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Abstract. In light of the global increase in breast cancer cases and the crucial 

importance of the density of fibroglandular tissue (FGT) in assessing risk and 
predicting the course of the disease, the accurate measurement of FGT emerges as a 

significant challenge in diagnostic imaging. The current study focuses on the 

automatic segmentation of breast glandular tissue in MRI scans using a deep 
learning model. The aim is to establish a solid foundation for the development of 

methods for the precise quantification of fibroglandular tissue. For this purpose, the 

publicly available ‘Duke Breast Cancer MRI’ dataset was systematically processed 
to train a deep neural network model utilizing the nnU-Net (‘no-new-Net’) 

framework, which was then subjected to a quantitative evaluation. The results show 

the following macro-averaged metrics with standard deviation: Dice Similarity 
Coefficient 0.827 ± 0.152, accuracy 0.997 ± 0.003, sensitivity 0.825 ± 0.158, and 

specificity 0.999 ± 0.001. The effectiveness of our model in segmenting FGT is 

underscored by the high values of the Dice coefficient, Accuracy, Sensitivity, and 
Specificity, which reflect the precision and reliability of our results. The findings of 

this study lay a solid foundation for developing automated methods to quantify FGT. 

Our research efforts, especially driven by clinical studies at the University Hospital 
Augsburg, are focused on further exploring and validating these potentials. 
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1. Introduction 

Breast cancer is one of the most common cancers worldwide and exhibits a high 

mortality rate [1-3]. Remaining fibroglandular tissue after skin-sparing mastectomy 

increases the risk of new carcinoma development or recurrence [1-3]. Accurate 

quantification of FGT plays a crucial role in diagnosis and treatment planning [1-3]. 
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However, current methods for measuring the amount of FGT, especially post-

operative interventions, are often inadequate and subjective. Therefore, there is an urgent 

need for improved objective approaches to FGT determination. Recent advancements in 

artificial intelligence and machine deep learning suggest that the use of more 

sophisticated and objective techniques can significantly enhance medical diagnostics and 

therapy, while also creating reliable quantification procedures. Against this backdrop, 

the present study aims to employ deep learning for automated segmentation of FGT in 

Magnetic Resonance Imaging (MRI) images. This is intended to establish reliable 

quantification procedures that are crucial for making informed postoperative treatment 

decisions in breast cancer patients. 

2. Methods 

In this section, we explain the preparation process of fibroglandular tissue data for the 

deep learning model, which was used for the automatic segmentation of breast glandular 

tissue. This tissue, also referred to as 'fibroglandular tissue', included the non-fatty tissue 

crucial for breast cancer diagnostics. The focus was on the importance of high-quality 

datasets for machine learning, which were essential for the training, performance, and 

evaluation of models. 

2.1. Dataset Description 

The ‘Duke Breast Cancer MRI Dataset’ was a collection of dynamic contrast-enhanced 

magnetic resonance images (DCE-MRI) from 922 patients with invasive breast cancer, 

collected between 2000 and 2014 at the Duke University [4]. These images included 

preoperative MRI scans performed with either 1.5 T or 3 T scanners in the prone position 

[4, 5]. The dataset contained non-fat-suppressed T1-weighted sequences, fat-suppressed 

gradient-echo T1-weighted pre-contrast sequences, and typically three to four post-

contrast sequences [4, 5]. The annotation process was carried out by radiologists using 

bounding boxes to mark tumor locations on the DCE-MRI images [4]. For 271 patients, 

the annotations were performed by a panel of six fellowship-trained radiologists, with 

each radiologist randomly assigned to a study [4]. For the remaining 651 patients, the 

largest biopsied lesion was annotated by a panel of four fellowship-trained radiologists, 

modifying the procedure as necessary to access the PACS system [4]. To image data and 

breast glandular tissue segmentations, the dataset included extensive demographic, 

clinical, pathological, genomic, and treatment information, as well as technical MRI 

details [4]. The breast glandular tissues comprised 356 MRI slices. 

2.2. Deep Learning Model  

The nnU-Net framework was developed to enable efficient processing and assignment 

of segmentation masks to corresponding MRI scans [6]. The Duke dataset was divided 

into two segments, with 285 scans along with their segmentation masks used for training 

and the remaining 71 scans for evaluation. The training of nnU-Net was conducted using 

a five-fold cross-validation, dividing the training set into five equal subgroups to improve 

generalizability and more efficient data usage [4]. The framework archived relevant 

configurations, enhancing the reproducibility, analysis, further development, and 

automation of the model [6]. Specific hyperparameters were established, including a 
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batch size of 14 and a patch size of 448 x 512 pixels, to ensure efficient utilization of 

GPU memory and stability during the training process [6]. The selection of these 

parameters depended on the requirements of the training dataset and hardware capacity 

[6]. During training, resampling adjusted image sizes to a uniform scale, aiding the 

model's learning by standardizing images, thus improving pattern recognition across 

datasets [6]. The loss function was defined by the combination of cross-entropy and the 

Dice Similarity Coefficient [6]. This blend aimed to enhance segmentation accuracy by 

accounting for both segment agreement and class-specific errors [6].   

 

In evaluating segmentation algorithms in image analysis, we adhered to standardized 

performance evaluation guidelines [7, 8]. These metrics – Dice Similarity Coefficient, 

accuracy, sensitivity, and specificity – enabled us to assess the effectiveness and 

consistency of the algorithms by demonstrating how well the algorithm results aligned 

with actual data and what variability these results exhibited [7, 8]. 

3. Results 

In this section, the performance of the trained deep learning model is presented. The 

macro-averaged scores for the evaluation criteria, along with their standard deviations, 

were as follows:  Dice Similarity Coefficient0.827 ± 0.152, accuracy 0.997 ± 0.003, 

sensitivity 0.825 ± 0.158, and specificity 0.999 ± 0.001. These findings confirm the 

model's high precision and reliability in segmenting fibroglandular tissue within MRI 

scans. The strong overlap between the predicted and actual segmentations, as indicated 

by the Dice Coefficient, showcases the model's efficacy. Additionally, the high accuracy 

illustrates the nnU-Net model's exceptional precision in segmentation tasks. The 

sensitivity and specificity metrics emphasize the model's capability to accurately identify 

true positives and true negatives, respectively. 

 

For a clearer visualization of the precision of results, an MRI breast scan is shown in 

Figure 1. This is followed by representations that showed the breast with the Ground 

Truth and the MRI scan with the algorithmically generated segmentation mask, 

respectively. In the lower right corner of Figure 1, a direct comparison of the two 

segmentation masks was made, where agreements were highlighted in green and 

discrepancies in red. Furthermore, the values for Sensitivity = 0.827 and Specificity = 

0.997 were disclosed. 

4. Discussion 

An average Dice Similarity Coefficient of 0.827 indicates a pronounced agreement 

between the segmentation masks automatically generated by our model and the ground 

truth masks. This confirms the model's precise identification and delineation of breast 

glandular tissue in MRI scans. The Accuracy of 0.997 is in concordance with the high 

Dice Similarity Coefficient, reflecting the model’s precision in differentiating breast 

glandular tissue from other tissue types. This demonstrates the model's robustness in 

producing segmentation results that are closely aligned with the ground truth, supporting 

its reliability for clinical use. A sensitivity of 0.825 ensures the correct identification of 

a significant portion of the existing breast glandular tissue. Moreover, a specificity of 
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0.999 effectively eliminates the non-presence of breast glandular tissue, contributing to 

minimizing the number of false-positive results and preventing both overdiagnoses and 

unnecessary invasive follow-up examinations. 

 

The results impressively demonstrate that a deep neural network model based on the 

nnU-Net framework can efficiently differentiate between fibroglandular tissue (FGT) 

and other structures, as illustrated in Figure 1. This ability to distinguish is especially 

important for medical applications, as an accurate quantification of FGT significantly 

influences treatment strategies [1]. 

 

 

 
Figure 1. The illustration displays an MRI scan of the chest in four different presentations. The original scan 

is shown top left. Top right, the Ground Truth mask is presented in green, indicating the exact areas of 

interest. Bottom left shows the predicted segmentation in yellow. Bottom right compares both masks: green 
for correct predictions and red for discrepancies, highlighting over- or under-segmented areas. Beneath the 

image, the values for sens = sensitivity and spec = specificity are provided. 
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5. Conclusions  

This study highlights the significant role of automated deep learning methods, 

particularly the nnU-Net framework, in the segmentation of fibroglandular tissue (FGT) 

in MRI scans. This technology, which enables effective differentiation between blood 

vessels, adipose tissue, and FGT, proves to be a promising tool for medical image 

analysis and precision medicine. The results achieved strong prediction capabilities that 

confirmed the ability of our model to perform precise and reliable segmentations. The 

insights gained from this study lay a solid foundation for future developments, which are 

to be particularly advanced by the University Hospital Augsburg. Nevertheless, we 

identified further potential by utilizing 3D models instead of our applied 2.5D strategy 

as recent literature suggests increased performance and robustness. 
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