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Simple Summary: We established and validated a risk score based on a 10-gene signature
from the expression of necroptosis-associated genes in advanced ovarian cancer. The
patient’s prognosis, expressed as overall survival, can thus be predicted. Additionally,
the risk score is able to predict the response to a programmed death ligand 1 blockade
treatment in selected cancer patients. Herewith, we offer a possibility to discuss therapy
from a risk stratification point of view and maybe provide an idea on how to guide one
through the use of immunotherapy in solid malignancies.

Abstract: Background/Objectives: This study aimed to construct a risk score (RS) based on
necroptosis-associated genes to predict the prognosis of patients with advanced epithelial
ovarian cancer (EOC). Methods: EOC data from The Cancer Genome Atlas (TCGA) and the
Gene Expression Omnibus (GEO) series 140082 (GSE140082) were used. Based on known
necroptosis-associated genes, clustering was performed to identify molecular subtypes of
EOC. A least absolute shrinkage and selection operator (LASSO)–Cox regression analysis
identified key genes related to prognosis. The expression of one of them, RIPK3, was
analyzed via immunohistochemistry in an EOC cohort. Results: An RS made from ten
genes (IDH2, RIPK3, FASLG, BRAF, ITPK1, TNFSF10, ID1, PLK1, MLKL and HSPA4) was
developed. Tumor samples were divided into a high-risk group (HRG) and low-risk group
(LRG) using the RS. The model is able to predict the overall survival (OS) of EOC and
distinguish the prognosis of different clinical subgroups. Immunohistochemical verification
of the receptor-interacting serine/threonine-protein kinase (RIPK) 3 confirmed that high
nuclear expression is correlated with a longer OS. In addition, the score can predict the
response to a programmed death ligand 1 (PD-L1) blockade treatment in selected solid
malignancies. Patients from the LRG seem to benefit more from it than patients from
the HRG. Conclusions: Our RS based on necroptosis-associated genes might help to
predict the prognosis of patients with advanced EOC and gives an idea on how the use of
immunotherapy can potentially be guided.
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1. Introduction
Necroptosis is a type of programmed cell death that differs from traditional apopto-

sis. The conventional apoptotic pathway needs caspase activation and is blocked in the
absence of caspases or if the activity of caspases is suppressed, leading to the activation
of necroptosis as a substitutive cell death pathway. Necroptosis is not only a process
controlled by a specific molecular cascade but also characterized by cell and organelle
swelling leading to cell lysis. Therefore, necroptosis has the characteristics of both apop-
tosis and necrosis [1,2]. It plays a dual role in malignant tumors [3–7]. On the one hand,
the inflammatory environment induced by necroptosis can inhibit proliferation, migration
and the invasion of tumor cells [4]. Further, necroptosis can inhibit tumor development by
promoting the maturation of dendritic cells and the cross-activation of CD8+ T cells in the
tumor microenvironment [5]. On the other hand, there are also a few studies suggesting an
opposite tumor-promoting role in cancer as well [6,8].

Epithelial ovarian cancer (EOC) is the second most common cause of gynecologic
cancer deaths worldwide, which seriously threatens the health of women. A lack of
sufficient early detection methods often results in the disease only being recognized at
advanced Fédération Internationale de Gynécologie et d’Obstétrique (FIGO) stages III/IV.
In combination with the frequent problem of chemotherapy resistance, its 5-year overall
survival (OS) rate remains poor at around 30–50% [9,10]. Apoptotic cell death regulation
is frequently deregulated in solid malignancies. Instead, the necroptotic pathway seems
to be overactivated [11], indicating that support of necroptosis could be an effective strat-
egy to prevent the occurrence of chemotherapy resistance in EOC. Receptor-interacting
serine/threonine-protein kinase (RIPK) 3 is the key component of a complex with RIPK1
and the mixed-lineage kinase domain-like pseudokinase (MLKL), which is called necro-
some [12]. The canonical function of the RIPK3 signal is to stimulate MLKL activation and
to trigger herewith necroptosis [13]. Besides, RIPK3 is related to mitochondrial metabolism,
oxidative stress, autophagy and cell proliferation [7,14]. However, the prognostic role of
necroptosis activation and RIPK3 in EOC remains unclear.

There are already different studies suggesting mechanisms for a protective role of
necroptosis in EOC. For example, receptor-interacting protein-1 promotes the proliferation
of EOC cells by bypassing the G2/M checkpoint and mediating the cisplatin-induced
necroptosis pathway in human EOC cells [15]. Further, progesterone can prevent the
occurrence of advanced serous EOC by inducing the necroptosis of p53-deficient oviduct
epithelial cells [16].

This study aimed to develop a necroptosis-related gene signature and nomogram
of EOC patients away from hypothesis-driven research evaluating the impact of necrop-
tosis. Our tool might be used to predict patients’ prognosis and maybe support clinical
decision making.

2. Materials and Methods
2.1. Data Source and Pre-Processing

The publicly available gene expression (RNA sequencing) and clinical data of patients
with EOC were extracted from The Cancer Genome Atlas (TCGA) and the Gene Expression
Omnibus (GEO). TCGA data were downloaded from the University of California Santa
Cruz Xena. From the GEO database, we retrieved the GEO series 140082 (GSE140082) cohort.
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The according annotation file for this cohort’s RNA sequencing probes was downloaded
from the chip platform GPL14951, which is used in the GSE140082 cohort.

EOC data obtained from a TCGA cohort, called TCGA-OV, and the GSE140082 cohort
were processed as follows: (1) samples without clinical follow-up data were excluded;
(2) samples with no survival status, an OS of <0, or unknown survival time were excluded;
(3) probes were converted to a gene symbol; (4) probes corresponding to several genes were
excluded; (5) the expression of several gene symbols was evaluated based on the median
value; and (6) samples of FIGO stage III/IV were included and I/II were excluded. After
pre-processing the downloaded data, the TCGA-OV and GSE140082 datasets were found
to contain 347 and 328 EOC tissue samples, respectively (Table 1).

Table 1. Clinical features of the gene expression datasets.

Clinical Features TCGA-OV (n = 347) GSE140082 (n = 328)

Age
≤60 years 192 (55.3%) 173 (52.7%)
>60 years 155 (44.7%) 155 (47.3%)

FIGO stage
III 290 (83.6%) 265 (80.8%)
IV 57 (16.4%) 63 (19.2%)

Grading
Low 36 (10.4%) 67 (20.4%)
High 303 (87.3%) 238 (72.6%)

Unknown 8 (2.3%) 23 (7.0%)

3-year survival
Alive 125 (36.0%) 92 (28.0%)
Dead 222 (64.0%) 236 (72.0%)

Age, Fédération Internationale de Gynécologie et d’Obstétrique (FIGO) stage, grading and 3-year survival in the
epithelial ovarian cancer (EOC) cohort of The Cancer Genome Atlas (TCGA), called TCGA-OV, and the Gene
Expression Omnibus (GEO) series 140082 (GSE140082) cohort.

To test the prognostic potential of relevant genes besides RIPK3, we used the necrop-
tosis gene set M24779.gmt, containing RIPK1, RIPK3, MLKL and five other necroptosis-
associated genes (FADD, FAS, FASLG, TLR3 and TNF). It was retrieved from the Gene
Set Enrichment Analysis (GSEA) database. Additionally, based on previous studies on
necroptosis, 58 necroptosis-associated genes were added to this pool (Table S1).

2.2. Clustering of Necroptosis-Associated Genes and Construction of a Prognostic Model

The ConsensusClusterPlus package in R (version 4.3.3, The R Foundation for Statistical
Computing, Vienna, Austria) with 1000 iterations and an 80% resampling rate was used
to identify different molecular subtypes of EOC and define the biological properties of
necroptosis-associated genes in EOC [17].

Samples in the GSE140082 dataset were divided into training and testing sets. They
were randomly grouped 100 times in advance to avoid the impact of random allocation
variance on the stability of the successive model. The following two criteria were used to
determine an appropriate division of both sets: (1) age, FIGO stage, grading and follow-up
duration of patients were identical in both groups, and (2) after random clustering of the
gene expression profile datasets, both groups had a similar sample size. The two cohorts
were analyzed using the chi-square test, and no significant differences (p < 0.05) were found,
suggesting that the grouping was appropriate (Table 2).

A univariate Cox proportional hazards regression model was established based on
data from the training dataset. Herewith, p-values < 0.05 indicated necroptosis-associated
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genes that are relevant to our model in terms of OS. To reduce the number of genes
accounting for our risk model, we used the least absolute shrinkage and selection operator
(LASSO). It is a type of compression algorithm in which a few coefficients are condensed,
and others are set to zero to create a more refined model by establishing a penalty function.
Therefore, the multicollinearity issue in regression analysis is resolved while retaining the
advantage of subset contraction. A necroptosis-associated gene signature was developed
after identifying variables via LASSO–Cox regression analysis using the glmnet package in
R [18]. Herewith, a risk score (RS) was calculated.

Table 2. GSE140082 grouping information.

GSE140082 Training
(n = 164)

GSE140082 Testing
(n = 164) p-Value

Age
≤60 years 92 (56.1%) 81 (49.4%)

0.27>60 years 72 (43.9%) 83 (50.6%)

FIGO stage
III 128 (78.0%) 137 (83.5%)

0.26IV 36 (22.0%) 27 (16.5%)

Grading
Low 30 (18.3%) 37 (22.6%)

0.33High 124 (75.6%) 114 (69.5%)
Unknown 10 (6.1%) 13 (7.9%)

3-year survival
Alive 42 (25.6%) 50 (30.5%)

0.39Dead 122 (74.4%) 114 (69.5%)
Age, FIGO stage, grading and 3-year survival in both GSE140082 training and testing set.

2.3. Estimation of Cell Infiltration in the Tumor Immune Microenvironment (TIME)

The relative abundance of each cell infiltrating the TIME of EOC was calculated using
the single-sample GSEA tool. A gene set identifying multiple types of infiltrating immune
cells was derived from a study conducted by Charoentong and colleagues [19]. This set
comprised different human immune cell subtypes: dendritic cells, activated CD8+ T cells,
natural killer (NK) cells, macrophages and regulatory T cells. The relative infiltration of
these cells in each sample was represented by the enrichment score calculated using a
single-sample GSEA as well. We further used the Estimation of STromal and Immune
cells in MAlignant Tumor tissues using Expression data (ESTIMATE) algorithm via the
ESTIMATE package in R to determine the immune score, stromal score, tumor purity and
ESTIMATE score of each patient.

2.4. Prediction of Immunotherapeutic Efficacy

The IMvigor210CoreBiologies package was used to obtain clinical data and biological
information for the immunotherapy response cohort IMvigor210 [20]. The gene expression
profiles were transformed from counts to transcripts per million format and subjected
to a log2 transformation. This cohort contains 348 samples from urothelial carcinoma
patients who received a programmed death ligand 1 (PD-L1) blocking therapy. In the
absence of an adequate cohort with data from EOC patients or at least gynecologic patients,
we finally identified IMvigor210 as one of the most closely related ones. The following
categories were assigned based on the response of patients to PD-L1 blocking treatment:
progressive disease (PD), stable disease (SD), partial response (PR) and complete response
(CR). Patients with CR/PR were seen as responders to immunotherapy, whereas those
with SD/PD did not respond to treatment. Receiver operating characteristic (ROC) curves
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were drawn using the pROC package. In the interpretation and visualization of the four
response categories (PD, SD, PR and CR), we used the results of an analysis of variance
and visualized the correlation matrix with the Corrplot package.

The deconvolution algorithm CIBERSORT was used to analyze the enrichment levels
of 22 cell types of the TIME based on the gene expression matrix of the IMvigor210 cohort.
Additionally, we used the Microenvironment Cell Populations (MCPs) counter to evaluate
the infiltration of ten types of immune cells based on the gene expression profile with the
MCPcounter package.

2.5. Patient Selection and Ethical Approval for Immunohistochemistry

Samples were collected from 155 patients with EOC (serous [n = 109], clear cell [n = 12],
endometrioid [n = 21] and mucinous [n = 13]) who underwent radical cytoreductive surgery
in the Department of Obstetrics and Gynecology at LMU Munich between 1990 and 2002.
A specialized gynecologic pathologist performed histopathological diagnoses of EOC
including tumor stage according to FIGO and grading. All patients, except those with
low-grade FIGO stage IA, underwent platinum-based adjuvant treatment. The Munich
Cancer Registry, patient files and postoperative care schedules were used to obtain patient
data including information regarding relapse and mortality.

This analysis was performed in accordance with the 1964 Declaration of Helsinki
(last revised in 2013) and received approval from the ethics committee of LMU Munich
(reference number 138/03). All participants provided written informed consent. Statistical
analysis, assessment of samples and clinical characteristics were kept anonymous.

2.6. Tissue Microarray and Immunohistochemistry Analysis

For the preparation of the tissue microarray, representative sections of paraffin-
embedded tumor biopsy samples were cut, with a diameter of 0.6 mm, and placed into a
paraffin block (30 × 20 × 10 mm) using a microtissue arrayer (Beecher Instruments, Sun
Prairie, WI, USA). A total of 465 tissue microarrays were obtained by performing three
biopsies on every tumor sample. Thereafter, tissues were cut into 5 µm thick sections and
placed onto microscope slides. A hematoxylin and eosin staining was performed next to
establish whether there is proper tumor tissue for analysis.

In the immunohistochemistry, we used a pressure cooker heating and the ZytoChem-Plus
HRP Polymer-Kit (Zytomed Systems, Berlin, Germany). It includes 3,3′-diaminobenzidine as a
chromogenic substrate, which is described in previous studies [21–23]. The primary antibody
in this experiment was the polyclonal rabbit anti-RIPK3 IgG (product number HPA055087,
Merck, Darmstadt, Germany) diluted 1:800. All samples were analyzed, imaged and scored
using the AxioCam digital camera system combined with the AxioScope microscope (Carl
Zeiss, Jena, Germany) and the AxioVision software (version 4.9.1, Carl Zeiss).

Controls were placed on every tissue microarray. Placenta tissue was used as a positive
control and colon tissue was used as a negative control by replacing the primary antibody
with a specific isotype control antibody (product number HK408-5R, BioGenex, Fremont,
CA, USA).

For a semi-quantitative analysis of the immunostainings, we used the well-known
immunoreactivity score (IRS). It is calculated by multiplying the proportion of positive cells
(0: none, 1: <10%, 2: 10–50%, 3: 51–80% and 4: >80% positive cells) by the staining intensity
(0: absent, 1: weak, 2: moderate and 3: strong). The IRS was independently assessed by
two experienced examiners to ensure consistency and reproducibility.

2.7. Statistical Analyses

Statistical analyses were performed using R software.
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Survival curves were plotted with the Kaplan–Meier (KM) method, and the logrank
test was used to compare differences between groups. To ascertain the independent
prognostic value of the RS, univariate and multivariate Cox regression models were taken
for integrated analysis of RSs and additional clinical variables. ROC curves were used to
estimate the ability of the developed risk model to predict the 1-, 2- and 3-year OS rates.
p-values of <0.05 were considered statistically significant.

To build the nomogram, based on the degree of influence of each component on the
OS (the size of a regression coefficient), each influencing factor was allocated with a score.
These scores are then added to derive a final score. Subsequently, the predicted value
of each outcome is determined based on the functional conversion correlation between
the overall score and the likelihood that the outcome event will occur [24]. In our study,
significant clinical factors determined via multivariate analysis were integrated as influ-
encing factors. To verify the predictive accuracy of the nomogram, a calibration curve was
simultaneously generated.

3. Results
3.1. Identification of Three Molecular Subtypes Based on Necroptosis-Associated Genes

The expression of 66 necroptosis-associated genes in each tumor sample in the
GSE140082 dataset was analyzed, and consistent clustering was performed. As shown in
Figure 1a,b, three molecular subtypes (k = 3) were identified: clusters A, B and C. This
optimal number of clusters was determined by analyzing cumulative distribution function
(CDF) curves and delta area plots. The value of k = 3 was chosen based on the point of
maximum stability in cluster separation. A KM survival analysis revealed that the OS of
cluster C was the shortest, while cluster B had the longest OS (Figure 1c).
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Figure 1. Identification of three necroptosis molecular clusters: (a) cumulative distribution function
(CDF) curve of consistent clustering; (b) clustering results when the number of categories is three;
(c) Kaplan–Meier (KM) survival curves; (d) comparison of Microenvironment Cell Populations
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of Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data
(ESTIMATE), stromal and immune score; (f) clustering heatmaps of immune cell scores across
different clinical features and groupings.
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The ESTIMATE algorithm was used to assess the immune, stromal and ESTIMATE
scores. By analyzing the expression of specific gene signatures, the proportion of immune
and stromal cells or both in the TIME can be estimated with these scores to infer the tumor’s
biological composition and its interaction with surrounding tissues. In addition, the MCP
counter evaluated the infiltration of ten types of immune cells. The results of both analyses
showed that mostly the score was the lowest in cluster C compared to clusters A and B
(Figure 1d,e). Furthermore, clustering heatmaps of immune, stromal and ESTIMATE score
across different clinical features and groups (Figure 1f) demonstrated that the poor clinical
prognosis of cluster C was related to a low degree of immune infiltration.

3.2. Construction of a 10-Gene Risk Model

By screening the 66 necroptosis-associated genes in the training set (Table S2), a total
of 11 genes associated with the OS were identified (Figure 2a). Figure 2b demonstrates the
changing trajectories for each independent variable in the LASSO regression analysis. The
independent variable coefficients progressively increased to zero with a gradual increase
in the lambda value. Using a 10-fold cross-validation method, we constructed the risk
model. Figure 2c demonstrates the confidence interval (CI) in correlation with different
lambda values. It is shown that the model was most stable if the number of genes is ten.
We excluded CASP8, as its inclusion would make the model most unstable. Figure 2d
shows the regression coefficients of genes used in our model. Based on this model with ten
necroptosis-associated genes, RSs were calculated using the following formula:

RS = ΣCoef(i)*Exp(i)

(Coef: regression coefficient, Exp: gene expression).

Among the ten genes, ID1, PLK1, MLKL and HSPA4 were identified as risk factors,
whereas IDH2, RIPK3, FASLG, BRAF, ITPK1 and TNFSF10 were identified as protective fac-
tors in terms of OS. Following this, the RS of each sample in the training set was calculated
using the abovementioned formula to determine the impact of RSs on patients’ OS.

Samples of the training set were divided into a high-risk group (HRG) and a low-risk
group (LRG) with the median RS as the cutoff. A KM survival analysis revealed that the
OS was shorter among patients in the HRG than among those in the LRG (Figure 2e).
According to the ROC analysis, the area under the curve (AUC) values for the prediction of
the 1-, 2- and 3-year OS were 0.824, 0.862 and 0.785 (Figure 2f).

3.3. Robustness of RS in Different Cohorts

To determine the stability of the developed risk model, the abovementioned formula
was used for the calculation of the RS of each sample in the GSE140082 testing set, the
whole GSE140082 set and the TCGA-OV dataset. All sets were divided into an HRG and
LRG based on their median RSs. A KM analysis revealed that the OS was significantly
shorter among patients in the HRG than among patients in the LRG in all three datasets
(Figure S1a–c).

In the ROC analysis, the AUC values for the prediction of the 1-, 2- and 3-year OS via
our RS vary only slightly by 0,7 in the three datasets: the GSE140082 testing set, whole
GSE140082 set and TCGA-OV set (Figure S1d–f).
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Figure 2. Construction of a multiple gene signature: (a) hazard ratio (HR) with the 95% confidence
interval (CI) and the resulting p-value of the 11 prognosis-associated necroptosis genes identified with
univariate Cox analysis; (b) change trajectories of each independent gene variable; (c) CIs in relation
to each lambda; (d) correlation coefficients for each of the remaining ten genes; (e) KM survival curves
for high-risk group (HRG) and low-risk group (LRG) regarding the risk score (RS) in the training
set; (f) time-dependent receiver operating characteristic (ROC) curves in the training set and their
resulting areas under the curve (AUC).

3.4. Risk Model Can Predict the Prognosis of Patients with Different Clinical Characteristics

A subgroup analysis was performed in the entire GSE140082 dataset to examine the
applicability of our risk model in a prognostic analysis of EOC patients with different
characteristics. As shown in the KM curves in Figure 3a–f, the prognosis was significantly
worse in the HRG than in the LRG in all subgroups of age, FIGO stage and grading.

Furthermore, the RS values of our clinical subgroups were compared. It showed that
the RS values of patients aged >60 years were significantly higher than those of patients
aged ≤60 years (Figure 3g) as well as the RS values in FIGO stage IV compared to stage
III (Figure 3h). Contrasting this, grading showed no significant difference (Figure 3i).
Additionally, the RS values were significantly higher in cluster C than in clusters A and B
(Figure 3j).

These results were verified in the TCGA-OV dataset, and the results were consistent
with those obtained via data analysis of the whole GSE140082 dataset (Figure S2). Therefore,
the established risk model can effectively predict the prognosis of patients with different
clinical characteristics.
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molecular clusters A, B and C.

3.5. RS Can Be an Independent Risk Factor for the Prognosis of EOC Patients

A univariate Cox regression analysis of the GSE140082 dataset revealed that the RS
value was significantly correlated with the OS (hazard ratio (HR) = 4.41, 95% CI = 2.71–7.18,
p < 0.001). After adjusting for different confounding factors, we added the multivariate Cox
regression analysis, which revealed that the RS was also an independent predictor of OS
(HR = 3.47, 95% CI = 2.10–5.74, p < 0.001) (Figure 4a,b).

Subsequently, a nomogram was constructed by integrating RSs and age to predict
the survival of patients with EOC, as the multivariate Cox analysis revealed both of these
factors as independent (Figure 4c). The calibration curve in Figure 4d demonstrated the
accurate prediction of 1-, 2- and 3-year OS by the nomogram. Additionally, ROC curves
showed, compared with the use of a single prognostic factor, superior AUC values for
predicting 1-, 2- and 3-year OS (Figure 4e–g). An analysis of TCGA-OV data using the same
method revealed consistent results (Figure S3).
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Figure 4. Proving the RS as an independent risk factor for the prognosis of EOC patients in the
GSE140082 dataset: (a) univariate Cox analysis with significant p-values marked red; (b) multivariate
Cox analysis with significant p-values marked red; (c) construction of a nomogram using significant
variables from the multivariate Cox analysis; (d) calibration curve comparing the observed 1-, 2- and
3-year overall survival (OS) with the predicted OS from the nomogram; (e–g) ROC curves comparing
the nomogram with the used single variables for the prediction of the 1-, 2- and 3-year OS.

3.6. Immune Cell Infiltration Was Lower in the HRG than in the LRG

To determine the correlation between RSs and the TIME, a single-sample GSEA was
used to evaluate the infiltration levels of 23 types of immune cells in the GSE140082 dataset
(Figure 5a). Our results showed varying infiltration levels, but the majority of immune cell
types were less represented in the HRG.
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Figure 5. Immune cell infiltration of the tumor immune microenvironment (TIME) in the GSE140082
dataset: (a) boxplots representing the infiltration levels of 23 types of immune cells comparing HRG
and LRG (ns: p ≥ 0.05, * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001, NK: natural killer, MDSCs:
myeloid-derived suppressor cells); (b–e) comparing immune, ESTIMATE, stromal and tumor purity
scores between LRG and HRG.

Further, the ESTIMATE algorithm was used to calculate immune, ESTIMATE, stromal
and tumor purity scores. Immune and ESTIMATE scores were significantly lower in the
HRG (Figure 5b,c). Contrastingly, stromal and tumor purity scores were significantly lower
in the LRG (Figure 5d,e).

3.7. Response to Immunotherapy Was Better in LRG than in HRG

In this study, the immunotherapy cohort IMvigor210 was used to examine whether the
necroptosis-associated genes could potentially predict the benefits of an immunotherapeutic
approach: a PD-L1 blockade. We focused on this type of immune checkpoint blockade
as genes and corresponding pathways incorporated in our RS seemed to be most likely
associated with PD-L1 expression and its downstream effects compared to other immune
checkpoint blockades.

A KM analysis revealed that the prognosis of urothelial carcinoma patients from this
cohort was worse in the HRG than in the LRG (Figure 6a). The proportion of patients who
responded to the PD-L1 blockade (CR/PR) was significantly higher in the LRG than in the
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HRG (28.5% versus 17.0%) (Figure 6b). A violin plot revealed that RSs were significantly
higher in non-responders (SD/PD) than in responders (CR/PR) (Figure 6c).
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Figure 6. Response to programmed death ligand 1 (PD-L1) treatment regarding the RS in the im-
munotherapy cohort IMvigor210: (a) KM survival analysis comparing LRG and HRG; (b) comparing
the proportion of immunotherapy responders (partial response (PR) and complete response (CR))
versus non-responders (progressive disease (PD) and stable disease (SD)) in both groups; (c) com-
parison of differences in RSs according to the efficacy of PD-L1 blockade, resulting in CR, PR, SD
or PD; (d) ROC curves comparing the predictive accuracy of the RS, the tumor mutation burden
(TMB), the neoantigen (NEO) or the combination of all three of them; (e) boxplots representing the
infiltration levels of 22 types of immune cells comparing HRG and LRG (ns: p ≥ 0.05, * p < 0.05,
** p < 0.01, **** p < 0.0001); (f) correlation analysis of RS and different types of immune cells.

To verify the therapeutic response, RSs, neoantigen (NEO) data and tumor mutation
burden (TMB) data of the IMvigor210 cohort were integrated using logistic regression. The
combined AUC was 77.2%, which was higher than the single values of the RS (AUC = 0.703),
TMB (AUC = 0.671) and NEO (AUC = 0.715) (Figure 6d).

To understand the distribution of immune cells, 22 types of them were calculated using
the CIBERSORT algorithm for the IMvigor210 cohort. The infiltration levels of plasma cells,
dendritic cells, activated mast cells and neutrophils were significantly higher in the HRG
than in the LRG. In contrast, the infiltration levels of gamma delta T cells and M0/M1-type
macrophages were significantly lower in the HRG than in the LRG (Figure 6e). Additionally,
using the MCP counter to evaluate the infiltration of ten types of immune cells in the whole
IMvigor210 cohort, the RSs were found to have a negative correlation with the scores of a
majority of immune cell types (Figure 6f).
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3.8. High Nuclear Expression of RIPK3 Is Associated with Significantly Longer Progression-Free
Survival (PFS) and OS in an EOC Patient Cohort

Table 3 shows the patient characteristics, including histological subtypes, grading and
FIGO staging classification of specimens in a dataset comprising 155 patients with EOC.
The median OS of this cohort was 3.6 years (95% CI = 2.0–5.3 years).

Table 3. Clinical EOC patient cohort information.

Number of Patients Percentage

Age
≤60 years 84 54.2
>60 years 71 45.8

FIGO stage
I 34 21.9
II 10 6.5
III 103 66.5
IV 3 1.9

Unknown 5 3.2

Subtype and grading

Serous

Low grade 23 14.8
High grade 80 51.6
Unknown 6 3.9

Total 109 70.3

Endometrioid

G1 6 3.9
G2 5 3.2
G3 8 5.2

Unknown 2 1.3
Total 21 13.6

Mucinous

G1 6 3.9
G2 6 3.9
G3 0 0.0

Unknown 1 0.6
Total 13 8.4

Clear-cell

G1 2 1.3
G2 2 1.3
G3 5 3.2

Unknown 3 1.9
Total 12 7.7

Age, FIGO stage, subtype and grading.

Nuclear staining of RIPK3 was performed in samples obtained from 144 patients
(RIPK3 staining was not successful in the remaining 11 patients owing to technical reasons).
With the survminer package, we calculated the optimal density gradient threshold of RIPK3
expression, dividing the samples in two groups: high- and low-RIPK3-expression. For the
OS as a prognostic indicator, the corresponding optimal threshold of RIPK3 expression was
IRS = 7 (Figure 7a) and for the PFS IRS = 6.67 (Figure 7c).

OS was longer in the high-RIPK3-expression group than in the low-RIPK3-expression
group, but without significance (p = 0.05) (Figure 7b). In parallel, PFS was significantly longer
in the high-RIPK3-expression group than in the low-RIPK3-expression group (p < 0.004)
(Figure 7d). Representative staining images with scores are shown in Figure 7e–h.
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4. Discussion
EOC is the fifth most common cause of cancer-related deaths among women world-

wide. As early-stage EOC has no evident symptoms, patients are frequently diagnosed in an
advanced stage. In total, 80% of patients with EOC develop metastases [9,10]. Nowadays,
EOC is usually treated with cytoreductive surgery followed by platinum-based chemother-
apy in combination with bevacizumab and/or poly (ADP-ribose) polymerase (PARP)
inhibitors. Despite recent improvements through the introduction of PARP inhibitors, the
overall prognosis remains poor. The predominant mechanism of action of most systemic
therapeutics so far is the inhibition of tumor growth by inducing apoptosis [25]. However,
tumor cells are often resistant to undergoing apoptosis and switch over to necroptosis [11].
Studies in EOC and other entities have reported that tumor cells resistant to apoptosis can
be sensitive to necroptosis [11,26,27], suggesting that necroptosis-associated genes can be
used as targets to predict the prognosis of tumors.

In this study, EOC FIGO stage III/IV was initially categorized into three clusters
based on the expression of 66 necroptosis-associated genes. The clusters showed significant
differences in OS, representing several molecular subtypes of EOC, and are necessary for
the construction of the gene signature.

From the necroptosis-associated genes, relevant to the prognosis, a 10-gene signature
based on IDH2, RIPK3, FASLG, BRAF, ITPK1, TNFSF10, ID1, PLK1, MLKL and HSPA4 was
constructed. With an RS built from the expression of these 10 genes in tumor samples,
patients’ prognosis can be estimated using a nomogram. This score showed strong pre-
dictive ability in different datasets and universality among patients with different clinical
characteristics. Among these genes, high expressions of ID1, PLK1, MLKL and HSPA4 are
risk factors, whereas high expressions of IDH2, RIPK3, FASLG, BRAF, ITPK1 and TNFSF10
are protective factors. For some of these genes, a correlation with necroptosis in malignant
tumors is already known.

Isocitrate dehydrogenase 2, coded by IDH2, is located in mitochondria and is essential
for maintaining their redox homeostasis [28–30]. Many cancer studies already focused on
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IDH1 and IDH2 mutations. In lower-grade glioma, for example, mutant IDH patients were
shown to have a better OS and PFS. Interestingly, in mutant as well as non-mutant gliomas,
RIPK3 expression can additionally stratify the risk of patients: high RIPK3 expression is
correlated with a worse prognosis contrasting to most other entities [8].

RIPK3 forms the necrosome with RIPK1 and MLKL, consequently induces necroptosis
and herewith logically determines its position in our gene signature [12,13,31–33]. Besides
necroptosis, it is involved in at least four other pathways including caspase-mediated
apoptosis and NF-κB-mediated cell proliferation. Interestingly, both down-regulation or
over-expression in malignant tumors are possible. In our model, over-expression is associ-
ated with a longer OS and PFS—herewith, RIPK3 belongs to the group of protective factors
in our RS. This is in line with pancreatic ductal adenocarcinoma and esophageal cancer [7]
or cervical cancer, for example [34]. But, the reproducibility of many studies around this
topic seems to be poor, and as for other entities like colon cancer or breast cancer, contrast-
ing data exist on the role of RIPK3 protein [7]. The pro- or anti-carcinogenesis functions of
RIPK3 signaling are dependent on a complex balance of cytokines and chemocytokines [2,7].
As its gene product is one of the main players in necroptosis, we choose this to investigate
its expression in more detail. Firstly, we found it overexpressed in EOC in a pan-cancer
analysis, supporting its role in this entity compared to others. Furthermore, in an EOC
patient cohort from our department, we detected a higher nuclear expression of RIPK3
to be correlated significantly with prolonged PFS and to be tending toward a longer OS.
These in vivo results go along with our established gene signature. However, it should be
noted that this cohort dates back to a time before the PARP inhibitor era, which puts their
lifetime data into perspective.

FASLG, coding for the natural ligand of Fas, is a transmembrane protein that belongs to
the tumor necrosis factor family. In polymyositis, the death of myofibroblasts is moderated
by Fas/Fas ligand-dependent necroptosis, and the inhibition of necroptosis therefore can
improve muscle weakness caused by myositis [35]. In our study, the high expression of
FASLG as a driver of necroptosis induction is a protective factor. FASLG has already been
used in other signatures from necroptosis-associated genes to predict the prognosis of other
cancers like renal clear cell carcinoma [36] or skin melanoma [37].

BRAF is an important regulator of cell survival, protein synthesis, cell growth and
proliferation [38]. The serine/threonine-protein kinase domain of B-Raf has a high sequence
similarity with that of RIPK1 and RIPK3 [39]. Therefore, B-Raf inhibitors can also inhibit
the kinase activity of RIPK1 and RIPK3 and herewith limit programmed cell death. Addi-
tionally, a decrease in the mRNA expression of RIPK3 during tumor growth in patients with
colorectal cancer, gastric cancer and EOC is driven by BRAF overactivation according to
Najafov et al. [40]. This correlation seems to be contradicting to our gene signature, where
both RIPK3 and BRAF act as protective factors, which would be supported by the sequence
similarity mentioned [39]. An explanation for this could be that Najafov et al. found
the inhibition of RIPK3 expression especially in the subgroup of samples with oncogenic
mutated BRAF overactivation [40], whereas we did not focus on that mutation status.

As an important regulatory enzyme of the phosphatidylinositol signaling pathway,
inositol-tetrakisphosphate 1-kinase (ITPK1) is crucial for the activation of viral infection-
induced necroptosis [41]. It is in line with our results, where the over-expression of ITPK1
and herewith the putative activation of necroptosis was found to be a protective factor.
This is supported by the fact that through ITPK1 mutations, leading to lower activity, the
downstream necroptosis signal can be inhibited [42].

The mitotic polo-like kinase 1 (PLK1), a risk factor in our signature, is already known
to be upregulated in androgen-insensitive prostate cancer. Small-molecule inhibitors of
PLK1 can lead to the necroptosis of prostate cancer cells [43]. Further, in the G2 and M



Cancers 2025, 17, 271 16 of 21

phase, PLK1-mediated phosphorylation of the S369 site of RIPK3 enables it to trigger
apoptosis within ribosomes and necroptosis outside ribosomes [44].

Regardless of the shown data available for some of the individual genes, it is important
to mention that the relevance of our gene signature lies in the interaction of the individual
gene expressions.

Studies have shown that the necroptosis of tumor cells can influence the TIME by
supporting the infiltration of immune-related cells such as M2 macrophages or myeloid-
derived suppressor cells (MDSCs) [45], whereas the necroptosis of endothelial cells in
the TIME may promote the invasion and migration capability of tumor cells [46,47]. A
mouse model, used for the investigation of pancreatic cancer, showed that the depletion
of RIPK3 led to the formation of a suppressive TIME, which promoted tumorigenesis [45].
Herewith, a strong association between RIPK3-dependent necroptosis and the TIME was
confirmed, which led us to explore the relationship between our RS and clustering to
different immune scores.

We evaluated the immune, stromal and ESTIMATE scores and the infiltration of ten
types of immune cells via the MCP counter in the different clusters A, B and C based
on necroptosis-associated genes and representing molecular subtypes of EOC. Herewith,
differences in survival, potentially influenced by differences in TIME characteristics, can
be shown. The three scores as well as almost all levels of different immune cell types
were lower in cluster C than in clusters A and B. Since cluster C showed the worst clinical
prognosis, it may have lacked from immune cells, leading to less elimination of antigens,
higher tumor cell infiltration and reduced natural immune defense towards EOC cells. The
correlation of a shorter OS with low immune infiltration is in line with results from other
studies [48]. This was also proven through our RS, as immune cell infiltration and immune
as well as ESTIMATE scores were found to be lower in the HRG than in the LRG.

Previous studies have reported that the presence of various immune cells in tumors
may also result in a so-called immune-rejection phenotype—however, these cells mostly
remain in the matrix surrounding the tumor cell nest instead of infiltrating it [46]. Further,
T cells are thought to be inhibited via matrix activation in the TIME [47]. In this study, the
matrix score was highest in cluster A, while the prognosis of cluster A was in between the
two other clusters. We speculate that matrix activation in cluster A prevents the antitumor
effects of immune cells herein.

To estimate prognostic consequences from this data, the potential response to a PD-L1
blockade treatment was evaluated. Contrasting with endometrial and cervical cancer, EOC
studies on immune checkpoint inhibitors revealed disappointing data for several years.
Studies on the PD-L1 blockers avelumab [49] or atezolizumab [50,51] did not reach their
primary endpoint of PFS. But in 2023, data from Harter et al. firstly showed a benefit in
PFS after the addition of the programmed cell death protein 1 (PD-1) blocker durvalumab
to chemotherapy, bevacizumab and olaparib [52]. As the immune infiltration levels already
suggested, in our study, the response to a blockade of the interaction between PD-1 and PD-
L1 was worse in the HRG than in the LRG. This statement is limited by the fact that we used
a cohort of patients with urothelial carcinomas, known to have a less immunosuppressive
TIME, to predict the effect of immunotherapy in the absence of a sufficient EOC cohort.
Furthermore, according to the PD-1 data from Harter et al., it is necessary to examine
this type of inhibition separately [52], since we used a cohort with a PD-L1 blockade.
Nevertheless, in anticipation of future study results on the implication of immunotherapy
in EOC treatment [53–55], risk models such as ours might be able to select patients who are
eligible for this therapy.

A limitation of our study is the retrospective analysis of data, which needs to be
consolidated prospectively to implement their significance. Further, the in silico correla-
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tions had to be proven in vivo and/or in vitro to determine the mechanism of action of
necroptosis-associated genes during the onset and progression of EOC. Interestingly, Qin
et al. also published a signature for EOC made of necroptosis-associated genes. In contrast
to our study, they only used CXCL10, RELB and CASP3 to build an RS and examined
its association with the TIME [56]. Both studies emphasize herewith the importance of
necroptosis-related pathways in the prognosis of EOC and TIME regulation. However, it
should be noted that for a generalized application, the use of a gene signature generated
from a broader pool of genes is obvious. As there are a couple of different signatures for
advanced EOC [56–59], future research should aim for one signature which includes this
wide spectrum of biochemical pathways, especially in a time period where next-generation
sequencing is no longer a relevant economic problem.

5. Conclusions
We created a 10-gene signature from the expression of necroptosis-associated genes

in EOC. Herewith, an RS for EOC patients can be calculated to predict their prognosis.
Furthermore, this RS could potentially be useful to predict the response to a PD-L1 blockade
treatment in selected cancer patients. We thus contribute to the development of a broader
gene signature for the risk stratification of EOC and provide an idea of how the use of
immunotherapy can potentially be guided.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/cancers17020271/s1: Figure S1. Robustness verification of the 10-
gene signature in the GSE140082 testing set, the whole GSE140082 set and the TCGA-OV set: (a–c)
KM survival curves for the HRG and LRG; (d–f) time-dependent ROC curves for the RS and its
1-, 2- and 3-year OS predictions; Figure S2. Analysis of clinical subgroup prognoses based on our
RS in the TCGA-OV dataset: (a–f) KM curves comparing the HRG and LRG in different clinical
subgroups regarding age, FIGO stage and grading; (g–i) comparison of RSs in contrasting subgroups
regarding the same parameters; Figure S3. Proving the RS as an independent risk factor for the
prognosis of EOC patients in the TCGA-OV dataset: (a) univariate Cox analysis with significant p-
values marked red; (b) multivariate Cox analysis with significant p-values marked red; (c) construction
of a nomogram using the same variables used for the construction of a nomogram from the GSE140082
dataset; (d) calibration curve comparing the observed 1-, 2- and 3-year OS with the predicted OS from
the nomogram; (e–g) ROC curves comparing the nomogram with the used single variables for the
prediction of the 1-, 2- and 3-year OS; Table S1. List of genes contributing to the initial build of the
10-gene signature: based on previous studies on necroptosis, 58 necroptosis-associated genes were
identified besides the necroptosis gene set M24779.gmt; Table S2. Screening on the 66 necroptosis-
associated genes using univariate Cox analysis: the 11 genes showing a p-value < 0.05 are marked
in red.

Author Contributions: Conceptualization, M.Z., M.K., U.J. and T.K.; data curation, M.Z., M.K.
and J.R.; formal analysis, M.Z., M.K. and T.K.; investigation, M.Z., M.K., J.R., S.K., L.S. and T.K.;
methodology, M.Z., M.K., B.C. and T.K.; project administration, M.K., U.J., S.M., F.T. and T.K.;
resources, M.Z., M.K., U.J. and T.K.; software, M.Z.; supervision, M.K., U.J., A.B., S.M., F.T. and T.K.;
validation, M.Z., M.K., U.J. and T.K.; visualization, M.Z. and T.K.; writing—original draft, M.Z.;
writing—review and editing, M.K., F.T. and T.K. All authors have read and agreed to the published
version of the manuscript.

Funding: We acknowledge the financial support from the China Scholarship Council for Mingjun Zheng.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Publicly available datasets were analyzed in this study and can be found
here: University of California Santa Cruz Xena (https://gdc.xenahubs.net [accessed on 10 December

https://www.mdpi.com/article/10.3390/cancers17020271/s1
https://www.mdpi.com/article/10.3390/cancers17020271/s1
https://gdc.xenahubs.net


Cancers 2025, 17, 271 18 of 21

2024]) and the GEO (https://www.ncbi.nlm.nih.gov/geo/ [accessed on 10 December 2024]). Data
generated by the authors are shown in this paper or in the Supplementary Materials. Further data are
available upon request from the corresponding author if they are not shown somewhere else.

Acknowledgments: In this original article, the methods and results shown are in whole or
part based upon datasets generated and presented by the GSEA (http://www.gsea-msigdb.org/
gsea/index.jsp [accessed on 10 December 2024]), TCGA (https://www.cancer.gov/ccg/research/
genome-sequencing/tcga [accessed on 10 December 2024]) and ESTIMATE (https://bioinformatics.
mdanderson.org/estimate/ [accessed on 10 December 2024]).

Conflicts of Interest: B.C.: speech/advisory board honoraria from AstraZeneca and MSD. A.B.:
speech/advisory board honoraria from AstraZeneca, Roche and Tesaro. S.M.: speech/advisory
board honoraria, congress and travel support from AbbVie, AstraZeneca, Clovis, Daiichi, Eisai,
GlaxoSmithKline, Hubro, ImmunoGen, Medac, MSD, Novartis, Nykode, Olympus, PharmaMar,
Pfizer, Roche, Seagen, Sensor Kinesis, Teva and Tesaro. F.T.: speech/advisory board honoraria,
congress and travel support from AbbVie, AstraZeneca, Eisai, GlaxoSmithKline, ImmunoGen, MSD,
Regeneron, Roche and SAGA diagnostics. T.K.: travel support from Roche. The funders had no role
in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the
manuscript; or in the decision to publish the results. The other authors declare no conflicts of interest.

Abbreviations
AUC: area under the curve. CR: complete response. CI: confidence interval. CDF: cumulative

distribution function. EOC: epithelial ovarian cancer. ESTIMATE: Estimation of STromal and Im-

mune cells in MAlignant Tumor tissues using Expression data. FIGO: Fédération Internationale de

Gynécologie et d’Obstétrique. GEO: Gene Expression Omnibus. GSE140082: GEO series 140082.

GSEA: Gene Set Enrichment Analysis. HR: hazard ratio. HRG: high-risk group. IRS: immunoreac-

tivity score. ITPK1: inositol-tetrakisphosphate 1-kinase. KM: Kaplan–Meier. LASSO: least absolute

shrinkage and selection operator. LRG: low-risk group. MCPs: Microenvironment Cell Populations.

MDSCs: myeloid-derived suppressor cells. MLKL: mixed-lineage kinase domain-like pseudokinase.

NEO: neoantigen. NK: natural killer. OS: overall survival. PARP: poly (ADP-ribose) polymerase.

PFS: progression-free survival. PD: progressive disease. PD-1: programmed cell death protein

1. PD-L1: programmed death ligand 1. PLK1: polo-like kinase 1. PR: partial response. RIPK:

receptor-interacting serine/threonine-protein kinase. ROC: receiver operating characteristic. RS:

risk score. SD: stable disease. TCGA: The Cancer Genome Atlas. TIME: tumor immune microenvi-

ronment. TMB: tumor mutation burden. ns: p ≥ 0.05, * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.

References
1. Tang, R.; Xu, J.; Zhang, B.; Liu, J.; Liang, C.; Hua, J.; Meng, Q.; Yu, X.; Shi, S. Ferroptosis, necroptosis, and pyroptosis in anticancer

immunity. J. Hematol. Oncol. 2020, 13, 110. [CrossRef] [PubMed]
2. Han, J.; Zhong, C.Q.; Zhang, D.W. Programmed necrosis: Backup to and competitor with apoptosis in the immune system. Nat.

Immunol. 2011, 12, 1143–1149. [CrossRef]
3. Yan, J.; Wan, P.; Choksi, S.; Liu, Z.G. Necroptosis and tumor progression. Trends Cancer 2022, 8, 21–27. [CrossRef]
4. Grivennikov, S.I.; Greten, F.R.; Karin, M. Immunity, inflammation, and cancer. Cell 2010, 140, 883–899. [CrossRef] [PubMed]
5. Yatim, N.; Jusforgues-Saklani, H.; Orozco, S.; Schulz, O.; Barreira da Silva, R.; Reis e Sousa, C.; Green, D.R.; Oberst, A.; Albert,

M.L. RIPK1 and NF-κB signaling in dying cells determines cross-priming of CD8+ T cells. Science 2015, 350, 328–334. [CrossRef]
[PubMed]

6. Hänggi, K.; Ruffell, B. Cell death, therapeutics, and the immune response in cancer. Trends Cancer 2023, 9, 381–396. [CrossRef]
7. Liu, S.; Joshi, K.; Denning, M.F.; Zhang, J. RIPK3 signaling and its role in the pathogenesis of cancers. Cell. Mol. Life Sci. 2021, 78,

7199–7217. [CrossRef] [PubMed]
8. Vergara, G.A.; Eugenio, G.C.; Malheiros, S.M.F.; Victor, E.D.S.; Weinlich, R. RIPK3 is a novel prognostic marker for lower grade

glioma and further enriches IDH mutational status subgrouping. J. Neuro-Oncol. 2020, 147, 587–594. [CrossRef] [PubMed]
9. Wild, C.P.; Weiderpass, E.; Stewart, B.W. World Cancer Report: Cancer Research for Cancer Prevention; International Agency for

Research on Cancer: Lyon, France, 2020; pp. 411–420.

https://www.ncbi.nlm.nih.gov/geo/
http://www.gsea-msigdb.org/gsea/index.jsp
http://www.gsea-msigdb.org/gsea/index.jsp
https://www.cancer.gov/ccg/research/genome-sequencing/tcga
https://www.cancer.gov/ccg/research/genome-sequencing/tcga
https://bioinformatics.mdanderson.org/estimate/
https://bioinformatics.mdanderson.org/estimate/
https://doi.org/10.1186/s13045-020-00946-7
https://www.ncbi.nlm.nih.gov/pubmed/32778143
https://doi.org/10.1038/ni.2159
https://doi.org/10.1016/j.trecan.2021.09.003
https://doi.org/10.1016/j.cell.2010.01.025
https://www.ncbi.nlm.nih.gov/pubmed/20303878
https://doi.org/10.1126/science.aad0395
https://www.ncbi.nlm.nih.gov/pubmed/26405229
https://doi.org/10.1016/j.trecan.2023.02.001
https://doi.org/10.1007/s00018-021-03947-y
https://www.ncbi.nlm.nih.gov/pubmed/34654937
https://doi.org/10.1007/s11060-020-03473-0
https://www.ncbi.nlm.nih.gov/pubmed/32222932


Cancers 2025, 17, 271 19 of 21

10. Lheureux, S.; Braunstein, M.; Oza, A.M. Epithelial ovarian cancer: Evolution of management in the era of precision medicine. CA
Cancer J. Clin. 2019, 69, 280–304. [CrossRef] [PubMed]

11. Su, Z.; Yang, Z.; Xie, L.; DeWitt, J.P.; Chen, Y. Cancer therapy in the necroptosis era. Cell Death Differ. 2016, 23, 748–756. [CrossRef]
[PubMed]

12. Zhang, T.; Wang, Y.; Inuzuka, H.; Wei, W. Necroptosis pathways in tumorigenesis. Semin. Cancer Biol. 2022, 86, 32–40. [CrossRef]
[PubMed]

13. Moriwaki, K.; Chan, F.K.M. RIP3: A molecular switch for necrosis and inflammation. Genes Dev. 2013, 27, 1640–1649. [CrossRef]
[PubMed]

14. Park, H.H.; Kim, H.R.; Park, S.Y.; Hwang, S.M.; Hong, S.M.; Park, S.; Kang, H.C.; Morgan, M.J.; Cha, J.H.; Lee, D.; et al. RIPK3
activation induces TRIM28 derepression in cancer cells and enhances the anti-tumor microenvironment. Mol. Cancer 2021, 20, 107.
[CrossRef] [PubMed]

15. Zheng, X.L.; Yang, J.J.; Wang, Y.Y.; Li, Q.; Song, Y.P.; Su, M.; Li, J.K.; Zhang, L.; Li, Z.P.; Zhou, B.; et al. RIP1 promotes proliferation
through G2/M checkpoint progression and mediates cisplatin-induced apoptosis and necroptosis in human ovarian cancer cells.
Acta Pharmacol. Sin. 2020, 41, 1223–1233. [CrossRef] [PubMed]

16. Wu, N.Y.; Huang, H.S.; Chao, T.H.; Chou, H.M.; Fang, C.; Qin, C.Z.; Lin, C.Y.; Chu, T.Y.; Zhou, H.H. Progesterone Prevents
High-Grade Serous Ovarian Cancer by Inducing Necroptosis of p53-Defective Fallopian Tube Epithelial Cells. Cell Rep. 2017, 18,
2557–2565. [CrossRef] [PubMed]

17. Wilkerson, M.D.; Hayes, D.N. ConsensusClusterPlus: A class discovery tool with confidence assessments and item tracking.
Bioinformatics 2010, 26, 1572–1573. [CrossRef]

18. Kukreja, S.L.; Löfberg, J.; Brenner, M.J. A least absolute shrinkage and selection operator (LASSO) for nonlinear system identifica-
tion. IFAC Proc. Vol. 2006, 39, 814–819. [CrossRef]

19. Charoentong, P.; Finotello, F.; Angelova, M.; Mayer, C.; Efremova, M.; Rieder, D.; Hackl, H.; Trajanoski, Z. Pan-cancer Im-
munogenomic Analyses Reveal Genotype-Immunophenotype Relationships and Predictors of Response to Checkpoint Blockade.
Cell Rep. 2017, 18, 248–262. [CrossRef]

20. Rosenberg, J.E.; Hoffman-Censits, J.; Powles, T.; van der Heijden, M.S.; Balar, A.V.; Necchi, A.; Dawson, N.; O’Donnell, P.H.;
Balmanoukian, A.; Loriot, Y.; et al. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have
progressed following treatment with platinum-based chemotherapy: A single-arm, multicentre, phase 2 trial. Lancet 2016, 387,
1909–1920. [CrossRef]

21. Zhu, J.; Trillsch, F.; Mayr, D.; Kuhn, C.; Rahmeh, M.; Hofmann, S.; Vogel, M.; Mahner, S.; Jeschke, U.; von Schönfeldt, V. EP3
regulates cell proliferation and migration with impact on survival of endometrial cancer patients. Oncotarget 2018, 9, 982–994.
[CrossRef]

22. Heidegger, H.; Dietlmeier, S.; Ye, Y.; Kuhn, C.; Vattai, A.; Aberl, C.; Jeschke, U.; Mahner, S.; Kost, B. The Prostaglandin EP3
Receptor Is an Independent Negative Prognostic Factor for Cervical Cancer Patients. Int. J. Mol. Sci. 2017, 18, 1571. [CrossRef]
[PubMed]

23. Semmlinger, A.; von Schoenfeldt, V.; Wolf, V.; Meuter, A.; Kolben, T.M.; Kolben, T.; Zeder-Goess, C.; Weis, F.; Gallwas, J.;
Wuerstlein, R.; et al. EP3 (prostaglandin E2 receptor 3) expression is a prognostic factor for progression-free and overall survival
in sporadic breast cancer. BMC Cancer 2018, 18, 431. [CrossRef] [PubMed]

24. Balachandran, V.P.; Gonen, M.; Smith, J.J.; DeMatteo, R.P. Nomograms in oncology: More than meets the eye. Lancet Oncol. 2015,
16, e173–e180. [CrossRef] [PubMed]

25. Han, W.; Li, L.; Qiu, S.; Lu, Q.; Pan, Q.; Gu, Y.; Luo, J.; Hu, X. Shikonin circumvents cancer drug resistance by induction of a
necroptotic death. Mol. Cancer Ther. 2007, 6, 1641–1649. [CrossRef] [PubMed]

26. Declercq, W.; Vanden Berghe, T.; Vandenabeele, P. RIP kinases at the crossroads of cell death and survival. Cell 2009, 138, 229–232.
[CrossRef] [PubMed]

27. He, G.W.; Gunther, C.; Thonn, V.; Yu, Y.Q.; Martini, E.; Buchen, B.; Neurath, M.F.; Sturzl, M.; Becker, C. Regression of apoptosis-
resistant colorectal tumors by induction of necroptosis in mice. J. Exp. Med. 2017, 214, 1655–1662. [CrossRef] [PubMed]

28. Jo, S.H.; Son, M.K.; Koh, H.J.; Lee, S.M.; Song, I.H.; Kim, Y.O.; Lee, Y.S.; Jeong, K.S.; Kim, W.B.; Park, J.W.; et al. Control of
mitochondrial redox balance and cellular defense against oxidative damage by mitochondrial NADP+-dependent isocitrate
dehydrogenase. J. Biol. Chem. 2001, 276, 16168–16176. [CrossRef]

29. Kil, I.S.; Shin, S.W.; Yeo, H.S.; Lee, Y.S.; Park, J.W. Mitochondrial NADP+-dependent isocitrate dehydrogenase protects cadmium-
induced apoptosis. Mol. Pharmacol. 2006, 70, 1053–1061. [CrossRef]

30. Yang, E.S.; Park, J.W. Regulation of ethanol-induced toxicity by mitochondrial NADP(+)-dependent isocitrate dehydrogenase.
Biochimie 2009, 91, 1020–1028. [CrossRef]

31. Mulay, S.R.; Desai, J.; Kumar, S.V.; Eberhard, J.N.; Thomasova, D.; Romoli, S.; Grigorescu, M.; Kulkarni, O.P.; Popper, B.; Vielhauer,
V.; et al. Cytotoxicity of crystals involves RIPK3-MLKL-mediated necroptosis. Nat. Commun. 2016, 7, 10274. [CrossRef]

https://doi.org/10.3322/caac.21559
https://www.ncbi.nlm.nih.gov/pubmed/31099893
https://doi.org/10.1038/cdd.2016.8
https://www.ncbi.nlm.nih.gov/pubmed/26915291
https://doi.org/10.1016/j.semcancer.2022.07.007
https://www.ncbi.nlm.nih.gov/pubmed/35908574
https://doi.org/10.1101/gad.223321.113
https://www.ncbi.nlm.nih.gov/pubmed/23913919
https://doi.org/10.1186/s12943-021-01399-3
https://www.ncbi.nlm.nih.gov/pubmed/34419074
https://doi.org/10.1038/s41401-019-0340-7
https://www.ncbi.nlm.nih.gov/pubmed/32242118
https://doi.org/10.1016/j.celrep.2017.02.049
https://www.ncbi.nlm.nih.gov/pubmed/28297660
https://doi.org/10.1093/bioinformatics/btq170
https://doi.org/10.3182/20060329-3-AU-2901.00128
https://doi.org/10.1016/j.celrep.2016.12.019
https://doi.org/10.1016/S0140-6736(16)00561-4
https://doi.org/10.18632/oncotarget.23140
https://doi.org/10.3390/ijms18071571
https://www.ncbi.nlm.nih.gov/pubmed/28753926
https://doi.org/10.1186/s12885-018-4286-9
https://www.ncbi.nlm.nih.gov/pubmed/29661238
https://doi.org/10.1016/S1470-2045(14)71116-7
https://www.ncbi.nlm.nih.gov/pubmed/25846097
https://doi.org/10.1158/1535-7163.MCT-06-0511
https://www.ncbi.nlm.nih.gov/pubmed/17513612
https://doi.org/10.1016/j.cell.2009.07.006
https://www.ncbi.nlm.nih.gov/pubmed/19632174
https://doi.org/10.1084/jem.20160442
https://www.ncbi.nlm.nih.gov/pubmed/28476895
https://doi.org/10.1074/jbc.M010120200
https://doi.org/10.1124/mol.106.023515
https://doi.org/10.1016/j.biochi.2009.05.008
https://doi.org/10.1038/ncomms10274


Cancers 2025, 17, 271 20 of 21

32. Rickard, J.A.; O’Donnell, J.A.; Evans, J.M.; Lalaoui, N.; Poh, A.R.; Rogers, T.; Vince, J.E.; Lawlor, K.E.; Ninnis, R.L.; Anderton, H.;
et al. RIPK1 regulates RIPK3-MLKL-driven systemic inflammation and emergency hematopoiesis. Cell 2014, 157, 1175–1188.
[CrossRef]

33. Daniels, B.P.; Kofman, S.B.; Smith, J.R.; Norris, G.T.; Snyder, A.G.; Kolb, J.P.; Gao, X.; Locasale, J.W.; Martinez, J.; Gale, M., Jr.; et al.
The Nucleotide Sensor ZBP1 and Kinase RIPK3 Induce the Enzyme IRG1 to Promote an Antiviral Metabolic State in Neurons.
Immunity 2019, 50, 64–76. [CrossRef] [PubMed]

34. Vogelsang, T.L.R.; Kast, V.; Bagnjuk, K.; Eubler, K.; Jeevanandan, S.P.; Schmoeckel, E.; Trebo, A.; Topalov, N.E.; Mahner, S.; Mayr,
D.; et al. RIPK1 and RIPK3 are positive prognosticators for cervical cancer patients and C2 ceramide can inhibit tumor cell
proliferation in vitro. Front. Oncol 2023, 13, 1110939. [CrossRef]

35. Kamiya, M.; Mizoguchi, F.; Kawahata, K.; Wang, D.; Nishibori, M.; Day, J.; Louis, C.; Wicks, I.P.; Kohsaka, H.; Yasuda, S. Targeting
necroptosis in muscle fibers ameliorates inflammatory myopathies. Nat. Commun. 2022, 13, 166. [CrossRef] [PubMed]

36. Chen, W.; Lin, W.; Wu, L.; Xu, A.; Liu, C.; Huang, P. A Novel Prognostic Predictor of Immune Microenvironment and Therapeutic
Response in Kidney Renal Clear Cell Carcinoma based on Necroptosis-related Gene Signature. Int. J. Med. Sci. 2022, 19, 377–392.
[CrossRef] [PubMed]

37. Niu, Z.; Wang, X.; Xu, Y.; Li, Y.; Gong, X.; Zeng, Q.; Zhang, B.; Xi, J.; Pei, X.; Yue, W.; et al. Development and Validation of a
Novel Survival Model for Cutaneous Melanoma Based on Necroptosis-Related Genes. Front. Oncol. 2022, 12, 852803. [CrossRef]
[PubMed]

38. Lavoie, H.; Therrien, M. Regulation of RAF protein kinases in ERK signalling. Nat. Rev. Mol. Cell. Biol. 2015, 16, 281–298.
[CrossRef] [PubMed]

39. c Xie, T.; Peng, W.; Yan, C.; Wu, J.; Gong, X.; Shi, Y. Structural insights into RIP3-mediated necroptotic signaling. Cell Rep. 2013, 5,
70–78. [CrossRef] [PubMed]

40. Najafov, A.; Zervantonakis, I.K.; Mookhtiar, A.K.; Greninger, P.; March, R.J.; Egan, R.K.; Luu, H.S.; Stover, D.G.; Matulonis, U.A.;
Benes, C.H.; et al. BRAF and AXL oncogenes drive RIPK3 expression loss in cancer. PLoS Biol. 2018, 16, e2005756. [CrossRef]
[PubMed]

41. Shears, S.B. Molecular basis for the integration of inositol phosphate signaling pathways via human ITPK1. Adv. Enzyme Regul.
2009, 49, 87–96. [CrossRef]

42. Dovey, C.M.; Diep, J.; Clarke, B.P.; Hale, A.T.; McNamara, D.E.; Guo, H.; Brown, N.W., Jr.; Cao, J.Y.; Grace, C.R.; Gough, P.J.; et al.
MLKL Requires the Inositol Phosphate Code to Execute Necroptosis. Mol. Cell 2018, 70, 936–948. [CrossRef] [PubMed]

43. Deeraksa, A.; Pan, J.; Sha, Y.; Liu, X.D.; Eissa, N.T.; Lin, S.H.; Yu-Lee, L.Y. Plk1 is upregulated in androgen-insensitive prostate
cancer cells and its inhibition leads to necroptosis. Oncogene 2013, 32, 2973–2983. [CrossRef] [PubMed]

44. Gupta, K.; Liu, B. PLK1-mediated S369 phosphorylation of RIPK3 during G2 and M phases enables its ripoptosome incorporation
and activity. iScience 2021, 24, 102320. [CrossRef]

45. Liu, Z.G.; Jiao, D. Necroptosis, tumor necrosis and tumorigenesis. Cell Stress 2019, 4, 1–8. [CrossRef]
46. Hanggi, K.; Vasilikos, L.; Valls, A.F.; Yerbes, R.; Knop, J.; Spilgies, L.M.; Rieck, K.; Misra, T.; Bertin, J.; Gough, P.J.; et al.

RIPK1/RIPK3 promotes vascular permeability to allow tumor cell extravasation independent of its necroptotic function. Cell
Death Dis. 2017, 8, e2588. [CrossRef]

47. Van Hoecke, L.; Van Lint, S.; Roose, K.; Van Parys, A.; Vandenabeele, P.; Grooten, J.; Tavernier, J.; De Koker, S.; Saelens, X.
Treatment with mRNA coding for the necroptosis mediator MLKL induces antitumor immunity directed against neo-epitopes.
Nat. Commun. 2018, 9, 3417. [CrossRef]

48. Machuca-Aguado, J.; Conde-Martín, A.F.; Alvarez-Muñoz, A.; Rodríguez-Zarco, E.; Polo-Velasco, A.; Rueda-Ramos, A.; Rendón-
García, R.; Ríos-Martin, J.J.; Idoate, M.A. Machine Learning Quantification of Intraepithelial Tumor-Infiltrating Lymphocytes as a
Significant Prognostic Factor in High-Grade Serous Ovarian Carcinomas. Int. J. Mol. Sci. 2023, 24, 16060. [CrossRef] [PubMed]

49. Monk, B.J.; Colombo, N.; Oza, A.M.; Fujiwara, K.; Birrer, M.J.; Randall, L.; Poddubskaya, E.V.; Scambia, G.; Shparyk, Y.V.; Lim,
M.C.; et al. Chemotherapy with or without avelumab followed by avelumab maintenance versus chemotherapy alone in patients
with previously untreated epithelial ovarian cancer (JAVELIN Ovarian 100): An open-label, randomised, phase 3 trial. Lancet
Oncol. 2021, 22, 1275–1289. [CrossRef] [PubMed]

50. Moore, K.N.; Bookman, M.; Sehouli, J.; Miller, A.; Anderson, C.; Scambia, G.; Myers, T.; Taskiran, C.; Robison, K.; Maeenpaeae, J.;
et al. Atezolizumab, Bevacizumab, and Chemotherapy for Newly Diagnosed Stage III or IV Ovarian Cancer: Placebo-Controlled
Randomized Phase III Trial (IMagyn050/GOG 3015/ENGOT-OV39). J. Clin. Oncol. 2021, 39, 1842–1855. [CrossRef] [PubMed]

51. Kurtz, J.E.; Pujade-Lauraine, E.; Oaknin, A.; Belin, L.; Leitner, K.; Cibula, D.; Denys, H.; Rosengarten, O.; Rodrigues, M.; de
Gregorio, N.; et al. Atezolizumab Combined with Bevacizumab and Platinum-Based Therapy for Platinum-Sensitive Ovarian
Cancer: Placebo-Controlled Randomized Phase III ATALANTE/ENGOT-ov29 Trial. J. Clin. Oncol. 2023, 41, 4768–4778. [CrossRef]

https://doi.org/10.1016/j.cell.2014.04.019
https://doi.org/10.1016/j.immuni.2018.11.017
https://www.ncbi.nlm.nih.gov/pubmed/30635240
https://doi.org/10.3389/fonc.2023.1110939
https://doi.org/10.1038/s41467-021-27875-4
https://www.ncbi.nlm.nih.gov/pubmed/35013338
https://doi.org/10.7150/ijms.69060
https://www.ncbi.nlm.nih.gov/pubmed/35165523
https://doi.org/10.3389/fonc.2022.852803
https://www.ncbi.nlm.nih.gov/pubmed/35387121
https://doi.org/10.1038/nrm3979
https://www.ncbi.nlm.nih.gov/pubmed/25907612
https://doi.org/10.1016/j.celrep.2013.08.044
https://www.ncbi.nlm.nih.gov/pubmed/24095729
https://doi.org/10.1371/journal.pbio.2005756
https://www.ncbi.nlm.nih.gov/pubmed/30157175
https://doi.org/10.1016/j.advenzreg.2008.12.008
https://doi.org/10.1016/j.molcel.2018.05.010
https://www.ncbi.nlm.nih.gov/pubmed/29883610
https://doi.org/10.1038/onc.2012.309
https://www.ncbi.nlm.nih.gov/pubmed/22890325
https://doi.org/10.1016/j.isci.2021.102320
https://doi.org/10.15698/cst2020.01.208
https://doi.org/10.1038/cddis.2017.20
https://doi.org/10.1038/s41467-018-05979-8
https://doi.org/10.3390/ijms242216060
https://www.ncbi.nlm.nih.gov/pubmed/38003250
https://doi.org/10.1016/S1470-2045(21)00342-9
https://www.ncbi.nlm.nih.gov/pubmed/34363762
https://doi.org/10.1200/JCO.21.00306
https://www.ncbi.nlm.nih.gov/pubmed/33891472
https://doi.org/10.1200/JCO.23.00529


Cancers 2025, 17, 271 21 of 21

52. Harter, P.; Trillsch, F.; Okamoto, A.; Reuss, A.; Kim, J.W.; Rubio-Pérez, M.J.; Vardar, M.A.; Scambia, G.; Tredan, O.; Nyvang,
G.B.; et al. Durvalumab with paclitaxel/carboplatin (PC) and bevacizumab (bev), followed by maintenance durvalumab, bev,
and olaparib in patients (pts) with newly diagnosed advanced ovarian cancer (AOC) without a tumor BRCA1/2 mutation
(non-tBRCAm): Results from the randomized, placebo (pbo)-controlled phase III DUO-O trial. J. Clin. Oncol. 2023, 41, LBA5506.
[CrossRef]

53. Hardy-Bessard, A.C.; Moore, K.N.; Mirza, M.R.; Asselain, B.; Redondo, A.; Pfisterer, J.; Pignata, S.; Provencher, D.M.; Cibula, D.;
Reyners, A.K.L.; et al. ENGOT-OV44/FIRST study: A randomized, double-blind, adaptive, phase III study of platinum-based
therapy with dostarlimab (TSR-042) + niraparib versus standard-of-care (SOC) platinum-based therapy as first-line treatment of
stage 3/4 non-mucinous epithelial ovarian cancer (OC). J. Clin. Oncol. 2019, 37, TPS5600. [CrossRef]

54. Monk, B.J.; Coleman, R.L.; Fujiwara, K.; Wilson, M.K.; Oza, A.M.; Oaknin, A.; O’Malley, D.M.; Lorusso, D.; Westin, S.N.;
Safra, T.; et al. ATHENA (GOG-3020/ENGOT-ov45): A randomized, phase III trial to evaluate rucaparib as monotherapy
(ATHENA-MONO) and rucaparib in combination with nivolumab (ATHENA-COMBO) as maintenance treatment following
frontline platinum-based chemotherapy in ovarian cancer. Int. J. Gynecol. Cancer 2021, 31, 1589–1594. [CrossRef] [PubMed]

55. Vergote, I.; Sehouli, J.; Salutari, V.; Zola, P.; Madry, R.; Wenham, R.M.; Korach, J.; Pautier, P.; Cibula, D.; Lheureux, S.; et al.
ENGOT-OV43/KEYLYNK-001: A phase III, randomized, double-blind, active- and placebo-controlled study of pembrolizumab
plus chemotherapy with olaparib maintenance for first-line treatment of BRCA-nonmutated advanced epithelial ovarian cancer. J.
Clin. Oncol. 2019, 37, TPS5603. [CrossRef]

56. Qin, Y.; Sheng, Y.; Ren, M.; Hou, Z.; Xiao, L.; Chen, R. Identification of necroptosis-related gene signatures for predicting the
prognosis of ovarian cancer. Sci. Rep. 2024, 14, 11133. [CrossRef] [PubMed]

57. Wieser, V.; Tsibulak, I.; Reimer, D.U.; Zeimet, A.G.; Fiegl, H.; Hackl, H.; Marth, C. An angiogenic tumor phenotype predicts poor
prognosis in ovarian cancer. Gynecol. Oncol. 2023, 170, 290–299. [CrossRef]

58. Zheng, M.; Mullikin, H.; Hester, A.; Czogalla, B.; Heidegger, H.; Vilsmaier, T.; Vattai, A.; Chelariu-Raicu, A.; Jeschke, U.; Trillsch,
F.; et al. Development and Validation of a Novel 11-Gene Prognostic Model for Serous Ovarian Carcinomas Based on Lipid
Metabolism Expression Profile. Int. J. Mol. Sci. 2020, 21, E9169. [CrossRef]

59. Zheng, M.; Long, J.; Chelariu-Raicu, A.; Mullikin, H.; Vilsmaier, T.; Vattai, A.; Heidegger, H.H.; Batz, F.; Keckstein, S.; Jeschke,
U.; et al. Identification of a Novel Tumor Microenvironment Prognostic Signature for Advanced-Stage Serous Ovarian Cancer.
Cancers 2021, 13, 3343. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1200/JCO.2023.41.17_suppl.LBA5506
https://doi.org/10.1200/JCO.2019.37.15_suppl.TPS5600
https://doi.org/10.1136/ijgc-2021-002933
https://www.ncbi.nlm.nih.gov/pubmed/34593565
https://doi.org/10.1200/JCO.2019.37.15_suppl.TPS5603
https://doi.org/10.1038/s41598-024-61849-y
https://www.ncbi.nlm.nih.gov/pubmed/38750159
https://doi.org/10.1016/j.ygyno.2023.01.034
https://doi.org/10.3390/ijms21239169
https://doi.org/10.3390/cancers13133343
https://www.ncbi.nlm.nih.gov/pubmed/34283076

	Introduction 
	Materials and Methods 
	Data Source and Pre-Processing 
	Clustering of Necroptosis-Associated Genes and Construction of a Prognostic Model 
	Estimation of Cell Infiltration in the Tumor Immune Microenvironment (TIME) 
	Prediction of Immunotherapeutic Efficacy 
	Patient Selection and Ethical Approval for Immunohistochemistry 
	Tissue Microarray and Immunohistochemistry Analysis 
	Statistical Analyses 

	Results 
	Identification of Three Molecular Subtypes Based on Necroptosis-Associated Genes 
	Construction of a 10-Gene Risk Model 
	Robustness of RS in Different Cohorts 
	Risk Model Can Predict the Prognosis of Patients with Different Clinical Characteristics 
	RS Can Be an Independent Risk Factor for the Prognosis of EOC Patients 
	Immune Cell Infiltration Was Lower in the HRG than in the LRG 
	Response to Immunotherapy Was Better in LRG than in HRG 
	High Nuclear Expression of RIPK3 Is Associated with Significantly Longer Progression-Free Survival (PFS) and OS in an EOC Patient Cohort 

	Discussion 
	Conclusions 
	References

