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Abstract
Post-traumatic Stress Disorder (PTSD) is a mental condition
that develops as a result of catastrophic events. Triggers for
this may include experiences, such as military combat, natural
disasters, or sexual abuse, having a great influence on the mental
wellbeing. Due to the severity of this condition, early detection
and professional treatment is crucial. For this reason, previous
research explored prediction models for recognising PTSD at an
early stage. However, when these models are transferred from
research to real-world applications, they face heterogeneous
environments (e. g., different recording settings, various dialects
or languages). To analyse this effect, we develop a speech-
based PTSD recognition model and subsequently analyse its
cross-corpus and cross-linguistic performance. Our experiments
indicate that there are cross-cultural factors influencing PTSD
and leading to a best area under the ROC curve (AUC) of 70.1%
evaluated cross-corpus.
Index Terms: PTSD, machine learning, digital health

1. Introduction
Traumatic events, such as ones that involve a real risk of death or
a serious injury can have chronic repercussions in the form of a
Post-traumatic Stress Disorder (PTSD) [1, 2]. With a prevalence
of 5− 10%, PTSD is a serious condition, to which women are
twice as susceptible as men [3]. The triggers for PTSD can be
multifaceted and range from war operations to serious accidents,
or sexual abuse [4, 5, 6] . The effects of this condition on the
daily lives of those affected are equally complex. In addition to
constant fears, nightmares, and reliving the trigger event, patients
with PTSD can also develop further mental disorders such as
Major Depressive Disorder (MDD) [1], which further deteriorate
the overall condition of the patient.

To counteract this, it is important to recognise PTSD at an
early stage, providing professional treatment in time. To this
end, many different approaches have been explored in previ-
ous work with the aim of recognising PTSD earlier and thus
enabling a timely clinical treatment. From a clinical perspec-
tive, self-reporting questionnaires and structural clinical inter-
views [7, 8, 9] are typically used to determine whether a person
suffers from PTSD. However, even if they enable reliable detec-
tion, these clinical assessment methods have weaknesses. First,
they are time-consuming. Second, they can only be carried out
by properly trained psychologists (i. e., the assessment is not
quick and cannot be automated) [10]. Machine learning-based

approaches can help to overcome these limitations, utilising data,
e. g., obtained from smartphone sensors or audio.

The former was explored, e. g., by Lekkas et al. [11]. In
their study, they used GPS data collected with a smartphone
and subsequently derived movement patterns, leading to an area
under the ROC curve (AUC) of 81.6%. Vergyri et al. [10]
investigated the latter one and experimented with prosodic- and
lexical audio features. In their work, they demonstrated the
feasibility of a PTSD assessment solely based on audio data,
resulting in a best classification accuracy of 77%. Moreover,
Kathan et al. [12] explored the effect of a clinical treatment
session on the speech of people with PTSD. In their experiments,
they showed that a best performance of 82% is achieved using
only data before the clinical intervention, indicating the positive
effect of a single treatment session. Finally, Sawadogo et al. [13]
investigated multimodal approaches, considering audio, video,
and text data.

Despite the numerous researches in the field of PTSD de-
tection, it has been neglected to analyse the effect and per-
formance when being transferred into real-world applications,
where trained models face different recording devices, recording
environments, local dialects or even a different language. To
solve this limitation, we present in this work a cross-corpus and
cross-linguistic analysis. Our contribution is threefold. First,
we explore four self-supervised learning (SSL) [14] approaches
for PTSD recognition, improving the accuracy on the English-
language dataset PTSD In The Wild (ITW) [13]. Second, we
freeze these models and apply them to a German-language
PTSD dataset (on which they were never trained), LMU PTSD
(LMU) [12], and analyse the cross-corpus and cross-linguistic
performance. Third, we examine common acoustic markers that
are present in both datasets (i. e., languages), but also discuss
those features that reveal different trends in the two datasets.

2. Datasets
For our study, we consider two PTSD datasets, the English-
language ITW [13] and the German-language LMU [12] dataset,
enabling a cross-corpus and cross-linguistic analysis.

The English ITW dataset consists of 634 videos (317 people
with PTSD and 317 healthy controls) downloaded from YouTube.
For the PTSD group, the authors chose people who experienced
a traumatic event, giving an interview and answering questions
about their story with PTSD. For the control group, they include
celebrities who have been interviewed. The average video dura-
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tion is approximately 2 minutes, leading to a total of 21 hours
of available raw video and audio data. Further details about the
dataset can be found in [13].

The German LMU dataset, recently introduced in [12], com-
prises 20 participants (7 people with and 13 people without
PTSD). Study participants of the PTSD cohort were required to
have a type I PTSD diagnosis (ICD-10: F43.1). For the audio
recording, the participants were asked to read the two given
texts, Der Nordwind und die Sonne [The Northwind and the
Sun] and Das tapfere Schneiderlein [The Valiant Little Tailor],
respectively. Furthermore, the LMU dataset includes data before
and after a clinical treatment session. However, since the aim of
this study is not to distinguish between pre- and post-treatment
sessions, we will not differentiate between these two categories
in our study, but only focus on distinguishing PTSD patients
from the control group.

As the ITW dataset is significantly larger, we use it for
training and evaluating our SSL models for recognising PTSD.
Subsequently, these trained models are then applied (without
further training) and evaluated on the LMU dataset, revealing
whether there are acoustic markers in the speech of people with
PTSD that work cross-linguistically.

3. Experimental setup
We begin our experiments with preprocessing both datasets,
applying speaker diarisation, splitting the audio recordings into
smaller chunks with a length of 5 and 30 seconds, respectively,
followed by several data augmentation methods (Section 3.1).
Subsequently, we extract audio representations using four SSL
models and utilise these features with a simple decision head to
perform binary PTSD classification (Section 3.2). Furthermore,
we do not only use the four models as feature extractors, but also
fine-tune them, leading to more specialised models for PTSD
recognition (Section 3.3). Finally, we apply these models to a
novel unseen dataset with another language (Section 3.4).

3.1. Preprocessing and data augmentation

In addition to the patient, some videos of the PTSD cohort in
the ITW dataset also include additional speakers. Therefore, we
determine for each audio file all speakers using speaker diarisa-
tion1 [15, 16] and remove for the PTSD cohort all non-PTSD
speakers as well as segments without any speech at all.

The total available audio duration per participant is about
2 minutes for ITW and 1.5 minutes for LMU. In a subsequent
step, we therefore split the audio files into smaller segments of 5
and 30 seconds, respectively. In cases of speech recordings that
are shorter than the specified chunk length (5 or 30 seconds), the
audio is not splitted any further.

To further enrich the data, we apply three data augmentation
methods on the training data. First, we perform random crop-
ping and zero padding, to extend the amount of available data.
Second, we randomly shift the pitch by up to 3 semitones up or
down with a likelihood of 30 % during training. Third, we add
White Gaussian Noise with a probability of 40 % and an applied
signal-to-noise ratio which is randomly sampled from the range
[35; 55] (for BYOL-A as it is more sensitive to Gaussian Noise
compared to wav2vec2.0 (w2v2) models [17]) and [15; 35] (for
w2v2 models), respectively.

1https://huggingface.co/pyannote/speaker-diarization

3.2. Frozen experiments

In our experiments, we apply four different pretrained SSL mod-
els as frozen feature extractors, followed by a simple decision
head which we train on the ITW dataset.

1) BYOL for Audio (BYOL-A)2 [17] comprises a dual-
network architecture, pretrained on AudioSet [18]. The first
network tries to predict the representation of the second network
which is an augmented version of the same audio clip of the first
network. The augmented counterpart could be altered by, e. g.,
adding background noise, changing the pitch or time-stretching,
enabling the model to learn strong features that remain consistent
and unaffected by these transformations. 2) W2v2-base3 [19]
is a version of w2v2, including a convolutional feature encoder
for handling raw audio signals as well as a Transformer-based
context network. The base model comprises 95m parameters
and is pretrained on Librispeech. 3) W2v2-large-lv604 [19] rep-
resents another variant of w2v2, which is pretrained on the larger
LibriVox dataset. Furthermore the model is bigger compared
to the smaller base model, comprising 317m parameters. 4)
W2v2-emo-msp5 [20] forms a third variant, which is fine-tuned
for emotion recognition tasks and has proven to be efficient for
PTSD recognition [12].

For our frozen experiments, we apply all four SSL models
as feature extractors, perform pooling across the time dimension
and add a simple multilayer perceptron (MLP) as decision head
for the classification task. In the case of BYOL-A, we perform
average- and max-pooling in parallel and subsequently sum up
both tensors, resulting in a 2 048-dimensional feature vector. In
the case of the w2v2 models, average pooling is applied, leading
to a 1 024-dimensional feature vector. The MLP consists of
two fully-connected layers, GELU as activation function, Layer
Normalisation, as well as a dropout of [0.5− 0.7].

For training the model, we use the data split described in the
ITW paper [13], splitting the recordings into 80 % for training,
10 % for validation, and 10 % for testing. As loss function,
we apply BCE-Loss. Moreover, we use Adam as optimiser, a
learning rate of 3e-6, and train the model for a maximum of
100 epochs, including early stopping when not improving for
4 consecutive epochs. For BYOL-A, we apply a batch size of
256 for the 5 s and 128 for the 30 s segments, respectively. For
w2v2-base, we use 128 and 64, for w2v2-emo-msp 64 and 16,
respectively. For w2v2-large-lv60, we use for both segment
lengths a batch size of 16. As evaluation metric, we choose
the area under the ROC curve (AUC) . In doing so, the AUC is
calculated in two variants. First, it is calculated on the basis of
single chunks. Second, the mean prediction probabilities for all
chunks per speaker are determined, resulting in a speaker-level
performance measurement.

3.3. Fine-tuning experiments

Even if upstream models can already produce good representa-
tions, fine-tuning them on the downstream classification task has
been shown to improve performance [21]. For this reason, we
use the previously introduced pretrained models and fine-tune
them on the ITW dataset while updating all parameters. Fur-
thermore, we apply the same decision head, as well as the same
experimental setup as outlined in Section 3.2. However, due to

2https://github.com/nttcslab/byol-a
3https://huggingface.co/facebook/wav2vec2-base
4https://huggingface.co/facebook/wav2vec2-large-lv60
5https://huggingface.co/audeering/wav2vec2-large-robust-12-ft-

emotion-msp-dim
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the increased computational demand of computing gradients for
the pretrained models, we reduce the batch sizes for w2v2-base
to 64 for the 30 s and 16 for the 5 s segments, respectively. For
w2v2-emo-dim, it is reduced to 64 and 4. For w2v2-large-lv60,
we reduce the batch size for the 5 s experiments to 8. We do not
conduct experiments for the 30 s experiments, due to its memory
consumption, which exceeded our GPU capacity.

3.4. Cross-corpus and cross-linguistic experiments

The experiments outlined in Section 3.2 and Section 3.3 only in-
volve data from the ITW dataset. Although the English ITW and
the German LMU dataset differ in many aspects (e. g., language,
environment, circumstances of recording, content of speech),
they should both exhibit paralinguistic features associated with
PTSD in individuals affected by this condition. If the previously
trained models successfully recognise such peculiarities, they
should also be – to some degree – effective on the LMU sam-
ples. The examined models (BYOL-A and the w2v2 variants)
are therefore also evaluated on all samples of the LMU dataset
(after training them on the ITW dataset).

4. Results and discussion
Table 1 shows the results achieved in our experiments. In Sec-
tion 4.1, we discuss them especially w. r. t. the model predic-
tion performance when being applied cross-corpus. In Sec-
tion 4.2, we conduct an extensive feature analysis, discussing
cross-linguistic acoustic markers present in both datasets.

4.1. Binary PTSD prediction

The binary PTSD prediction results are depicted in Table 1. In
all cases, the best result is achieved using the w2v2-emo-msp
model. The frozen experiments (in which we used the model
solely as feature extractor) yield a best chunk-level AUC of .947
and speaker-level result of .981 when trained and evaluated on
the ITW dataset. Furthermore, it can be observed that mostly the
longer chunks with a duration of 30 s perform better compared
to the 5 s chunks.

For the fine-tuned (on ITW) experiments, we obtain a best
chunk-level AUC of .983 and a best speaker-level AUC of .997
using w2v2-emo-msp. Similar to the frozen experiments, the
w2v2-emo-msp model outperforms the other models by a large
margin. Moreover, the averaged speaker-level predictions im-
prove the results in most of the cases, except for the BYOL-A
model in conjunction with a segment length of 30 s. The fine-
tuned experiments show that the SSL model benefits from up-
dating the parameters of the pretrained models during training
and not only using them as feature extractors, resulting in a
higher prediction performance, consistent with previous work
showing that fine-tuning layers is important for improving per-
formance [21].

Finally, we take the best models (pretrained and fine-tuned
solely on the English-language ITW dataset) and utilise them
for binary PTSD prediction for all audio chunks of the German-
language LMU dataset to test their generalisation on a novel
unseen cross-linguistic dataset. The results show that a best
overall performance is achieved using 5 s chunks on a speaker-
level in conjunction with the w2v2-emo-msp model, leading to
an AUC of .701. The best chunk-level result is obtained for
the 30 s length in combination with the w2v2-emo-msp model.
Whereas the BYOL-A and w2v2-base results are mostly around
chance-level, the w2v2-large-lv60 and w2v2-emo-msp models
are able to clearly outperform chance-level, indicating that there

Table 1: AUC results for PTSD prediction using the English-
language PTSD In The Wild (ITW) and the German-language
LMU PTSD (LMU) dataset. We report results for chunk- and
speaker-level, and for different segment lengths (Len). The frozen
results are formed using the SSL models as feature extractors.
The fine-tuned results are obtained by fine-tuning the models.
Cross-corpus results are achieved evaluating the fine-tuned (on
the ITW dataset) models on the LMU dataset.

[AUC] ITW [Frozen] ITW [Fine-tuned] LMU [Cross-corpus]

Model Len Chunks Speaker Chunks Speaker Chunks Speaker

BYOL-A 5 s .825 .869 .825 .871 .469 .500
30 s .858 .846 .875 .857 .529 .531

w2v2-base 5 s .693 .726 .884 .931 .506 .554
30 s .745 .731 .885 .957 .539 .531

w2v2-large-lv60 5 s .646 .692 .751 .843 .584 .637
30 s – – – – – –

w2v2-emo-msp 5 s .865 .942 .925 .956 .632 .701
30 s .947 .981 .983 .997 .688 .678

are paralinguistic acoustic markers for people suffering from
PTSD that are similarly prominent in both, German and English
language.

4.2. Cross-linguistic feature analysis

To further explore which acoustic markers are important in both
languages, we conduct a cross-linguistic feature analysis. In
doing so, we only analyse female speakers in both datasets (as
the majority of study participants in the LMU dataset is female)
to eliminate a sex-based influence of the voice. Subsequently,
we use the OPENSMILE toolkit [22] to extract the eGeMAPS
features [23], which comprise functionals over a set of low-
level descriptors (LLDs), and apply the Mann-Whitney-U test
(features are not normally distributed). In the next step, we filter
all features based on their effect sizes and ρ values, leading to a
list of acoustic markers that only contains features that show a
significant difference between participants with PTSD and the
control group in both datasets. In our analysis, we consider an
effect size of ≥ 30% and ρ < .001. Due to space limitations,
we remove functionals of the same LLD that show a similar
trend.

Figure 1 depicts 10 acoustic markers that are important in
both, the English ITW and the German LMU dataset. The upper
row shows relevant features that show the same pattern in both
datasets. The feature with the highest effect size is MFCC2. In
both datasets, MFCC2 is higher for people with PTSD compared
to the control group. A similar observation was made in the
related field of MDD. Taguchi et al. [24] explored that MFCC2
was significantly higher for study participants with MDD, con-
cluding that this might reflect a change of the quality of voice.
Another acoustic marker is the variation of F0 (in semitones).
This marker seems to decrease in both datasets for participants
of the PTSD cohort, resulting in a speech that can be perceived
more monotonous and sad [25, 26]. This is also the case in
depression and schizophrenic research, which show a similar
pattern. An early study by Nilsonne [25] came to the conclu-
sion that the variation of F0 is lower for depressed people and
increases once they recover. Harmonics-to-Noise-Ratio (HNR)
quantifies the relationship between harmonic sounds (e. g., re-
sponsible for the tone or pitch) to noise sounds (e. g., aperiodic
components such as breathiness or hoarseness). Previous PTSD
studies showed that HNR and its coefficient of variation are
lower for the PTSD cohort [12], which can also be observed in
our case for both the English-language and German-language
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Figure 1: Normalised feature values for acoustic markers that are important in both, the English-language dataset PTSD In The Wild
(ITW) as well as in the German-language dataset LMU PTSD (LMU). The features are calculated separately for people with PTSD and
the control group and are ordered by their effect size (ES). The upper row shows important features that have a similar trend in both
datasets whereas the bottom row displays acoustic markers revealing opposing trends among both datasets.

dataset. Similarly, the Spectral flux, describing the change of two
consecutive spectrum frames, seems to be a promising marker
for determining PTSD [12]. In both datasets, people with PTSD
exhibit a lower spectral flux variation, indicating a more mono-
tone speech [27]. Finally, Loudness appears to be a generally
valid cross-linguistic marker for PTSD. In the ITW as well as
in the LMU dataset, we observe that the control group speaks
louder than the PTSD cohort, which is also visible in several
mental disorder studies [28, 29, 30].

The bottom row of Figure 1 in turn reveals important acous-
tic features with a high effect size, but showing opposing patterns
among both datasets (e. g., increased value for PTSD in the ITW
dataset, but decreased value for the PTSD group in the LMU
dataset). Some of the opposing trends, e. g., Loudness peaks per
second may arise due to phonetic and prosodic differences across
the German and English language [31, 32]. In particular, Ger-
man may have a more forceful or abrupt articulation compared to
English, because of consonants such as the hard ‘t’, which could
result in more loudness peaks. Furthermore, there are acoustic
markers that show differences between PTSD patients and the
control group in single datasets and studies, but that are often not
significant. Nilsonne [25], for example, investigated that people
with a related mental disease (i. e., depression) have a minimally
lower mean F0 value (similar to the ITW dataset), but which
was not significant. In contrast, Kathan et al. [12] explored an
increased F0 which might be correlated with a higher stress level
of PTSD patients.

To summarise the results of our feature analysis: On the
one hand, there are several acoustic markers, such as MFCC2
or Loudness that are significant in both, the ITW and the LMU
dataset, showing similar patterns across both languages, and
therefore appear to be valid cross-linguistic markers. Moreover,
people with PTSD seem to speak more monotonous with a re-
duced loudness compared to healthy controls. On the other hand,
there are acoustic markers that may be relevant in individual
datasets or in a specific language (e. g., mean F0), however, do

not seem to be generalisable cross-linguistically and therefore
may not be reliable valid cross-corpus markers for PTSD.

5. Conclusions
When machine learning models are transferred from research to
real-world applications, they are typically confronted with het-
erogeneous environments compared to the training data (e. g., dif-
ferent recording settings, background noise, or various dialects
or languages). Our experiments show that there are robust par-
alinguistic features in the speech of PTSD patients, enabling the
model to cope with these differences, leading to a reliable cross-
corpus and cross-linguistic PTSD detection with a best AUC of
.701. Moreover, our analysis indicates that there are well gen-
eralisable cross-linguistic markers in patients with PTSD, such
as MFCC2 or Loudness. At the same time, however, there are
acoustic features that only have a certain relevance in individual
datasets or languages (e. g., mean F0).

Nevertheless, our study also comes with limitations. First,
we only considered two datasets (one per language). Therefore,
future work should integrate more datasets, including several
languages. Second, we only explored a binary PTSD classifica-
tion in our machine learning experiments, making it impossible
to judge whether the models can only distinguish between the
PTSD and healthy control cohort, or also are able to separate
between PTSD and other psychiatric disorders. To overcome
this limitation, future work should also collect multi-linguistic
datasets, including different mental conditions as well as ex-
ploring personalisation strategies, proven to be successful in
depression recognition [33, 34, 35], to adapt the model to the
individual characteristics of the people in a new dataset.
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