2σ )
2
) (1)

where σ represents the sensitivity of the index to sparsely/densely 
vegetated regions; in this study, σ = 0.5 (NIR + red).

In addition to carbon flux indicators, three products measuring 
carbon stocks were obtained: VOD Ku-band from the Vegetation Opti-
cal Depth Climate Archive63; AGB_1, driven by the L-band microwave 
radiometer of SMOS missions; and AGB_2, from integrated ground 
and airborne measurements and MODIS and PALSAR observations 
by ref. 64. The VOD Ku-band data (period 1987–2017) were generated 
with combinations of multiple sensors (SSM/I, TMI, AMSR-E, WindSat 
and AMSR2) using the Land Parameter Retrieval Model and are closely 
related to the density, biomass and water content of vegetation63. AGB_1 
was derived from the SMOS L-VOD (vegetation optical depth of L-band 
microwave missions) ascending product in the IC v.1.05 (ref. 65). SMOS 
L-VOD was converted to carbon density using the previously published 
biomass map66 as a reference by a linear regression with mean L-VOD.  
Xu et al.64 mapped live biomass carbon stocks (used in this study as 
AGB_2) over all woody vegetation globally from 2000 to 2019 by using a 
large number of ground inventory plots, in combination with LiDAR data 
(ICESat) and optical and microwave satellite data (MODIS and PALSAR).

Finally, using time series of AGB_2 data, we quantified the temporal 
stability of boreal forest biomass for the three epochs as the ratio of 
mean AGB to its temporal standard deviation over a five-year period 
(2000–2004, 2008–2012 and 2014–2019), as similarly done in several 
other studies67,68.

Environmental data
We collected a set of environmental variables to explore the underlying 
mechanism of the variations of boreal tree species diversity. These vari-
ables were grouped into four categories: climate (that is, precipitation 
and temperature), soil properties (that is, topsoil sand fraction, topsoil 
organic carbon and cation exchange capacity), disturbances (that is, 
fire activity and population density) and topography (that is, elevation) 
(Supplementary Table 6). Incoming solar radiation can also strongly 
impact diversity but was excluded due to its high collinearity with tem-
perature for the boreal biome. Seasonal precipitation and temperature 
from 2000 to 2020 obtained from the ECMWF Reanalysis v.5 were 
aggregated for the vegetation growing seasons from May to October. 
Topsoil sand fraction, organic carbon and cation exchange capacity of 
the clay fraction were obtained from the Regridded Harmonized World 
Soil Database v.1.2. We quantified the fire frequency using the monthly 
MODIS burned area product (MCD64A1) by summing the number of 
fire occurrences for each 500 m pixel from 2001 to 2020. The global 
human population density, provided in 30-arcsecond (approximately 
1 km) grid cells, was used here as an indicator of human disturbance 
impact on forest resources. These data were derived from the Gridded 
Population of the World Version 4 Revision 11, which holds the estimates 
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of population density for 2000, 2010 and 2020. The global stand age 
map was generated from ref. 69 using forest inventories and biomass 
and climate data, which were divided into several age classes (0–150+ 
with a decadal interval) at a spatial resolution of 1 km. A digital elevation 
model with 30 m spatial resolution was acquired from the ASTER Global 
Elevation Model. These variables were resampled to a 500 m × 500 m 
spatial resolution using the bilinear interpolation method.

Shannon diversity index
In this study, we applied H′ (equation (2))34,35,61, which represents alpha 
diversity, to characterize tree species diversity within each defined 
spatial unit in boreal forests. H′ considers both tree species richness 
and evenness to provide a comprehensive measure of alpha diversity:

H′ = −
S
∑
i=1

pi lnpi (2)

where S is the total number of tree species in a plot, and pi is the pro-
portional abundance of species i relative to the total abundance of all 
species S in a plot.

Mapping boreal tree species diversity
Satellite-remote-sensing-based diversity estimates are based on the 
spectral variability hypothesis18,19, which relates the spectral hetero-
geneity determined by plant biochemical and morphological differ-
ences (including photosynthetic pigments, branching structure, leaf 
clumping and leaf angle distribution) to environmental heterogeneity. 
A higher spectral heterogeneity is thus expected to be associated with 
higher environmental heterogeneity that sustains more species, pro-
viding a proxy for species diversity36,70. To reduce the potential impact 
of other land-cover types on spectral heterogeneity, we masked out all 
non-forested areas where shrubs and herbaceous vegetation dominate 
(tree cover less than 30%) across the boreal forests.

Accordingly, we developed a workflow for mapping boreal tree 
species diversity using satellite remote sensing imagery, consisting of 
the following five steps: (1) object segmentation, (2) spectral metrics, 
(3) matching to in situ H′, (4) prediction of H′ and (5) post-processing 
(Extended Data Fig. 1).

Object segmentation. To improve the categorization of morpho-
logically similar species, we used object clustering, based on a simple 
non-iterative clustering algorithm. By grouping pixels on the basis of 
their spectral characteristics, shape, texture and spatial relationship 
with the surrounding pixels to accurately estimate spatial/spectral 
metrics, we better captured the spectral heterogeneity compared 
with an individual-pixel-level-based spectral characterization. The 
simple non-iterative clustering algorithm was performed by initializing 
cluster centres (called seeds) at regular grid points throughout the 
images of Landsat-based spectral bands and vegetation indices. Each 
pixel in the image was then assigned to the nearest cluster centre on 
the basis of both spatial distance and feature similarity. Various spac-
ing distances (in pixels) between seeds (that is, 5, 10, 15, 20, 25, 30, 40 
and 50) were tested to derive the optimal seed spacing based on the 
boundary recall71. After initial assignment, the cluster centres were 
updated to the mean position of all the pixels assigned to that cluster, 
so that the cluster centres better represent the pixels belonging to that 
cluster. The clusters thus represent forest segments (the smallest unit 
of a forest community), and the calculations of spectral metrics were 
performed within each segment, with representative spectral metrics 
obtained by averaging pixel-wise metrics per segment. This analysis 
was implemented in Google Earth Engine.

Spectral metrics. We obtained three classes of commonly used 
satellite-based spectral metrics17–19. First, we calculated the spectral 
heterogeneity metrics defined as the degree of spatial variations in 

spectral reflectance—that is, the coefficient of variation, spectral angle 
mapper (spectral dilation and spectral gradient) and texture features 
(dissimilarity and entropy) (Supplementary Table 7). These metrics 
have been proposed on the basis of different mathematical principles 
(that is, variance, distance, angle and volume) and have proved effec-
tive in capturing the spectral heterogeneity of a given area. Second, 
we calculated spectral/temporal metrics and derived five statistical 
metrics: median, minimum, maximum, standard deviation and mean 
for each spectral band and vegetation index. Third, we used the original 
spectral bands of the Landsat imagery and calculated six vegetation 
indices for each month during the growing season (May to October). 
The spectral bands, vegetation indices and temporal metrics help dif-
ferentiate between trees, shrubs and herbaceous vegetation, thereby 
reducing the impact of changes in tree cover on the prediction of H′. 
We thus derived a total of 217 spectral metrics including 85 spectral 
heterogeneity metrics, 60 spectral/temporal metrics (related to tem-
poral variations), 36 spectral bands and 36 vegetation indices, which 
were ultimately calculated per segment and used as predictors for the 
modelling (Supplementary Fig. 3 and Supplementary Table 8).

Matching to in situ H ′. We established the spatial matching between 
segment-based spectral metrics and in situ H′ included in national for-
est inventory records across 5,312 sites to derive the training samples. 
To improve the model robustness, we also implemented data augmen-
tation to increase the size of training samples. The augmentation was 
applied by calculating the satellite-based spectral metrics averaged 
over window sizes of 1 × 1, 3 × 3 and 5 × 5 pixels centred on each plot 
location accounting for varying sizes in the segmented patches. This 
increases variations in the training data and allows control over the 
number of training samples, thereby improving the generalization 
performance of modelling. By removing missing values and outliers 
induced by clouds and shadows, we finally derived 20,100 samples 
(each with 217 metrics) paired with in situ H′, of which 70% were used 
for training the model, 10% were used for validation and 20% were used 
as the test dataset.

Prediction of H ′. We applied the InceptionTime architecture deep 
learning approach to establish a predictive model with in situ H′ as 
the response variable and 217 spectral metrics as predictors. Incep-
tionTime has been extensively used for classification and regression72, 
because it allows the model to simultaneously analyse patterns exhib-
ited at different convolutional scales and cope with time series with 
complex patterns and varying temporal frequencies. We fine-tuned 
InceptionTime, including deleting the maximum pooling layer, reduc-
ing inception modules, adding dropout layers and modifying residual 
connections to achieve the best architecture for the training data of this 
study (Supplementary Fig. 4). A grid search method combined with 
cross-validation was used to determine the optimal hyperparameters 
such as filters, kernel sizes, batch size and learning rate.

The performance of the predictive model was evaluated using a 
tenfold cross-validation method, which ensures that the validation set 
is independent and spans the entire range of the data. Mean values of R2 
and the root mean square error over the ten iterations were computed 
to quantify the model performance. Finally, we established the best 
model for predicting H′ using the optimal hyperparameters and the 
selected predictors. The resultant model was used to generate H′ maps 
for the entire study area in 2000, 2010 and 2020.

Post-processing. The distortion of spectral reflectance caused by tree 
shadowing, cloud cover, topography, diverse understory vegetation 
and other factors may lead to larger variability or dispersion of data 
records around the mean. We thus used standard errors based on the 
inventory data to minimize the uncertainty of predicted H′ (Supplemen-
tary Fig. 13). We calculated the standard deviation of H′ using the forest 
inventory data with repeated measurements of H′ during different 
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years in the same plot (n = 648 plots) and derived the 95th quantile 
value as the maximum standard deviation corresponding to 0.20 as 
the threshold applied to obtain H′ with the lowest potential uncertainty 
(Supplementary Fig. 14). About 10% of the study area (approximately 
1,531,000 km2) was marked as uncertain, probably due to noise and 
randomness in the data, and was excluded from further analysis.

Statistical analysis
We quantified the changes of tree species diversity in boreal forests by 
calculating the per-pixel difference in H′ values between the 2000s and 
the 2020s. We defined distinct changes larger than 0.01 as a diversity 
gain and less than −0.01 as a diversity loss, while a change ranging 
between −0.01 and 0.01 was defined as no distinct change, according 
to the minimal units of changes in H′ values and the dependency of the 
two parameters (that is, species richness and evenness)73,74. We used a 
BRT analysis to assess the relative impacts of the explanatory variables, 
including temperature, rainfall and soil properties, on the spatial distri-
bution of boreal tree diversity. This method has been used extensively 
in ecological studies to study response variables75,76. BRT is an advanced 
machine learning algorithm that iteratively fits and combines multiple 
regression tree models to improve predictive performance76,77. We 
randomly selected 92,416 samples (pixels) with a minimum distance 
of 50 km between neighbouring samples to establish the relationships 
between the explanatory variables and the response variable (H′) with 
the BRT model. The model was iterated ten times to avoid stochastic 
errors. Partial dependency plots resulting from the BRT analysis were 
derived to describe how the tree species diversity responds to change 
in each predictor independent of the other predictors.

We used a multiple linear regression model to explore the 
responses of spatiotemporal changes in carbon indicators to diversity 
as well as changing environmental variables. The carbon indicators 
were used as dependent variables, while H′, stand age and the other 
environmental variables were used as explanatory variables. To avoid 
bias introduced by spatial autocorrelation between neighbouring 
samples, we calculated Moran’s index for each variable and used the 
maximum distance of 50 km for the random selections of sampling 
(Supplementary Table 9). All explanatory variables were standardized 
(with an average of 0 and a standard deviation of 1) to obtain standard-
ized coefficients β. Significance tests were set at a 95% confidence level 
(P < 0.05). The analyses and graphs were performed using R v.4.2.0  
(ref. 78) and with the following packages: caret79, gbm80, tidyverse81, 
lme4 (ref. 82) and ggplot2 (ref. 83).

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All data used to support the findings of this study are publicly available. 
The Landsat surface reflectance data used in this study are freely avail-
able and can be obtained from https://earthengine.google.com/. The 
ECMWF Reanalysis v.5 climatic data are available from https://www.
ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5. The Regridded 
Harmonized World Soil Database v.1.2 is available from https://www.
fao.org/soils-portal/data-hub. The Terra and Aqua combined MCD64A1 
Version 6 Burned Area data are available from https://lpdaac.usgs.gov/
products/mcd64a1v006/. The Gridded Population of the World Version 
4 data are available from https://sedac.ciesin.columbia.edu/data/set/
gpw-v4-population-count-rev11. The ASTER Global Elevation Model is 
available from https://asterweb.jpl.nasa.gov/gdem.asp. The AGB_1 data 
are available from https://doi.org/10.3390/rs9050457, and the AGB_2 
data are available from https://doi.org/10.1126/sciadv.abe9829. The 
MODIS MOD17A3HGF v.6.1 product is available from https://lpdaac.
usgs.gov/products/mod17a3hgfv061/. The VOD Ku-band data are avail-
able via Zenodo at https://doi.org/10.5281/zenodo.2575599 (ref. 84).  

The boreal tree species diversity data used to complete the analyses 
for the paper are available via figshare at https://doi.org/10.6084/
m9.figshare.25034342 (ref. 85). The data analyses were conducted 
in R (v.4.2.0), Python (v.3.9.7), Google Earth Engine (earthengine-api 
v.0.1.306) and QGIS (v.3.22.0).

Code availability
All code used in the analyses is available via GitHub at https://github.
com/surxuxu/Boreal-forest-diversity.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Workflow of the tree species diversity mapping 
incorporating input data, object segmentation, spectral metrics 
calculation, model training, testing and map prediction. SBs: spectral 

bands, VIs: vegetation indices, STMs: spectral temporal metrics, SHMs: spectral 
heterogeneity. A detailed description of the spectral metrics can be found in 
Supplementary Table 6.
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Extended Data Fig. 2 | Feature importance and accuracy assessment of 
boreal tree species diversity estimation using Landsat satellite imagery. Left, 
importance ranking of results from four group of predictors Phenology: monthly 
spectral bands and vegetation indices from May to October; Band + VIs: spectral 
bands and vegetation indices; SHMs: spectral heterogeneity metrics (that is, 

coefficient of variation (CV), spectral dilation (SD), spectral gradient (SG), 
texture dissimilarity (TD), and entropy (TE)); STMs: Spectral-Temporal-Metrics. 
Right, scatterplots between the in situ H′ values of 10 independent validation 
sample subsets (n = 10, 776) obtained by a ten-fold cross-validation method and 
the predicted H′ values from the best model. The red dotted line is 1:1 line.
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Extended Data Fig. 3 | Zoom-in examples of true color Landsat-8 images (RGB = bands 4, 3, 2) and tree diversity predictions at different spatial scales. a-d, 200 × 
200 km2; e-h, 50 × 50 km2; i-l, 5 × 5 km2. The columns are true color Landsat-8 images (a, e, i) and diversity for 2000 (b, f, j), and 2010 (c, g, k), and 2020 (d, h, l).
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Extended Data Fig. 4 | The relative contributions of changes in species 
richness and evenness to the dynamics of tree species diversity. (H′) 
(following a Gaussian distribution), based on a multiple linear regression model 
with a response variable of changes in H′ and the explanatory variables of 
changes in species richness and evenness. The explanatory variables richness 

and evenness were standardized. The plots with repeated measurements of H′ 
derived from forest inventory dataset were used for the analysis (n = 648). EF: 
Eastern forest-boreal transition; CS: Canadian Shield forests; CR: Central Rockies 
forests; MC: Mid-Continental Canadian forests; NC: Northern Canadian Shield 
taiga.
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Extended Data Fig. 5 | Pairwise correlations between different environmental 
variables and tree species diversity. for a, 2000, b, 2010, and c, 2020. The 
color gradient of the legends indicates Pearson’s correlation coefficient, with 
more positive/negative values (dark blue/red) indicating stronger positive/
negative correlations. Asterisks ‘*’ denote the significance levels of the Pearson’s 
correlation coefficients based on two-sided t-tests: *** p < 0.001, ** p < 0.01, * 
p < 0.05. D_2000: H′ values in 2000, D_2010: H′ values in 2010, D_2020: H′ values 
in 2020, TMP_2000: mean seasonal temperature in 2000; PR_2000: mean 
seasonal precipitation in 2000; Fire_2000: fire activity frequency in 2000; 

POP_2000: human population density in 2000; TMP_2010: mean seasonal 
temperature in 2010; PR_2010: mean seasonal precipitation in 2010; Fire_2010: 
fire activity frequency in 2010; POP_2010: human population density in 2010; 
TMP_2020: mean seasonal temperature in 2020; PR_2020: mean seasonal 
precipitation in 2020; Fire_2020: fire activity frequency in 2020; POP_2020: 
human population density in 2020; S_OC: topsoil organic carbon; S_SAND: 
topsoil sand fraction; S_CEC: cation exchange capacity; DEM: Digital Elevation 
Model.
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Extended Data Fig. 6 | Temporal changes in boreal tree species diversity in 
relation to stand age. Spatial distribution of trends in diversity associated with 
stand age (a). H′ is aggregated at a spatial resolution of 1.5° × 1.5° and is shown by 
dots, with larger dots indicating higher diversity gains (green) or losses (purple). 
b, Response of age to diversity trend. Diversity trends were binned according to 

age at intervals of 10 years. The black squares indicate average diversity trends 
within each bin, the grey lines represent the standard error of the mean of the 
diversity trend, and the color bars indicate the number of grid cells in each bin. 
Age: stand age.
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Extended Data Fig. 7 | Relationship between changes in NDVI/tree cover 
and H′ based on a multiple linear regression model. Seasonal mean (May−
October) NDVI for 2000 (NDVI_2000) and 2020 (NDVI_2020) obtained from the 
Landsat-7 and Landsat-8 satellites. The tree cover data for 2000 (TC_2000) and 
2020 (TC_2020) were obtained from Hansen et al.6 and the Copernicus Global 
Land Service (Buchhorn et al. 2019). Changes in greenness and tree cover were 
calculated from the differences between NDVI_2020 and NDVI_2000, TC_2020 

and TC_2000, respectively, and were used as explanatory variables. The β and R² 
marked in black were calculated using the in situ H′ as the response variable, while 
those in grey were calculated using the predicted H′ as the response variable. 
Both NDVI and tree cover were standardised prior to the linear regression 
analysis. The plots with repeated measurements of H′ derived from the forest 
inventory dataset were used for this analysis (n = 648).
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