
OPINION PAPER/COMMENTARY
Norepinephrine Transporter–Targeted Cancer
Theranostics—New Horizons
Takahiro Higuchi, MD, PhD,*† Konrad Klimek, MD,‡ Daniel Groener, MD, MHBA,‡
Xinyu Chen, PhD,§ and Rudolf A. Werner, MD‡||
Abstract: In the evolving landscape of precision oncology, this review de-
lineates the role of radiopharmaceuticals targeting the norepinephrine trans-
porter (NET), with a particular focus on the current clinical application of
123I-MIBG diagnostic imaging and 131I-MIBG therapeutics, in particular
for pheochromocytoma, neuroblastoma, or paraganglioma. We will also
highlight recently introduced 18F-labeled NET targeting imaging radiotracers,
which would offer unparalleled resolution, enhanced tumor localization, and
staging properties. Complementing these novel second-generation PETagents
in a theranostic approach, astatine-211 meta-astatobenzylguanidine (211At-
MABG) would leverage the advantages of alpha-particles to selectively target
and eradicate NET-expressing tumor cells with minimal off-target effects.
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I n recent years, the field of oncology has witnessed a paradigm
shift toward personalized and targeted cancer therapies, aiming

to improve treatment efficacy while minimizing adverse effects on
healthy tissues.1 Among the emerging targets for such precision
medicine approaches, the norepinephrine transporter (NET) has
witnessed an expanded use.2

NET, primarily known for its role in the reuptake of norepi-
nephrine at the synaptic cleft in the central and peripheral nervous
systems, has also been recognized for its involvement in cancer
biology.3 Beyond its canonical function in neurotransmission,
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NET has been found to be dysregulated in certain cancers originated
from neural crest tissues. The aberrant expression of NET in certain
types of cancer cells offers a unique opportunity for targeted diagnosis
and therapeutic interventions.4 By exploiting the overexpression of
NET in malignant tumor tissues, strategies to deliver therapeutic radio-
pharmaceuticals have been developed, which are analogues of norepi-
nephrine structure, binding selectively to cancer cells while sparing nor-
mal tissues. Moreover, imaging agents targeting NET have enabled
noninvasive visualization and quantification of NETexpression invivo,
facilitating cancer diagnosis, staging, and treatment monitoring.2,4

In this review, we aim to provide an overview of the role of
NETas a promising diagnostic and therapeutic radiopharmaceutical
target in specific types of tumors.Wewill discuss current and recent
advancements in NET-targeted radiotheranostics, highlighting
novel radiopharmaceuticals aimed at enhancing precision oncology
with NET-targeted agents in cancer management.

IMPORTANCE OF NET IN DIAGNOSING AND
TREATING SPECIFIC CANCERS

As mentioned, NET plays a crucial role in the diagnosis and
treatment of specific cancers, particularly those originating from
neural crest tissues. Neural crest cells, a transient embryonic cell
population, give rise to a diverse array of tissues and cell types dur-
ing development, including the peripheral nervous system, adrenal
medulla, and melanocytes. Aberrant development or differentiation
of neural crest cells can result in the formation of tumors with
neuroendocrine features. Three notable malignancies arising
from neural crest tissues include the following. First, arising
from chromaffin cells in the adrenal medulla, pheochromocy-
toma is a rare neuroendocrine tumor characterized by excessive
catecholamine production.5 These tumors often present with symp-
toms such as hypertension, palpitations, and diaphoresis due to ep-
isodic release of catecholamines. Although most pheochromocyto-
mas are benign, approximately 10% are malignant and may metas-
tasize to distant organs, leading to a poorer prognosis. Second,
paragangliomas are typically benign tumors arising from paraganglia,
that is, clusters of neuroendocrine cells associated with the autonomic
nervous system.6 They are found along the paravertebral axis in the
head, neck, thorax, and abdomen.7 Paragangliomas can produce cate-
cholamines, leading to symptoms such as hypertension, palpitations,
and sweating. Although most are benign and slow-growing, some
may demonstrate aggressive behavior, particularly those with certain
genetic mutations or larger sizes. Treatment often involves surgical
resection, with careful consideration to avoid catecholamine-
induced complications during the procedure.8 Third, neuroblastoma
is the most common extracranial solid tumor of childhood, originat-
ing from primitive neuroblasts derived from neural crest cells.9 These
tumors can arise anywhere along the sympathetic chain, with the
most common sites being the adrenal glands and retroperitoneum.
Neuroblastomas exhibit heterogeneous clinical behavior, ranging
from spontaneous regression to aggressive metastatic disease.
High-risk neuroblastomas are associated with a poor prognosis,
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despite intensive multimodal therapy including chemotherapy, sur-
gery, radiation therapy, and immunotherapy.10
123I-MIBG FOR CANCER DIAGNOSIS
123I-MIBG imaging has emerged as a valuable tool for diag-

nosing and localizing tumors with neuroendocrine features, espe-
cially those originating from neural crest tissues as mentioned
above. MIBG, functioning as an analog of norepinephrine, is
radiolabeled with iodine-123 and actively taken up by neuroendo-
crine tumors expressing the NET. Due to its structural resemblance
to norepinephrine, MIBG is specifically recognized and transported
into tumor cells via the NET11,12 (Fig. 1). Utilizing SPECT imag-
ing, 123I-MIBG facilitates the localization of these tumors, aiding
in differential diagnosis and treatment planning.

123I-MIBG scintigraphy stands out as the leading functional
imaging technique for identifying pheochromocytoma due to un-
matched specificity and excellent sensitivity, along with widespread
availability.13 Its utility becomes especially pronounced in confirm-
ing diagnoses where other methods are unsuitable, for instance,
when biopsies are risky due to possible severe complications like
a hypertensive crisis. Furthermore, MIBG scintigraphy proves in-
valuable for determining the extent of the disease and assessing
the response to treatment.

The diagnostic performance of 123I-MIBG scintigraphy for
pheochromocytoma and paraganglioma has been confirmed in a
prospective multicenter study.14 Including confirmed and suspected
cases based on clinical symptoms and biochemical markers, this
study demonstrated that 123I-MIBG scintigraphy exhibits a sensitiv-
ity range of 82%–88% and a specificity range of 82%–84%. Nota-
bly, the sensitivity for pheochromocytoma and paraganglioma was
found to be 88% and 67%, respectively, indicating a higher diagnos-
tic accuracy for adrenal versus extra-adrenal tumors. The addition
of SPECT imaging improved reader confidence but did not sub-
stantially alter the sensitivity and specificity outcomes. This study
FIGURE 1. Norepinephrine, a critical neurotransmitter of sympat
reabsorbed by NETs situated on postsynaptic terminals for reuse.
similarly internalized by nerve terminals through NET. This uptake
distributions and NET functioning. Furthermore, certain neuroen
delivery of the radiopharmaceuticals into tumor cells. The use of be
as 131I-MIBG, confers the capacity for high cytotoxicity, enabling s
expression. Created with BioRender.com.
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unequivocally validates the effectiveness of 123I-MIBG as a reliable
imaging modality for evaluating primary or metastatic pheochro-
mocytoma or paraganglioma.

Although 123I-MIBG scintigraphy is an established method
for diagnosing andmonitoring paragangliomas, not all tumors show
the expected uptake due to variability in neuroendocrine marker
expression.15 Some paragangliomas, especially those with low neu-
roendocrine marker expression, may not be detected by this tech-
nique, which could result in false-negatives. This underscores the
importance of a comprehensive diagnostic approach, combining
123I-MIBG with other imaging methods like CTor MRI to improve
detection rates. However, it is essential to interpret MIBG scintigra-
phy results within the broader clinical context, taking into account
its limitations and integrating findings from other diagnostic modal-
ities to form a complete picture of the patient’s condition.16

Sharp et al17 compared 123I-MIBG scintigraphy and 18F-
FDG PET for neuroblastoma diagnosis. The study found that 18F-
FDG PETwas more effective for stages 1 and 2 neuroblastomas, re-
vealing extensive disease areas not seen on 123I-MIBG. For stage 3,
the 2 methods exhibited similar efficacy, but 123I-MIBG proved su-
perior for stage 4, particularly in identifying bone or marrowmetas-
tases. However, the effectiveness of 123I-MIBG is compromised by
the lower resolution of SPECT imaging, which can pose a signifi-
cant drawback when examining small-sized pediatric patients. The
sensitivity of 123I-MIBG in detecting lesions is also a concern, as
smaller lesions or those located in certain body regions may not
be as clearly visualized compared with 18F-FDG PET.18

Although 123I-MIBG scintigraphy holds invaluable clinical
utility, there is a need to enhance its sensitivity, especially for de-
tecting small lesions or tumors with minimal neuroendocrine ex-
pression. This is especially crucial for pediatric oncology, where
SPECT resolution might not provide the necessary clarity for accu-
rate diagnosis and staging.18 Respective progress may be achieved
through the adoption of technologies like PET, which offers higher
spatial and temporal resolution.19
hetic nerves, is released into synaptic clefts and subsequently
123I-MIBG, a radiolabeled analog of norepinephrine, is
mechanism facilitates the imaging of sympathetic nerve

docrine tumors overexpress NET, allowing for targeted
ta-emitting radionuclides in these radiopharmaceuticals, such
elective destruction of tumor cells that exhibit enhancedNET
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131I-MIBG FOR CANCER TREATMENT

In addition to its diagnostic utility, 131I-MIBG has demon-
strated promise as a therapeutic option for NET-expressing
tumors.20 Iodine-131, a beta-emitting radioisotope, is conjugated
to MIBG to deliver targeted radiation therapy to tumor cells while
sparing surrounding healthy tissues. This targeted approach lever-
ages the selective uptake of 131I-MIBG by NET-expressing tumors,
resulting in internal radiation therapy and improved patient out-
comes. Therefore, 131I-MIBG is effectively used as a first-line and
neoadjuvant treatment for pheochromocytoma and paraganglioma.21
Surgical resection is the preferred treatment; however, for tumors
considered inoperable, 131I-MIBG therapy has proven valuable in re-
ducing tumor size, thus facilitating surgery.22,23 The therapy has led
to significant improvements in patients’ functionality and quality
of life, with no reported hypertensive crises or tumor lysis syn-
drome, indicating its safety.21,24 In reported cases, patients treated
with 131I-MIBG were able to undergo surgery, highlighting the
therapy’s potential as a life-extending option.25 The findings sug-
gest that preoperative 131I-MIBG therapy should be considered for
reducing the size of unresectable tumors, enhancing operability
and patient outcomes.

In a phase 2 trial, patients with advanced pheochromocytoma
and paraganglioma were treated with high-specific-activity 131I-
MIBG (median 444 MBq/kg), a therapy aimed at those with few
treatment options and typically poor prognoses.26 The trial involved
74 patients, 68 of whom received therapeutic doses of high-dose
specific activity 131I-MIBG, resulting in 25% experiencing a signif-
icant and sustained reduction in antihypertensive medication use.
Additionally, a majority experienced a tumor response, with 92%
having partial responses or stable disease and a median overall sur-
vival of 36.7 months. Although the therapy showed promise, espe-
cially considering the lack of acute hypertensive events during
treatment, challenges remain. The complex nature of pheochro-
mocytoma and paraganglioma, variability in response, and the
need for continued research to optimize treatment efficacy and
TABLE 1. Summary of Clinical Trials of Radionuclide Therapy Tar

Number Phase Interventions Disease

JRCT2021220012 Phase 1 211At-MABG Pheochromocytoma 1
Paraganglioma

NCT03561259 Phase 2 131I-MIBG Neuroblastoma 6
NCT00874614 Phase 2 131I-MIBG Pheochromocytoma 7

Paraganglioma
NCT01590680 Compassionate use 131I-MIBG Neuroblastoma

Pheochromocytoma
Paraganglioma

NCT01838187 Expanded access 131I-MIBG Neuroblastoma
+/−Vorinostat Pheochromocytoma

Paraganglioma
NCT00028106 Phase 2 131I-MIBG Pheochromocytoma 3
NCT00960739 Phase 2 131I-MIBG Neuroblastoma 3
NCT01019850 Phase 1 131I-MIBG Neuroblastoma 2
NCT01313936 Phase 1 131I-MIBG Neuroblastoma 3
NCT00458952 Phase 1 131I-MIBG Pheochromocytoma 2

Paraganglioma
NCT00659984 Phase 2 131I-MIBG Neuroblastoma 1
NCT01413503 Phase 2 131I-MIBG Pheochromocytoma 5

Paraganglioma
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manage disadvantages such as potential myelosuppression and fa-
tigue highlight the importance of individualized patient care plans.
In July 2018, the Food and Drug Administration approved
iobenguane 131I (https://www.fda.gov/news-events/press-
announcements/fda-approves-f irst-treatment-rare-adrenal-
tumors), a specific form of 131I-MIBG, marking it as the first Food
and Drug Administration–approved radiopharmaceutical for
treating paragangliomas and pheochromocytomas in patients aged
12 and older who have inoperable, metastatic tumors. Clinical tri-
als are summarized in Table 1.27–31

A recent meta-analysis aimed to evaluate the effectiveness
and safety of 131I-MIBG therapy in treating neuroblastoma.32 By
reviewing 26 clinical trials involving 883 patients, the study
found that 131I-MIBG therapy, both as a standalone treatment
and in combination with other therapies, shows promise in clin-
ical outcomes for this type of neuroendocrine tumor. The pooled
data revealed an objective response rate of 39% for MIBG mono-
therapy, with stable and progressive disease rates at 31% and
22%, respectively, and a minor response rate of 15%. When com-
bined with other treatments, the objective response rate slightly
decreased to 28%. The analysis also reported 1-year and 5-year
survival rates of 64% and 32%, respectively. However, the treat-
ment is associated with high rates of thrombocytopenia (53% in
monotherapy, 79% with combination therapy) and neutropenia
(58% in monotherapy, 78% with combination therapy), indicat-
ing significant adverse effects. The conclusion suggests that
131I-MIBG can be an effective option in neuroblastoma treatment
strategies, recommending its individualized use based on
clinical considerations.

Although 131I-MIBG therapy has shown effectiveness, there
are ongoing challenges to optimize treatment, including fine-
tuning dosing protocols, mitigating side effects, and establishing re-
liable predictors for patient response. To enhance the therapy’s over-
all efficacy, research is pivoting toward the investigation of more
potent radionuclides, such as alpha-particles,33 which may offer a
more targeted and powerful treatment alternative.
geting Norepinephrine Transporter

Enrollment Study Completion Location Reference

8 participants First enrollment November 2022 Japan 27

0 participants Estimated April 2025 United States
4 participants Result posted October 2020 United States 28

29

NA NA United States

NA NA United States

2 participants Completed (July 2017) United States
0 participants Completed (July 2016) France 30

7 participants Completed (February 2015) United States
2 participants Completed (May 2014) United States
4 participants Completed (June 2011) United States 31

5 participants Completed (November 2010) United States 29

0 participants Completed (May 2009) United States
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https://www.fda.gov/news-events/press-announcements/fda-approves-first-treatment-rare-adrenal-tumors
https://www.fda.gov/news-events/press-announcements/fda-approves-first-treatment-rare-adrenal-tumors
https://www.fda.gov/news-events/press-announcements/fda-approves-first-treatment-rare-adrenal-tumors
www.nuclearmed.com


Clinical Nuclear Medicine • Volume 50, Number 1, January 2025 Norepinephrine Transporter–Targeted Theranostics
EMERGING DIAGNOSTIC APPROACHES:
18F-LABELED PET TRACERS

The evolution from SPECT to PET marks a milestone in the
field of nuclear medicine.34 SPECT, which became a clinical tool in
the 1970s, utilizes gamma cameras and lead collimators to detect
gamma rays emitted by radiopharmaceuticals.35 These collimators
are double-edged swords; they are crucial for photon direction but
also limit spatial resolution due to the inevitable sensitivity-
resolution trade-off. Consequently, practical resolution of SPECT
technology is often around 10 mm, which poses a significant limi-
tation in scenarios such as pediatric oncology where detecting small
lesions is critical.

PET, on the other hand, emerged in the 1980s as a substantial
improvement, particularly in sensitivity and spatial resolution.36
The technique’s signature ability to detect coincident photon pairs
from positron annihilation negates the need for lead collimators,
thereby enhancing sensitivity and reducing the spatial resolution
to approximately 4–5 mm.19 This leap in sensitivity is not just quan-
titative but also qualitative, enabling dynamic imaging and real-time
tracking of radiotracer kinetics, thus offering a dynamic functional
assessment. The introduction of whole-body PET imaging signifi-
cantly changed the clinical use of this technology.36 Initially more
focused on brain and heart research, the applicability broadened, es-
pecially in oncology for whole-body evaluations. The ability to con-
duct a comprehensive scan of the entire body in a single session
may make whole-body PET a cornerstone for the detection and
management of cancer.

The superior capabilities of PET support a more personalized
approach to patient care, fostering its preference over SPECT in
many clinical contexts.34 Efforts to improve SPECT continue; how-
ever, trajectory of PET is steeply innovative with advancements
such as new radiotracer classes and the incorporation of multimodal
FIGURE 2. The diagram illustrates the branching evolution of NE
technologically superior PET imaging, particularly emphasizing th
tracers confer both high-quality imaging and adaptable imaging
economic efficiencies afforded by centralized production. The rad
groups: primary or secondary amines, and metabolically stable g
categories, with shared core structures highlighted in blue and gr
radionuclides marked in red, demonstrating the dynamic progres
radiotracers.

© 2024 The Author(s). Published by Wolters Kluwer Health, Inc.
systems like PET/MRI.37 Digitalization of detectors, advancements
in scintillator materials, and enhancements in image reconstruction
algorithms collectively push performance of PET further.19 The in-
troduction of time-of-flight technology epitomizes the depth of
PET’s technological progression, offering even more detailed and
informative imaging possibilities. This suite of intrinsic and techno-
logical strengths underscores why PET has become the modality of
choice in numerous clinical scenarios.

The leap forward provided by 18F-labeled PET tracers in nu-
clear medicine is a testament to the blend of clinical excellence
and economic pragmatism, especially in the realm of oncological
imaging.38 18F-FDG has revolutionized whole-body scanning for
staging and monitoring treatment responses. The advantage of 18F
includes a longer physical half-life of approximately 110 minutes,
facilitating scheduling flexibility and the distribution of radiotracers
over larger distances from the production site.39 The widespread
availability of PET imaging has, in turn, galvanized the pursuit of
tracer diversity, with each new compound offering a nuanced view
of different physiological and pathological states36 (Fig. 2).

The initial promise was seen with 11C-labeled compounds
like 11C-hydroxyephedrine, which showcased high affinity for the
norepinephrine transport system and contributed significantly to
both cardiac and oncological imaging.40,41 Yet, its brief half-life of
20 minutes restricted its utility, confining it to facilities with an
on-site cyclotron and a narrow imaging timeframe. The costs asso-
ciated with the on-site cyclotron operations for PET radiotracer pro-
duction represent a substantial financial investment. These special-
ized facilities are not only expensive to build and operate but also
require highly trained personnel. This financial consideration has
historically limited the adoption of PET imaging.39

However, the transition to 18F-labeled tracers circumvents these
economic constraints. The longer half-life of 18Fallows for the creation
of a centralized distribution system, reducing the need for each imaging
T radiotracers, showcasing the transition from SPECT to the
e introduction of 18F-labeled tracers. These 18F-labeled PET
protocols due to their extended half-life, coupled with
iotracers are bifurcated into 2 core chemical structure
uanidines. The diagram shows how it branches into these
een, the common “tail” structures in orange, and the
sion and diversification in the design of NET-targeted
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center to bear the cost of a cyclotron. Such a system streamlines the
process, significantly cutting down on the economic burden and
expanding the reach of PET imaging across various healthcare set-
tings. Advances in tracers such as 18F-fluorodopamine,42,43
followed by 18F-LMI1195 (Flubrobenguane)44–51 and 18F meta-
fluorobenzylguanidine (mFBG)52 with their improved cardiac
imaging contrast, and the introduction of compounds like 18F-
AF78 with high NET affinity, further optimize the utility and
cost-effectiveness of the imaging process.53–56 The centralized
production and distribution of these tracers would enhance their
economic viability, making PET imaging a more accessible and
financially sustainable option for medical institutions57 (Fig. 3).

Among others, Flubrobenguane has already been used in a
preclinical setting and clinical scenarios. For instance, Gaertner
FIGURE 3. Images of a 4-year-old boy with high-risk
neuroblastoma. The left panel displays a whole-body scan
using 123I-MIBG, whereas the right panel shows the MIP from
18F-mFBG PET. Both imaging techniques reveal the
pathological uptake characteristic of primary abdominal
neuroblastoma as well as widespread osteomedullary
neuroblastoma involvement. However, the 18F-mFBG PET
presents these findings with greater clarity and higher
resolution. Additionally, 18F-mFBG PET identifies
extramediastinal lymph node metastases, as indicated by
the arrows.57 Copyright 2024, Springer Nature.
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et al50 applied this radiopharmaceutical to tumor-bearing multiple
endocrine neoplasia mut/mut rats, representing a dedicated neuro-
endocrine tumor model. Of note, NET inhibition by desipramine in-
jection resulted in diminished adrenal gland uptake, thereby con-
firming specificity. In addition, Flubrobenguane also provided fa-
vorable biodistribution. Rischpler et al58 provided first clinical
evidence by investigating 20 subjects with suspected primary or re-
current pheochromocytoma or paraganglioma, reporting on im-
proved diagnostic read-out relative to the reference standard 123I-
MIBG. The same group also showed that Flubrobenguane can pro-
vide higher lesion-based SUV values when compared with healthy
adrenal glands and liver parenchyma,59 thereby facilitating lesion
detection. Previous studies also included the use of 18F-
fluorodopamine. For instance, Ilias et al60 performed a head-to-
head comparison of this PET agent with the reference 131I-MIBG
in patients with pheochromocytoma and reported on positive find-
ings with the 18F-labeled compound in all patients, along with in-
creased lesion detection rate (n = 90 exclusively by 18F-
fluorodopamine vs n = 10 only by 131I-MIBG), indicative for a sub-
stantially improved read-out using PET technology. The same group
also reported on 111In-pentreotide as comparator and again, re-
ported on increased sensitivity (90.2%) for 18F-fluorodopamine
(111In-pentreotide, 22%; 123I-MIBG, 76%).43 This superior perfor-
mance, however, seems to be limited to widespread disease,
whereas for exclusively detecting nonmetastasized disease (ie, adre-
nal primary), PET and 123I/131I-MIBG provided comparable diag-
nostic capabilities.61 Of note, for both pheochromocytoma and (ab-
dominal) paraganglioma, the intake of 200 mg carbidopa further
improves image contrast on 18F-FDOPA PET.62 A recent study also
investigated the use of this 18F-labeled NET-targeting PETagent rel-
ative to somatostatin receptor PET, and similar to findings with
scintigraphy, 18F-FDOPA, diagnostic accuracy was increased
(98% vs 70%).63

POTENTIAL THERAPEUTIC INNOVATION: ALPHA-
PARTICLE THERAPY WITH 211AT-MABG

Beta-emitting radionuclides like 131I, 177Lu, and 90Y have
been established as effective in clinical settings for tumor treatment
through beta-particle therapy.64 Of note, paraganglioma and pheo-
chromocytoma provide increased somatostatin receptor expression
on their tumor cell surface, thereby rendering peptide receptor ra-
dionuclide therapy suitable in those subjects.65 For instance, a
meta-analysis provided encouraging results with more than 89%
achieving stable disease or partial response when treated with so-
matostatin receptor-targeted radionuclide therapy.66 Nonetheless,
patients experiencing progressive disease should be offered novel
theranostic strategies, such as NET-directed radioligand therapies,
preferably with radionuclides having increased potency relative to -
beta-emitters.

Alpha-particle therapy can offer distinct advantages over
beta-particle therapy, primarily due to differences in their radiation
characteristics.67 Alpha-particles, being 2 protons and 2 neutrons
bound together, are much larger and carry more energy than beta-
particles, which are electrons or positrons.68,69 This difference leads
to a higher linear energy transfer for alpha-particles, allowing them
to deliver a concentrated dose of radiation over a very short range,
usually only a few cell diameters. Consequently, alpha-particle ther-
apy can target tumor cells more precisely and induce potent and lo-
calized cytotoxic effects, resulting in significant DNA damage that
is particularly effective at killing cancer cells. One prominent exam-
ple of alpha therapy is actinium-225 (225Ac), which shows promise
due to its suitable decay properties for use in targeted alpha therapy,
especially when conjugated with peptides or antibodies.70 However,
the supply of alpha-emitters like 225Ac is a challenge, mainly
© 2024 The Author(s). Published by Wolters Kluwer Health, Inc.
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because of their production in nuclear reactors, which are complex
and costly facilities with stringent regulatory hurdles. Although the
demand for 225Ac is high due to its potential, its limited availability
hinders widespread clinical application.71

In contrast, astatine-211 (211At) offers unique advantages in
the development of organic small molecule radiopharmaceuticals.72
As a member of the halogen group, astatine shares chemical similar-
ities with iodine, which allows it to form more compact compounds
that are akin to the molecules used in established therapies, such as
131I-MIBG73 into molecules like meta-astatobenzylguanidine
(MABG).74 Furthermore, 211At can be produced using cyclotrons,
making it more accessible for research institutions and some hospi-
tals, compared with the heavy 225Ac, which requires a nuclear reac-
tor for production asmentioned above.75 However, employing 211At
comes with financial implications; the medium-sized cyclotrons
needed for its production involve significant capital and operational
expenses.76 Despite these costs, the potential of 211At for alpha-
particle therapy is highly promising due to the localized and highly
damaging effects of its alpha emission. Its production via cyclotrons
presents an operational advantage, allowing for wider distribution
and research application of 211At-based therapies.76 One characteris-
tic of 211At needs to be mentioned here: its short half-life of approx-
imately 7.2 hours presents challenges in delivering an optimal radia-
tion dose to the tumor while maintaining a low background level in
nontargeted tissues. This rapid decay requires precise timing in the
synthesis, delivery, and administration of the radiopharmaceutical
to ensure that a sufficient dose accumulates at the tumor site before
the radionuclide significantly decays. Balancing the high therapeutic
potential of 211At against the logistical hurdles is an ongoing concern
in the field, driving innovation in radiotracer design and administra-
tion protocols to maximize tumor uptake quickly and efficiently.

Preclinical studies have demonstrated the potential of 211At-
MABG as an effective treatment for malignant pheochromocytoma.77
In animal models, specifically PC12 tumor-bearing mice, 211At-
MABG has shown significant promises in reducing tumor volume
with minimal side effects. Even at lower dosages, 211At-MABG
treatment resulted in substantial inhibition of tumor growth compared
with controls, with mice experiencing temporary weight loss but re-
covering quickly. These findings suggest that 211At-MABG has a
strong and selective therapeutic effect, making it a promising candidate
for the treatment of malignant pheochromocytoma. Additionally, do-
simetry studies using mouse models have indicated that the absorbed
doses of 211At-MABG in organs expressing the NET, such as adrenal
glands, heart wall, and liver, were higher than those from free 211At.78
This suggests a higher specificity of 211At-MABG for target tissues,
a crucial aspect for reducing side effects in potential clinical use.

Moving forward with the clinical application of 211At, Japan is
poised to conduct the world’s first clinical trial of 18 patients with
malignant pheochromocytoma for targeted alpha therapy using
211At-MABG at Fukushima Medical University, with primary out-
come parameters including maximum tolerable dose and toxicity.79

This study has determined that patients undergoing targeted alpha
therapy with 211At-MABG do not require admission to a radiother-
apy room and that the therapy can be administered on an outpatient
basis. Radiation exposure to patients, the general public, and care-
givers adheres to the safety standards set by the ICRP and IAEA.
The guidelines also encompass protocols for patient and family pre-
cautions, safety management for the use of 211At-MABG,mandatory
education and training for medical personnel, and procedures for the
disposal of medical radioactive waste.79 Although these guidelines
are tailored to Japan’s medical environment and legal regulations,
the principles for radiation protection and evaluation methodologies
are internationally relevant and could serve as a benchmark for future
clinical trials and therapeutic applications worldwide.
© 2024 The Author(s). Published by Wolters Kluwer Health, Inc.
NOREPINEPHRINE TRANSPORTER THERANOSTICS
—POTENTIAL SYNERGETIC EFFECTS OF SECOND-
GENERATION DIAGNOSTIC PET AGENTS AND

TARGETED ALPHA THERAPY
The burgeoning field of cancer theranostics is poised to be

revolutionized by the synergistic integration of next-generation di-
agnostic and therapeutic modalities, particularly 18F-labeled PET
tracers and alpha-particle therapy. This innovative convergence
promises to enhance the precision and efficacy of cancer manage-
ment, offering a dual advantage: the highly sensitive detection of
NET-expressing tumors and their subsequent targeted destruction.

The synergy of these technologies becomes apparent when
considering the lifecycle of cancer treatment. 18F-PET tracers first
delineate the extent of disease, guiding the application of 211At-
MABG to the identified malignancies. The subsequent targeted al-
pha therapy works to eradicate the NET-expressing tumors, with the
potential for real-time monitoring of therapeutic response using the
same 18F-PET tracers. Furthermore, the utilization of these 2 mo-
dalities may combine their individual strengths. The sensitivity
and resolution of 18F-PET imaging ensure accurate treatment plan-
ning and due to the potential of delayed scan protocols, dosimetry
for 211At-MABG therapy, potentially improving outcomes and re-
ducing the risk of recurrence. Simultaneously, the effective tumor
control by 211At-MABG could lower the burden of disease, further
enhancing the diagnostic clarity of PET imaging.

As we stand on the cusp of clinical trials, such as those soon
underway in Japan, the prospect of combining 18F-PET imaging
with 211At-MABG treatment holds immense potential. This inte-
grated approach could redefine the therapeutic landscape for patients
with malignancies such as pheochromocytoma, neuroblastoma, and
other NET-expressing tumors.78,79 It also underscores the need for
continued interdisciplinary collaboration and innovation within the
fields of nuclear medicine and oncology to fully harness the capabil-
ities of these advanced diagnostic and therapeutic tools.

CONCLUSIONS
The field of precision oncology is witnessing significant ad-

vancements through the integration of radiopharmaceuticals
targeting the NET. These advancements, particularly the clinical ap-
plications of 123I-MIBG for diagnostic imaging and 131I-MIBG for
therapeutic purposes, have shown significant promise in managing
certain type of tumors such as pheochromocytoma, neuroblastoma,
and paraganglioma. The emergence of 18F-labeled NET-targeting
imaging radiotracers represents a notable enhancement in tumor lo-
calization and staging, offering superior resolution and precision.

The theranostic approach combining diagnostic imaging
with therapeutic interventions would be further advanced by the in-
troduction of 211At-MABG. This alpha-particle therapy might har-
ness the potent and localized cytotoxic effects of alpha radiation
to effectively target and eradicate NET-expressing tumor cells while
minimizing off-target effects. Preclinical studies and forthcoming
clinical trials, particularly in Japan, highlight the potential of
211At-MABG as a powerful treatment option for malignant pheo-
chromocytoma and other NET-expressing tumors.

The future of NET-targeted theranostics lies in the synergistic
use of second-generation 18F-labeled PET agents and alpha-particle
therapy. This integration promises to enhance the precision and efficacy
of cancer treatment, offering dual advantages in both diagnosis and
therapeutic monitoring. As clinical trials advance and new radiophar-
maceuticals are developed, the potential for improved patient outcomes
through personalized and targeted cancer therapies continues to expand.
Continued interdisciplinary collaboration and innovation are essential
to fully harness the capabilities of these advanced diagnostic and ther-
apeutic tools, paving the way for a new era in precision oncology.
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